Backmerge remote-tracking branch 'drm/drm-next' into drm-misc-next
[platform/kernel/linux-rpi.git] / drivers / gpu / drm / amd / amdgpu / amdgpu_vm.c
1 /*
2  * Copyright 2008 Advanced Micro Devices, Inc.
3  * Copyright 2008 Red Hat Inc.
4  * Copyright 2009 Jerome Glisse.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
20  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22  * OTHER DEALINGS IN THE SOFTWARE.
23  *
24  * Authors: Dave Airlie
25  *          Alex Deucher
26  *          Jerome Glisse
27  */
28 #include <linux/dma-fence-array.h>
29 #include <linux/interval_tree_generic.h>
30 #include <linux/idr.h>
31
32 #include <drm/amdgpu_drm.h>
33 #include "amdgpu.h"
34 #include "amdgpu_trace.h"
35 #include "amdgpu_amdkfd.h"
36 #include "amdgpu_gmc.h"
37 #include "amdgpu_xgmi.h"
38
39 /**
40  * DOC: GPUVM
41  *
42  * GPUVM is similar to the legacy gart on older asics, however
43  * rather than there being a single global gart table
44  * for the entire GPU, there are multiple VM page tables active
45  * at any given time.  The VM page tables can contain a mix
46  * vram pages and system memory pages and system memory pages
47  * can be mapped as snooped (cached system pages) or unsnooped
48  * (uncached system pages).
49  * Each VM has an ID associated with it and there is a page table
50  * associated with each VMID.  When execting a command buffer,
51  * the kernel tells the the ring what VMID to use for that command
52  * buffer.  VMIDs are allocated dynamically as commands are submitted.
53  * The userspace drivers maintain their own address space and the kernel
54  * sets up their pages tables accordingly when they submit their
55  * command buffers and a VMID is assigned.
56  * Cayman/Trinity support up to 8 active VMs at any given time;
57  * SI supports 16.
58  */
59
60 #define START(node) ((node)->start)
61 #define LAST(node) ((node)->last)
62
63 INTERVAL_TREE_DEFINE(struct amdgpu_bo_va_mapping, rb, uint64_t, __subtree_last,
64                      START, LAST, static, amdgpu_vm_it)
65
66 #undef START
67 #undef LAST
68
69 /**
70  * struct amdgpu_prt_cb - Helper to disable partial resident texture feature from a fence callback
71  */
72 struct amdgpu_prt_cb {
73
74         /**
75          * @adev: amdgpu device
76          */
77         struct amdgpu_device *adev;
78
79         /**
80          * @cb: callback
81          */
82         struct dma_fence_cb cb;
83 };
84
85 /*
86  * vm eviction_lock can be taken in MMU notifiers. Make sure no reclaim-FS
87  * happens while holding this lock anywhere to prevent deadlocks when
88  * an MMU notifier runs in reclaim-FS context.
89  */
90 static inline void amdgpu_vm_eviction_lock(struct amdgpu_vm *vm)
91 {
92         mutex_lock(&vm->eviction_lock);
93         vm->saved_flags = memalloc_nofs_save();
94 }
95
96 static inline int amdgpu_vm_eviction_trylock(struct amdgpu_vm *vm)
97 {
98         if (mutex_trylock(&vm->eviction_lock)) {
99                 vm->saved_flags = memalloc_nofs_save();
100                 return 1;
101         }
102         return 0;
103 }
104
105 static inline void amdgpu_vm_eviction_unlock(struct amdgpu_vm *vm)
106 {
107         memalloc_nofs_restore(vm->saved_flags);
108         mutex_unlock(&vm->eviction_lock);
109 }
110
111 /**
112  * amdgpu_vm_level_shift - return the addr shift for each level
113  *
114  * @adev: amdgpu_device pointer
115  * @level: VMPT level
116  *
117  * Returns:
118  * The number of bits the pfn needs to be right shifted for a level.
119  */
120 static unsigned amdgpu_vm_level_shift(struct amdgpu_device *adev,
121                                       unsigned level)
122 {
123         switch (level) {
124         case AMDGPU_VM_PDB2:
125         case AMDGPU_VM_PDB1:
126         case AMDGPU_VM_PDB0:
127                 return 9 * (AMDGPU_VM_PDB0 - level) +
128                         adev->vm_manager.block_size;
129         case AMDGPU_VM_PTB:
130                 return 0;
131         default:
132                 return ~0;
133         }
134 }
135
136 /**
137  * amdgpu_vm_num_entries - return the number of entries in a PD/PT
138  *
139  * @adev: amdgpu_device pointer
140  * @level: VMPT level
141  *
142  * Returns:
143  * The number of entries in a page directory or page table.
144  */
145 static unsigned amdgpu_vm_num_entries(struct amdgpu_device *adev,
146                                       unsigned level)
147 {
148         unsigned shift = amdgpu_vm_level_shift(adev,
149                                                adev->vm_manager.root_level);
150
151         if (level == adev->vm_manager.root_level)
152                 /* For the root directory */
153                 return round_up(adev->vm_manager.max_pfn, 1ULL << shift)
154                         >> shift;
155         else if (level != AMDGPU_VM_PTB)
156                 /* Everything in between */
157                 return 512;
158         else
159                 /* For the page tables on the leaves */
160                 return AMDGPU_VM_PTE_COUNT(adev);
161 }
162
163 /**
164  * amdgpu_vm_num_ats_entries - return the number of ATS entries in the root PD
165  *
166  * @adev: amdgpu_device pointer
167  *
168  * Returns:
169  * The number of entries in the root page directory which needs the ATS setting.
170  */
171 static unsigned amdgpu_vm_num_ats_entries(struct amdgpu_device *adev)
172 {
173         unsigned shift;
174
175         shift = amdgpu_vm_level_shift(adev, adev->vm_manager.root_level);
176         return AMDGPU_GMC_HOLE_START >> (shift + AMDGPU_GPU_PAGE_SHIFT);
177 }
178
179 /**
180  * amdgpu_vm_entries_mask - the mask to get the entry number of a PD/PT
181  *
182  * @adev: amdgpu_device pointer
183  * @level: VMPT level
184  *
185  * Returns:
186  * The mask to extract the entry number of a PD/PT from an address.
187  */
188 static uint32_t amdgpu_vm_entries_mask(struct amdgpu_device *adev,
189                                        unsigned int level)
190 {
191         if (level <= adev->vm_manager.root_level)
192                 return 0xffffffff;
193         else if (level != AMDGPU_VM_PTB)
194                 return 0x1ff;
195         else
196                 return AMDGPU_VM_PTE_COUNT(adev) - 1;
197 }
198
199 /**
200  * amdgpu_vm_bo_size - returns the size of the BOs in bytes
201  *
202  * @adev: amdgpu_device pointer
203  * @level: VMPT level
204  *
205  * Returns:
206  * The size of the BO for a page directory or page table in bytes.
207  */
208 static unsigned amdgpu_vm_bo_size(struct amdgpu_device *adev, unsigned level)
209 {
210         return AMDGPU_GPU_PAGE_ALIGN(amdgpu_vm_num_entries(adev, level) * 8);
211 }
212
213 /**
214  * amdgpu_vm_bo_evicted - vm_bo is evicted
215  *
216  * @vm_bo: vm_bo which is evicted
217  *
218  * State for PDs/PTs and per VM BOs which are not at the location they should
219  * be.
220  */
221 static void amdgpu_vm_bo_evicted(struct amdgpu_vm_bo_base *vm_bo)
222 {
223         struct amdgpu_vm *vm = vm_bo->vm;
224         struct amdgpu_bo *bo = vm_bo->bo;
225
226         vm_bo->moved = true;
227         if (bo->tbo.type == ttm_bo_type_kernel)
228                 list_move(&vm_bo->vm_status, &vm->evicted);
229         else
230                 list_move_tail(&vm_bo->vm_status, &vm->evicted);
231 }
232 /**
233  * amdgpu_vm_bo_moved - vm_bo is moved
234  *
235  * @vm_bo: vm_bo which is moved
236  *
237  * State for per VM BOs which are moved, but that change is not yet reflected
238  * in the page tables.
239  */
240 static void amdgpu_vm_bo_moved(struct amdgpu_vm_bo_base *vm_bo)
241 {
242         list_move(&vm_bo->vm_status, &vm_bo->vm->moved);
243 }
244
245 /**
246  * amdgpu_vm_bo_idle - vm_bo is idle
247  *
248  * @vm_bo: vm_bo which is now idle
249  *
250  * State for PDs/PTs and per VM BOs which have gone through the state machine
251  * and are now idle.
252  */
253 static void amdgpu_vm_bo_idle(struct amdgpu_vm_bo_base *vm_bo)
254 {
255         list_move(&vm_bo->vm_status, &vm_bo->vm->idle);
256         vm_bo->moved = false;
257 }
258
259 /**
260  * amdgpu_vm_bo_invalidated - vm_bo is invalidated
261  *
262  * @vm_bo: vm_bo which is now invalidated
263  *
264  * State for normal BOs which are invalidated and that change not yet reflected
265  * in the PTs.
266  */
267 static void amdgpu_vm_bo_invalidated(struct amdgpu_vm_bo_base *vm_bo)
268 {
269         spin_lock(&vm_bo->vm->invalidated_lock);
270         list_move(&vm_bo->vm_status, &vm_bo->vm->invalidated);
271         spin_unlock(&vm_bo->vm->invalidated_lock);
272 }
273
274 /**
275  * amdgpu_vm_bo_relocated - vm_bo is reloacted
276  *
277  * @vm_bo: vm_bo which is relocated
278  *
279  * State for PDs/PTs which needs to update their parent PD.
280  * For the root PD, just move to idle state.
281  */
282 static void amdgpu_vm_bo_relocated(struct amdgpu_vm_bo_base *vm_bo)
283 {
284         if (vm_bo->bo->parent)
285                 list_move(&vm_bo->vm_status, &vm_bo->vm->relocated);
286         else
287                 amdgpu_vm_bo_idle(vm_bo);
288 }
289
290 /**
291  * amdgpu_vm_bo_done - vm_bo is done
292  *
293  * @vm_bo: vm_bo which is now done
294  *
295  * State for normal BOs which are invalidated and that change has been updated
296  * in the PTs.
297  */
298 static void amdgpu_vm_bo_done(struct amdgpu_vm_bo_base *vm_bo)
299 {
300         spin_lock(&vm_bo->vm->invalidated_lock);
301         list_del_init(&vm_bo->vm_status);
302         spin_unlock(&vm_bo->vm->invalidated_lock);
303 }
304
305 /**
306  * amdgpu_vm_bo_base_init - Adds bo to the list of bos associated with the vm
307  *
308  * @base: base structure for tracking BO usage in a VM
309  * @vm: vm to which bo is to be added
310  * @bo: amdgpu buffer object
311  *
312  * Initialize a bo_va_base structure and add it to the appropriate lists
313  *
314  */
315 static void amdgpu_vm_bo_base_init(struct amdgpu_vm_bo_base *base,
316                                    struct amdgpu_vm *vm,
317                                    struct amdgpu_bo *bo)
318 {
319         base->vm = vm;
320         base->bo = bo;
321         base->next = NULL;
322         INIT_LIST_HEAD(&base->vm_status);
323
324         if (!bo)
325                 return;
326         base->next = bo->vm_bo;
327         bo->vm_bo = base;
328
329         if (bo->tbo.base.resv != vm->root.base.bo->tbo.base.resv)
330                 return;
331
332         vm->bulk_moveable = false;
333         if (bo->tbo.type == ttm_bo_type_kernel && bo->parent)
334                 amdgpu_vm_bo_relocated(base);
335         else
336                 amdgpu_vm_bo_idle(base);
337
338         if (bo->preferred_domains &
339             amdgpu_mem_type_to_domain(bo->tbo.mem.mem_type))
340                 return;
341
342         /*
343          * we checked all the prerequisites, but it looks like this per vm bo
344          * is currently evicted. add the bo to the evicted list to make sure it
345          * is validated on next vm use to avoid fault.
346          * */
347         amdgpu_vm_bo_evicted(base);
348 }
349
350 /**
351  * amdgpu_vm_pt_parent - get the parent page directory
352  *
353  * @pt: child page table
354  *
355  * Helper to get the parent entry for the child page table. NULL if we are at
356  * the root page directory.
357  */
358 static struct amdgpu_vm_pt *amdgpu_vm_pt_parent(struct amdgpu_vm_pt *pt)
359 {
360         struct amdgpu_bo *parent = pt->base.bo->parent;
361
362         if (!parent)
363                 return NULL;
364
365         return container_of(parent->vm_bo, struct amdgpu_vm_pt, base);
366 }
367
368 /*
369  * amdgpu_vm_pt_cursor - state for for_each_amdgpu_vm_pt
370  */
371 struct amdgpu_vm_pt_cursor {
372         uint64_t pfn;
373         struct amdgpu_vm_pt *parent;
374         struct amdgpu_vm_pt *entry;
375         unsigned level;
376 };
377
378 /**
379  * amdgpu_vm_pt_start - start PD/PT walk
380  *
381  * @adev: amdgpu_device pointer
382  * @vm: amdgpu_vm structure
383  * @start: start address of the walk
384  * @cursor: state to initialize
385  *
386  * Initialize a amdgpu_vm_pt_cursor to start a walk.
387  */
388 static void amdgpu_vm_pt_start(struct amdgpu_device *adev,
389                                struct amdgpu_vm *vm, uint64_t start,
390                                struct amdgpu_vm_pt_cursor *cursor)
391 {
392         cursor->pfn = start;
393         cursor->parent = NULL;
394         cursor->entry = &vm->root;
395         cursor->level = adev->vm_manager.root_level;
396 }
397
398 /**
399  * amdgpu_vm_pt_descendant - go to child node
400  *
401  * @adev: amdgpu_device pointer
402  * @cursor: current state
403  *
404  * Walk to the child node of the current node.
405  * Returns:
406  * True if the walk was possible, false otherwise.
407  */
408 static bool amdgpu_vm_pt_descendant(struct amdgpu_device *adev,
409                                     struct amdgpu_vm_pt_cursor *cursor)
410 {
411         unsigned mask, shift, idx;
412
413         if (!cursor->entry->entries)
414                 return false;
415
416         BUG_ON(!cursor->entry->base.bo);
417         mask = amdgpu_vm_entries_mask(adev, cursor->level);
418         shift = amdgpu_vm_level_shift(adev, cursor->level);
419
420         ++cursor->level;
421         idx = (cursor->pfn >> shift) & mask;
422         cursor->parent = cursor->entry;
423         cursor->entry = &cursor->entry->entries[idx];
424         return true;
425 }
426
427 /**
428  * amdgpu_vm_pt_sibling - go to sibling node
429  *
430  * @adev: amdgpu_device pointer
431  * @cursor: current state
432  *
433  * Walk to the sibling node of the current node.
434  * Returns:
435  * True if the walk was possible, false otherwise.
436  */
437 static bool amdgpu_vm_pt_sibling(struct amdgpu_device *adev,
438                                  struct amdgpu_vm_pt_cursor *cursor)
439 {
440         unsigned shift, num_entries;
441
442         /* Root doesn't have a sibling */
443         if (!cursor->parent)
444                 return false;
445
446         /* Go to our parents and see if we got a sibling */
447         shift = amdgpu_vm_level_shift(adev, cursor->level - 1);
448         num_entries = amdgpu_vm_num_entries(adev, cursor->level - 1);
449
450         if (cursor->entry == &cursor->parent->entries[num_entries - 1])
451                 return false;
452
453         cursor->pfn += 1ULL << shift;
454         cursor->pfn &= ~((1ULL << shift) - 1);
455         ++cursor->entry;
456         return true;
457 }
458
459 /**
460  * amdgpu_vm_pt_ancestor - go to parent node
461  *
462  * @cursor: current state
463  *
464  * Walk to the parent node of the current node.
465  * Returns:
466  * True if the walk was possible, false otherwise.
467  */
468 static bool amdgpu_vm_pt_ancestor(struct amdgpu_vm_pt_cursor *cursor)
469 {
470         if (!cursor->parent)
471                 return false;
472
473         --cursor->level;
474         cursor->entry = cursor->parent;
475         cursor->parent = amdgpu_vm_pt_parent(cursor->parent);
476         return true;
477 }
478
479 /**
480  * amdgpu_vm_pt_next - get next PD/PT in hieratchy
481  *
482  * @adev: amdgpu_device pointer
483  * @cursor: current state
484  *
485  * Walk the PD/PT tree to the next node.
486  */
487 static void amdgpu_vm_pt_next(struct amdgpu_device *adev,
488                               struct amdgpu_vm_pt_cursor *cursor)
489 {
490         /* First try a newborn child */
491         if (amdgpu_vm_pt_descendant(adev, cursor))
492                 return;
493
494         /* If that didn't worked try to find a sibling */
495         while (!amdgpu_vm_pt_sibling(adev, cursor)) {
496                 /* No sibling, go to our parents and grandparents */
497                 if (!amdgpu_vm_pt_ancestor(cursor)) {
498                         cursor->pfn = ~0ll;
499                         return;
500                 }
501         }
502 }
503
504 /**
505  * amdgpu_vm_pt_first_dfs - start a deep first search
506  *
507  * @adev: amdgpu_device structure
508  * @vm: amdgpu_vm structure
509  * @start: optional cursor to start with
510  * @cursor: state to initialize
511  *
512  * Starts a deep first traversal of the PD/PT tree.
513  */
514 static void amdgpu_vm_pt_first_dfs(struct amdgpu_device *adev,
515                                    struct amdgpu_vm *vm,
516                                    struct amdgpu_vm_pt_cursor *start,
517                                    struct amdgpu_vm_pt_cursor *cursor)
518 {
519         if (start)
520                 *cursor = *start;
521         else
522                 amdgpu_vm_pt_start(adev, vm, 0, cursor);
523         while (amdgpu_vm_pt_descendant(adev, cursor));
524 }
525
526 /**
527  * amdgpu_vm_pt_continue_dfs - check if the deep first search should continue
528  *
529  * @start: starting point for the search
530  * @entry: current entry
531  *
532  * Returns:
533  * True when the search should continue, false otherwise.
534  */
535 static bool amdgpu_vm_pt_continue_dfs(struct amdgpu_vm_pt_cursor *start,
536                                       struct amdgpu_vm_pt *entry)
537 {
538         return entry && (!start || entry != start->entry);
539 }
540
541 /**
542  * amdgpu_vm_pt_next_dfs - get the next node for a deep first search
543  *
544  * @adev: amdgpu_device structure
545  * @cursor: current state
546  *
547  * Move the cursor to the next node in a deep first search.
548  */
549 static void amdgpu_vm_pt_next_dfs(struct amdgpu_device *adev,
550                                   struct amdgpu_vm_pt_cursor *cursor)
551 {
552         if (!cursor->entry)
553                 return;
554
555         if (!cursor->parent)
556                 cursor->entry = NULL;
557         else if (amdgpu_vm_pt_sibling(adev, cursor))
558                 while (amdgpu_vm_pt_descendant(adev, cursor));
559         else
560                 amdgpu_vm_pt_ancestor(cursor);
561 }
562
563 /*
564  * for_each_amdgpu_vm_pt_dfs_safe - safe deep first search of all PDs/PTs
565  */
566 #define for_each_amdgpu_vm_pt_dfs_safe(adev, vm, start, cursor, entry)          \
567         for (amdgpu_vm_pt_first_dfs((adev), (vm), (start), &(cursor)),          \
568              (entry) = (cursor).entry, amdgpu_vm_pt_next_dfs((adev), &(cursor));\
569              amdgpu_vm_pt_continue_dfs((start), (entry));                       \
570              (entry) = (cursor).entry, amdgpu_vm_pt_next_dfs((adev), &(cursor)))
571
572 /**
573  * amdgpu_vm_get_pd_bo - add the VM PD to a validation list
574  *
575  * @vm: vm providing the BOs
576  * @validated: head of validation list
577  * @entry: entry to add
578  *
579  * Add the page directory to the list of BOs to
580  * validate for command submission.
581  */
582 void amdgpu_vm_get_pd_bo(struct amdgpu_vm *vm,
583                          struct list_head *validated,
584                          struct amdgpu_bo_list_entry *entry)
585 {
586         entry->priority = 0;
587         entry->tv.bo = &vm->root.base.bo->tbo;
588         /* Two for VM updates, one for TTM and one for the CS job */
589         entry->tv.num_shared = 4;
590         entry->user_pages = NULL;
591         list_add(&entry->tv.head, validated);
592 }
593
594 /**
595  * amdgpu_vm_del_from_lru_notify - update bulk_moveable flag
596  *
597  * @bo: BO which was removed from the LRU
598  *
599  * Make sure the bulk_moveable flag is updated when a BO is removed from the
600  * LRU.
601  */
602 void amdgpu_vm_del_from_lru_notify(struct ttm_buffer_object *bo)
603 {
604         struct amdgpu_bo *abo;
605         struct amdgpu_vm_bo_base *bo_base;
606
607         if (!amdgpu_bo_is_amdgpu_bo(bo))
608                 return;
609
610         if (bo->mem.placement & TTM_PL_FLAG_NO_EVICT)
611                 return;
612
613         abo = ttm_to_amdgpu_bo(bo);
614         if (!abo->parent)
615                 return;
616         for (bo_base = abo->vm_bo; bo_base; bo_base = bo_base->next) {
617                 struct amdgpu_vm *vm = bo_base->vm;
618
619                 if (abo->tbo.base.resv == vm->root.base.bo->tbo.base.resv)
620                         vm->bulk_moveable = false;
621         }
622
623 }
624 /**
625  * amdgpu_vm_move_to_lru_tail - move all BOs to the end of LRU
626  *
627  * @adev: amdgpu device pointer
628  * @vm: vm providing the BOs
629  *
630  * Move all BOs to the end of LRU and remember their positions to put them
631  * together.
632  */
633 void amdgpu_vm_move_to_lru_tail(struct amdgpu_device *adev,
634                                 struct amdgpu_vm *vm)
635 {
636         struct amdgpu_vm_bo_base *bo_base;
637
638         if (vm->bulk_moveable) {
639                 spin_lock(&ttm_bo_glob.lru_lock);
640                 ttm_bo_bulk_move_lru_tail(&vm->lru_bulk_move);
641                 spin_unlock(&ttm_bo_glob.lru_lock);
642                 return;
643         }
644
645         memset(&vm->lru_bulk_move, 0, sizeof(vm->lru_bulk_move));
646
647         spin_lock(&ttm_bo_glob.lru_lock);
648         list_for_each_entry(bo_base, &vm->idle, vm_status) {
649                 struct amdgpu_bo *bo = bo_base->bo;
650
651                 if (!bo->parent)
652                         continue;
653
654                 ttm_bo_move_to_lru_tail(&bo->tbo, &vm->lru_bulk_move);
655                 if (bo->shadow)
656                         ttm_bo_move_to_lru_tail(&bo->shadow->tbo,
657                                                 &vm->lru_bulk_move);
658         }
659         spin_unlock(&ttm_bo_glob.lru_lock);
660
661         vm->bulk_moveable = true;
662 }
663
664 /**
665  * amdgpu_vm_validate_pt_bos - validate the page table BOs
666  *
667  * @adev: amdgpu device pointer
668  * @vm: vm providing the BOs
669  * @validate: callback to do the validation
670  * @param: parameter for the validation callback
671  *
672  * Validate the page table BOs on command submission if neccessary.
673  *
674  * Returns:
675  * Validation result.
676  */
677 int amdgpu_vm_validate_pt_bos(struct amdgpu_device *adev, struct amdgpu_vm *vm,
678                               int (*validate)(void *p, struct amdgpu_bo *bo),
679                               void *param)
680 {
681         struct amdgpu_vm_bo_base *bo_base, *tmp;
682         int r;
683
684         vm->bulk_moveable &= list_empty(&vm->evicted);
685
686         list_for_each_entry_safe(bo_base, tmp, &vm->evicted, vm_status) {
687                 struct amdgpu_bo *bo = bo_base->bo;
688
689                 r = validate(param, bo);
690                 if (r)
691                         return r;
692
693                 if (bo->tbo.type != ttm_bo_type_kernel) {
694                         amdgpu_vm_bo_moved(bo_base);
695                 } else {
696                         vm->update_funcs->map_table(bo);
697                         amdgpu_vm_bo_relocated(bo_base);
698                 }
699         }
700
701         amdgpu_vm_eviction_lock(vm);
702         vm->evicting = false;
703         amdgpu_vm_eviction_unlock(vm);
704
705         return 0;
706 }
707
708 /**
709  * amdgpu_vm_ready - check VM is ready for updates
710  *
711  * @vm: VM to check
712  *
713  * Check if all VM PDs/PTs are ready for updates
714  *
715  * Returns:
716  * True if eviction list is empty.
717  */
718 bool amdgpu_vm_ready(struct amdgpu_vm *vm)
719 {
720         return list_empty(&vm->evicted);
721 }
722
723 /**
724  * amdgpu_vm_clear_bo - initially clear the PDs/PTs
725  *
726  * @adev: amdgpu_device pointer
727  * @vm: VM to clear BO from
728  * @bo: BO to clear
729  * @immediate: use an immediate update
730  *
731  * Root PD needs to be reserved when calling this.
732  *
733  * Returns:
734  * 0 on success, errno otherwise.
735  */
736 static int amdgpu_vm_clear_bo(struct amdgpu_device *adev,
737                               struct amdgpu_vm *vm,
738                               struct amdgpu_bo *bo,
739                               bool immediate)
740 {
741         struct ttm_operation_ctx ctx = { true, false };
742         unsigned level = adev->vm_manager.root_level;
743         struct amdgpu_vm_update_params params;
744         struct amdgpu_bo *ancestor = bo;
745         unsigned entries, ats_entries;
746         uint64_t addr;
747         int r;
748
749         /* Figure out our place in the hierarchy */
750         if (ancestor->parent) {
751                 ++level;
752                 while (ancestor->parent->parent) {
753                         ++level;
754                         ancestor = ancestor->parent;
755                 }
756         }
757
758         entries = amdgpu_bo_size(bo) / 8;
759         if (!vm->pte_support_ats) {
760                 ats_entries = 0;
761
762         } else if (!bo->parent) {
763                 ats_entries = amdgpu_vm_num_ats_entries(adev);
764                 ats_entries = min(ats_entries, entries);
765                 entries -= ats_entries;
766
767         } else {
768                 struct amdgpu_vm_pt *pt;
769
770                 pt = container_of(ancestor->vm_bo, struct amdgpu_vm_pt, base);
771                 ats_entries = amdgpu_vm_num_ats_entries(adev);
772                 if ((pt - vm->root.entries) >= ats_entries) {
773                         ats_entries = 0;
774                 } else {
775                         ats_entries = entries;
776                         entries = 0;
777                 }
778         }
779
780         r = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
781         if (r)
782                 return r;
783
784         if (bo->shadow) {
785                 r = ttm_bo_validate(&bo->shadow->tbo, &bo->shadow->placement,
786                                     &ctx);
787                 if (r)
788                         return r;
789         }
790
791         r = vm->update_funcs->map_table(bo);
792         if (r)
793                 return r;
794
795         memset(&params, 0, sizeof(params));
796         params.adev = adev;
797         params.vm = vm;
798         params.immediate = immediate;
799
800         r = vm->update_funcs->prepare(&params, NULL, AMDGPU_SYNC_EXPLICIT);
801         if (r)
802                 return r;
803
804         addr = 0;
805         if (ats_entries) {
806                 uint64_t value = 0, flags;
807
808                 flags = AMDGPU_PTE_DEFAULT_ATC;
809                 if (level != AMDGPU_VM_PTB) {
810                         /* Handle leaf PDEs as PTEs */
811                         flags |= AMDGPU_PDE_PTE;
812                         amdgpu_gmc_get_vm_pde(adev, level, &value, &flags);
813                 }
814
815                 r = vm->update_funcs->update(&params, bo, addr, 0, ats_entries,
816                                              value, flags);
817                 if (r)
818                         return r;
819
820                 addr += ats_entries * 8;
821         }
822
823         if (entries) {
824                 uint64_t value = 0, flags = 0;
825
826                 if (adev->asic_type >= CHIP_VEGA10) {
827                         if (level != AMDGPU_VM_PTB) {
828                                 /* Handle leaf PDEs as PTEs */
829                                 flags |= AMDGPU_PDE_PTE;
830                                 amdgpu_gmc_get_vm_pde(adev, level,
831                                                       &value, &flags);
832                         } else {
833                                 /* Workaround for fault priority problem on GMC9 */
834                                 flags = AMDGPU_PTE_EXECUTABLE;
835                         }
836                 }
837
838                 r = vm->update_funcs->update(&params, bo, addr, 0, entries,
839                                              value, flags);
840                 if (r)
841                         return r;
842         }
843
844         return vm->update_funcs->commit(&params, NULL);
845 }
846
847 /**
848  * amdgpu_vm_bo_param - fill in parameters for PD/PT allocation
849  *
850  * @adev: amdgpu_device pointer
851  * @vm: requesting vm
852  * @level: the page table level
853  * @immediate: use a immediate update
854  * @bp: resulting BO allocation parameters
855  */
856 static void amdgpu_vm_bo_param(struct amdgpu_device *adev, struct amdgpu_vm *vm,
857                                int level, bool immediate,
858                                struct amdgpu_bo_param *bp)
859 {
860         memset(bp, 0, sizeof(*bp));
861
862         bp->size = amdgpu_vm_bo_size(adev, level);
863         bp->byte_align = AMDGPU_GPU_PAGE_SIZE;
864         bp->domain = AMDGPU_GEM_DOMAIN_VRAM;
865         bp->domain = amdgpu_bo_get_preferred_pin_domain(adev, bp->domain);
866         bp->flags = AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS |
867                 AMDGPU_GEM_CREATE_CPU_GTT_USWC;
868         if (vm->use_cpu_for_update)
869                 bp->flags |= AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
870         else if (!vm->root.base.bo || vm->root.base.bo->shadow)
871                 bp->flags |= AMDGPU_GEM_CREATE_SHADOW;
872         bp->type = ttm_bo_type_kernel;
873         bp->no_wait_gpu = immediate;
874         if (vm->root.base.bo)
875                 bp->resv = vm->root.base.bo->tbo.base.resv;
876 }
877
878 /**
879  * amdgpu_vm_alloc_pts - Allocate a specific page table
880  *
881  * @adev: amdgpu_device pointer
882  * @vm: VM to allocate page tables for
883  * @cursor: Which page table to allocate
884  * @immediate: use an immediate update
885  *
886  * Make sure a specific page table or directory is allocated.
887  *
888  * Returns:
889  * 1 if page table needed to be allocated, 0 if page table was already
890  * allocated, negative errno if an error occurred.
891  */
892 static int amdgpu_vm_alloc_pts(struct amdgpu_device *adev,
893                                struct amdgpu_vm *vm,
894                                struct amdgpu_vm_pt_cursor *cursor,
895                                bool immediate)
896 {
897         struct amdgpu_vm_pt *entry = cursor->entry;
898         struct amdgpu_bo_param bp;
899         struct amdgpu_bo *pt;
900         int r;
901
902         if (cursor->level < AMDGPU_VM_PTB && !entry->entries) {
903                 unsigned num_entries;
904
905                 num_entries = amdgpu_vm_num_entries(adev, cursor->level);
906                 entry->entries = kvmalloc_array(num_entries,
907                                                 sizeof(*entry->entries),
908                                                 GFP_KERNEL | __GFP_ZERO);
909                 if (!entry->entries)
910                         return -ENOMEM;
911         }
912
913         if (entry->base.bo)
914                 return 0;
915
916         amdgpu_vm_bo_param(adev, vm, cursor->level, immediate, &bp);
917
918         r = amdgpu_bo_create(adev, &bp, &pt);
919         if (r)
920                 return r;
921
922         /* Keep a reference to the root directory to avoid
923          * freeing them up in the wrong order.
924          */
925         pt->parent = amdgpu_bo_ref(cursor->parent->base.bo);
926         amdgpu_vm_bo_base_init(&entry->base, vm, pt);
927
928         r = amdgpu_vm_clear_bo(adev, vm, pt, immediate);
929         if (r)
930                 goto error_free_pt;
931
932         return 0;
933
934 error_free_pt:
935         amdgpu_bo_unref(&pt->shadow);
936         amdgpu_bo_unref(&pt);
937         return r;
938 }
939
940 /**
941  * amdgpu_vm_free_table - fre one PD/PT
942  *
943  * @entry: PDE to free
944  */
945 static void amdgpu_vm_free_table(struct amdgpu_vm_pt *entry)
946 {
947         if (entry->base.bo) {
948                 entry->base.bo->vm_bo = NULL;
949                 list_del(&entry->base.vm_status);
950                 amdgpu_bo_unref(&entry->base.bo->shadow);
951                 amdgpu_bo_unref(&entry->base.bo);
952         }
953         kvfree(entry->entries);
954         entry->entries = NULL;
955 }
956
957 /**
958  * amdgpu_vm_free_pts - free PD/PT levels
959  *
960  * @adev: amdgpu device structure
961  * @vm: amdgpu vm structure
962  * @start: optional cursor where to start freeing PDs/PTs
963  *
964  * Free the page directory or page table level and all sub levels.
965  */
966 static void amdgpu_vm_free_pts(struct amdgpu_device *adev,
967                                struct amdgpu_vm *vm,
968                                struct amdgpu_vm_pt_cursor *start)
969 {
970         struct amdgpu_vm_pt_cursor cursor;
971         struct amdgpu_vm_pt *entry;
972
973         vm->bulk_moveable = false;
974
975         for_each_amdgpu_vm_pt_dfs_safe(adev, vm, start, cursor, entry)
976                 amdgpu_vm_free_table(entry);
977
978         if (start)
979                 amdgpu_vm_free_table(start->entry);
980 }
981
982 /**
983  * amdgpu_vm_check_compute_bug - check whether asic has compute vm bug
984  *
985  * @adev: amdgpu_device pointer
986  */
987 void amdgpu_vm_check_compute_bug(struct amdgpu_device *adev)
988 {
989         const struct amdgpu_ip_block *ip_block;
990         bool has_compute_vm_bug;
991         struct amdgpu_ring *ring;
992         int i;
993
994         has_compute_vm_bug = false;
995
996         ip_block = amdgpu_device_ip_get_ip_block(adev, AMD_IP_BLOCK_TYPE_GFX);
997         if (ip_block) {
998                 /* Compute has a VM bug for GFX version < 7.
999                    Compute has a VM bug for GFX 8 MEC firmware version < 673.*/
1000                 if (ip_block->version->major <= 7)
1001                         has_compute_vm_bug = true;
1002                 else if (ip_block->version->major == 8)
1003                         if (adev->gfx.mec_fw_version < 673)
1004                                 has_compute_vm_bug = true;
1005         }
1006
1007         for (i = 0; i < adev->num_rings; i++) {
1008                 ring = adev->rings[i];
1009                 if (ring->funcs->type == AMDGPU_RING_TYPE_COMPUTE)
1010                         /* only compute rings */
1011                         ring->has_compute_vm_bug = has_compute_vm_bug;
1012                 else
1013                         ring->has_compute_vm_bug = false;
1014         }
1015 }
1016
1017 /**
1018  * amdgpu_vm_need_pipeline_sync - Check if pipe sync is needed for job.
1019  *
1020  * @ring: ring on which the job will be submitted
1021  * @job: job to submit
1022  *
1023  * Returns:
1024  * True if sync is needed.
1025  */
1026 bool amdgpu_vm_need_pipeline_sync(struct amdgpu_ring *ring,
1027                                   struct amdgpu_job *job)
1028 {
1029         struct amdgpu_device *adev = ring->adev;
1030         unsigned vmhub = ring->funcs->vmhub;
1031         struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub];
1032         struct amdgpu_vmid *id;
1033         bool gds_switch_needed;
1034         bool vm_flush_needed = job->vm_needs_flush || ring->has_compute_vm_bug;
1035
1036         if (job->vmid == 0)
1037                 return false;
1038         id = &id_mgr->ids[job->vmid];
1039         gds_switch_needed = ring->funcs->emit_gds_switch && (
1040                 id->gds_base != job->gds_base ||
1041                 id->gds_size != job->gds_size ||
1042                 id->gws_base != job->gws_base ||
1043                 id->gws_size != job->gws_size ||
1044                 id->oa_base != job->oa_base ||
1045                 id->oa_size != job->oa_size);
1046
1047         if (amdgpu_vmid_had_gpu_reset(adev, id))
1048                 return true;
1049
1050         return vm_flush_needed || gds_switch_needed;
1051 }
1052
1053 /**
1054  * amdgpu_vm_flush - hardware flush the vm
1055  *
1056  * @ring: ring to use for flush
1057  * @job:  related job
1058  * @need_pipe_sync: is pipe sync needed
1059  *
1060  * Emit a VM flush when it is necessary.
1061  *
1062  * Returns:
1063  * 0 on success, errno otherwise.
1064  */
1065 int amdgpu_vm_flush(struct amdgpu_ring *ring, struct amdgpu_job *job,
1066                     bool need_pipe_sync)
1067 {
1068         struct amdgpu_device *adev = ring->adev;
1069         unsigned vmhub = ring->funcs->vmhub;
1070         struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub];
1071         struct amdgpu_vmid *id = &id_mgr->ids[job->vmid];
1072         bool gds_switch_needed = ring->funcs->emit_gds_switch && (
1073                 id->gds_base != job->gds_base ||
1074                 id->gds_size != job->gds_size ||
1075                 id->gws_base != job->gws_base ||
1076                 id->gws_size != job->gws_size ||
1077                 id->oa_base != job->oa_base ||
1078                 id->oa_size != job->oa_size);
1079         bool vm_flush_needed = job->vm_needs_flush;
1080         struct dma_fence *fence = NULL;
1081         bool pasid_mapping_needed = false;
1082         unsigned patch_offset = 0;
1083         bool update_spm_vmid_needed = (job->vm && (job->vm->reserved_vmid[vmhub] != NULL));
1084         int r;
1085
1086         if (update_spm_vmid_needed && adev->gfx.rlc.funcs->update_spm_vmid)
1087                 adev->gfx.rlc.funcs->update_spm_vmid(adev, job->vmid);
1088
1089         if (amdgpu_vmid_had_gpu_reset(adev, id)) {
1090                 gds_switch_needed = true;
1091                 vm_flush_needed = true;
1092                 pasid_mapping_needed = true;
1093         }
1094
1095         mutex_lock(&id_mgr->lock);
1096         if (id->pasid != job->pasid || !id->pasid_mapping ||
1097             !dma_fence_is_signaled(id->pasid_mapping))
1098                 pasid_mapping_needed = true;
1099         mutex_unlock(&id_mgr->lock);
1100
1101         gds_switch_needed &= !!ring->funcs->emit_gds_switch;
1102         vm_flush_needed &= !!ring->funcs->emit_vm_flush  &&
1103                         job->vm_pd_addr != AMDGPU_BO_INVALID_OFFSET;
1104         pasid_mapping_needed &= adev->gmc.gmc_funcs->emit_pasid_mapping &&
1105                 ring->funcs->emit_wreg;
1106
1107         if (!vm_flush_needed && !gds_switch_needed && !need_pipe_sync)
1108                 return 0;
1109
1110         if (ring->funcs->init_cond_exec)
1111                 patch_offset = amdgpu_ring_init_cond_exec(ring);
1112
1113         if (need_pipe_sync)
1114                 amdgpu_ring_emit_pipeline_sync(ring);
1115
1116         if (vm_flush_needed) {
1117                 trace_amdgpu_vm_flush(ring, job->vmid, job->vm_pd_addr);
1118                 amdgpu_ring_emit_vm_flush(ring, job->vmid, job->vm_pd_addr);
1119         }
1120
1121         if (pasid_mapping_needed)
1122                 amdgpu_gmc_emit_pasid_mapping(ring, job->vmid, job->pasid);
1123
1124         if (vm_flush_needed || pasid_mapping_needed) {
1125                 r = amdgpu_fence_emit(ring, &fence, 0);
1126                 if (r)
1127                         return r;
1128         }
1129
1130         if (vm_flush_needed) {
1131                 mutex_lock(&id_mgr->lock);
1132                 dma_fence_put(id->last_flush);
1133                 id->last_flush = dma_fence_get(fence);
1134                 id->current_gpu_reset_count =
1135                         atomic_read(&adev->gpu_reset_counter);
1136                 mutex_unlock(&id_mgr->lock);
1137         }
1138
1139         if (pasid_mapping_needed) {
1140                 mutex_lock(&id_mgr->lock);
1141                 id->pasid = job->pasid;
1142                 dma_fence_put(id->pasid_mapping);
1143                 id->pasid_mapping = dma_fence_get(fence);
1144                 mutex_unlock(&id_mgr->lock);
1145         }
1146         dma_fence_put(fence);
1147
1148         if (ring->funcs->emit_gds_switch && gds_switch_needed) {
1149                 id->gds_base = job->gds_base;
1150                 id->gds_size = job->gds_size;
1151                 id->gws_base = job->gws_base;
1152                 id->gws_size = job->gws_size;
1153                 id->oa_base = job->oa_base;
1154                 id->oa_size = job->oa_size;
1155                 amdgpu_ring_emit_gds_switch(ring, job->vmid, job->gds_base,
1156                                             job->gds_size, job->gws_base,
1157                                             job->gws_size, job->oa_base,
1158                                             job->oa_size);
1159         }
1160
1161         if (ring->funcs->patch_cond_exec)
1162                 amdgpu_ring_patch_cond_exec(ring, patch_offset);
1163
1164         /* the double SWITCH_BUFFER here *cannot* be skipped by COND_EXEC */
1165         if (ring->funcs->emit_switch_buffer) {
1166                 amdgpu_ring_emit_switch_buffer(ring);
1167                 amdgpu_ring_emit_switch_buffer(ring);
1168         }
1169         return 0;
1170 }
1171
1172 /**
1173  * amdgpu_vm_bo_find - find the bo_va for a specific vm & bo
1174  *
1175  * @vm: requested vm
1176  * @bo: requested buffer object
1177  *
1178  * Find @bo inside the requested vm.
1179  * Search inside the @bos vm list for the requested vm
1180  * Returns the found bo_va or NULL if none is found
1181  *
1182  * Object has to be reserved!
1183  *
1184  * Returns:
1185  * Found bo_va or NULL.
1186  */
1187 struct amdgpu_bo_va *amdgpu_vm_bo_find(struct amdgpu_vm *vm,
1188                                        struct amdgpu_bo *bo)
1189 {
1190         struct amdgpu_vm_bo_base *base;
1191
1192         for (base = bo->vm_bo; base; base = base->next) {
1193                 if (base->vm != vm)
1194                         continue;
1195
1196                 return container_of(base, struct amdgpu_bo_va, base);
1197         }
1198         return NULL;
1199 }
1200
1201 /**
1202  * amdgpu_vm_map_gart - Resolve gart mapping of addr
1203  *
1204  * @pages_addr: optional DMA address to use for lookup
1205  * @addr: the unmapped addr
1206  *
1207  * Look up the physical address of the page that the pte resolves
1208  * to.
1209  *
1210  * Returns:
1211  * The pointer for the page table entry.
1212  */
1213 uint64_t amdgpu_vm_map_gart(const dma_addr_t *pages_addr, uint64_t addr)
1214 {
1215         uint64_t result;
1216
1217         /* page table offset */
1218         result = pages_addr[addr >> PAGE_SHIFT];
1219
1220         /* in case cpu page size != gpu page size*/
1221         result |= addr & (~PAGE_MASK);
1222
1223         result &= 0xFFFFFFFFFFFFF000ULL;
1224
1225         return result;
1226 }
1227
1228 /**
1229  * amdgpu_vm_update_pde - update a single level in the hierarchy
1230  *
1231  * @params: parameters for the update
1232  * @vm: requested vm
1233  * @entry: entry to update
1234  *
1235  * Makes sure the requested entry in parent is up to date.
1236  */
1237 static int amdgpu_vm_update_pde(struct amdgpu_vm_update_params *params,
1238                                 struct amdgpu_vm *vm,
1239                                 struct amdgpu_vm_pt *entry)
1240 {
1241         struct amdgpu_vm_pt *parent = amdgpu_vm_pt_parent(entry);
1242         struct amdgpu_bo *bo = parent->base.bo, *pbo;
1243         uint64_t pde, pt, flags;
1244         unsigned level;
1245
1246         for (level = 0, pbo = bo->parent; pbo; ++level)
1247                 pbo = pbo->parent;
1248
1249         level += params->adev->vm_manager.root_level;
1250         amdgpu_gmc_get_pde_for_bo(entry->base.bo, level, &pt, &flags);
1251         pde = (entry - parent->entries) * 8;
1252         return vm->update_funcs->update(params, bo, pde, pt, 1, 0, flags);
1253 }
1254
1255 /**
1256  * amdgpu_vm_invalidate_pds - mark all PDs as invalid
1257  *
1258  * @adev: amdgpu_device pointer
1259  * @vm: related vm
1260  *
1261  * Mark all PD level as invalid after an error.
1262  */
1263 static void amdgpu_vm_invalidate_pds(struct amdgpu_device *adev,
1264                                      struct amdgpu_vm *vm)
1265 {
1266         struct amdgpu_vm_pt_cursor cursor;
1267         struct amdgpu_vm_pt *entry;
1268
1269         for_each_amdgpu_vm_pt_dfs_safe(adev, vm, NULL, cursor, entry)
1270                 if (entry->base.bo && !entry->base.moved)
1271                         amdgpu_vm_bo_relocated(&entry->base);
1272 }
1273
1274 /**
1275  * amdgpu_vm_update_pdes - make sure that all directories are valid
1276  *
1277  * @adev: amdgpu_device pointer
1278  * @vm: requested vm
1279  * @immediate: submit immediately to the paging queue
1280  *
1281  * Makes sure all directories are up to date.
1282  *
1283  * Returns:
1284  * 0 for success, error for failure.
1285  */
1286 int amdgpu_vm_update_pdes(struct amdgpu_device *adev,
1287                           struct amdgpu_vm *vm, bool immediate)
1288 {
1289         struct amdgpu_vm_update_params params;
1290         int r;
1291
1292         if (list_empty(&vm->relocated))
1293                 return 0;
1294
1295         memset(&params, 0, sizeof(params));
1296         params.adev = adev;
1297         params.vm = vm;
1298         params.immediate = immediate;
1299
1300         r = vm->update_funcs->prepare(&params, NULL, AMDGPU_SYNC_EXPLICIT);
1301         if (r)
1302                 return r;
1303
1304         while (!list_empty(&vm->relocated)) {
1305                 struct amdgpu_vm_pt *entry;
1306
1307                 entry = list_first_entry(&vm->relocated, struct amdgpu_vm_pt,
1308                                          base.vm_status);
1309                 amdgpu_vm_bo_idle(&entry->base);
1310
1311                 r = amdgpu_vm_update_pde(&params, vm, entry);
1312                 if (r)
1313                         goto error;
1314         }
1315
1316         r = vm->update_funcs->commit(&params, &vm->last_update);
1317         if (r)
1318                 goto error;
1319         return 0;
1320
1321 error:
1322         amdgpu_vm_invalidate_pds(adev, vm);
1323         return r;
1324 }
1325
1326 /*
1327  * amdgpu_vm_update_flags - figure out flags for PTE updates
1328  *
1329  * Make sure to set the right flags for the PTEs at the desired level.
1330  */
1331 static void amdgpu_vm_update_flags(struct amdgpu_vm_update_params *params,
1332                                    struct amdgpu_bo *bo, unsigned level,
1333                                    uint64_t pe, uint64_t addr,
1334                                    unsigned count, uint32_t incr,
1335                                    uint64_t flags)
1336
1337 {
1338         if (level != AMDGPU_VM_PTB) {
1339                 flags |= AMDGPU_PDE_PTE;
1340                 amdgpu_gmc_get_vm_pde(params->adev, level, &addr, &flags);
1341
1342         } else if (params->adev->asic_type >= CHIP_VEGA10 &&
1343                    !(flags & AMDGPU_PTE_VALID) &&
1344                    !(flags & AMDGPU_PTE_PRT)) {
1345
1346                 /* Workaround for fault priority problem on GMC9 */
1347                 flags |= AMDGPU_PTE_EXECUTABLE;
1348         }
1349
1350         params->vm->update_funcs->update(params, bo, pe, addr, count, incr,
1351                                          flags);
1352 }
1353
1354 /**
1355  * amdgpu_vm_fragment - get fragment for PTEs
1356  *
1357  * @params: see amdgpu_vm_update_params definition
1358  * @start: first PTE to handle
1359  * @end: last PTE to handle
1360  * @flags: hw mapping flags
1361  * @frag: resulting fragment size
1362  * @frag_end: end of this fragment
1363  *
1364  * Returns the first possible fragment for the start and end address.
1365  */
1366 static void amdgpu_vm_fragment(struct amdgpu_vm_update_params *params,
1367                                uint64_t start, uint64_t end, uint64_t flags,
1368                                unsigned int *frag, uint64_t *frag_end)
1369 {
1370         /**
1371          * The MC L1 TLB supports variable sized pages, based on a fragment
1372          * field in the PTE. When this field is set to a non-zero value, page
1373          * granularity is increased from 4KB to (1 << (12 + frag)). The PTE
1374          * flags are considered valid for all PTEs within the fragment range
1375          * and corresponding mappings are assumed to be physically contiguous.
1376          *
1377          * The L1 TLB can store a single PTE for the whole fragment,
1378          * significantly increasing the space available for translation
1379          * caching. This leads to large improvements in throughput when the
1380          * TLB is under pressure.
1381          *
1382          * The L2 TLB distributes small and large fragments into two
1383          * asymmetric partitions. The large fragment cache is significantly
1384          * larger. Thus, we try to use large fragments wherever possible.
1385          * Userspace can support this by aligning virtual base address and
1386          * allocation size to the fragment size.
1387          *
1388          * Starting with Vega10 the fragment size only controls the L1. The L2
1389          * is now directly feed with small/huge/giant pages from the walker.
1390          */
1391         unsigned max_frag;
1392
1393         if (params->adev->asic_type < CHIP_VEGA10)
1394                 max_frag = params->adev->vm_manager.fragment_size;
1395         else
1396                 max_frag = 31;
1397
1398         /* system pages are non continuously */
1399         if (params->pages_addr) {
1400                 *frag = 0;
1401                 *frag_end = end;
1402                 return;
1403         }
1404
1405         /* This intentionally wraps around if no bit is set */
1406         *frag = min((unsigned)ffs(start) - 1, (unsigned)fls64(end - start) - 1);
1407         if (*frag >= max_frag) {
1408                 *frag = max_frag;
1409                 *frag_end = end & ~((1ULL << max_frag) - 1);
1410         } else {
1411                 *frag_end = start + (1 << *frag);
1412         }
1413 }
1414
1415 /**
1416  * amdgpu_vm_update_ptes - make sure that page tables are valid
1417  *
1418  * @params: see amdgpu_vm_update_params definition
1419  * @start: start of GPU address range
1420  * @end: end of GPU address range
1421  * @dst: destination address to map to, the next dst inside the function
1422  * @flags: mapping flags
1423  *
1424  * Update the page tables in the range @start - @end.
1425  *
1426  * Returns:
1427  * 0 for success, -EINVAL for failure.
1428  */
1429 static int amdgpu_vm_update_ptes(struct amdgpu_vm_update_params *params,
1430                                  uint64_t start, uint64_t end,
1431                                  uint64_t dst, uint64_t flags)
1432 {
1433         struct amdgpu_device *adev = params->adev;
1434         struct amdgpu_vm_pt_cursor cursor;
1435         uint64_t frag_start = start, frag_end;
1436         unsigned int frag;
1437         int r;
1438
1439         /* figure out the initial fragment */
1440         amdgpu_vm_fragment(params, frag_start, end, flags, &frag, &frag_end);
1441
1442         /* walk over the address space and update the PTs */
1443         amdgpu_vm_pt_start(adev, params->vm, start, &cursor);
1444         while (cursor.pfn < end) {
1445                 unsigned shift, parent_shift, mask;
1446                 uint64_t incr, entry_end, pe_start;
1447                 struct amdgpu_bo *pt;
1448
1449                 if (!params->unlocked) {
1450                         /* make sure that the page tables covering the
1451                          * address range are actually allocated
1452                          */
1453                         r = amdgpu_vm_alloc_pts(params->adev, params->vm,
1454                                                 &cursor, params->immediate);
1455                         if (r)
1456                                 return r;
1457                 }
1458
1459                 shift = amdgpu_vm_level_shift(adev, cursor.level);
1460                 parent_shift = amdgpu_vm_level_shift(adev, cursor.level - 1);
1461                 if (params->unlocked) {
1462                         /* Unlocked updates are only allowed on the leaves */
1463                         if (amdgpu_vm_pt_descendant(adev, &cursor))
1464                                 continue;
1465                 } else if (adev->asic_type < CHIP_VEGA10 &&
1466                            (flags & AMDGPU_PTE_VALID)) {
1467                         /* No huge page support before GMC v9 */
1468                         if (cursor.level != AMDGPU_VM_PTB) {
1469                                 if (!amdgpu_vm_pt_descendant(adev, &cursor))
1470                                         return -ENOENT;
1471                                 continue;
1472                         }
1473                 } else if (frag < shift) {
1474                         /* We can't use this level when the fragment size is
1475                          * smaller than the address shift. Go to the next
1476                          * child entry and try again.
1477                          */
1478                         if (amdgpu_vm_pt_descendant(adev, &cursor))
1479                                 continue;
1480                 } else if (frag >= parent_shift) {
1481                         /* If the fragment size is even larger than the parent
1482                          * shift we should go up one level and check it again.
1483                          */
1484                         if (!amdgpu_vm_pt_ancestor(&cursor))
1485                                 return -EINVAL;
1486                         continue;
1487                 }
1488
1489                 pt = cursor.entry->base.bo;
1490                 if (!pt) {
1491                         /* We need all PDs and PTs for mapping something, */
1492                         if (flags & AMDGPU_PTE_VALID)
1493                                 return -ENOENT;
1494
1495                         /* but unmapping something can happen at a higher
1496                          * level.
1497                          */
1498                         if (!amdgpu_vm_pt_ancestor(&cursor))
1499                                 return -EINVAL;
1500
1501                         pt = cursor.entry->base.bo;
1502                         shift = parent_shift;
1503                 }
1504
1505                 /* Looks good so far, calculate parameters for the update */
1506                 incr = (uint64_t)AMDGPU_GPU_PAGE_SIZE << shift;
1507                 mask = amdgpu_vm_entries_mask(adev, cursor.level);
1508                 pe_start = ((cursor.pfn >> shift) & mask) * 8;
1509                 entry_end = ((uint64_t)mask + 1) << shift;
1510                 entry_end += cursor.pfn & ~(entry_end - 1);
1511                 entry_end = min(entry_end, end);
1512
1513                 do {
1514                         uint64_t upd_end = min(entry_end, frag_end);
1515                         unsigned nptes = (upd_end - frag_start) >> shift;
1516
1517                         /* This can happen when we set higher level PDs to
1518                          * silent to stop fault floods.
1519                          */
1520                         nptes = max(nptes, 1u);
1521                         amdgpu_vm_update_flags(params, pt, cursor.level,
1522                                                pe_start, dst, nptes, incr,
1523                                                flags | AMDGPU_PTE_FRAG(frag));
1524
1525                         pe_start += nptes * 8;
1526                         dst += (uint64_t)nptes * AMDGPU_GPU_PAGE_SIZE << shift;
1527
1528                         frag_start = upd_end;
1529                         if (frag_start >= frag_end) {
1530                                 /* figure out the next fragment */
1531                                 amdgpu_vm_fragment(params, frag_start, end,
1532                                                    flags, &frag, &frag_end);
1533                                 if (frag < shift)
1534                                         break;
1535                         }
1536                 } while (frag_start < entry_end);
1537
1538                 if (amdgpu_vm_pt_descendant(adev, &cursor)) {
1539                         /* Free all child entries.
1540                          * Update the tables with the flags and addresses and free up subsequent
1541                          * tables in the case of huge pages or freed up areas.
1542                          * This is the maximum you can free, because all other page tables are not
1543                          * completely covered by the range and so potentially still in use.
1544                          */
1545                         while (cursor.pfn < frag_start) {
1546                                 amdgpu_vm_free_pts(adev, params->vm, &cursor);
1547                                 amdgpu_vm_pt_next(adev, &cursor);
1548                         }
1549
1550                 } else if (frag >= shift) {
1551                         /* or just move on to the next on the same level. */
1552                         amdgpu_vm_pt_next(adev, &cursor);
1553                 }
1554         }
1555
1556         return 0;
1557 }
1558
1559 /**
1560  * amdgpu_vm_bo_update_mapping - update a mapping in the vm page table
1561  *
1562  * @adev: amdgpu_device pointer
1563  * @vm: requested vm
1564  * @immediate: immediate submission in a page fault
1565  * @unlocked: unlocked invalidation during MM callback
1566  * @resv: fences we need to sync to
1567  * @start: start of mapped range
1568  * @last: last mapped entry
1569  * @flags: flags for the entries
1570  * @addr: addr to set the area to
1571  * @pages_addr: DMA addresses to use for mapping
1572  * @fence: optional resulting fence
1573  *
1574  * Fill in the page table entries between @start and @last.
1575  *
1576  * Returns:
1577  * 0 for success, -EINVAL for failure.
1578  */
1579 static int amdgpu_vm_bo_update_mapping(struct amdgpu_device *adev,
1580                                        struct amdgpu_vm *vm, bool immediate,
1581                                        bool unlocked, struct dma_resv *resv,
1582                                        uint64_t start, uint64_t last,
1583                                        uint64_t flags, uint64_t addr,
1584                                        dma_addr_t *pages_addr,
1585                                        struct dma_fence **fence)
1586 {
1587         struct amdgpu_vm_update_params params;
1588         enum amdgpu_sync_mode sync_mode;
1589         int r;
1590
1591         memset(&params, 0, sizeof(params));
1592         params.adev = adev;
1593         params.vm = vm;
1594         params.immediate = immediate;
1595         params.pages_addr = pages_addr;
1596         params.unlocked = unlocked;
1597
1598         /* Implicitly sync to command submissions in the same VM before
1599          * unmapping. Sync to moving fences before mapping.
1600          */
1601         if (!(flags & AMDGPU_PTE_VALID))
1602                 sync_mode = AMDGPU_SYNC_EQ_OWNER;
1603         else
1604                 sync_mode = AMDGPU_SYNC_EXPLICIT;
1605
1606         amdgpu_vm_eviction_lock(vm);
1607         if (vm->evicting) {
1608                 r = -EBUSY;
1609                 goto error_unlock;
1610         }
1611
1612         if (!unlocked && !dma_fence_is_signaled(vm->last_unlocked)) {
1613                 struct dma_fence *tmp = dma_fence_get_stub();
1614
1615                 amdgpu_bo_fence(vm->root.base.bo, vm->last_unlocked, true);
1616                 swap(vm->last_unlocked, tmp);
1617                 dma_fence_put(tmp);
1618         }
1619
1620         r = vm->update_funcs->prepare(&params, resv, sync_mode);
1621         if (r)
1622                 goto error_unlock;
1623
1624         r = amdgpu_vm_update_ptes(&params, start, last + 1, addr, flags);
1625         if (r)
1626                 goto error_unlock;
1627
1628         r = vm->update_funcs->commit(&params, fence);
1629
1630 error_unlock:
1631         amdgpu_vm_eviction_unlock(vm);
1632         return r;
1633 }
1634
1635 /**
1636  * amdgpu_vm_bo_split_mapping - split a mapping into smaller chunks
1637  *
1638  * @adev: amdgpu_device pointer
1639  * @resv: fences we need to sync to
1640  * @pages_addr: DMA addresses to use for mapping
1641  * @vm: requested vm
1642  * @mapping: mapped range and flags to use for the update
1643  * @flags: HW flags for the mapping
1644  * @bo_adev: amdgpu_device pointer that bo actually been allocated
1645  * @nodes: array of drm_mm_nodes with the MC addresses
1646  * @fence: optional resulting fence
1647  *
1648  * Split the mapping into smaller chunks so that each update fits
1649  * into a SDMA IB.
1650  *
1651  * Returns:
1652  * 0 for success, -EINVAL for failure.
1653  */
1654 static int amdgpu_vm_bo_split_mapping(struct amdgpu_device *adev,
1655                                       struct dma_resv *resv,
1656                                       dma_addr_t *pages_addr,
1657                                       struct amdgpu_vm *vm,
1658                                       struct amdgpu_bo_va_mapping *mapping,
1659                                       uint64_t flags,
1660                                       struct amdgpu_device *bo_adev,
1661                                       struct drm_mm_node *nodes,
1662                                       struct dma_fence **fence)
1663 {
1664         unsigned min_linear_pages = 1 << adev->vm_manager.fragment_size;
1665         uint64_t pfn, start = mapping->start;
1666         int r;
1667
1668         /* normally,bo_va->flags only contians READABLE and WIRTEABLE bit go here
1669          * but in case of something, we filter the flags in first place
1670          */
1671         if (!(mapping->flags & AMDGPU_PTE_READABLE))
1672                 flags &= ~AMDGPU_PTE_READABLE;
1673         if (!(mapping->flags & AMDGPU_PTE_WRITEABLE))
1674                 flags &= ~AMDGPU_PTE_WRITEABLE;
1675
1676         /* Apply ASIC specific mapping flags */
1677         amdgpu_gmc_get_vm_pte(adev, mapping, &flags);
1678
1679         trace_amdgpu_vm_bo_update(mapping);
1680
1681         pfn = mapping->offset >> PAGE_SHIFT;
1682         if (nodes) {
1683                 while (pfn >= nodes->size) {
1684                         pfn -= nodes->size;
1685                         ++nodes;
1686                 }
1687         }
1688
1689         do {
1690                 dma_addr_t *dma_addr = NULL;
1691                 uint64_t max_entries;
1692                 uint64_t addr, last;
1693
1694                 if (nodes) {
1695                         addr = nodes->start << PAGE_SHIFT;
1696                         max_entries = (nodes->size - pfn) *
1697                                 AMDGPU_GPU_PAGES_IN_CPU_PAGE;
1698                 } else {
1699                         addr = 0;
1700                         max_entries = S64_MAX;
1701                 }
1702
1703                 if (pages_addr) {
1704                         uint64_t count;
1705
1706                         for (count = 1;
1707                              count < max_entries / AMDGPU_GPU_PAGES_IN_CPU_PAGE;
1708                              ++count) {
1709                                 uint64_t idx = pfn + count;
1710
1711                                 if (pages_addr[idx] !=
1712                                     (pages_addr[idx - 1] + PAGE_SIZE))
1713                                         break;
1714                         }
1715
1716                         if (count < min_linear_pages) {
1717                                 addr = pfn << PAGE_SHIFT;
1718                                 dma_addr = pages_addr;
1719                         } else {
1720                                 addr = pages_addr[pfn];
1721                                 max_entries = count *
1722                                         AMDGPU_GPU_PAGES_IN_CPU_PAGE;
1723                         }
1724
1725                 } else if (flags & (AMDGPU_PTE_VALID | AMDGPU_PTE_PRT)) {
1726                         addr += bo_adev->vm_manager.vram_base_offset;
1727                         addr += pfn << PAGE_SHIFT;
1728                 }
1729
1730                 last = min((uint64_t)mapping->last, start + max_entries - 1);
1731                 r = amdgpu_vm_bo_update_mapping(adev, vm, false, false, resv,
1732                                                 start, last, flags, addr,
1733                                                 dma_addr, fence);
1734                 if (r)
1735                         return r;
1736
1737                 pfn += (last - start + 1) / AMDGPU_GPU_PAGES_IN_CPU_PAGE;
1738                 if (nodes && nodes->size == pfn) {
1739                         pfn = 0;
1740                         ++nodes;
1741                 }
1742                 start = last + 1;
1743
1744         } while (unlikely(start != mapping->last + 1));
1745
1746         return 0;
1747 }
1748
1749 /**
1750  * amdgpu_vm_bo_update - update all BO mappings in the vm page table
1751  *
1752  * @adev: amdgpu_device pointer
1753  * @bo_va: requested BO and VM object
1754  * @clear: if true clear the entries
1755  *
1756  * Fill in the page table entries for @bo_va.
1757  *
1758  * Returns:
1759  * 0 for success, -EINVAL for failure.
1760  */
1761 int amdgpu_vm_bo_update(struct amdgpu_device *adev, struct amdgpu_bo_va *bo_va,
1762                         bool clear)
1763 {
1764         struct amdgpu_bo *bo = bo_va->base.bo;
1765         struct amdgpu_vm *vm = bo_va->base.vm;
1766         struct amdgpu_bo_va_mapping *mapping;
1767         dma_addr_t *pages_addr = NULL;
1768         struct ttm_mem_reg *mem;
1769         struct drm_mm_node *nodes;
1770         struct dma_fence **last_update;
1771         struct dma_resv *resv;
1772         uint64_t flags;
1773         struct amdgpu_device *bo_adev = adev;
1774         int r;
1775
1776         if (clear || !bo) {
1777                 mem = NULL;
1778                 nodes = NULL;
1779                 resv = vm->root.base.bo->tbo.base.resv;
1780         } else {
1781                 struct ttm_dma_tt *ttm;
1782
1783                 mem = &bo->tbo.mem;
1784                 nodes = mem->mm_node;
1785                 if (mem->mem_type == TTM_PL_TT) {
1786                         ttm = container_of(bo->tbo.ttm, struct ttm_dma_tt, ttm);
1787                         pages_addr = ttm->dma_address;
1788                 }
1789                 resv = bo->tbo.base.resv;
1790         }
1791
1792         if (bo) {
1793                 flags = amdgpu_ttm_tt_pte_flags(adev, bo->tbo.ttm, mem);
1794
1795                 if (amdgpu_bo_encrypted(bo))
1796                         flags |= AMDGPU_PTE_TMZ;
1797
1798                 bo_adev = amdgpu_ttm_adev(bo->tbo.bdev);
1799         } else {
1800                 flags = 0x0;
1801         }
1802
1803         if (clear || (bo && bo->tbo.base.resv ==
1804                       vm->root.base.bo->tbo.base.resv))
1805                 last_update = &vm->last_update;
1806         else
1807                 last_update = &bo_va->last_pt_update;
1808
1809         if (!clear && bo_va->base.moved) {
1810                 bo_va->base.moved = false;
1811                 list_splice_init(&bo_va->valids, &bo_va->invalids);
1812
1813         } else if (bo_va->cleared != clear) {
1814                 list_splice_init(&bo_va->valids, &bo_va->invalids);
1815         }
1816
1817         list_for_each_entry(mapping, &bo_va->invalids, list) {
1818                 r = amdgpu_vm_bo_split_mapping(adev, resv, pages_addr, vm,
1819                                                mapping, flags, bo_adev, nodes,
1820                                                last_update);
1821                 if (r)
1822                         return r;
1823         }
1824
1825         /* If the BO is not in its preferred location add it back to
1826          * the evicted list so that it gets validated again on the
1827          * next command submission.
1828          */
1829         if (bo && bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv) {
1830                 uint32_t mem_type = bo->tbo.mem.mem_type;
1831
1832                 if (!(bo->preferred_domains &
1833                       amdgpu_mem_type_to_domain(mem_type)))
1834                         amdgpu_vm_bo_evicted(&bo_va->base);
1835                 else
1836                         amdgpu_vm_bo_idle(&bo_va->base);
1837         } else {
1838                 amdgpu_vm_bo_done(&bo_va->base);
1839         }
1840
1841         list_splice_init(&bo_va->invalids, &bo_va->valids);
1842         bo_va->cleared = clear;
1843
1844         if (trace_amdgpu_vm_bo_mapping_enabled()) {
1845                 list_for_each_entry(mapping, &bo_va->valids, list)
1846                         trace_amdgpu_vm_bo_mapping(mapping);
1847         }
1848
1849         return 0;
1850 }
1851
1852 /**
1853  * amdgpu_vm_update_prt_state - update the global PRT state
1854  *
1855  * @adev: amdgpu_device pointer
1856  */
1857 static void amdgpu_vm_update_prt_state(struct amdgpu_device *adev)
1858 {
1859         unsigned long flags;
1860         bool enable;
1861
1862         spin_lock_irqsave(&adev->vm_manager.prt_lock, flags);
1863         enable = !!atomic_read(&adev->vm_manager.num_prt_users);
1864         adev->gmc.gmc_funcs->set_prt(adev, enable);
1865         spin_unlock_irqrestore(&adev->vm_manager.prt_lock, flags);
1866 }
1867
1868 /**
1869  * amdgpu_vm_prt_get - add a PRT user
1870  *
1871  * @adev: amdgpu_device pointer
1872  */
1873 static void amdgpu_vm_prt_get(struct amdgpu_device *adev)
1874 {
1875         if (!adev->gmc.gmc_funcs->set_prt)
1876                 return;
1877
1878         if (atomic_inc_return(&adev->vm_manager.num_prt_users) == 1)
1879                 amdgpu_vm_update_prt_state(adev);
1880 }
1881
1882 /**
1883  * amdgpu_vm_prt_put - drop a PRT user
1884  *
1885  * @adev: amdgpu_device pointer
1886  */
1887 static void amdgpu_vm_prt_put(struct amdgpu_device *adev)
1888 {
1889         if (atomic_dec_return(&adev->vm_manager.num_prt_users) == 0)
1890                 amdgpu_vm_update_prt_state(adev);
1891 }
1892
1893 /**
1894  * amdgpu_vm_prt_cb - callback for updating the PRT status
1895  *
1896  * @fence: fence for the callback
1897  * @_cb: the callback function
1898  */
1899 static void amdgpu_vm_prt_cb(struct dma_fence *fence, struct dma_fence_cb *_cb)
1900 {
1901         struct amdgpu_prt_cb *cb = container_of(_cb, struct amdgpu_prt_cb, cb);
1902
1903         amdgpu_vm_prt_put(cb->adev);
1904         kfree(cb);
1905 }
1906
1907 /**
1908  * amdgpu_vm_add_prt_cb - add callback for updating the PRT status
1909  *
1910  * @adev: amdgpu_device pointer
1911  * @fence: fence for the callback
1912  */
1913 static void amdgpu_vm_add_prt_cb(struct amdgpu_device *adev,
1914                                  struct dma_fence *fence)
1915 {
1916         struct amdgpu_prt_cb *cb;
1917
1918         if (!adev->gmc.gmc_funcs->set_prt)
1919                 return;
1920
1921         cb = kmalloc(sizeof(struct amdgpu_prt_cb), GFP_KERNEL);
1922         if (!cb) {
1923                 /* Last resort when we are OOM */
1924                 if (fence)
1925                         dma_fence_wait(fence, false);
1926
1927                 amdgpu_vm_prt_put(adev);
1928         } else {
1929                 cb->adev = adev;
1930                 if (!fence || dma_fence_add_callback(fence, &cb->cb,
1931                                                      amdgpu_vm_prt_cb))
1932                         amdgpu_vm_prt_cb(fence, &cb->cb);
1933         }
1934 }
1935
1936 /**
1937  * amdgpu_vm_free_mapping - free a mapping
1938  *
1939  * @adev: amdgpu_device pointer
1940  * @vm: requested vm
1941  * @mapping: mapping to be freed
1942  * @fence: fence of the unmap operation
1943  *
1944  * Free a mapping and make sure we decrease the PRT usage count if applicable.
1945  */
1946 static void amdgpu_vm_free_mapping(struct amdgpu_device *adev,
1947                                    struct amdgpu_vm *vm,
1948                                    struct amdgpu_bo_va_mapping *mapping,
1949                                    struct dma_fence *fence)
1950 {
1951         if (mapping->flags & AMDGPU_PTE_PRT)
1952                 amdgpu_vm_add_prt_cb(adev, fence);
1953         kfree(mapping);
1954 }
1955
1956 /**
1957  * amdgpu_vm_prt_fini - finish all prt mappings
1958  *
1959  * @adev: amdgpu_device pointer
1960  * @vm: requested vm
1961  *
1962  * Register a cleanup callback to disable PRT support after VM dies.
1963  */
1964 static void amdgpu_vm_prt_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
1965 {
1966         struct dma_resv *resv = vm->root.base.bo->tbo.base.resv;
1967         struct dma_fence *excl, **shared;
1968         unsigned i, shared_count;
1969         int r;
1970
1971         r = dma_resv_get_fences_rcu(resv, &excl,
1972                                               &shared_count, &shared);
1973         if (r) {
1974                 /* Not enough memory to grab the fence list, as last resort
1975                  * block for all the fences to complete.
1976                  */
1977                 dma_resv_wait_timeout_rcu(resv, true, false,
1978                                                     MAX_SCHEDULE_TIMEOUT);
1979                 return;
1980         }
1981
1982         /* Add a callback for each fence in the reservation object */
1983         amdgpu_vm_prt_get(adev);
1984         amdgpu_vm_add_prt_cb(adev, excl);
1985
1986         for (i = 0; i < shared_count; ++i) {
1987                 amdgpu_vm_prt_get(adev);
1988                 amdgpu_vm_add_prt_cb(adev, shared[i]);
1989         }
1990
1991         kfree(shared);
1992 }
1993
1994 /**
1995  * amdgpu_vm_clear_freed - clear freed BOs in the PT
1996  *
1997  * @adev: amdgpu_device pointer
1998  * @vm: requested vm
1999  * @fence: optional resulting fence (unchanged if no work needed to be done
2000  * or if an error occurred)
2001  *
2002  * Make sure all freed BOs are cleared in the PT.
2003  * PTs have to be reserved and mutex must be locked!
2004  *
2005  * Returns:
2006  * 0 for success.
2007  *
2008  */
2009 int amdgpu_vm_clear_freed(struct amdgpu_device *adev,
2010                           struct amdgpu_vm *vm,
2011                           struct dma_fence **fence)
2012 {
2013         struct dma_resv *resv = vm->root.base.bo->tbo.base.resv;
2014         struct amdgpu_bo_va_mapping *mapping;
2015         uint64_t init_pte_value = 0;
2016         struct dma_fence *f = NULL;
2017         int r;
2018
2019         while (!list_empty(&vm->freed)) {
2020                 mapping = list_first_entry(&vm->freed,
2021                         struct amdgpu_bo_va_mapping, list);
2022                 list_del(&mapping->list);
2023
2024                 if (vm->pte_support_ats &&
2025                     mapping->start < AMDGPU_GMC_HOLE_START)
2026                         init_pte_value = AMDGPU_PTE_DEFAULT_ATC;
2027
2028                 r = amdgpu_vm_bo_update_mapping(adev, vm, false, false, resv,
2029                                                 mapping->start, mapping->last,
2030                                                 init_pte_value, 0, NULL, &f);
2031                 amdgpu_vm_free_mapping(adev, vm, mapping, f);
2032                 if (r) {
2033                         dma_fence_put(f);
2034                         return r;
2035                 }
2036         }
2037
2038         if (fence && f) {
2039                 dma_fence_put(*fence);
2040                 *fence = f;
2041         } else {
2042                 dma_fence_put(f);
2043         }
2044
2045         return 0;
2046
2047 }
2048
2049 /**
2050  * amdgpu_vm_handle_moved - handle moved BOs in the PT
2051  *
2052  * @adev: amdgpu_device pointer
2053  * @vm: requested vm
2054  *
2055  * Make sure all BOs which are moved are updated in the PTs.
2056  *
2057  * Returns:
2058  * 0 for success.
2059  *
2060  * PTs have to be reserved!
2061  */
2062 int amdgpu_vm_handle_moved(struct amdgpu_device *adev,
2063                            struct amdgpu_vm *vm)
2064 {
2065         struct amdgpu_bo_va *bo_va, *tmp;
2066         struct dma_resv *resv;
2067         bool clear;
2068         int r;
2069
2070         list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status) {
2071                 /* Per VM BOs never need to bo cleared in the page tables */
2072                 r = amdgpu_vm_bo_update(adev, bo_va, false);
2073                 if (r)
2074                         return r;
2075         }
2076
2077         spin_lock(&vm->invalidated_lock);
2078         while (!list_empty(&vm->invalidated)) {
2079                 bo_va = list_first_entry(&vm->invalidated, struct amdgpu_bo_va,
2080                                          base.vm_status);
2081                 resv = bo_va->base.bo->tbo.base.resv;
2082                 spin_unlock(&vm->invalidated_lock);
2083
2084                 /* Try to reserve the BO to avoid clearing its ptes */
2085                 if (!amdgpu_vm_debug && dma_resv_trylock(resv))
2086                         clear = false;
2087                 /* Somebody else is using the BO right now */
2088                 else
2089                         clear = true;
2090
2091                 r = amdgpu_vm_bo_update(adev, bo_va, clear);
2092                 if (r)
2093                         return r;
2094
2095                 if (!clear)
2096                         dma_resv_unlock(resv);
2097                 spin_lock(&vm->invalidated_lock);
2098         }
2099         spin_unlock(&vm->invalidated_lock);
2100
2101         return 0;
2102 }
2103
2104 /**
2105  * amdgpu_vm_bo_add - add a bo to a specific vm
2106  *
2107  * @adev: amdgpu_device pointer
2108  * @vm: requested vm
2109  * @bo: amdgpu buffer object
2110  *
2111  * Add @bo into the requested vm.
2112  * Add @bo to the list of bos associated with the vm
2113  *
2114  * Returns:
2115  * Newly added bo_va or NULL for failure
2116  *
2117  * Object has to be reserved!
2118  */
2119 struct amdgpu_bo_va *amdgpu_vm_bo_add(struct amdgpu_device *adev,
2120                                       struct amdgpu_vm *vm,
2121                                       struct amdgpu_bo *bo)
2122 {
2123         struct amdgpu_bo_va *bo_va;
2124
2125         bo_va = kzalloc(sizeof(struct amdgpu_bo_va), GFP_KERNEL);
2126         if (bo_va == NULL) {
2127                 return NULL;
2128         }
2129         amdgpu_vm_bo_base_init(&bo_va->base, vm, bo);
2130
2131         bo_va->ref_count = 1;
2132         INIT_LIST_HEAD(&bo_va->valids);
2133         INIT_LIST_HEAD(&bo_va->invalids);
2134
2135         if (bo && amdgpu_xgmi_same_hive(adev, amdgpu_ttm_adev(bo->tbo.bdev)) &&
2136             (bo->preferred_domains & AMDGPU_GEM_DOMAIN_VRAM)) {
2137                 bo_va->is_xgmi = true;
2138                 /* Power up XGMI if it can be potentially used */
2139                 amdgpu_xgmi_set_pstate(adev, AMDGPU_XGMI_PSTATE_MAX_VEGA20);
2140         }
2141
2142         return bo_va;
2143 }
2144
2145
2146 /**
2147  * amdgpu_vm_bo_insert_mapping - insert a new mapping
2148  *
2149  * @adev: amdgpu_device pointer
2150  * @bo_va: bo_va to store the address
2151  * @mapping: the mapping to insert
2152  *
2153  * Insert a new mapping into all structures.
2154  */
2155 static void amdgpu_vm_bo_insert_map(struct amdgpu_device *adev,
2156                                     struct amdgpu_bo_va *bo_va,
2157                                     struct amdgpu_bo_va_mapping *mapping)
2158 {
2159         struct amdgpu_vm *vm = bo_va->base.vm;
2160         struct amdgpu_bo *bo = bo_va->base.bo;
2161
2162         mapping->bo_va = bo_va;
2163         list_add(&mapping->list, &bo_va->invalids);
2164         amdgpu_vm_it_insert(mapping, &vm->va);
2165
2166         if (mapping->flags & AMDGPU_PTE_PRT)
2167                 amdgpu_vm_prt_get(adev);
2168
2169         if (bo && bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv &&
2170             !bo_va->base.moved) {
2171                 list_move(&bo_va->base.vm_status, &vm->moved);
2172         }
2173         trace_amdgpu_vm_bo_map(bo_va, mapping);
2174 }
2175
2176 /**
2177  * amdgpu_vm_bo_map - map bo inside a vm
2178  *
2179  * @adev: amdgpu_device pointer
2180  * @bo_va: bo_va to store the address
2181  * @saddr: where to map the BO
2182  * @offset: requested offset in the BO
2183  * @size: BO size in bytes
2184  * @flags: attributes of pages (read/write/valid/etc.)
2185  *
2186  * Add a mapping of the BO at the specefied addr into the VM.
2187  *
2188  * Returns:
2189  * 0 for success, error for failure.
2190  *
2191  * Object has to be reserved and unreserved outside!
2192  */
2193 int amdgpu_vm_bo_map(struct amdgpu_device *adev,
2194                      struct amdgpu_bo_va *bo_va,
2195                      uint64_t saddr, uint64_t offset,
2196                      uint64_t size, uint64_t flags)
2197 {
2198         struct amdgpu_bo_va_mapping *mapping, *tmp;
2199         struct amdgpu_bo *bo = bo_va->base.bo;
2200         struct amdgpu_vm *vm = bo_va->base.vm;
2201         uint64_t eaddr;
2202
2203         /* validate the parameters */
2204         if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK ||
2205             size == 0 || size & AMDGPU_GPU_PAGE_MASK)
2206                 return -EINVAL;
2207
2208         /* make sure object fit at this offset */
2209         eaddr = saddr + size - 1;
2210         if (saddr >= eaddr ||
2211             (bo && offset + size > amdgpu_bo_size(bo)))
2212                 return -EINVAL;
2213
2214         saddr /= AMDGPU_GPU_PAGE_SIZE;
2215         eaddr /= AMDGPU_GPU_PAGE_SIZE;
2216
2217         tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr);
2218         if (tmp) {
2219                 /* bo and tmp overlap, invalid addr */
2220                 dev_err(adev->dev, "bo %p va 0x%010Lx-0x%010Lx conflict with "
2221                         "0x%010Lx-0x%010Lx\n", bo, saddr, eaddr,
2222                         tmp->start, tmp->last + 1);
2223                 return -EINVAL;
2224         }
2225
2226         mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
2227         if (!mapping)
2228                 return -ENOMEM;
2229
2230         mapping->start = saddr;
2231         mapping->last = eaddr;
2232         mapping->offset = offset;
2233         mapping->flags = flags;
2234
2235         amdgpu_vm_bo_insert_map(adev, bo_va, mapping);
2236
2237         return 0;
2238 }
2239
2240 /**
2241  * amdgpu_vm_bo_replace_map - map bo inside a vm, replacing existing mappings
2242  *
2243  * @adev: amdgpu_device pointer
2244  * @bo_va: bo_va to store the address
2245  * @saddr: where to map the BO
2246  * @offset: requested offset in the BO
2247  * @size: BO size in bytes
2248  * @flags: attributes of pages (read/write/valid/etc.)
2249  *
2250  * Add a mapping of the BO at the specefied addr into the VM. Replace existing
2251  * mappings as we do so.
2252  *
2253  * Returns:
2254  * 0 for success, error for failure.
2255  *
2256  * Object has to be reserved and unreserved outside!
2257  */
2258 int amdgpu_vm_bo_replace_map(struct amdgpu_device *adev,
2259                              struct amdgpu_bo_va *bo_va,
2260                              uint64_t saddr, uint64_t offset,
2261                              uint64_t size, uint64_t flags)
2262 {
2263         struct amdgpu_bo_va_mapping *mapping;
2264         struct amdgpu_bo *bo = bo_va->base.bo;
2265         uint64_t eaddr;
2266         int r;
2267
2268         /* validate the parameters */
2269         if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK ||
2270             size == 0 || size & AMDGPU_GPU_PAGE_MASK)
2271                 return -EINVAL;
2272
2273         /* make sure object fit at this offset */
2274         eaddr = saddr + size - 1;
2275         if (saddr >= eaddr ||
2276             (bo && offset + size > amdgpu_bo_size(bo)))
2277                 return -EINVAL;
2278
2279         /* Allocate all the needed memory */
2280         mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
2281         if (!mapping)
2282                 return -ENOMEM;
2283
2284         r = amdgpu_vm_bo_clear_mappings(adev, bo_va->base.vm, saddr, size);
2285         if (r) {
2286                 kfree(mapping);
2287                 return r;
2288         }
2289
2290         saddr /= AMDGPU_GPU_PAGE_SIZE;
2291         eaddr /= AMDGPU_GPU_PAGE_SIZE;
2292
2293         mapping->start = saddr;
2294         mapping->last = eaddr;
2295         mapping->offset = offset;
2296         mapping->flags = flags;
2297
2298         amdgpu_vm_bo_insert_map(adev, bo_va, mapping);
2299
2300         return 0;
2301 }
2302
2303 /**
2304  * amdgpu_vm_bo_unmap - remove bo mapping from vm
2305  *
2306  * @adev: amdgpu_device pointer
2307  * @bo_va: bo_va to remove the address from
2308  * @saddr: where to the BO is mapped
2309  *
2310  * Remove a mapping of the BO at the specefied addr from the VM.
2311  *
2312  * Returns:
2313  * 0 for success, error for failure.
2314  *
2315  * Object has to be reserved and unreserved outside!
2316  */
2317 int amdgpu_vm_bo_unmap(struct amdgpu_device *adev,
2318                        struct amdgpu_bo_va *bo_va,
2319                        uint64_t saddr)
2320 {
2321         struct amdgpu_bo_va_mapping *mapping;
2322         struct amdgpu_vm *vm = bo_va->base.vm;
2323         bool valid = true;
2324
2325         saddr /= AMDGPU_GPU_PAGE_SIZE;
2326
2327         list_for_each_entry(mapping, &bo_va->valids, list) {
2328                 if (mapping->start == saddr)
2329                         break;
2330         }
2331
2332         if (&mapping->list == &bo_va->valids) {
2333                 valid = false;
2334
2335                 list_for_each_entry(mapping, &bo_va->invalids, list) {
2336                         if (mapping->start == saddr)
2337                                 break;
2338                 }
2339
2340                 if (&mapping->list == &bo_va->invalids)
2341                         return -ENOENT;
2342         }
2343
2344         list_del(&mapping->list);
2345         amdgpu_vm_it_remove(mapping, &vm->va);
2346         mapping->bo_va = NULL;
2347         trace_amdgpu_vm_bo_unmap(bo_va, mapping);
2348
2349         if (valid)
2350                 list_add(&mapping->list, &vm->freed);
2351         else
2352                 amdgpu_vm_free_mapping(adev, vm, mapping,
2353                                        bo_va->last_pt_update);
2354
2355         return 0;
2356 }
2357
2358 /**
2359  * amdgpu_vm_bo_clear_mappings - remove all mappings in a specific range
2360  *
2361  * @adev: amdgpu_device pointer
2362  * @vm: VM structure to use
2363  * @saddr: start of the range
2364  * @size: size of the range
2365  *
2366  * Remove all mappings in a range, split them as appropriate.
2367  *
2368  * Returns:
2369  * 0 for success, error for failure.
2370  */
2371 int amdgpu_vm_bo_clear_mappings(struct amdgpu_device *adev,
2372                                 struct amdgpu_vm *vm,
2373                                 uint64_t saddr, uint64_t size)
2374 {
2375         struct amdgpu_bo_va_mapping *before, *after, *tmp, *next;
2376         LIST_HEAD(removed);
2377         uint64_t eaddr;
2378
2379         eaddr = saddr + size - 1;
2380         saddr /= AMDGPU_GPU_PAGE_SIZE;
2381         eaddr /= AMDGPU_GPU_PAGE_SIZE;
2382
2383         /* Allocate all the needed memory */
2384         before = kzalloc(sizeof(*before), GFP_KERNEL);
2385         if (!before)
2386                 return -ENOMEM;
2387         INIT_LIST_HEAD(&before->list);
2388
2389         after = kzalloc(sizeof(*after), GFP_KERNEL);
2390         if (!after) {
2391                 kfree(before);
2392                 return -ENOMEM;
2393         }
2394         INIT_LIST_HEAD(&after->list);
2395
2396         /* Now gather all removed mappings */
2397         tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr);
2398         while (tmp) {
2399                 /* Remember mapping split at the start */
2400                 if (tmp->start < saddr) {
2401                         before->start = tmp->start;
2402                         before->last = saddr - 1;
2403                         before->offset = tmp->offset;
2404                         before->flags = tmp->flags;
2405                         before->bo_va = tmp->bo_va;
2406                         list_add(&before->list, &tmp->bo_va->invalids);
2407                 }
2408
2409                 /* Remember mapping split at the end */
2410                 if (tmp->last > eaddr) {
2411                         after->start = eaddr + 1;
2412                         after->last = tmp->last;
2413                         after->offset = tmp->offset;
2414                         after->offset += after->start - tmp->start;
2415                         after->flags = tmp->flags;
2416                         after->bo_va = tmp->bo_va;
2417                         list_add(&after->list, &tmp->bo_va->invalids);
2418                 }
2419
2420                 list_del(&tmp->list);
2421                 list_add(&tmp->list, &removed);
2422
2423                 tmp = amdgpu_vm_it_iter_next(tmp, saddr, eaddr);
2424         }
2425
2426         /* And free them up */
2427         list_for_each_entry_safe(tmp, next, &removed, list) {
2428                 amdgpu_vm_it_remove(tmp, &vm->va);
2429                 list_del(&tmp->list);
2430
2431                 if (tmp->start < saddr)
2432                     tmp->start = saddr;
2433                 if (tmp->last > eaddr)
2434                     tmp->last = eaddr;
2435
2436                 tmp->bo_va = NULL;
2437                 list_add(&tmp->list, &vm->freed);
2438                 trace_amdgpu_vm_bo_unmap(NULL, tmp);
2439         }
2440
2441         /* Insert partial mapping before the range */
2442         if (!list_empty(&before->list)) {
2443                 amdgpu_vm_it_insert(before, &vm->va);
2444                 if (before->flags & AMDGPU_PTE_PRT)
2445                         amdgpu_vm_prt_get(adev);
2446         } else {
2447                 kfree(before);
2448         }
2449
2450         /* Insert partial mapping after the range */
2451         if (!list_empty(&after->list)) {
2452                 amdgpu_vm_it_insert(after, &vm->va);
2453                 if (after->flags & AMDGPU_PTE_PRT)
2454                         amdgpu_vm_prt_get(adev);
2455         } else {
2456                 kfree(after);
2457         }
2458
2459         return 0;
2460 }
2461
2462 /**
2463  * amdgpu_vm_bo_lookup_mapping - find mapping by address
2464  *
2465  * @vm: the requested VM
2466  * @addr: the address
2467  *
2468  * Find a mapping by it's address.
2469  *
2470  * Returns:
2471  * The amdgpu_bo_va_mapping matching for addr or NULL
2472  *
2473  */
2474 struct amdgpu_bo_va_mapping *amdgpu_vm_bo_lookup_mapping(struct amdgpu_vm *vm,
2475                                                          uint64_t addr)
2476 {
2477         return amdgpu_vm_it_iter_first(&vm->va, addr, addr);
2478 }
2479
2480 /**
2481  * amdgpu_vm_bo_trace_cs - trace all reserved mappings
2482  *
2483  * @vm: the requested vm
2484  * @ticket: CS ticket
2485  *
2486  * Trace all mappings of BOs reserved during a command submission.
2487  */
2488 void amdgpu_vm_bo_trace_cs(struct amdgpu_vm *vm, struct ww_acquire_ctx *ticket)
2489 {
2490         struct amdgpu_bo_va_mapping *mapping;
2491
2492         if (!trace_amdgpu_vm_bo_cs_enabled())
2493                 return;
2494
2495         for (mapping = amdgpu_vm_it_iter_first(&vm->va, 0, U64_MAX); mapping;
2496              mapping = amdgpu_vm_it_iter_next(mapping, 0, U64_MAX)) {
2497                 if (mapping->bo_va && mapping->bo_va->base.bo) {
2498                         struct amdgpu_bo *bo;
2499
2500                         bo = mapping->bo_va->base.bo;
2501                         if (dma_resv_locking_ctx(bo->tbo.base.resv) !=
2502                             ticket)
2503                                 continue;
2504                 }
2505
2506                 trace_amdgpu_vm_bo_cs(mapping);
2507         }
2508 }
2509
2510 /**
2511  * amdgpu_vm_bo_rmv - remove a bo to a specific vm
2512  *
2513  * @adev: amdgpu_device pointer
2514  * @bo_va: requested bo_va
2515  *
2516  * Remove @bo_va->bo from the requested vm.
2517  *
2518  * Object have to be reserved!
2519  */
2520 void amdgpu_vm_bo_rmv(struct amdgpu_device *adev,
2521                       struct amdgpu_bo_va *bo_va)
2522 {
2523         struct amdgpu_bo_va_mapping *mapping, *next;
2524         struct amdgpu_bo *bo = bo_va->base.bo;
2525         struct amdgpu_vm *vm = bo_va->base.vm;
2526         struct amdgpu_vm_bo_base **base;
2527
2528         if (bo) {
2529                 if (bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv)
2530                         vm->bulk_moveable = false;
2531
2532                 for (base = &bo_va->base.bo->vm_bo; *base;
2533                      base = &(*base)->next) {
2534                         if (*base != &bo_va->base)
2535                                 continue;
2536
2537                         *base = bo_va->base.next;
2538                         break;
2539                 }
2540         }
2541
2542         spin_lock(&vm->invalidated_lock);
2543         list_del(&bo_va->base.vm_status);
2544         spin_unlock(&vm->invalidated_lock);
2545
2546         list_for_each_entry_safe(mapping, next, &bo_va->valids, list) {
2547                 list_del(&mapping->list);
2548                 amdgpu_vm_it_remove(mapping, &vm->va);
2549                 mapping->bo_va = NULL;
2550                 trace_amdgpu_vm_bo_unmap(bo_va, mapping);
2551                 list_add(&mapping->list, &vm->freed);
2552         }
2553         list_for_each_entry_safe(mapping, next, &bo_va->invalids, list) {
2554                 list_del(&mapping->list);
2555                 amdgpu_vm_it_remove(mapping, &vm->va);
2556                 amdgpu_vm_free_mapping(adev, vm, mapping,
2557                                        bo_va->last_pt_update);
2558         }
2559
2560         dma_fence_put(bo_va->last_pt_update);
2561
2562         if (bo && bo_va->is_xgmi)
2563                 amdgpu_xgmi_set_pstate(adev, AMDGPU_XGMI_PSTATE_MIN);
2564
2565         kfree(bo_va);
2566 }
2567
2568 /**
2569  * amdgpu_vm_evictable - check if we can evict a VM
2570  *
2571  * @bo: A page table of the VM.
2572  *
2573  * Check if it is possible to evict a VM.
2574  */
2575 bool amdgpu_vm_evictable(struct amdgpu_bo *bo)
2576 {
2577         struct amdgpu_vm_bo_base *bo_base = bo->vm_bo;
2578
2579         /* Page tables of a destroyed VM can go away immediately */
2580         if (!bo_base || !bo_base->vm)
2581                 return true;
2582
2583         /* Don't evict VM page tables while they are busy */
2584         if (!dma_resv_test_signaled_rcu(bo->tbo.base.resv, true))
2585                 return false;
2586
2587         /* Try to block ongoing updates */
2588         if (!amdgpu_vm_eviction_trylock(bo_base->vm))
2589                 return false;
2590
2591         /* Don't evict VM page tables while they are updated */
2592         if (!dma_fence_is_signaled(bo_base->vm->last_unlocked)) {
2593                 amdgpu_vm_eviction_unlock(bo_base->vm);
2594                 return false;
2595         }
2596
2597         bo_base->vm->evicting = true;
2598         amdgpu_vm_eviction_unlock(bo_base->vm);
2599         return true;
2600 }
2601
2602 /**
2603  * amdgpu_vm_bo_invalidate - mark the bo as invalid
2604  *
2605  * @adev: amdgpu_device pointer
2606  * @bo: amdgpu buffer object
2607  * @evicted: is the BO evicted
2608  *
2609  * Mark @bo as invalid.
2610  */
2611 void amdgpu_vm_bo_invalidate(struct amdgpu_device *adev,
2612                              struct amdgpu_bo *bo, bool evicted)
2613 {
2614         struct amdgpu_vm_bo_base *bo_base;
2615
2616         /* shadow bo doesn't have bo base, its validation needs its parent */
2617         if (bo->parent && bo->parent->shadow == bo)
2618                 bo = bo->parent;
2619
2620         for (bo_base = bo->vm_bo; bo_base; bo_base = bo_base->next) {
2621                 struct amdgpu_vm *vm = bo_base->vm;
2622
2623                 if (evicted && bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv) {
2624                         amdgpu_vm_bo_evicted(bo_base);
2625                         continue;
2626                 }
2627
2628                 if (bo_base->moved)
2629                         continue;
2630                 bo_base->moved = true;
2631
2632                 if (bo->tbo.type == ttm_bo_type_kernel)
2633                         amdgpu_vm_bo_relocated(bo_base);
2634                 else if (bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv)
2635                         amdgpu_vm_bo_moved(bo_base);
2636                 else
2637                         amdgpu_vm_bo_invalidated(bo_base);
2638         }
2639 }
2640
2641 /**
2642  * amdgpu_vm_get_block_size - calculate VM page table size as power of two
2643  *
2644  * @vm_size: VM size
2645  *
2646  * Returns:
2647  * VM page table as power of two
2648  */
2649 static uint32_t amdgpu_vm_get_block_size(uint64_t vm_size)
2650 {
2651         /* Total bits covered by PD + PTs */
2652         unsigned bits = ilog2(vm_size) + 18;
2653
2654         /* Make sure the PD is 4K in size up to 8GB address space.
2655            Above that split equal between PD and PTs */
2656         if (vm_size <= 8)
2657                 return (bits - 9);
2658         else
2659                 return ((bits + 3) / 2);
2660 }
2661
2662 /**
2663  * amdgpu_vm_adjust_size - adjust vm size, block size and fragment size
2664  *
2665  * @adev: amdgpu_device pointer
2666  * @min_vm_size: the minimum vm size in GB if it's set auto
2667  * @fragment_size_default: Default PTE fragment size
2668  * @max_level: max VMPT level
2669  * @max_bits: max address space size in bits
2670  *
2671  */
2672 void amdgpu_vm_adjust_size(struct amdgpu_device *adev, uint32_t min_vm_size,
2673                            uint32_t fragment_size_default, unsigned max_level,
2674                            unsigned max_bits)
2675 {
2676         unsigned int max_size = 1 << (max_bits - 30);
2677         unsigned int vm_size;
2678         uint64_t tmp;
2679
2680         /* adjust vm size first */
2681         if (amdgpu_vm_size != -1) {
2682                 vm_size = amdgpu_vm_size;
2683                 if (vm_size > max_size) {
2684                         dev_warn(adev->dev, "VM size (%d) too large, max is %u GB\n",
2685                                  amdgpu_vm_size, max_size);
2686                         vm_size = max_size;
2687                 }
2688         } else {
2689                 struct sysinfo si;
2690                 unsigned int phys_ram_gb;
2691
2692                 /* Optimal VM size depends on the amount of physical
2693                  * RAM available. Underlying requirements and
2694                  * assumptions:
2695                  *
2696                  *  - Need to map system memory and VRAM from all GPUs
2697                  *     - VRAM from other GPUs not known here
2698                  *     - Assume VRAM <= system memory
2699                  *  - On GFX8 and older, VM space can be segmented for
2700                  *    different MTYPEs
2701                  *  - Need to allow room for fragmentation, guard pages etc.
2702                  *
2703                  * This adds up to a rough guess of system memory x3.
2704                  * Round up to power of two to maximize the available
2705                  * VM size with the given page table size.
2706                  */
2707                 si_meminfo(&si);
2708                 phys_ram_gb = ((uint64_t)si.totalram * si.mem_unit +
2709                                (1 << 30) - 1) >> 30;
2710                 vm_size = roundup_pow_of_two(
2711                         min(max(phys_ram_gb * 3, min_vm_size), max_size));
2712         }
2713
2714         adev->vm_manager.max_pfn = (uint64_t)vm_size << 18;
2715
2716         tmp = roundup_pow_of_two(adev->vm_manager.max_pfn);
2717         if (amdgpu_vm_block_size != -1)
2718                 tmp >>= amdgpu_vm_block_size - 9;
2719         tmp = DIV_ROUND_UP(fls64(tmp) - 1, 9) - 1;
2720         adev->vm_manager.num_level = min(max_level, (unsigned)tmp);
2721         switch (adev->vm_manager.num_level) {
2722         case 3:
2723                 adev->vm_manager.root_level = AMDGPU_VM_PDB2;
2724                 break;
2725         case 2:
2726                 adev->vm_manager.root_level = AMDGPU_VM_PDB1;
2727                 break;
2728         case 1:
2729                 adev->vm_manager.root_level = AMDGPU_VM_PDB0;
2730                 break;
2731         default:
2732                 dev_err(adev->dev, "VMPT only supports 2~4+1 levels\n");
2733         }
2734         /* block size depends on vm size and hw setup*/
2735         if (amdgpu_vm_block_size != -1)
2736                 adev->vm_manager.block_size =
2737                         min((unsigned)amdgpu_vm_block_size, max_bits
2738                             - AMDGPU_GPU_PAGE_SHIFT
2739                             - 9 * adev->vm_manager.num_level);
2740         else if (adev->vm_manager.num_level > 1)
2741                 adev->vm_manager.block_size = 9;
2742         else
2743                 adev->vm_manager.block_size = amdgpu_vm_get_block_size(tmp);
2744
2745         if (amdgpu_vm_fragment_size == -1)
2746                 adev->vm_manager.fragment_size = fragment_size_default;
2747         else
2748                 adev->vm_manager.fragment_size = amdgpu_vm_fragment_size;
2749
2750         DRM_INFO("vm size is %u GB, %u levels, block size is %u-bit, fragment size is %u-bit\n",
2751                  vm_size, adev->vm_manager.num_level + 1,
2752                  adev->vm_manager.block_size,
2753                  adev->vm_manager.fragment_size);
2754 }
2755
2756 /**
2757  * amdgpu_vm_wait_idle - wait for the VM to become idle
2758  *
2759  * @vm: VM object to wait for
2760  * @timeout: timeout to wait for VM to become idle
2761  */
2762 long amdgpu_vm_wait_idle(struct amdgpu_vm *vm, long timeout)
2763 {
2764         timeout = dma_resv_wait_timeout_rcu(vm->root.base.bo->tbo.base.resv,
2765                                             true, true, timeout);
2766         if (timeout <= 0)
2767                 return timeout;
2768
2769         return dma_fence_wait_timeout(vm->last_unlocked, true, timeout);
2770 }
2771
2772 /**
2773  * amdgpu_vm_init - initialize a vm instance
2774  *
2775  * @adev: amdgpu_device pointer
2776  * @vm: requested vm
2777  * @vm_context: Indicates if it GFX or Compute context
2778  * @pasid: Process address space identifier
2779  *
2780  * Init @vm fields.
2781  *
2782  * Returns:
2783  * 0 for success, error for failure.
2784  */
2785 int amdgpu_vm_init(struct amdgpu_device *adev, struct amdgpu_vm *vm,
2786                    int vm_context, unsigned int pasid)
2787 {
2788         struct amdgpu_bo_param bp;
2789         struct amdgpu_bo *root;
2790         int r, i;
2791
2792         vm->va = RB_ROOT_CACHED;
2793         for (i = 0; i < AMDGPU_MAX_VMHUBS; i++)
2794                 vm->reserved_vmid[i] = NULL;
2795         INIT_LIST_HEAD(&vm->evicted);
2796         INIT_LIST_HEAD(&vm->relocated);
2797         INIT_LIST_HEAD(&vm->moved);
2798         INIT_LIST_HEAD(&vm->idle);
2799         INIT_LIST_HEAD(&vm->invalidated);
2800         spin_lock_init(&vm->invalidated_lock);
2801         INIT_LIST_HEAD(&vm->freed);
2802
2803
2804         /* create scheduler entities for page table updates */
2805         r = drm_sched_entity_init(&vm->immediate, DRM_SCHED_PRIORITY_NORMAL,
2806                                   adev->vm_manager.vm_pte_scheds,
2807                                   adev->vm_manager.vm_pte_num_scheds, NULL);
2808         if (r)
2809                 return r;
2810
2811         r = drm_sched_entity_init(&vm->delayed, DRM_SCHED_PRIORITY_NORMAL,
2812                                   adev->vm_manager.vm_pte_scheds,
2813                                   adev->vm_manager.vm_pte_num_scheds, NULL);
2814         if (r)
2815                 goto error_free_immediate;
2816
2817         vm->pte_support_ats = false;
2818         vm->is_compute_context = false;
2819
2820         if (vm_context == AMDGPU_VM_CONTEXT_COMPUTE) {
2821                 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode &
2822                                                 AMDGPU_VM_USE_CPU_FOR_COMPUTE);
2823
2824                 if (adev->asic_type == CHIP_RAVEN)
2825                         vm->pte_support_ats = true;
2826         } else {
2827                 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode &
2828                                                 AMDGPU_VM_USE_CPU_FOR_GFX);
2829         }
2830         DRM_DEBUG_DRIVER("VM update mode is %s\n",
2831                          vm->use_cpu_for_update ? "CPU" : "SDMA");
2832         WARN_ONCE((vm->use_cpu_for_update &&
2833                    !amdgpu_gmc_vram_full_visible(&adev->gmc)),
2834                   "CPU update of VM recommended only for large BAR system\n");
2835
2836         if (vm->use_cpu_for_update)
2837                 vm->update_funcs = &amdgpu_vm_cpu_funcs;
2838         else
2839                 vm->update_funcs = &amdgpu_vm_sdma_funcs;
2840         vm->last_update = NULL;
2841         vm->last_unlocked = dma_fence_get_stub();
2842
2843         mutex_init(&vm->eviction_lock);
2844         vm->evicting = false;
2845
2846         amdgpu_vm_bo_param(adev, vm, adev->vm_manager.root_level, false, &bp);
2847         if (vm_context == AMDGPU_VM_CONTEXT_COMPUTE)
2848                 bp.flags &= ~AMDGPU_GEM_CREATE_SHADOW;
2849         r = amdgpu_bo_create(adev, &bp, &root);
2850         if (r)
2851                 goto error_free_delayed;
2852
2853         r = amdgpu_bo_reserve(root, true);
2854         if (r)
2855                 goto error_free_root;
2856
2857         r = dma_resv_reserve_shared(root->tbo.base.resv, 1);
2858         if (r)
2859                 goto error_unreserve;
2860
2861         amdgpu_vm_bo_base_init(&vm->root.base, vm, root);
2862
2863         r = amdgpu_vm_clear_bo(adev, vm, root, false);
2864         if (r)
2865                 goto error_unreserve;
2866
2867         amdgpu_bo_unreserve(vm->root.base.bo);
2868
2869         if (pasid) {
2870                 unsigned long flags;
2871
2872                 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
2873                 r = idr_alloc(&adev->vm_manager.pasid_idr, vm, pasid, pasid + 1,
2874                               GFP_ATOMIC);
2875                 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
2876                 if (r < 0)
2877                         goto error_free_root;
2878
2879                 vm->pasid = pasid;
2880         }
2881
2882         INIT_KFIFO(vm->faults);
2883
2884         return 0;
2885
2886 error_unreserve:
2887         amdgpu_bo_unreserve(vm->root.base.bo);
2888
2889 error_free_root:
2890         amdgpu_bo_unref(&vm->root.base.bo->shadow);
2891         amdgpu_bo_unref(&vm->root.base.bo);
2892         vm->root.base.bo = NULL;
2893
2894 error_free_delayed:
2895         dma_fence_put(vm->last_unlocked);
2896         drm_sched_entity_destroy(&vm->delayed);
2897
2898 error_free_immediate:
2899         drm_sched_entity_destroy(&vm->immediate);
2900
2901         return r;
2902 }
2903
2904 /**
2905  * amdgpu_vm_check_clean_reserved - check if a VM is clean
2906  *
2907  * @adev: amdgpu_device pointer
2908  * @vm: the VM to check
2909  *
2910  * check all entries of the root PD, if any subsequent PDs are allocated,
2911  * it means there are page table creating and filling, and is no a clean
2912  * VM
2913  *
2914  * Returns:
2915  *      0 if this VM is clean
2916  */
2917 static int amdgpu_vm_check_clean_reserved(struct amdgpu_device *adev,
2918         struct amdgpu_vm *vm)
2919 {
2920         enum amdgpu_vm_level root = adev->vm_manager.root_level;
2921         unsigned int entries = amdgpu_vm_num_entries(adev, root);
2922         unsigned int i = 0;
2923
2924         if (!(vm->root.entries))
2925                 return 0;
2926
2927         for (i = 0; i < entries; i++) {
2928                 if (vm->root.entries[i].base.bo)
2929                         return -EINVAL;
2930         }
2931
2932         return 0;
2933 }
2934
2935 /**
2936  * amdgpu_vm_make_compute - Turn a GFX VM into a compute VM
2937  *
2938  * @adev: amdgpu_device pointer
2939  * @vm: requested vm
2940  * @pasid: pasid to use
2941  *
2942  * This only works on GFX VMs that don't have any BOs added and no
2943  * page tables allocated yet.
2944  *
2945  * Changes the following VM parameters:
2946  * - use_cpu_for_update
2947  * - pte_supports_ats
2948  * - pasid (old PASID is released, because compute manages its own PASIDs)
2949  *
2950  * Reinitializes the page directory to reflect the changed ATS
2951  * setting.
2952  *
2953  * Returns:
2954  * 0 for success, -errno for errors.
2955  */
2956 int amdgpu_vm_make_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm,
2957                            unsigned int pasid)
2958 {
2959         bool pte_support_ats = (adev->asic_type == CHIP_RAVEN);
2960         int r;
2961
2962         r = amdgpu_bo_reserve(vm->root.base.bo, true);
2963         if (r)
2964                 return r;
2965
2966         /* Sanity checks */
2967         r = amdgpu_vm_check_clean_reserved(adev, vm);
2968         if (r)
2969                 goto unreserve_bo;
2970
2971         if (pasid) {
2972                 unsigned long flags;
2973
2974                 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
2975                 r = idr_alloc(&adev->vm_manager.pasid_idr, vm, pasid, pasid + 1,
2976                               GFP_ATOMIC);
2977                 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
2978
2979                 if (r == -ENOSPC)
2980                         goto unreserve_bo;
2981                 r = 0;
2982         }
2983
2984         /* Check if PD needs to be reinitialized and do it before
2985          * changing any other state, in case it fails.
2986          */
2987         if (pte_support_ats != vm->pte_support_ats) {
2988                 vm->pte_support_ats = pte_support_ats;
2989                 r = amdgpu_vm_clear_bo(adev, vm, vm->root.base.bo, false);
2990                 if (r)
2991                         goto free_idr;
2992         }
2993
2994         /* Update VM state */
2995         vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode &
2996                                     AMDGPU_VM_USE_CPU_FOR_COMPUTE);
2997         DRM_DEBUG_DRIVER("VM update mode is %s\n",
2998                          vm->use_cpu_for_update ? "CPU" : "SDMA");
2999         WARN_ONCE((vm->use_cpu_for_update &&
3000                    !amdgpu_gmc_vram_full_visible(&adev->gmc)),
3001                   "CPU update of VM recommended only for large BAR system\n");
3002
3003         if (vm->use_cpu_for_update) {
3004                 /* Sync with last SDMA update/clear before switching to CPU */
3005                 r = amdgpu_bo_sync_wait(vm->root.base.bo,
3006                                         AMDGPU_FENCE_OWNER_UNDEFINED, true);
3007                 if (r)
3008                         goto free_idr;
3009
3010                 vm->update_funcs = &amdgpu_vm_cpu_funcs;
3011         } else {
3012                 vm->update_funcs = &amdgpu_vm_sdma_funcs;
3013         }
3014         dma_fence_put(vm->last_update);
3015         vm->last_update = NULL;
3016         vm->is_compute_context = true;
3017
3018         if (vm->pasid) {
3019                 unsigned long flags;
3020
3021                 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
3022                 idr_remove(&adev->vm_manager.pasid_idr, vm->pasid);
3023                 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
3024
3025                 /* Free the original amdgpu allocated pasid
3026                  * Will be replaced with kfd allocated pasid
3027                  */
3028                 amdgpu_pasid_free(vm->pasid);
3029                 vm->pasid = 0;
3030         }
3031
3032         /* Free the shadow bo for compute VM */
3033         amdgpu_bo_unref(&vm->root.base.bo->shadow);
3034
3035         if (pasid)
3036                 vm->pasid = pasid;
3037
3038         goto unreserve_bo;
3039
3040 free_idr:
3041         if (pasid) {
3042                 unsigned long flags;
3043
3044                 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
3045                 idr_remove(&adev->vm_manager.pasid_idr, pasid);
3046                 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
3047         }
3048 unreserve_bo:
3049         amdgpu_bo_unreserve(vm->root.base.bo);
3050         return r;
3051 }
3052
3053 /**
3054  * amdgpu_vm_release_compute - release a compute vm
3055  * @adev: amdgpu_device pointer
3056  * @vm: a vm turned into compute vm by calling amdgpu_vm_make_compute
3057  *
3058  * This is a correspondant of amdgpu_vm_make_compute. It decouples compute
3059  * pasid from vm. Compute should stop use of vm after this call.
3060  */
3061 void amdgpu_vm_release_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm)
3062 {
3063         if (vm->pasid) {
3064                 unsigned long flags;
3065
3066                 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
3067                 idr_remove(&adev->vm_manager.pasid_idr, vm->pasid);
3068                 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
3069         }
3070         vm->pasid = 0;
3071         vm->is_compute_context = false;
3072 }
3073
3074 /**
3075  * amdgpu_vm_fini - tear down a vm instance
3076  *
3077  * @adev: amdgpu_device pointer
3078  * @vm: requested vm
3079  *
3080  * Tear down @vm.
3081  * Unbind the VM and remove all bos from the vm bo list
3082  */
3083 void amdgpu_vm_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
3084 {
3085         struct amdgpu_bo_va_mapping *mapping, *tmp;
3086         bool prt_fini_needed = !!adev->gmc.gmc_funcs->set_prt;
3087         struct amdgpu_bo *root;
3088         int i;
3089
3090         amdgpu_amdkfd_gpuvm_destroy_cb(adev, vm);
3091
3092         root = amdgpu_bo_ref(vm->root.base.bo);
3093         amdgpu_bo_reserve(root, true);
3094         if (vm->pasid) {
3095                 unsigned long flags;
3096
3097                 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
3098                 idr_remove(&adev->vm_manager.pasid_idr, vm->pasid);
3099                 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
3100                 vm->pasid = 0;
3101         }
3102
3103         dma_fence_wait(vm->last_unlocked, false);
3104         dma_fence_put(vm->last_unlocked);
3105
3106         list_for_each_entry_safe(mapping, tmp, &vm->freed, list) {
3107                 if (mapping->flags & AMDGPU_PTE_PRT && prt_fini_needed) {
3108                         amdgpu_vm_prt_fini(adev, vm);
3109                         prt_fini_needed = false;
3110                 }
3111
3112                 list_del(&mapping->list);
3113                 amdgpu_vm_free_mapping(adev, vm, mapping, NULL);
3114         }
3115
3116         amdgpu_vm_free_pts(adev, vm, NULL);
3117         amdgpu_bo_unreserve(root);
3118         amdgpu_bo_unref(&root);
3119         WARN_ON(vm->root.base.bo);
3120
3121         drm_sched_entity_destroy(&vm->immediate);
3122         drm_sched_entity_destroy(&vm->delayed);
3123
3124         if (!RB_EMPTY_ROOT(&vm->va.rb_root)) {
3125                 dev_err(adev->dev, "still active bo inside vm\n");
3126         }
3127         rbtree_postorder_for_each_entry_safe(mapping, tmp,
3128                                              &vm->va.rb_root, rb) {
3129                 /* Don't remove the mapping here, we don't want to trigger a
3130                  * rebalance and the tree is about to be destroyed anyway.
3131                  */
3132                 list_del(&mapping->list);
3133                 kfree(mapping);
3134         }
3135
3136         dma_fence_put(vm->last_update);
3137         for (i = 0; i < AMDGPU_MAX_VMHUBS; i++)
3138                 amdgpu_vmid_free_reserved(adev, vm, i);
3139 }
3140
3141 /**
3142  * amdgpu_vm_manager_init - init the VM manager
3143  *
3144  * @adev: amdgpu_device pointer
3145  *
3146  * Initialize the VM manager structures
3147  */
3148 void amdgpu_vm_manager_init(struct amdgpu_device *adev)
3149 {
3150         unsigned i;
3151
3152         amdgpu_vmid_mgr_init(adev);
3153
3154         adev->vm_manager.fence_context =
3155                 dma_fence_context_alloc(AMDGPU_MAX_RINGS);
3156         for (i = 0; i < AMDGPU_MAX_RINGS; ++i)
3157                 adev->vm_manager.seqno[i] = 0;
3158
3159         spin_lock_init(&adev->vm_manager.prt_lock);
3160         atomic_set(&adev->vm_manager.num_prt_users, 0);
3161
3162         /* If not overridden by the user, by default, only in large BAR systems
3163          * Compute VM tables will be updated by CPU
3164          */
3165 #ifdef CONFIG_X86_64
3166         if (amdgpu_vm_update_mode == -1) {
3167                 if (amdgpu_gmc_vram_full_visible(&adev->gmc))
3168                         adev->vm_manager.vm_update_mode =
3169                                 AMDGPU_VM_USE_CPU_FOR_COMPUTE;
3170                 else
3171                         adev->vm_manager.vm_update_mode = 0;
3172         } else
3173                 adev->vm_manager.vm_update_mode = amdgpu_vm_update_mode;
3174 #else
3175         adev->vm_manager.vm_update_mode = 0;
3176 #endif
3177
3178         idr_init(&adev->vm_manager.pasid_idr);
3179         spin_lock_init(&adev->vm_manager.pasid_lock);
3180 }
3181
3182 /**
3183  * amdgpu_vm_manager_fini - cleanup VM manager
3184  *
3185  * @adev: amdgpu_device pointer
3186  *
3187  * Cleanup the VM manager and free resources.
3188  */
3189 void amdgpu_vm_manager_fini(struct amdgpu_device *adev)
3190 {
3191         WARN_ON(!idr_is_empty(&adev->vm_manager.pasid_idr));
3192         idr_destroy(&adev->vm_manager.pasid_idr);
3193
3194         amdgpu_vmid_mgr_fini(adev);
3195 }
3196
3197 /**
3198  * amdgpu_vm_ioctl - Manages VMID reservation for vm hubs.
3199  *
3200  * @dev: drm device pointer
3201  * @data: drm_amdgpu_vm
3202  * @filp: drm file pointer
3203  *
3204  * Returns:
3205  * 0 for success, -errno for errors.
3206  */
3207 int amdgpu_vm_ioctl(struct drm_device *dev, void *data, struct drm_file *filp)
3208 {
3209         union drm_amdgpu_vm *args = data;
3210         struct amdgpu_device *adev = dev->dev_private;
3211         struct amdgpu_fpriv *fpriv = filp->driver_priv;
3212         long timeout = msecs_to_jiffies(2000);
3213         int r;
3214
3215         switch (args->in.op) {
3216         case AMDGPU_VM_OP_RESERVE_VMID:
3217                 /* We only have requirement to reserve vmid from gfxhub */
3218                 r = amdgpu_vmid_alloc_reserved(adev, &fpriv->vm,
3219                                                AMDGPU_GFXHUB_0);
3220                 if (r)
3221                         return r;
3222                 break;
3223         case AMDGPU_VM_OP_UNRESERVE_VMID:
3224                 if (amdgpu_sriov_runtime(adev))
3225                         timeout = 8 * timeout;
3226
3227                 /* Wait vm idle to make sure the vmid set in SPM_VMID is
3228                  * not referenced anymore.
3229                  */
3230                 r = amdgpu_bo_reserve(fpriv->vm.root.base.bo, true);
3231                 if (r)
3232                         return r;
3233
3234                 r = amdgpu_vm_wait_idle(&fpriv->vm, timeout);
3235                 if (r < 0)
3236                         return r;
3237
3238                 amdgpu_bo_unreserve(fpriv->vm.root.base.bo);
3239                 amdgpu_vmid_free_reserved(adev, &fpriv->vm, AMDGPU_GFXHUB_0);
3240                 break;
3241         default:
3242                 return -EINVAL;
3243         }
3244
3245         return 0;
3246 }
3247
3248 /**
3249  * amdgpu_vm_get_task_info - Extracts task info for a PASID.
3250  *
3251  * @adev: drm device pointer
3252  * @pasid: PASID identifier for VM
3253  * @task_info: task_info to fill.
3254  */
3255 void amdgpu_vm_get_task_info(struct amdgpu_device *adev, unsigned int pasid,
3256                          struct amdgpu_task_info *task_info)
3257 {
3258         struct amdgpu_vm *vm;
3259         unsigned long flags;
3260
3261         spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
3262
3263         vm = idr_find(&adev->vm_manager.pasid_idr, pasid);
3264         if (vm)
3265                 *task_info = vm->task_info;
3266
3267         spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
3268 }
3269
3270 /**
3271  * amdgpu_vm_set_task_info - Sets VMs task info.
3272  *
3273  * @vm: vm for which to set the info
3274  */
3275 void amdgpu_vm_set_task_info(struct amdgpu_vm *vm)
3276 {
3277         if (vm->task_info.pid)
3278                 return;
3279
3280         vm->task_info.pid = current->pid;
3281         get_task_comm(vm->task_info.task_name, current);
3282
3283         if (current->group_leader->mm != current->mm)
3284                 return;
3285
3286         vm->task_info.tgid = current->group_leader->pid;
3287         get_task_comm(vm->task_info.process_name, current->group_leader);
3288 }
3289
3290 /**
3291  * amdgpu_vm_handle_fault - graceful handling of VM faults.
3292  * @adev: amdgpu device pointer
3293  * @pasid: PASID of the VM
3294  * @addr: Address of the fault
3295  *
3296  * Try to gracefully handle a VM fault. Return true if the fault was handled and
3297  * shouldn't be reported any more.
3298  */
3299 bool amdgpu_vm_handle_fault(struct amdgpu_device *adev, unsigned int pasid,
3300                             uint64_t addr)
3301 {
3302         struct amdgpu_bo *root;
3303         uint64_t value, flags;
3304         struct amdgpu_vm *vm;
3305         long r;
3306
3307         spin_lock(&adev->vm_manager.pasid_lock);
3308         vm = idr_find(&adev->vm_manager.pasid_idr, pasid);
3309         if (vm)
3310                 root = amdgpu_bo_ref(vm->root.base.bo);
3311         else
3312                 root = NULL;
3313         spin_unlock(&adev->vm_manager.pasid_lock);
3314
3315         if (!root)
3316                 return false;
3317
3318         r = amdgpu_bo_reserve(root, true);
3319         if (r)
3320                 goto error_unref;
3321
3322         /* Double check that the VM still exists */
3323         spin_lock(&adev->vm_manager.pasid_lock);
3324         vm = idr_find(&adev->vm_manager.pasid_idr, pasid);
3325         if (vm && vm->root.base.bo != root)
3326                 vm = NULL;
3327         spin_unlock(&adev->vm_manager.pasid_lock);
3328         if (!vm)
3329                 goto error_unlock;
3330
3331         addr /= AMDGPU_GPU_PAGE_SIZE;
3332         flags = AMDGPU_PTE_VALID | AMDGPU_PTE_SNOOPED |
3333                 AMDGPU_PTE_SYSTEM;
3334
3335         if (vm->is_compute_context) {
3336                 /* Intentionally setting invalid PTE flag
3337                  * combination to force a no-retry-fault
3338                  */
3339                 flags = AMDGPU_PTE_EXECUTABLE | AMDGPU_PDE_PTE |
3340                         AMDGPU_PTE_TF;
3341                 value = 0;
3342
3343         } else if (amdgpu_vm_fault_stop == AMDGPU_VM_FAULT_STOP_NEVER) {
3344                 /* Redirect the access to the dummy page */
3345                 value = adev->dummy_page_addr;
3346                 flags |= AMDGPU_PTE_EXECUTABLE | AMDGPU_PTE_READABLE |
3347                         AMDGPU_PTE_WRITEABLE;
3348
3349         } else {
3350                 /* Let the hw retry silently on the PTE */
3351                 value = 0;
3352         }
3353
3354         r = amdgpu_vm_bo_update_mapping(adev, vm, true, false, NULL, addr,
3355                                         addr + 1, flags, value, NULL, NULL);
3356         if (r)
3357                 goto error_unlock;
3358
3359         r = amdgpu_vm_update_pdes(adev, vm, true);
3360
3361 error_unlock:
3362         amdgpu_bo_unreserve(root);
3363         if (r < 0)
3364                 DRM_ERROR("Can't handle page fault (%ld)\n", r);
3365
3366 error_unref:
3367         amdgpu_bo_unref(&root);
3368
3369         return false;
3370 }