drm/amdkfd: fixes for HMM mem allocation
[platform/kernel/linux-starfive.git] / drivers / gpu / drm / amd / amdkfd / kfd_migrate.c
1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /*
3  * Copyright 2020-2021 Advanced Micro Devices, Inc.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in
13  * all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21  * OTHER DEALINGS IN THE SOFTWARE.
22  */
23 #include <linux/types.h>
24 #include <linux/hmm.h>
25 #include <linux/dma-direction.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/migrate.h>
28 #include "amdgpu_sync.h"
29 #include "amdgpu_object.h"
30 #include "amdgpu_vm.h"
31 #include "amdgpu_res_cursor.h"
32 #include "kfd_priv.h"
33 #include "kfd_svm.h"
34 #include "kfd_migrate.h"
35 #include "kfd_smi_events.h"
36
37 #ifdef dev_fmt
38 #undef dev_fmt
39 #endif
40 #define dev_fmt(fmt) "kfd_migrate: " fmt
41
42 static uint64_t
43 svm_migrate_direct_mapping_addr(struct amdgpu_device *adev, uint64_t addr)
44 {
45         return addr + amdgpu_ttm_domain_start(adev, TTM_PL_VRAM);
46 }
47
48 static int
49 svm_migrate_gart_map(struct amdgpu_ring *ring, uint64_t npages,
50                      dma_addr_t *addr, uint64_t *gart_addr, uint64_t flags)
51 {
52         struct amdgpu_device *adev = ring->adev;
53         struct amdgpu_job *job;
54         unsigned int num_dw, num_bytes;
55         struct dma_fence *fence;
56         uint64_t src_addr, dst_addr;
57         uint64_t pte_flags;
58         void *cpu_addr;
59         int r;
60
61         /* use gart window 0 */
62         *gart_addr = adev->gmc.gart_start;
63
64         num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
65         num_bytes = npages * 8;
66
67         r = amdgpu_job_alloc_with_ib(adev, &adev->mman.high_pr,
68                                      AMDGPU_FENCE_OWNER_UNDEFINED,
69                                      num_dw * 4 + num_bytes,
70                                      AMDGPU_IB_POOL_DELAYED,
71                                      &job);
72         if (r)
73                 return r;
74
75         src_addr = num_dw * 4;
76         src_addr += job->ibs[0].gpu_addr;
77
78         dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo);
79         amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr,
80                                 dst_addr, num_bytes, false);
81
82         amdgpu_ring_pad_ib(ring, &job->ibs[0]);
83         WARN_ON(job->ibs[0].length_dw > num_dw);
84
85         pte_flags = AMDGPU_PTE_VALID | AMDGPU_PTE_READABLE;
86         pte_flags |= AMDGPU_PTE_SYSTEM | AMDGPU_PTE_SNOOPED;
87         if (!(flags & KFD_IOCTL_SVM_FLAG_GPU_RO))
88                 pte_flags |= AMDGPU_PTE_WRITEABLE;
89         pte_flags |= adev->gart.gart_pte_flags;
90
91         cpu_addr = &job->ibs[0].ptr[num_dw];
92
93         amdgpu_gart_map(adev, 0, npages, addr, pte_flags, cpu_addr);
94         fence = amdgpu_job_submit(job);
95         dma_fence_put(fence);
96
97         return r;
98 }
99
100 /**
101  * svm_migrate_copy_memory_gart - sdma copy data between ram and vram
102  *
103  * @adev: amdgpu device the sdma ring running
104  * @sys: system DMA pointer to be copied
105  * @vram: vram destination DMA pointer
106  * @npages: number of pages to copy
107  * @direction: enum MIGRATION_COPY_DIR
108  * @mfence: output, sdma fence to signal after sdma is done
109  *
110  * ram address uses GART table continuous entries mapping to ram pages,
111  * vram address uses direct mapping of vram pages, which must have npages
112  * number of continuous pages.
113  * GART update and sdma uses same buf copy function ring, sdma is splited to
114  * multiple GTT_MAX_PAGES transfer, all sdma operations are serialized, wait for
115  * the last sdma finish fence which is returned to check copy memory is done.
116  *
117  * Context: Process context, takes and releases gtt_window_lock
118  *
119  * Return:
120  * 0 - OK, otherwise error code
121  */
122
123 static int
124 svm_migrate_copy_memory_gart(struct amdgpu_device *adev, dma_addr_t *sys,
125                              uint64_t *vram, uint64_t npages,
126                              enum MIGRATION_COPY_DIR direction,
127                              struct dma_fence **mfence)
128 {
129         const uint64_t GTT_MAX_PAGES = AMDGPU_GTT_MAX_TRANSFER_SIZE;
130         struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
131         uint64_t gart_s, gart_d;
132         struct dma_fence *next;
133         uint64_t size;
134         int r;
135
136         mutex_lock(&adev->mman.gtt_window_lock);
137
138         while (npages) {
139                 size = min(GTT_MAX_PAGES, npages);
140
141                 if (direction == FROM_VRAM_TO_RAM) {
142                         gart_s = svm_migrate_direct_mapping_addr(adev, *vram);
143                         r = svm_migrate_gart_map(ring, size, sys, &gart_d, 0);
144
145                 } else if (direction == FROM_RAM_TO_VRAM) {
146                         r = svm_migrate_gart_map(ring, size, sys, &gart_s,
147                                                  KFD_IOCTL_SVM_FLAG_GPU_RO);
148                         gart_d = svm_migrate_direct_mapping_addr(adev, *vram);
149                 }
150                 if (r) {
151                         dev_err(adev->dev, "fail %d create gart mapping\n", r);
152                         goto out_unlock;
153                 }
154
155                 r = amdgpu_copy_buffer(ring, gart_s, gart_d, size * PAGE_SIZE,
156                                        NULL, &next, false, true, false);
157                 if (r) {
158                         dev_err(adev->dev, "fail %d to copy memory\n", r);
159                         goto out_unlock;
160                 }
161
162                 dma_fence_put(*mfence);
163                 *mfence = next;
164                 npages -= size;
165                 if (npages) {
166                         sys += size;
167                         vram += size;
168                 }
169         }
170
171 out_unlock:
172         mutex_unlock(&adev->mman.gtt_window_lock);
173
174         return r;
175 }
176
177 /**
178  * svm_migrate_copy_done - wait for memory copy sdma is done
179  *
180  * @adev: amdgpu device the sdma memory copy is executing on
181  * @mfence: migrate fence
182  *
183  * Wait for dma fence is signaled, if the copy ssplit into multiple sdma
184  * operations, this is the last sdma operation fence.
185  *
186  * Context: called after svm_migrate_copy_memory
187  *
188  * Return:
189  * 0            - success
190  * otherwise    - error code from dma fence signal
191  */
192 static int
193 svm_migrate_copy_done(struct amdgpu_device *adev, struct dma_fence *mfence)
194 {
195         int r = 0;
196
197         if (mfence) {
198                 r = dma_fence_wait(mfence, false);
199                 dma_fence_put(mfence);
200                 pr_debug("sdma copy memory fence done\n");
201         }
202
203         return r;
204 }
205
206 unsigned long
207 svm_migrate_addr_to_pfn(struct amdgpu_device *adev, unsigned long addr)
208 {
209         return (addr + adev->kfd.pgmap.range.start) >> PAGE_SHIFT;
210 }
211
212 static void
213 svm_migrate_get_vram_page(struct svm_range *prange, unsigned long pfn)
214 {
215         struct page *page;
216
217         page = pfn_to_page(pfn);
218         svm_range_bo_ref(prange->svm_bo);
219         page->zone_device_data = prange->svm_bo;
220         zone_device_page_init(page);
221 }
222
223 static void
224 svm_migrate_put_vram_page(struct amdgpu_device *adev, unsigned long addr)
225 {
226         struct page *page;
227
228         page = pfn_to_page(svm_migrate_addr_to_pfn(adev, addr));
229         unlock_page(page);
230         put_page(page);
231 }
232
233 static unsigned long
234 svm_migrate_addr(struct amdgpu_device *adev, struct page *page)
235 {
236         unsigned long addr;
237
238         addr = page_to_pfn(page) << PAGE_SHIFT;
239         return (addr - adev->kfd.pgmap.range.start);
240 }
241
242 static struct page *
243 svm_migrate_get_sys_page(struct vm_area_struct *vma, unsigned long addr)
244 {
245         struct page *page;
246
247         page = alloc_page_vma(GFP_HIGHUSER, vma, addr);
248         if (page)
249                 lock_page(page);
250
251         return page;
252 }
253
254 static void svm_migrate_put_sys_page(unsigned long addr)
255 {
256         struct page *page;
257
258         page = pfn_to_page(addr >> PAGE_SHIFT);
259         unlock_page(page);
260         put_page(page);
261 }
262
263 static unsigned long svm_migrate_successful_pages(struct migrate_vma *migrate)
264 {
265         unsigned long cpages = 0;
266         unsigned long i;
267
268         for (i = 0; i < migrate->npages; i++) {
269                 if (migrate->src[i] & MIGRATE_PFN_VALID &&
270                     migrate->src[i] & MIGRATE_PFN_MIGRATE)
271                         cpages++;
272         }
273         return cpages;
274 }
275
276 static unsigned long svm_migrate_unsuccessful_pages(struct migrate_vma *migrate)
277 {
278         unsigned long upages = 0;
279         unsigned long i;
280
281         for (i = 0; i < migrate->npages; i++) {
282                 if (migrate->src[i] & MIGRATE_PFN_VALID &&
283                     !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
284                         upages++;
285         }
286         return upages;
287 }
288
289 static int
290 svm_migrate_copy_to_vram(struct kfd_node *node, struct svm_range *prange,
291                          struct migrate_vma *migrate, struct dma_fence **mfence,
292                          dma_addr_t *scratch, uint64_t ttm_res_offset)
293 {
294         uint64_t npages = migrate->cpages;
295         struct amdgpu_device *adev = node->adev;
296         struct device *dev = adev->dev;
297         struct amdgpu_res_cursor cursor;
298         dma_addr_t *src;
299         uint64_t *dst;
300         uint64_t i, j;
301         int r;
302
303         pr_debug("svms 0x%p [0x%lx 0x%lx 0x%llx]\n", prange->svms, prange->start,
304                  prange->last, ttm_res_offset);
305
306         src = scratch;
307         dst = (uint64_t *)(scratch + npages);
308
309         amdgpu_res_first(prange->ttm_res, ttm_res_offset,
310                          npages << PAGE_SHIFT, &cursor);
311         for (i = j = 0; i < npages; i++) {
312                 struct page *spage;
313
314                 dst[i] = cursor.start + (j << PAGE_SHIFT);
315                 migrate->dst[i] = svm_migrate_addr_to_pfn(adev, dst[i]);
316                 svm_migrate_get_vram_page(prange, migrate->dst[i]);
317                 migrate->dst[i] = migrate_pfn(migrate->dst[i]);
318
319                 spage = migrate_pfn_to_page(migrate->src[i]);
320                 if (spage && !is_zone_device_page(spage)) {
321                         src[i] = dma_map_page(dev, spage, 0, PAGE_SIZE,
322                                               DMA_TO_DEVICE);
323                         r = dma_mapping_error(dev, src[i]);
324                         if (r) {
325                                 dev_err(dev, "%s: fail %d dma_map_page\n",
326                                         __func__, r);
327                                 goto out_free_vram_pages;
328                         }
329                 } else {
330                         if (j) {
331                                 r = svm_migrate_copy_memory_gart(
332                                                 adev, src + i - j,
333                                                 dst + i - j, j,
334                                                 FROM_RAM_TO_VRAM,
335                                                 mfence);
336                                 if (r)
337                                         goto out_free_vram_pages;
338                                 amdgpu_res_next(&cursor, (j + 1) << PAGE_SHIFT);
339                                 j = 0;
340                         } else {
341                                 amdgpu_res_next(&cursor, PAGE_SIZE);
342                         }
343                         continue;
344                 }
345
346                 pr_debug_ratelimited("dma mapping src to 0x%llx, pfn 0x%lx\n",
347                                      src[i] >> PAGE_SHIFT, page_to_pfn(spage));
348
349                 if (j >= (cursor.size >> PAGE_SHIFT) - 1 && i < npages - 1) {
350                         r = svm_migrate_copy_memory_gart(adev, src + i - j,
351                                                          dst + i - j, j + 1,
352                                                          FROM_RAM_TO_VRAM,
353                                                          mfence);
354                         if (r)
355                                 goto out_free_vram_pages;
356                         amdgpu_res_next(&cursor, (j + 1) * PAGE_SIZE);
357                         j = 0;
358                 } else {
359                         j++;
360                 }
361         }
362
363         r = svm_migrate_copy_memory_gart(adev, src + i - j, dst + i - j, j,
364                                          FROM_RAM_TO_VRAM, mfence);
365
366 out_free_vram_pages:
367         if (r) {
368                 pr_debug("failed %d to copy memory to vram\n", r);
369                 while (i--) {
370                         svm_migrate_put_vram_page(adev, dst[i]);
371                         migrate->dst[i] = 0;
372                 }
373         }
374
375 #ifdef DEBUG_FORCE_MIXED_DOMAINS
376         for (i = 0, j = 0; i < npages; i += 4, j++) {
377                 if (j & 1)
378                         continue;
379                 svm_migrate_put_vram_page(adev, dst[i]);
380                 migrate->dst[i] = 0;
381                 svm_migrate_put_vram_page(adev, dst[i + 1]);
382                 migrate->dst[i + 1] = 0;
383                 svm_migrate_put_vram_page(adev, dst[i + 2]);
384                 migrate->dst[i + 2] = 0;
385                 svm_migrate_put_vram_page(adev, dst[i + 3]);
386                 migrate->dst[i + 3] = 0;
387         }
388 #endif
389
390         return r;
391 }
392
393 static long
394 svm_migrate_vma_to_vram(struct kfd_node *node, struct svm_range *prange,
395                         struct vm_area_struct *vma, uint64_t start,
396                         uint64_t end, uint32_t trigger, uint64_t ttm_res_offset)
397 {
398         struct kfd_process *p = container_of(prange->svms, struct kfd_process, svms);
399         uint64_t npages = (end - start) >> PAGE_SHIFT;
400         struct amdgpu_device *adev = node->adev;
401         struct kfd_process_device *pdd;
402         struct dma_fence *mfence = NULL;
403         struct migrate_vma migrate = { 0 };
404         unsigned long cpages = 0;
405         dma_addr_t *scratch;
406         void *buf;
407         int r = -ENOMEM;
408
409         memset(&migrate, 0, sizeof(migrate));
410         migrate.vma = vma;
411         migrate.start = start;
412         migrate.end = end;
413         migrate.flags = MIGRATE_VMA_SELECT_SYSTEM;
414         migrate.pgmap_owner = SVM_ADEV_PGMAP_OWNER(adev);
415
416         buf = kvcalloc(npages,
417                        2 * sizeof(*migrate.src) + sizeof(uint64_t) + sizeof(dma_addr_t),
418                        GFP_KERNEL);
419         if (!buf)
420                 goto out;
421
422         migrate.src = buf;
423         migrate.dst = migrate.src + npages;
424         scratch = (dma_addr_t *)(migrate.dst + npages);
425
426         kfd_smi_event_migration_start(node, p->lead_thread->pid,
427                                       start >> PAGE_SHIFT, end >> PAGE_SHIFT,
428                                       0, node->id, prange->prefetch_loc,
429                                       prange->preferred_loc, trigger);
430
431         r = migrate_vma_setup(&migrate);
432         if (r) {
433                 dev_err(adev->dev, "%s: vma setup fail %d range [0x%lx 0x%lx]\n",
434                         __func__, r, prange->start, prange->last);
435                 goto out_free;
436         }
437
438         cpages = migrate.cpages;
439         if (!cpages) {
440                 pr_debug("failed collect migrate sys pages [0x%lx 0x%lx]\n",
441                          prange->start, prange->last);
442                 goto out_free;
443         }
444         if (cpages != npages)
445                 pr_debug("partial migration, 0x%lx/0x%llx pages migrated\n",
446                          cpages, npages);
447         else
448                 pr_debug("0x%lx pages migrated\n", cpages);
449
450         r = svm_migrate_copy_to_vram(node, prange, &migrate, &mfence, scratch, ttm_res_offset);
451         migrate_vma_pages(&migrate);
452
453         pr_debug("successful/cpages/npages 0x%lx/0x%lx/0x%lx\n",
454                 svm_migrate_successful_pages(&migrate), cpages, migrate.npages);
455
456         svm_migrate_copy_done(adev, mfence);
457         migrate_vma_finalize(&migrate);
458
459         kfd_smi_event_migration_end(node, p->lead_thread->pid,
460                                     start >> PAGE_SHIFT, end >> PAGE_SHIFT,
461                                     0, node->id, trigger);
462
463         svm_range_dma_unmap(adev->dev, scratch, 0, npages);
464
465 out_free:
466         kvfree(buf);
467 out:
468         if (!r && cpages) {
469                 pdd = svm_range_get_pdd_by_node(prange, node);
470                 if (pdd)
471                         WRITE_ONCE(pdd->page_in, pdd->page_in + cpages);
472
473                 return cpages;
474         }
475         return r;
476 }
477
478 /**
479  * svm_migrate_ram_to_vram - migrate svm range from system to device
480  * @prange: range structure
481  * @best_loc: the device to migrate to
482  * @mm: the process mm structure
483  * @trigger: reason of migration
484  *
485  * Context: Process context, caller hold mmap read lock, svms lock, prange lock
486  *
487  * Return:
488  * 0 - OK, otherwise error code
489  */
490 static int
491 svm_migrate_ram_to_vram(struct svm_range *prange, uint32_t best_loc,
492                         struct mm_struct *mm, uint32_t trigger)
493 {
494         unsigned long addr, start, end;
495         struct vm_area_struct *vma;
496         uint64_t ttm_res_offset;
497         struct kfd_node *node;
498         unsigned long cpages = 0;
499         long r = 0;
500
501         if (prange->actual_loc == best_loc) {
502                 pr_debug("svms 0x%p [0x%lx 0x%lx] already on best_loc 0x%x\n",
503                          prange->svms, prange->start, prange->last, best_loc);
504                 return 0;
505         }
506
507         node = svm_range_get_node_by_id(prange, best_loc);
508         if (!node) {
509                 pr_debug("failed to get kfd node by id 0x%x\n", best_loc);
510                 return -ENODEV;
511         }
512
513         pr_debug("svms 0x%p [0x%lx 0x%lx] to gpu 0x%x\n", prange->svms,
514                  prange->start, prange->last, best_loc);
515
516         start = prange->start << PAGE_SHIFT;
517         end = (prange->last + 1) << PAGE_SHIFT;
518
519         r = svm_range_vram_node_new(node, prange, true);
520         if (r) {
521                 dev_dbg(node->adev->dev, "fail %ld to alloc vram\n", r);
522                 return r;
523         }
524         ttm_res_offset = prange->offset << PAGE_SHIFT;
525
526         for (addr = start; addr < end;) {
527                 unsigned long next;
528
529                 vma = vma_lookup(mm, addr);
530                 if (!vma)
531                         break;
532
533                 next = min(vma->vm_end, end);
534                 r = svm_migrate_vma_to_vram(node, prange, vma, addr, next, trigger, ttm_res_offset);
535                 if (r < 0) {
536                         pr_debug("failed %ld to migrate\n", r);
537                         break;
538                 } else {
539                         cpages += r;
540                 }
541                 ttm_res_offset += next - addr;
542                 addr = next;
543         }
544
545         if (cpages) {
546                 prange->actual_loc = best_loc;
547                 svm_range_free_dma_mappings(prange, true);
548         } else {
549                 svm_range_vram_node_free(prange);
550         }
551
552         return r < 0 ? r : 0;
553 }
554
555 static void svm_migrate_page_free(struct page *page)
556 {
557         struct svm_range_bo *svm_bo = page->zone_device_data;
558
559         if (svm_bo) {
560                 pr_debug_ratelimited("ref: %d\n", kref_read(&svm_bo->kref));
561                 svm_range_bo_unref_async(svm_bo);
562         }
563 }
564
565 static int
566 svm_migrate_copy_to_ram(struct amdgpu_device *adev, struct svm_range *prange,
567                         struct migrate_vma *migrate, struct dma_fence **mfence,
568                         dma_addr_t *scratch, uint64_t npages)
569 {
570         struct device *dev = adev->dev;
571         uint64_t *src;
572         dma_addr_t *dst;
573         struct page *dpage;
574         uint64_t i = 0, j;
575         uint64_t addr;
576         int r = 0;
577
578         pr_debug("svms 0x%p [0x%lx 0x%lx]\n", prange->svms, prange->start,
579                  prange->last);
580
581         addr = prange->start << PAGE_SHIFT;
582
583         src = (uint64_t *)(scratch + npages);
584         dst = scratch;
585
586         for (i = 0, j = 0; i < npages; i++, addr += PAGE_SIZE) {
587                 struct page *spage;
588
589                 spage = migrate_pfn_to_page(migrate->src[i]);
590                 if (!spage || !is_zone_device_page(spage)) {
591                         pr_debug("invalid page. Could be in CPU already svms 0x%p [0x%lx 0x%lx]\n",
592                                  prange->svms, prange->start, prange->last);
593                         if (j) {
594                                 r = svm_migrate_copy_memory_gart(adev, dst + i - j,
595                                                                  src + i - j, j,
596                                                                  FROM_VRAM_TO_RAM,
597                                                                  mfence);
598                                 if (r)
599                                         goto out_oom;
600                                 j = 0;
601                         }
602                         continue;
603                 }
604                 src[i] = svm_migrate_addr(adev, spage);
605                 if (j > 0 && src[i] != src[i - 1] + PAGE_SIZE) {
606                         r = svm_migrate_copy_memory_gart(adev, dst + i - j,
607                                                          src + i - j, j,
608                                                          FROM_VRAM_TO_RAM,
609                                                          mfence);
610                         if (r)
611                                 goto out_oom;
612                         j = 0;
613                 }
614
615                 dpage = svm_migrate_get_sys_page(migrate->vma, addr);
616                 if (!dpage) {
617                         pr_debug("failed get page svms 0x%p [0x%lx 0x%lx]\n",
618                                  prange->svms, prange->start, prange->last);
619                         r = -ENOMEM;
620                         goto out_oom;
621                 }
622
623                 dst[i] = dma_map_page(dev, dpage, 0, PAGE_SIZE, DMA_FROM_DEVICE);
624                 r = dma_mapping_error(dev, dst[i]);
625                 if (r) {
626                         dev_err(adev->dev, "%s: fail %d dma_map_page\n", __func__, r);
627                         goto out_oom;
628                 }
629
630                 pr_debug_ratelimited("dma mapping dst to 0x%llx, pfn 0x%lx\n",
631                                      dst[i] >> PAGE_SHIFT, page_to_pfn(dpage));
632
633                 migrate->dst[i] = migrate_pfn(page_to_pfn(dpage));
634                 j++;
635         }
636
637         r = svm_migrate_copy_memory_gart(adev, dst + i - j, src + i - j, j,
638                                          FROM_VRAM_TO_RAM, mfence);
639
640 out_oom:
641         if (r) {
642                 pr_debug("failed %d copy to ram\n", r);
643                 while (i--) {
644                         svm_migrate_put_sys_page(dst[i]);
645                         migrate->dst[i] = 0;
646                 }
647         }
648
649         return r;
650 }
651
652 /**
653  * svm_migrate_vma_to_ram - migrate range inside one vma from device to system
654  *
655  * @prange: svm range structure
656  * @vma: vm_area_struct that range [start, end] belongs to
657  * @start: range start virtual address in pages
658  * @end: range end virtual address in pages
659  * @node: kfd node device to migrate from
660  * @trigger: reason of migration
661  * @fault_page: is from vmf->page, svm_migrate_to_ram(), this is CPU page fault callback
662  *
663  * Context: Process context, caller hold mmap read lock, prange->migrate_mutex
664  *
665  * Return:
666  *   0 - success with all pages migrated
667  *   negative values - indicate error
668  *   positive values - partial migration, number of pages not migrated
669  */
670 static long
671 svm_migrate_vma_to_ram(struct kfd_node *node, struct svm_range *prange,
672                        struct vm_area_struct *vma, uint64_t start, uint64_t end,
673                        uint32_t trigger, struct page *fault_page)
674 {
675         struct kfd_process *p = container_of(prange->svms, struct kfd_process, svms);
676         uint64_t npages = (end - start) >> PAGE_SHIFT;
677         unsigned long upages = npages;
678         unsigned long cpages = 0;
679         struct amdgpu_device *adev = node->adev;
680         struct kfd_process_device *pdd;
681         struct dma_fence *mfence = NULL;
682         struct migrate_vma migrate = { 0 };
683         dma_addr_t *scratch;
684         void *buf;
685         int r = -ENOMEM;
686
687         memset(&migrate, 0, sizeof(migrate));
688         migrate.vma = vma;
689         migrate.start = start;
690         migrate.end = end;
691         migrate.pgmap_owner = SVM_ADEV_PGMAP_OWNER(adev);
692         if (adev->gmc.xgmi.connected_to_cpu)
693                 migrate.flags = MIGRATE_VMA_SELECT_DEVICE_COHERENT;
694         else
695                 migrate.flags = MIGRATE_VMA_SELECT_DEVICE_PRIVATE;
696
697         buf = kvcalloc(npages,
698                        2 * sizeof(*migrate.src) + sizeof(uint64_t) + sizeof(dma_addr_t),
699                        GFP_KERNEL);
700         if (!buf)
701                 goto out;
702
703         migrate.src = buf;
704         migrate.dst = migrate.src + npages;
705         migrate.fault_page = fault_page;
706         scratch = (dma_addr_t *)(migrate.dst + npages);
707
708         kfd_smi_event_migration_start(node, p->lead_thread->pid,
709                                       start >> PAGE_SHIFT, end >> PAGE_SHIFT,
710                                       node->id, 0, prange->prefetch_loc,
711                                       prange->preferred_loc, trigger);
712
713         r = migrate_vma_setup(&migrate);
714         if (r) {
715                 dev_err(adev->dev, "%s: vma setup fail %d range [0x%lx 0x%lx]\n",
716                         __func__, r, prange->start, prange->last);
717                 goto out_free;
718         }
719
720         cpages = migrate.cpages;
721         if (!cpages) {
722                 pr_debug("failed collect migrate device pages [0x%lx 0x%lx]\n",
723                          prange->start, prange->last);
724                 upages = svm_migrate_unsuccessful_pages(&migrate);
725                 goto out_free;
726         }
727         if (cpages != npages)
728                 pr_debug("partial migration, 0x%lx/0x%llx pages migrated\n",
729                          cpages, npages);
730         else
731                 pr_debug("0x%lx pages migrated\n", cpages);
732
733         r = svm_migrate_copy_to_ram(adev, prange, &migrate, &mfence,
734                                     scratch, npages);
735         migrate_vma_pages(&migrate);
736
737         upages = svm_migrate_unsuccessful_pages(&migrate);
738         pr_debug("unsuccessful/cpages/npages 0x%lx/0x%lx/0x%lx\n",
739                  upages, cpages, migrate.npages);
740
741         svm_migrate_copy_done(adev, mfence);
742         migrate_vma_finalize(&migrate);
743
744         kfd_smi_event_migration_end(node, p->lead_thread->pid,
745                                     start >> PAGE_SHIFT, end >> PAGE_SHIFT,
746                                     node->id, 0, trigger);
747
748         svm_range_dma_unmap(adev->dev, scratch, 0, npages);
749
750 out_free:
751         kvfree(buf);
752 out:
753         if (!r && cpages) {
754                 pdd = svm_range_get_pdd_by_node(prange, node);
755                 if (pdd)
756                         WRITE_ONCE(pdd->page_out, pdd->page_out + cpages);
757         }
758         return r ? r : upages;
759 }
760
761 /**
762  * svm_migrate_vram_to_ram - migrate svm range from device to system
763  * @prange: range structure
764  * @mm: process mm, use current->mm if NULL
765  * @trigger: reason of migration
766  * @fault_page: is from vmf->page, svm_migrate_to_ram(), this is CPU page fault callback
767  *
768  * Context: Process context, caller hold mmap read lock, prange->migrate_mutex
769  *
770  * Return:
771  * 0 - OK, otherwise error code
772  */
773 int svm_migrate_vram_to_ram(struct svm_range *prange, struct mm_struct *mm,
774                             uint32_t trigger, struct page *fault_page)
775 {
776         struct kfd_node *node;
777         struct vm_area_struct *vma;
778         unsigned long addr;
779         unsigned long start;
780         unsigned long end;
781         unsigned long upages = 0;
782         long r = 0;
783
784         if (!prange->actual_loc) {
785                 pr_debug("[0x%lx 0x%lx] already migrated to ram\n",
786                          prange->start, prange->last);
787                 return 0;
788         }
789
790         node = svm_range_get_node_by_id(prange, prange->actual_loc);
791         if (!node) {
792                 pr_debug("failed to get kfd node by id 0x%x\n", prange->actual_loc);
793                 return -ENODEV;
794         }
795         pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx] from gpu 0x%x to ram\n",
796                  prange->svms, prange, prange->start, prange->last,
797                  prange->actual_loc);
798
799         start = prange->start << PAGE_SHIFT;
800         end = (prange->last + 1) << PAGE_SHIFT;
801
802         for (addr = start; addr < end;) {
803                 unsigned long next;
804
805                 vma = vma_lookup(mm, addr);
806                 if (!vma) {
807                         pr_debug("failed to find vma for prange %p\n", prange);
808                         r = -EFAULT;
809                         break;
810                 }
811
812                 next = min(vma->vm_end, end);
813                 r = svm_migrate_vma_to_ram(node, prange, vma, addr, next, trigger,
814                         fault_page);
815                 if (r < 0) {
816                         pr_debug("failed %ld to migrate prange %p\n", r, prange);
817                         break;
818                 } else {
819                         upages += r;
820                 }
821                 addr = next;
822         }
823
824         if (r >= 0 && !upages) {
825                 svm_range_vram_node_free(prange);
826                 prange->actual_loc = 0;
827         }
828
829         return r < 0 ? r : 0;
830 }
831
832 /**
833  * svm_migrate_vram_to_vram - migrate svm range from device to device
834  * @prange: range structure
835  * @best_loc: the device to migrate to
836  * @mm: process mm, use current->mm if NULL
837  * @trigger: reason of migration
838  *
839  * Context: Process context, caller hold mmap read lock, svms lock, prange lock
840  *
841  * Return:
842  * 0 - OK, otherwise error code
843  */
844 static int
845 svm_migrate_vram_to_vram(struct svm_range *prange, uint32_t best_loc,
846                          struct mm_struct *mm, uint32_t trigger)
847 {
848         int r, retries = 3;
849
850         /*
851          * TODO: for both devices with PCIe large bar or on same xgmi hive, skip
852          * system memory as migration bridge
853          */
854
855         pr_debug("from gpu 0x%x to gpu 0x%x\n", prange->actual_loc, best_loc);
856
857         do {
858                 r = svm_migrate_vram_to_ram(prange, mm, trigger, NULL);
859                 if (r)
860                         return r;
861         } while (prange->actual_loc && --retries);
862
863         if (prange->actual_loc)
864                 return -EDEADLK;
865
866         return svm_migrate_ram_to_vram(prange, best_loc, mm, trigger);
867 }
868
869 int
870 svm_migrate_to_vram(struct svm_range *prange, uint32_t best_loc,
871                     struct mm_struct *mm, uint32_t trigger)
872 {
873         if  (!prange->actual_loc)
874                 return svm_migrate_ram_to_vram(prange, best_loc, mm, trigger);
875         else
876                 return svm_migrate_vram_to_vram(prange, best_loc, mm, trigger);
877
878 }
879
880 /**
881  * svm_migrate_to_ram - CPU page fault handler
882  * @vmf: CPU vm fault vma, address
883  *
884  * Context: vm fault handler, caller holds the mmap read lock
885  *
886  * Return:
887  * 0 - OK
888  * VM_FAULT_SIGBUS - notice application to have SIGBUS page fault
889  */
890 static vm_fault_t svm_migrate_to_ram(struct vm_fault *vmf)
891 {
892         unsigned long addr = vmf->address;
893         struct svm_range_bo *svm_bo;
894         enum svm_work_list_ops op;
895         struct svm_range *parent;
896         struct svm_range *prange;
897         struct kfd_process *p;
898         struct mm_struct *mm;
899         int r = 0;
900
901         svm_bo = vmf->page->zone_device_data;
902         if (!svm_bo) {
903                 pr_debug("failed get device page at addr 0x%lx\n", addr);
904                 return VM_FAULT_SIGBUS;
905         }
906         if (!mmget_not_zero(svm_bo->eviction_fence->mm)) {
907                 pr_debug("addr 0x%lx of process mm is destroyed\n", addr);
908                 return VM_FAULT_SIGBUS;
909         }
910
911         mm = svm_bo->eviction_fence->mm;
912         if (mm != vmf->vma->vm_mm)
913                 pr_debug("addr 0x%lx is COW mapping in child process\n", addr);
914
915         p = kfd_lookup_process_by_mm(mm);
916         if (!p) {
917                 pr_debug("failed find process at fault address 0x%lx\n", addr);
918                 r = VM_FAULT_SIGBUS;
919                 goto out_mmput;
920         }
921         if (READ_ONCE(p->svms.faulting_task) == current) {
922                 pr_debug("skipping ram migration\n");
923                 r = 0;
924                 goto out_unref_process;
925         }
926
927         pr_debug("CPU page fault svms 0x%p address 0x%lx\n", &p->svms, addr);
928         addr >>= PAGE_SHIFT;
929
930         mutex_lock(&p->svms.lock);
931
932         prange = svm_range_from_addr(&p->svms, addr, &parent);
933         if (!prange) {
934                 pr_debug("failed get range svms 0x%p addr 0x%lx\n", &p->svms, addr);
935                 r = -EFAULT;
936                 goto out_unlock_svms;
937         }
938
939         mutex_lock(&parent->migrate_mutex);
940         if (prange != parent)
941                 mutex_lock_nested(&prange->migrate_mutex, 1);
942
943         if (!prange->actual_loc)
944                 goto out_unlock_prange;
945
946         svm_range_lock(parent);
947         if (prange != parent)
948                 mutex_lock_nested(&prange->lock, 1);
949         r = svm_range_split_by_granularity(p, mm, addr, parent, prange);
950         if (prange != parent)
951                 mutex_unlock(&prange->lock);
952         svm_range_unlock(parent);
953         if (r) {
954                 pr_debug("failed %d to split range by granularity\n", r);
955                 goto out_unlock_prange;
956         }
957
958         r = svm_migrate_vram_to_ram(prange, vmf->vma->vm_mm,
959                                     KFD_MIGRATE_TRIGGER_PAGEFAULT_CPU,
960                                     vmf->page);
961         if (r)
962                 pr_debug("failed %d migrate svms 0x%p range 0x%p [0x%lx 0x%lx]\n",
963                          r, prange->svms, prange, prange->start, prange->last);
964
965         /* xnack on, update mapping on GPUs with ACCESS_IN_PLACE */
966         if (p->xnack_enabled && parent == prange)
967                 op = SVM_OP_UPDATE_RANGE_NOTIFIER_AND_MAP;
968         else
969                 op = SVM_OP_UPDATE_RANGE_NOTIFIER;
970         svm_range_add_list_work(&p->svms, parent, mm, op);
971         schedule_deferred_list_work(&p->svms);
972
973 out_unlock_prange:
974         if (prange != parent)
975                 mutex_unlock(&prange->migrate_mutex);
976         mutex_unlock(&parent->migrate_mutex);
977 out_unlock_svms:
978         mutex_unlock(&p->svms.lock);
979 out_unref_process:
980         pr_debug("CPU fault svms 0x%p address 0x%lx done\n", &p->svms, addr);
981         kfd_unref_process(p);
982 out_mmput:
983         mmput(mm);
984         return r ? VM_FAULT_SIGBUS : 0;
985 }
986
987 static const struct dev_pagemap_ops svm_migrate_pgmap_ops = {
988         .page_free              = svm_migrate_page_free,
989         .migrate_to_ram         = svm_migrate_to_ram,
990 };
991
992 /* Each VRAM page uses sizeof(struct page) on system memory */
993 #define SVM_HMM_PAGE_STRUCT_SIZE(size) ((size)/PAGE_SIZE * sizeof(struct page))
994
995 int kgd2kfd_init_zone_device(struct amdgpu_device *adev)
996 {
997         struct amdgpu_kfd_dev *kfddev = &adev->kfd;
998         struct dev_pagemap *pgmap;
999         struct resource *res = NULL;
1000         unsigned long size;
1001         void *r;
1002
1003         /* Page migration works on gfx9 or newer */
1004         if (adev->ip_versions[GC_HWIP][0] < IP_VERSION(9, 0, 1))
1005                 return -EINVAL;
1006
1007         if (adev->gmc.is_app_apu)
1008                 return 0;
1009
1010         pgmap = &kfddev->pgmap;
1011         memset(pgmap, 0, sizeof(*pgmap));
1012
1013         /* TODO: register all vram to HMM for now.
1014          * should remove reserved size
1015          */
1016         size = ALIGN(adev->gmc.real_vram_size, 2ULL << 20);
1017         if (adev->gmc.xgmi.connected_to_cpu) {
1018                 pgmap->range.start = adev->gmc.aper_base;
1019                 pgmap->range.end = adev->gmc.aper_base + adev->gmc.aper_size - 1;
1020                 pgmap->type = MEMORY_DEVICE_COHERENT;
1021         } else {
1022                 res = devm_request_free_mem_region(adev->dev, &iomem_resource, size);
1023                 if (IS_ERR(res))
1024                         return PTR_ERR(res);
1025                 pgmap->range.start = res->start;
1026                 pgmap->range.end = res->end;
1027                 pgmap->type = MEMORY_DEVICE_PRIVATE;
1028         }
1029
1030         pgmap->nr_range = 1;
1031         pgmap->ops = &svm_migrate_pgmap_ops;
1032         pgmap->owner = SVM_ADEV_PGMAP_OWNER(adev);
1033         pgmap->flags = 0;
1034         /* Device manager releases device-specific resources, memory region and
1035          * pgmap when driver disconnects from device.
1036          */
1037         r = devm_memremap_pages(adev->dev, pgmap);
1038         if (IS_ERR(r)) {
1039                 pr_err("failed to register HMM device memory\n");
1040                 if (pgmap->type == MEMORY_DEVICE_PRIVATE)
1041                         devm_release_mem_region(adev->dev, res->start, resource_size(res));
1042                 /* Disable SVM support capability */
1043                 pgmap->type = 0;
1044                 return PTR_ERR(r);
1045         }
1046
1047         pr_debug("reserve %ldMB system memory for VRAM pages struct\n",
1048                  SVM_HMM_PAGE_STRUCT_SIZE(size) >> 20);
1049
1050         amdgpu_amdkfd_reserve_system_mem(SVM_HMM_PAGE_STRUCT_SIZE(size));
1051
1052         pr_info("HMM registered %ldMB device memory\n", size >> 20);
1053
1054         return 0;
1055 }