drm/nouveau: fence: fix undefined fence state after emit
[platform/kernel/linux-rpi.git] / drivers / gpu / drm / amd / amdgpu / amdgpu_ttm.c
1 /*
2  * Copyright 2009 Jerome Glisse.
3  * All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the
7  * "Software"), to deal in the Software without restriction, including
8  * without limitation the rights to use, copy, modify, merge, publish,
9  * distribute, sub license, and/or sell copies of the Software, and to
10  * permit persons to whom the Software is furnished to do so, subject to
11  * the following conditions:
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19  * USE OR OTHER DEALINGS IN THE SOFTWARE.
20  *
21  * The above copyright notice and this permission notice (including the
22  * next paragraph) shall be included in all copies or substantial portions
23  * of the Software.
24  *
25  */
26 /*
27  * Authors:
28  *    Jerome Glisse <glisse@freedesktop.org>
29  *    Thomas Hellstrom <thomas-at-tungstengraphics-dot-com>
30  *    Dave Airlie
31  */
32
33 #include <linux/dma-mapping.h>
34 #include <linux/iommu.h>
35 #include <linux/pagemap.h>
36 #include <linux/sched/task.h>
37 #include <linux/sched/mm.h>
38 #include <linux/seq_file.h>
39 #include <linux/slab.h>
40 #include <linux/swap.h>
41 #include <linux/dma-buf.h>
42 #include <linux/sizes.h>
43 #include <linux/module.h>
44
45 #include <drm/drm_drv.h>
46 #include <drm/ttm/ttm_bo.h>
47 #include <drm/ttm/ttm_placement.h>
48 #include <drm/ttm/ttm_range_manager.h>
49 #include <drm/ttm/ttm_tt.h>
50
51 #include <drm/amdgpu_drm.h>
52 #include <drm/drm_drv.h>
53
54 #include "amdgpu.h"
55 #include "amdgpu_object.h"
56 #include "amdgpu_trace.h"
57 #include "amdgpu_amdkfd.h"
58 #include "amdgpu_sdma.h"
59 #include "amdgpu_ras.h"
60 #include "amdgpu_hmm.h"
61 #include "amdgpu_atomfirmware.h"
62 #include "amdgpu_res_cursor.h"
63 #include "bif/bif_4_1_d.h"
64
65 MODULE_IMPORT_NS(DMA_BUF);
66
67 #define AMDGPU_TTM_VRAM_MAX_DW_READ     ((size_t)128)
68
69 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
70                                    struct ttm_tt *ttm,
71                                    struct ttm_resource *bo_mem);
72 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
73                                       struct ttm_tt *ttm);
74
75 static int amdgpu_ttm_init_on_chip(struct amdgpu_device *adev,
76                                     unsigned int type,
77                                     uint64_t size_in_page)
78 {
79         return ttm_range_man_init(&adev->mman.bdev, type,
80                                   false, size_in_page);
81 }
82
83 /**
84  * amdgpu_evict_flags - Compute placement flags
85  *
86  * @bo: The buffer object to evict
87  * @placement: Possible destination(s) for evicted BO
88  *
89  * Fill in placement data when ttm_bo_evict() is called
90  */
91 static void amdgpu_evict_flags(struct ttm_buffer_object *bo,
92                                 struct ttm_placement *placement)
93 {
94         struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
95         struct amdgpu_bo *abo;
96         static const struct ttm_place placements = {
97                 .fpfn = 0,
98                 .lpfn = 0,
99                 .mem_type = TTM_PL_SYSTEM,
100                 .flags = 0
101         };
102
103         /* Don't handle scatter gather BOs */
104         if (bo->type == ttm_bo_type_sg) {
105                 placement->num_placement = 0;
106                 placement->num_busy_placement = 0;
107                 return;
108         }
109
110         /* Object isn't an AMDGPU object so ignore */
111         if (!amdgpu_bo_is_amdgpu_bo(bo)) {
112                 placement->placement = &placements;
113                 placement->busy_placement = &placements;
114                 placement->num_placement = 1;
115                 placement->num_busy_placement = 1;
116                 return;
117         }
118
119         abo = ttm_to_amdgpu_bo(bo);
120         if (abo->flags & AMDGPU_GEM_CREATE_DISCARDABLE) {
121                 placement->num_placement = 0;
122                 placement->num_busy_placement = 0;
123                 return;
124         }
125
126         switch (bo->resource->mem_type) {
127         case AMDGPU_PL_GDS:
128         case AMDGPU_PL_GWS:
129         case AMDGPU_PL_OA:
130         case AMDGPU_PL_DOORBELL:
131                 placement->num_placement = 0;
132                 placement->num_busy_placement = 0;
133                 return;
134
135         case TTM_PL_VRAM:
136                 if (!adev->mman.buffer_funcs_enabled) {
137                         /* Move to system memory */
138                         amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
139                 } else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) &&
140                            !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) &&
141                            amdgpu_bo_in_cpu_visible_vram(abo)) {
142
143                         /* Try evicting to the CPU inaccessible part of VRAM
144                          * first, but only set GTT as busy placement, so this
145                          * BO will be evicted to GTT rather than causing other
146                          * BOs to be evicted from VRAM
147                          */
148                         amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM |
149                                                         AMDGPU_GEM_DOMAIN_GTT |
150                                                         AMDGPU_GEM_DOMAIN_CPU);
151                         abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT;
152                         abo->placements[0].lpfn = 0;
153                         abo->placement.busy_placement = &abo->placements[1];
154                         abo->placement.num_busy_placement = 1;
155                 } else {
156                         /* Move to GTT memory */
157                         amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT |
158                                                         AMDGPU_GEM_DOMAIN_CPU);
159                 }
160                 break;
161         case TTM_PL_TT:
162         case AMDGPU_PL_PREEMPT:
163         default:
164                 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
165                 break;
166         }
167         *placement = abo->placement;
168 }
169
170 /**
171  * amdgpu_ttm_map_buffer - Map memory into the GART windows
172  * @bo: buffer object to map
173  * @mem: memory object to map
174  * @mm_cur: range to map
175  * @window: which GART window to use
176  * @ring: DMA ring to use for the copy
177  * @tmz: if we should setup a TMZ enabled mapping
178  * @size: in number of bytes to map, out number of bytes mapped
179  * @addr: resulting address inside the MC address space
180  *
181  * Setup one of the GART windows to access a specific piece of memory or return
182  * the physical address for local memory.
183  */
184 static int amdgpu_ttm_map_buffer(struct ttm_buffer_object *bo,
185                                  struct ttm_resource *mem,
186                                  struct amdgpu_res_cursor *mm_cur,
187                                  unsigned int window, struct amdgpu_ring *ring,
188                                  bool tmz, uint64_t *size, uint64_t *addr)
189 {
190         struct amdgpu_device *adev = ring->adev;
191         unsigned int offset, num_pages, num_dw, num_bytes;
192         uint64_t src_addr, dst_addr;
193         struct amdgpu_job *job;
194         void *cpu_addr;
195         uint64_t flags;
196         unsigned int i;
197         int r;
198
199         BUG_ON(adev->mman.buffer_funcs->copy_max_bytes <
200                AMDGPU_GTT_MAX_TRANSFER_SIZE * 8);
201
202         if (WARN_ON(mem->mem_type == AMDGPU_PL_PREEMPT))
203                 return -EINVAL;
204
205         /* Map only what can't be accessed directly */
206         if (!tmz && mem->start != AMDGPU_BO_INVALID_OFFSET) {
207                 *addr = amdgpu_ttm_domain_start(adev, mem->mem_type) +
208                         mm_cur->start;
209                 return 0;
210         }
211
212
213         /*
214          * If start begins at an offset inside the page, then adjust the size
215          * and addr accordingly
216          */
217         offset = mm_cur->start & ~PAGE_MASK;
218
219         num_pages = PFN_UP(*size + offset);
220         num_pages = min_t(uint32_t, num_pages, AMDGPU_GTT_MAX_TRANSFER_SIZE);
221
222         *size = min(*size, (uint64_t)num_pages * PAGE_SIZE - offset);
223
224         *addr = adev->gmc.gart_start;
225         *addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE *
226                 AMDGPU_GPU_PAGE_SIZE;
227         *addr += offset;
228
229         num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
230         num_bytes = num_pages * 8 * AMDGPU_GPU_PAGES_IN_CPU_PAGE;
231
232         r = amdgpu_job_alloc_with_ib(adev, &adev->mman.high_pr,
233                                      AMDGPU_FENCE_OWNER_UNDEFINED,
234                                      num_dw * 4 + num_bytes,
235                                      AMDGPU_IB_POOL_DELAYED, &job);
236         if (r)
237                 return r;
238
239         src_addr = num_dw * 4;
240         src_addr += job->ibs[0].gpu_addr;
241
242         dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo);
243         dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8;
244         amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr,
245                                 dst_addr, num_bytes, false);
246
247         amdgpu_ring_pad_ib(ring, &job->ibs[0]);
248         WARN_ON(job->ibs[0].length_dw > num_dw);
249
250         flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, mem);
251         if (tmz)
252                 flags |= AMDGPU_PTE_TMZ;
253
254         cpu_addr = &job->ibs[0].ptr[num_dw];
255
256         if (mem->mem_type == TTM_PL_TT) {
257                 dma_addr_t *dma_addr;
258
259                 dma_addr = &bo->ttm->dma_address[mm_cur->start >> PAGE_SHIFT];
260                 amdgpu_gart_map(adev, 0, num_pages, dma_addr, flags, cpu_addr);
261         } else {
262                 dma_addr_t dma_address;
263
264                 dma_address = mm_cur->start;
265                 dma_address += adev->vm_manager.vram_base_offset;
266
267                 for (i = 0; i < num_pages; ++i) {
268                         amdgpu_gart_map(adev, i << PAGE_SHIFT, 1, &dma_address,
269                                         flags, cpu_addr);
270                         dma_address += PAGE_SIZE;
271                 }
272         }
273
274         dma_fence_put(amdgpu_job_submit(job));
275         return 0;
276 }
277
278 /**
279  * amdgpu_ttm_copy_mem_to_mem - Helper function for copy
280  * @adev: amdgpu device
281  * @src: buffer/address where to read from
282  * @dst: buffer/address where to write to
283  * @size: number of bytes to copy
284  * @tmz: if a secure copy should be used
285  * @resv: resv object to sync to
286  * @f: Returns the last fence if multiple jobs are submitted.
287  *
288  * The function copies @size bytes from {src->mem + src->offset} to
289  * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a
290  * move and different for a BO to BO copy.
291  *
292  */
293 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev,
294                                const struct amdgpu_copy_mem *src,
295                                const struct amdgpu_copy_mem *dst,
296                                uint64_t size, bool tmz,
297                                struct dma_resv *resv,
298                                struct dma_fence **f)
299 {
300         struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
301         struct amdgpu_res_cursor src_mm, dst_mm;
302         struct dma_fence *fence = NULL;
303         int r = 0;
304
305         if (!adev->mman.buffer_funcs_enabled) {
306                 DRM_ERROR("Trying to move memory with ring turned off.\n");
307                 return -EINVAL;
308         }
309
310         amdgpu_res_first(src->mem, src->offset, size, &src_mm);
311         amdgpu_res_first(dst->mem, dst->offset, size, &dst_mm);
312
313         mutex_lock(&adev->mman.gtt_window_lock);
314         while (src_mm.remaining) {
315                 uint64_t from, to, cur_size;
316                 struct dma_fence *next;
317
318                 /* Never copy more than 256MiB at once to avoid a timeout */
319                 cur_size = min3(src_mm.size, dst_mm.size, 256ULL << 20);
320
321                 /* Map src to window 0 and dst to window 1. */
322                 r = amdgpu_ttm_map_buffer(src->bo, src->mem, &src_mm,
323                                           0, ring, tmz, &cur_size, &from);
324                 if (r)
325                         goto error;
326
327                 r = amdgpu_ttm_map_buffer(dst->bo, dst->mem, &dst_mm,
328                                           1, ring, tmz, &cur_size, &to);
329                 if (r)
330                         goto error;
331
332                 r = amdgpu_copy_buffer(ring, from, to, cur_size,
333                                        resv, &next, false, true, tmz);
334                 if (r)
335                         goto error;
336
337                 dma_fence_put(fence);
338                 fence = next;
339
340                 amdgpu_res_next(&src_mm, cur_size);
341                 amdgpu_res_next(&dst_mm, cur_size);
342         }
343 error:
344         mutex_unlock(&adev->mman.gtt_window_lock);
345         if (f)
346                 *f = dma_fence_get(fence);
347         dma_fence_put(fence);
348         return r;
349 }
350
351 /*
352  * amdgpu_move_blit - Copy an entire buffer to another buffer
353  *
354  * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to
355  * help move buffers to and from VRAM.
356  */
357 static int amdgpu_move_blit(struct ttm_buffer_object *bo,
358                             bool evict,
359                             struct ttm_resource *new_mem,
360                             struct ttm_resource *old_mem)
361 {
362         struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
363         struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
364         struct amdgpu_copy_mem src, dst;
365         struct dma_fence *fence = NULL;
366         int r;
367
368         src.bo = bo;
369         dst.bo = bo;
370         src.mem = old_mem;
371         dst.mem = new_mem;
372         src.offset = 0;
373         dst.offset = 0;
374
375         r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst,
376                                        new_mem->size,
377                                        amdgpu_bo_encrypted(abo),
378                                        bo->base.resv, &fence);
379         if (r)
380                 goto error;
381
382         /* clear the space being freed */
383         if (old_mem->mem_type == TTM_PL_VRAM &&
384             (abo->flags & AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) {
385                 struct dma_fence *wipe_fence = NULL;
386
387                 r = amdgpu_fill_buffer(abo, AMDGPU_POISON, NULL, &wipe_fence,
388                                         false);
389                 if (r) {
390                         goto error;
391                 } else if (wipe_fence) {
392                         dma_fence_put(fence);
393                         fence = wipe_fence;
394                 }
395         }
396
397         /* Always block for VM page tables before committing the new location */
398         if (bo->type == ttm_bo_type_kernel)
399                 r = ttm_bo_move_accel_cleanup(bo, fence, true, false, new_mem);
400         else
401                 r = ttm_bo_move_accel_cleanup(bo, fence, evict, true, new_mem);
402         dma_fence_put(fence);
403         return r;
404
405 error:
406         if (fence)
407                 dma_fence_wait(fence, false);
408         dma_fence_put(fence);
409         return r;
410 }
411
412 /*
413  * amdgpu_mem_visible - Check that memory can be accessed by ttm_bo_move_memcpy
414  *
415  * Called by amdgpu_bo_move()
416  */
417 static bool amdgpu_mem_visible(struct amdgpu_device *adev,
418                                struct ttm_resource *mem)
419 {
420         u64 mem_size = (u64)mem->size;
421         struct amdgpu_res_cursor cursor;
422         u64 end;
423
424         if (mem->mem_type == TTM_PL_SYSTEM ||
425             mem->mem_type == TTM_PL_TT)
426                 return true;
427         if (mem->mem_type != TTM_PL_VRAM)
428                 return false;
429
430         amdgpu_res_first(mem, 0, mem_size, &cursor);
431         end = cursor.start + cursor.size;
432         while (cursor.remaining) {
433                 amdgpu_res_next(&cursor, cursor.size);
434
435                 if (!cursor.remaining)
436                         break;
437
438                 /* ttm_resource_ioremap only supports contiguous memory */
439                 if (end != cursor.start)
440                         return false;
441
442                 end = cursor.start + cursor.size;
443         }
444
445         return end <= adev->gmc.visible_vram_size;
446 }
447
448 /*
449  * amdgpu_bo_move - Move a buffer object to a new memory location
450  *
451  * Called by ttm_bo_handle_move_mem()
452  */
453 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict,
454                           struct ttm_operation_ctx *ctx,
455                           struct ttm_resource *new_mem,
456                           struct ttm_place *hop)
457 {
458         struct amdgpu_device *adev;
459         struct amdgpu_bo *abo;
460         struct ttm_resource *old_mem = bo->resource;
461         int r;
462
463         if (new_mem->mem_type == TTM_PL_TT ||
464             new_mem->mem_type == AMDGPU_PL_PREEMPT) {
465                 r = amdgpu_ttm_backend_bind(bo->bdev, bo->ttm, new_mem);
466                 if (r)
467                         return r;
468         }
469
470         abo = ttm_to_amdgpu_bo(bo);
471         adev = amdgpu_ttm_adev(bo->bdev);
472
473         if (!old_mem || (old_mem->mem_type == TTM_PL_SYSTEM &&
474                          bo->ttm == NULL)) {
475                 ttm_bo_move_null(bo, new_mem);
476                 goto out;
477         }
478         if (old_mem->mem_type == TTM_PL_SYSTEM &&
479             (new_mem->mem_type == TTM_PL_TT ||
480              new_mem->mem_type == AMDGPU_PL_PREEMPT)) {
481                 ttm_bo_move_null(bo, new_mem);
482                 goto out;
483         }
484         if ((old_mem->mem_type == TTM_PL_TT ||
485              old_mem->mem_type == AMDGPU_PL_PREEMPT) &&
486             new_mem->mem_type == TTM_PL_SYSTEM) {
487                 r = ttm_bo_wait_ctx(bo, ctx);
488                 if (r)
489                         return r;
490
491                 amdgpu_ttm_backend_unbind(bo->bdev, bo->ttm);
492                 ttm_resource_free(bo, &bo->resource);
493                 ttm_bo_assign_mem(bo, new_mem);
494                 goto out;
495         }
496
497         if (old_mem->mem_type == AMDGPU_PL_GDS ||
498             old_mem->mem_type == AMDGPU_PL_GWS ||
499             old_mem->mem_type == AMDGPU_PL_OA ||
500             old_mem->mem_type == AMDGPU_PL_DOORBELL ||
501             new_mem->mem_type == AMDGPU_PL_GDS ||
502             new_mem->mem_type == AMDGPU_PL_GWS ||
503             new_mem->mem_type == AMDGPU_PL_OA ||
504             new_mem->mem_type == AMDGPU_PL_DOORBELL) {
505                 /* Nothing to save here */
506                 ttm_bo_move_null(bo, new_mem);
507                 goto out;
508         }
509
510         if (bo->type == ttm_bo_type_device &&
511             new_mem->mem_type == TTM_PL_VRAM &&
512             old_mem->mem_type != TTM_PL_VRAM) {
513                 /* amdgpu_bo_fault_reserve_notify will re-set this if the CPU
514                  * accesses the BO after it's moved.
515                  */
516                 abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
517         }
518
519         if (adev->mman.buffer_funcs_enabled) {
520                 if (((old_mem->mem_type == TTM_PL_SYSTEM &&
521                       new_mem->mem_type == TTM_PL_VRAM) ||
522                      (old_mem->mem_type == TTM_PL_VRAM &&
523                       new_mem->mem_type == TTM_PL_SYSTEM))) {
524                         hop->fpfn = 0;
525                         hop->lpfn = 0;
526                         hop->mem_type = TTM_PL_TT;
527                         hop->flags = TTM_PL_FLAG_TEMPORARY;
528                         return -EMULTIHOP;
529                 }
530
531                 r = amdgpu_move_blit(bo, evict, new_mem, old_mem);
532         } else {
533                 r = -ENODEV;
534         }
535
536         if (r) {
537                 /* Check that all memory is CPU accessible */
538                 if (!amdgpu_mem_visible(adev, old_mem) ||
539                     !amdgpu_mem_visible(adev, new_mem)) {
540                         pr_err("Move buffer fallback to memcpy unavailable\n");
541                         return r;
542                 }
543
544                 r = ttm_bo_move_memcpy(bo, ctx, new_mem);
545                 if (r)
546                         return r;
547         }
548
549 out:
550         /* update statistics */
551         atomic64_add(bo->base.size, &adev->num_bytes_moved);
552         amdgpu_bo_move_notify(bo, evict, new_mem);
553         return 0;
554 }
555
556 /*
557  * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault
558  *
559  * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault()
560  */
561 static int amdgpu_ttm_io_mem_reserve(struct ttm_device *bdev,
562                                      struct ttm_resource *mem)
563 {
564         struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
565         size_t bus_size = (size_t)mem->size;
566
567         switch (mem->mem_type) {
568         case TTM_PL_SYSTEM:
569                 /* system memory */
570                 return 0;
571         case TTM_PL_TT:
572         case AMDGPU_PL_PREEMPT:
573                 break;
574         case TTM_PL_VRAM:
575                 mem->bus.offset = mem->start << PAGE_SHIFT;
576                 /* check if it's visible */
577                 if ((mem->bus.offset + bus_size) > adev->gmc.visible_vram_size)
578                         return -EINVAL;
579
580                 if (adev->mman.aper_base_kaddr &&
581                     mem->placement & TTM_PL_FLAG_CONTIGUOUS)
582                         mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr +
583                                         mem->bus.offset;
584
585                 mem->bus.offset += adev->gmc.aper_base;
586                 mem->bus.is_iomem = true;
587                 break;
588         case AMDGPU_PL_DOORBELL:
589                 mem->bus.offset = mem->start << PAGE_SHIFT;
590                 mem->bus.offset += adev->doorbell.base;
591                 mem->bus.is_iomem = true;
592                 mem->bus.caching = ttm_uncached;
593                 break;
594         default:
595                 return -EINVAL;
596         }
597         return 0;
598 }
599
600 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
601                                            unsigned long page_offset)
602 {
603         struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
604         struct amdgpu_res_cursor cursor;
605
606         amdgpu_res_first(bo->resource, (u64)page_offset << PAGE_SHIFT, 0,
607                          &cursor);
608
609         if (bo->resource->mem_type == AMDGPU_PL_DOORBELL)
610                 return ((uint64_t)(adev->doorbell.base + cursor.start)) >> PAGE_SHIFT;
611
612         return (adev->gmc.aper_base + cursor.start) >> PAGE_SHIFT;
613 }
614
615 /**
616  * amdgpu_ttm_domain_start - Returns GPU start address
617  * @adev: amdgpu device object
618  * @type: type of the memory
619  *
620  * Returns:
621  * GPU start address of a memory domain
622  */
623
624 uint64_t amdgpu_ttm_domain_start(struct amdgpu_device *adev, uint32_t type)
625 {
626         switch (type) {
627         case TTM_PL_TT:
628                 return adev->gmc.gart_start;
629         case TTM_PL_VRAM:
630                 return adev->gmc.vram_start;
631         }
632
633         return 0;
634 }
635
636 /*
637  * TTM backend functions.
638  */
639 struct amdgpu_ttm_tt {
640         struct ttm_tt   ttm;
641         struct drm_gem_object   *gobj;
642         u64                     offset;
643         uint64_t                userptr;
644         struct task_struct      *usertask;
645         uint32_t                userflags;
646         bool                    bound;
647         int32_t                 pool_id;
648 };
649
650 #define ttm_to_amdgpu_ttm_tt(ptr)       container_of(ptr, struct amdgpu_ttm_tt, ttm)
651
652 #ifdef CONFIG_DRM_AMDGPU_USERPTR
653 /*
654  * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user
655  * memory and start HMM tracking CPU page table update
656  *
657  * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only
658  * once afterwards to stop HMM tracking
659  */
660 int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages,
661                                  struct hmm_range **range)
662 {
663         struct ttm_tt *ttm = bo->tbo.ttm;
664         struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
665         unsigned long start = gtt->userptr;
666         struct vm_area_struct *vma;
667         struct mm_struct *mm;
668         bool readonly;
669         int r = 0;
670
671         /* Make sure get_user_pages_done() can cleanup gracefully */
672         *range = NULL;
673
674         mm = bo->notifier.mm;
675         if (unlikely(!mm)) {
676                 DRM_DEBUG_DRIVER("BO is not registered?\n");
677                 return -EFAULT;
678         }
679
680         if (!mmget_not_zero(mm)) /* Happens during process shutdown */
681                 return -ESRCH;
682
683         mmap_read_lock(mm);
684         vma = vma_lookup(mm, start);
685         if (unlikely(!vma)) {
686                 r = -EFAULT;
687                 goto out_unlock;
688         }
689         if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) &&
690                 vma->vm_file)) {
691                 r = -EPERM;
692                 goto out_unlock;
693         }
694
695         readonly = amdgpu_ttm_tt_is_readonly(ttm);
696         r = amdgpu_hmm_range_get_pages(&bo->notifier, start, ttm->num_pages,
697                                        readonly, NULL, pages, range);
698 out_unlock:
699         mmap_read_unlock(mm);
700         if (r)
701                 pr_debug("failed %d to get user pages 0x%lx\n", r, start);
702
703         mmput(mm);
704
705         return r;
706 }
707
708 /* amdgpu_ttm_tt_discard_user_pages - Discard range and pfn array allocations
709  */
710 void amdgpu_ttm_tt_discard_user_pages(struct ttm_tt *ttm,
711                                       struct hmm_range *range)
712 {
713         struct amdgpu_ttm_tt *gtt = (void *)ttm;
714
715         if (gtt && gtt->userptr && range)
716                 amdgpu_hmm_range_get_pages_done(range);
717 }
718
719 /*
720  * amdgpu_ttm_tt_get_user_pages_done - stop HMM track the CPU page table change
721  * Check if the pages backing this ttm range have been invalidated
722  *
723  * Returns: true if pages are still valid
724  */
725 bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm,
726                                        struct hmm_range *range)
727 {
728         struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
729
730         if (!gtt || !gtt->userptr || !range)
731                 return false;
732
733         DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%x\n",
734                 gtt->userptr, ttm->num_pages);
735
736         WARN_ONCE(!range->hmm_pfns, "No user pages to check\n");
737
738         return !amdgpu_hmm_range_get_pages_done(range);
739 }
740 #endif
741
742 /*
743  * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary.
744  *
745  * Called by amdgpu_cs_list_validate(). This creates the page list
746  * that backs user memory and will ultimately be mapped into the device
747  * address space.
748  */
749 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages)
750 {
751         unsigned long i;
752
753         for (i = 0; i < ttm->num_pages; ++i)
754                 ttm->pages[i] = pages ? pages[i] : NULL;
755 }
756
757 /*
758  * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages
759  *
760  * Called by amdgpu_ttm_backend_bind()
761  **/
762 static int amdgpu_ttm_tt_pin_userptr(struct ttm_device *bdev,
763                                      struct ttm_tt *ttm)
764 {
765         struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
766         struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
767         int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
768         enum dma_data_direction direction = write ?
769                 DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
770         int r;
771
772         /* Allocate an SG array and squash pages into it */
773         r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0,
774                                       (u64)ttm->num_pages << PAGE_SHIFT,
775                                       GFP_KERNEL);
776         if (r)
777                 goto release_sg;
778
779         /* Map SG to device */
780         r = dma_map_sgtable(adev->dev, ttm->sg, direction, 0);
781         if (r)
782                 goto release_sg;
783
784         /* convert SG to linear array of pages and dma addresses */
785         drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
786                                        ttm->num_pages);
787
788         return 0;
789
790 release_sg:
791         kfree(ttm->sg);
792         ttm->sg = NULL;
793         return r;
794 }
795
796 /*
797  * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages
798  */
799 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_device *bdev,
800                                         struct ttm_tt *ttm)
801 {
802         struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
803         struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
804         int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
805         enum dma_data_direction direction = write ?
806                 DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
807
808         /* double check that we don't free the table twice */
809         if (!ttm->sg || !ttm->sg->sgl)
810                 return;
811
812         /* unmap the pages mapped to the device */
813         dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0);
814         sg_free_table(ttm->sg);
815 }
816
817 /*
818  * total_pages is constructed as MQD0+CtrlStack0 + MQD1+CtrlStack1 + ...
819  * MQDn+CtrlStackn where n is the number of XCCs per partition.
820  * pages_per_xcc is the size of one MQD+CtrlStack. The first page is MQD
821  * and uses memory type default, UC. The rest of pages_per_xcc are
822  * Ctrl stack and modify their memory type to NC.
823  */
824 static void amdgpu_ttm_gart_bind_gfx9_mqd(struct amdgpu_device *adev,
825                                 struct ttm_tt *ttm, uint64_t flags)
826 {
827         struct amdgpu_ttm_tt *gtt = (void *)ttm;
828         uint64_t total_pages = ttm->num_pages;
829         int num_xcc = max(1U, adev->gfx.num_xcc_per_xcp);
830         uint64_t page_idx, pages_per_xcc;
831         int i;
832         uint64_t ctrl_flags = (flags & ~AMDGPU_PTE_MTYPE_VG10_MASK) |
833                         AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC);
834
835         pages_per_xcc = total_pages;
836         do_div(pages_per_xcc, num_xcc);
837
838         for (i = 0, page_idx = 0; i < num_xcc; i++, page_idx += pages_per_xcc) {
839                 /* MQD page: use default flags */
840                 amdgpu_gart_bind(adev,
841                                 gtt->offset + (page_idx << PAGE_SHIFT),
842                                 1, &gtt->ttm.dma_address[page_idx], flags);
843                 /*
844                  * Ctrl pages - modify the memory type to NC (ctrl_flags) from
845                  * the second page of the BO onward.
846                  */
847                 amdgpu_gart_bind(adev,
848                                 gtt->offset + ((page_idx + 1) << PAGE_SHIFT),
849                                 pages_per_xcc - 1,
850                                 &gtt->ttm.dma_address[page_idx + 1],
851                                 ctrl_flags);
852         }
853 }
854
855 static void amdgpu_ttm_gart_bind(struct amdgpu_device *adev,
856                                  struct ttm_buffer_object *tbo,
857                                  uint64_t flags)
858 {
859         struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo);
860         struct ttm_tt *ttm = tbo->ttm;
861         struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
862
863         if (amdgpu_bo_encrypted(abo))
864                 flags |= AMDGPU_PTE_TMZ;
865
866         if (abo->flags & AMDGPU_GEM_CREATE_CP_MQD_GFX9) {
867                 amdgpu_ttm_gart_bind_gfx9_mqd(adev, ttm, flags);
868         } else {
869                 amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
870                                  gtt->ttm.dma_address, flags);
871         }
872 }
873
874 /*
875  * amdgpu_ttm_backend_bind - Bind GTT memory
876  *
877  * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem().
878  * This handles binding GTT memory to the device address space.
879  */
880 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
881                                    struct ttm_tt *ttm,
882                                    struct ttm_resource *bo_mem)
883 {
884         struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
885         struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
886         uint64_t flags;
887         int r;
888
889         if (!bo_mem)
890                 return -EINVAL;
891
892         if (gtt->bound)
893                 return 0;
894
895         if (gtt->userptr) {
896                 r = amdgpu_ttm_tt_pin_userptr(bdev, ttm);
897                 if (r) {
898                         DRM_ERROR("failed to pin userptr\n");
899                         return r;
900                 }
901         } else if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) {
902                 if (!ttm->sg) {
903                         struct dma_buf_attachment *attach;
904                         struct sg_table *sgt;
905
906                         attach = gtt->gobj->import_attach;
907                         sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL);
908                         if (IS_ERR(sgt))
909                                 return PTR_ERR(sgt);
910
911                         ttm->sg = sgt;
912                 }
913
914                 drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
915                                                ttm->num_pages);
916         }
917
918         if (!ttm->num_pages) {
919                 WARN(1, "nothing to bind %u pages for mreg %p back %p!\n",
920                      ttm->num_pages, bo_mem, ttm);
921         }
922
923         if (bo_mem->mem_type != TTM_PL_TT ||
924             !amdgpu_gtt_mgr_has_gart_addr(bo_mem)) {
925                 gtt->offset = AMDGPU_BO_INVALID_OFFSET;
926                 return 0;
927         }
928
929         /* compute PTE flags relevant to this BO memory */
930         flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem);
931
932         /* bind pages into GART page tables */
933         gtt->offset = (u64)bo_mem->start << PAGE_SHIFT;
934         amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
935                          gtt->ttm.dma_address, flags);
936         gtt->bound = true;
937         return 0;
938 }
939
940 /*
941  * amdgpu_ttm_alloc_gart - Make sure buffer object is accessible either
942  * through AGP or GART aperture.
943  *
944  * If bo is accessible through AGP aperture, then use AGP aperture
945  * to access bo; otherwise allocate logical space in GART aperture
946  * and map bo to GART aperture.
947  */
948 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo)
949 {
950         struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
951         struct ttm_operation_ctx ctx = { false, false };
952         struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(bo->ttm);
953         struct ttm_placement placement;
954         struct ttm_place placements;
955         struct ttm_resource *tmp;
956         uint64_t addr, flags;
957         int r;
958
959         if (bo->resource->start != AMDGPU_BO_INVALID_OFFSET)
960                 return 0;
961
962         addr = amdgpu_gmc_agp_addr(bo);
963         if (addr != AMDGPU_BO_INVALID_OFFSET) {
964                 bo->resource->start = addr >> PAGE_SHIFT;
965                 return 0;
966         }
967
968         /* allocate GART space */
969         placement.num_placement = 1;
970         placement.placement = &placements;
971         placement.num_busy_placement = 1;
972         placement.busy_placement = &placements;
973         placements.fpfn = 0;
974         placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT;
975         placements.mem_type = TTM_PL_TT;
976         placements.flags = bo->resource->placement;
977
978         r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx);
979         if (unlikely(r))
980                 return r;
981
982         /* compute PTE flags for this buffer object */
983         flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, tmp);
984
985         /* Bind pages */
986         gtt->offset = (u64)tmp->start << PAGE_SHIFT;
987         amdgpu_ttm_gart_bind(adev, bo, flags);
988         amdgpu_gart_invalidate_tlb(adev);
989         ttm_resource_free(bo, &bo->resource);
990         ttm_bo_assign_mem(bo, tmp);
991
992         return 0;
993 }
994
995 /*
996  * amdgpu_ttm_recover_gart - Rebind GTT pages
997  *
998  * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to
999  * rebind GTT pages during a GPU reset.
1000  */
1001 void amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo)
1002 {
1003         struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev);
1004         uint64_t flags;
1005
1006         if (!tbo->ttm)
1007                 return;
1008
1009         flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, tbo->resource);
1010         amdgpu_ttm_gart_bind(adev, tbo, flags);
1011 }
1012
1013 /*
1014  * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages
1015  *
1016  * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and
1017  * ttm_tt_destroy().
1018  */
1019 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
1020                                       struct ttm_tt *ttm)
1021 {
1022         struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1023         struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1024
1025         /* if the pages have userptr pinning then clear that first */
1026         if (gtt->userptr) {
1027                 amdgpu_ttm_tt_unpin_userptr(bdev, ttm);
1028         } else if (ttm->sg && gtt->gobj->import_attach) {
1029                 struct dma_buf_attachment *attach;
1030
1031                 attach = gtt->gobj->import_attach;
1032                 dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL);
1033                 ttm->sg = NULL;
1034         }
1035
1036         if (!gtt->bound)
1037                 return;
1038
1039         if (gtt->offset == AMDGPU_BO_INVALID_OFFSET)
1040                 return;
1041
1042         /* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */
1043         amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages);
1044         gtt->bound = false;
1045 }
1046
1047 static void amdgpu_ttm_backend_destroy(struct ttm_device *bdev,
1048                                        struct ttm_tt *ttm)
1049 {
1050         struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1051
1052         if (gtt->usertask)
1053                 put_task_struct(gtt->usertask);
1054
1055         ttm_tt_fini(&gtt->ttm);
1056         kfree(gtt);
1057 }
1058
1059 /**
1060  * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO
1061  *
1062  * @bo: The buffer object to create a GTT ttm_tt object around
1063  * @page_flags: Page flags to be added to the ttm_tt object
1064  *
1065  * Called by ttm_tt_create().
1066  */
1067 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo,
1068                                            uint32_t page_flags)
1069 {
1070         struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
1071         struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1072         struct amdgpu_ttm_tt *gtt;
1073         enum ttm_caching caching;
1074
1075         gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL);
1076         if (!gtt)
1077                 return NULL;
1078
1079         gtt->gobj = &bo->base;
1080         if (adev->gmc.mem_partitions && abo->xcp_id >= 0)
1081                 gtt->pool_id = KFD_XCP_MEM_ID(adev, abo->xcp_id);
1082         else
1083                 gtt->pool_id = abo->xcp_id;
1084
1085         if (abo->flags & AMDGPU_GEM_CREATE_CPU_GTT_USWC)
1086                 caching = ttm_write_combined;
1087         else
1088                 caching = ttm_cached;
1089
1090         /* allocate space for the uninitialized page entries */
1091         if (ttm_sg_tt_init(&gtt->ttm, bo, page_flags, caching)) {
1092                 kfree(gtt);
1093                 return NULL;
1094         }
1095         return &gtt->ttm;
1096 }
1097
1098 /*
1099  * amdgpu_ttm_tt_populate - Map GTT pages visible to the device
1100  *
1101  * Map the pages of a ttm_tt object to an address space visible
1102  * to the underlying device.
1103  */
1104 static int amdgpu_ttm_tt_populate(struct ttm_device *bdev,
1105                                   struct ttm_tt *ttm,
1106                                   struct ttm_operation_ctx *ctx)
1107 {
1108         struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1109         struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1110         struct ttm_pool *pool;
1111         pgoff_t i;
1112         int ret;
1113
1114         /* user pages are bound by amdgpu_ttm_tt_pin_userptr() */
1115         if (gtt->userptr) {
1116                 ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL);
1117                 if (!ttm->sg)
1118                         return -ENOMEM;
1119                 return 0;
1120         }
1121
1122         if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL)
1123                 return 0;
1124
1125         if (adev->mman.ttm_pools && gtt->pool_id >= 0)
1126                 pool = &adev->mman.ttm_pools[gtt->pool_id];
1127         else
1128                 pool = &adev->mman.bdev.pool;
1129         ret = ttm_pool_alloc(pool, ttm, ctx);
1130         if (ret)
1131                 return ret;
1132
1133         for (i = 0; i < ttm->num_pages; ++i)
1134                 ttm->pages[i]->mapping = bdev->dev_mapping;
1135
1136         return 0;
1137 }
1138
1139 /*
1140  * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays
1141  *
1142  * Unmaps pages of a ttm_tt object from the device address space and
1143  * unpopulates the page array backing it.
1144  */
1145 static void amdgpu_ttm_tt_unpopulate(struct ttm_device *bdev,
1146                                      struct ttm_tt *ttm)
1147 {
1148         struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1149         struct amdgpu_device *adev;
1150         struct ttm_pool *pool;
1151         pgoff_t i;
1152
1153         amdgpu_ttm_backend_unbind(bdev, ttm);
1154
1155         if (gtt->userptr) {
1156                 amdgpu_ttm_tt_set_user_pages(ttm, NULL);
1157                 kfree(ttm->sg);
1158                 ttm->sg = NULL;
1159                 return;
1160         }
1161
1162         if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL)
1163                 return;
1164
1165         for (i = 0; i < ttm->num_pages; ++i)
1166                 ttm->pages[i]->mapping = NULL;
1167
1168         adev = amdgpu_ttm_adev(bdev);
1169
1170         if (adev->mman.ttm_pools && gtt->pool_id >= 0)
1171                 pool = &adev->mman.ttm_pools[gtt->pool_id];
1172         else
1173                 pool = &adev->mman.bdev.pool;
1174
1175         return ttm_pool_free(pool, ttm);
1176 }
1177
1178 /**
1179  * amdgpu_ttm_tt_get_userptr - Return the userptr GTT ttm_tt for the current
1180  * task
1181  *
1182  * @tbo: The ttm_buffer_object that contains the userptr
1183  * @user_addr:  The returned value
1184  */
1185 int amdgpu_ttm_tt_get_userptr(const struct ttm_buffer_object *tbo,
1186                               uint64_t *user_addr)
1187 {
1188         struct amdgpu_ttm_tt *gtt;
1189
1190         if (!tbo->ttm)
1191                 return -EINVAL;
1192
1193         gtt = (void *)tbo->ttm;
1194         *user_addr = gtt->userptr;
1195         return 0;
1196 }
1197
1198 /**
1199  * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current
1200  * task
1201  *
1202  * @bo: The ttm_buffer_object to bind this userptr to
1203  * @addr:  The address in the current tasks VM space to use
1204  * @flags: Requirements of userptr object.
1205  *
1206  * Called by amdgpu_gem_userptr_ioctl() and kfd_ioctl_alloc_memory_of_gpu() to
1207  * bind userptr pages to current task and by kfd_ioctl_acquire_vm() to
1208  * initialize GPU VM for a KFD process.
1209  */
1210 int amdgpu_ttm_tt_set_userptr(struct ttm_buffer_object *bo,
1211                               uint64_t addr, uint32_t flags)
1212 {
1213         struct amdgpu_ttm_tt *gtt;
1214
1215         if (!bo->ttm) {
1216                 /* TODO: We want a separate TTM object type for userptrs */
1217                 bo->ttm = amdgpu_ttm_tt_create(bo, 0);
1218                 if (bo->ttm == NULL)
1219                         return -ENOMEM;
1220         }
1221
1222         /* Set TTM_TT_FLAG_EXTERNAL before populate but after create. */
1223         bo->ttm->page_flags |= TTM_TT_FLAG_EXTERNAL;
1224
1225         gtt = ttm_to_amdgpu_ttm_tt(bo->ttm);
1226         gtt->userptr = addr;
1227         gtt->userflags = flags;
1228
1229         if (gtt->usertask)
1230                 put_task_struct(gtt->usertask);
1231         gtt->usertask = current->group_leader;
1232         get_task_struct(gtt->usertask);
1233
1234         return 0;
1235 }
1236
1237 /*
1238  * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object
1239  */
1240 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm)
1241 {
1242         struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1243
1244         if (gtt == NULL)
1245                 return NULL;
1246
1247         if (gtt->usertask == NULL)
1248                 return NULL;
1249
1250         return gtt->usertask->mm;
1251 }
1252
1253 /*
1254  * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an
1255  * address range for the current task.
1256  *
1257  */
1258 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start,
1259                                   unsigned long end, unsigned long *userptr)
1260 {
1261         struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1262         unsigned long size;
1263
1264         if (gtt == NULL || !gtt->userptr)
1265                 return false;
1266
1267         /* Return false if no part of the ttm_tt object lies within
1268          * the range
1269          */
1270         size = (unsigned long)gtt->ttm.num_pages * PAGE_SIZE;
1271         if (gtt->userptr > end || gtt->userptr + size <= start)
1272                 return false;
1273
1274         if (userptr)
1275                 *userptr = gtt->userptr;
1276         return true;
1277 }
1278
1279 /*
1280  * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr?
1281  */
1282 bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm)
1283 {
1284         struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1285
1286         if (gtt == NULL || !gtt->userptr)
1287                 return false;
1288
1289         return true;
1290 }
1291
1292 /*
1293  * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only?
1294  */
1295 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm)
1296 {
1297         struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1298
1299         if (gtt == NULL)
1300                 return false;
1301
1302         return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1303 }
1304
1305 /**
1306  * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object
1307  *
1308  * @ttm: The ttm_tt object to compute the flags for
1309  * @mem: The memory registry backing this ttm_tt object
1310  *
1311  * Figure out the flags to use for a VM PDE (Page Directory Entry).
1312  */
1313 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_resource *mem)
1314 {
1315         uint64_t flags = 0;
1316
1317         if (mem && mem->mem_type != TTM_PL_SYSTEM)
1318                 flags |= AMDGPU_PTE_VALID;
1319
1320         if (mem && (mem->mem_type == TTM_PL_TT ||
1321                     mem->mem_type == AMDGPU_PL_DOORBELL ||
1322                     mem->mem_type == AMDGPU_PL_PREEMPT)) {
1323                 flags |= AMDGPU_PTE_SYSTEM;
1324
1325                 if (ttm->caching == ttm_cached)
1326                         flags |= AMDGPU_PTE_SNOOPED;
1327         }
1328
1329         if (mem && mem->mem_type == TTM_PL_VRAM &&
1330                         mem->bus.caching == ttm_cached)
1331                 flags |= AMDGPU_PTE_SNOOPED;
1332
1333         return flags;
1334 }
1335
1336 /**
1337  * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object
1338  *
1339  * @adev: amdgpu_device pointer
1340  * @ttm: The ttm_tt object to compute the flags for
1341  * @mem: The memory registry backing this ttm_tt object
1342  *
1343  * Figure out the flags to use for a VM PTE (Page Table Entry).
1344  */
1345 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm,
1346                                  struct ttm_resource *mem)
1347 {
1348         uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem);
1349
1350         flags |= adev->gart.gart_pte_flags;
1351         flags |= AMDGPU_PTE_READABLE;
1352
1353         if (!amdgpu_ttm_tt_is_readonly(ttm))
1354                 flags |= AMDGPU_PTE_WRITEABLE;
1355
1356         return flags;
1357 }
1358
1359 /*
1360  * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer
1361  * object.
1362  *
1363  * Return true if eviction is sensible. Called by ttm_mem_evict_first() on
1364  * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until
1365  * it can find space for a new object and by ttm_bo_force_list_clean() which is
1366  * used to clean out a memory space.
1367  */
1368 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
1369                                             const struct ttm_place *place)
1370 {
1371         struct dma_resv_iter resv_cursor;
1372         struct dma_fence *f;
1373
1374         if (!amdgpu_bo_is_amdgpu_bo(bo))
1375                 return ttm_bo_eviction_valuable(bo, place);
1376
1377         /* Swapout? */
1378         if (bo->resource->mem_type == TTM_PL_SYSTEM)
1379                 return true;
1380
1381         if (bo->type == ttm_bo_type_kernel &&
1382             !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo)))
1383                 return false;
1384
1385         /* If bo is a KFD BO, check if the bo belongs to the current process.
1386          * If true, then return false as any KFD process needs all its BOs to
1387          * be resident to run successfully
1388          */
1389         dma_resv_for_each_fence(&resv_cursor, bo->base.resv,
1390                                 DMA_RESV_USAGE_BOOKKEEP, f) {
1391                 if (amdkfd_fence_check_mm(f, current->mm))
1392                         return false;
1393         }
1394
1395         /* Preemptible BOs don't own system resources managed by the
1396          * driver (pages, VRAM, GART space). They point to resources
1397          * owned by someone else (e.g. pageable memory in user mode
1398          * or a DMABuf). They are used in a preemptible context so we
1399          * can guarantee no deadlocks and good QoS in case of MMU
1400          * notifiers or DMABuf move notifiers from the resource owner.
1401          */
1402         if (bo->resource->mem_type == AMDGPU_PL_PREEMPT)
1403                 return false;
1404
1405         if (bo->resource->mem_type == TTM_PL_TT &&
1406             amdgpu_bo_encrypted(ttm_to_amdgpu_bo(bo)))
1407                 return false;
1408
1409         return ttm_bo_eviction_valuable(bo, place);
1410 }
1411
1412 static void amdgpu_ttm_vram_mm_access(struct amdgpu_device *adev, loff_t pos,
1413                                       void *buf, size_t size, bool write)
1414 {
1415         while (size) {
1416                 uint64_t aligned_pos = ALIGN_DOWN(pos, 4);
1417                 uint64_t bytes = 4 - (pos & 0x3);
1418                 uint32_t shift = (pos & 0x3) * 8;
1419                 uint32_t mask = 0xffffffff << shift;
1420                 uint32_t value = 0;
1421
1422                 if (size < bytes) {
1423                         mask &= 0xffffffff >> (bytes - size) * 8;
1424                         bytes = size;
1425                 }
1426
1427                 if (mask != 0xffffffff) {
1428                         amdgpu_device_mm_access(adev, aligned_pos, &value, 4, false);
1429                         if (write) {
1430                                 value &= ~mask;
1431                                 value |= (*(uint32_t *)buf << shift) & mask;
1432                                 amdgpu_device_mm_access(adev, aligned_pos, &value, 4, true);
1433                         } else {
1434                                 value = (value & mask) >> shift;
1435                                 memcpy(buf, &value, bytes);
1436                         }
1437                 } else {
1438                         amdgpu_device_mm_access(adev, aligned_pos, buf, 4, write);
1439                 }
1440
1441                 pos += bytes;
1442                 buf += bytes;
1443                 size -= bytes;
1444         }
1445 }
1446
1447 static int amdgpu_ttm_access_memory_sdma(struct ttm_buffer_object *bo,
1448                                         unsigned long offset, void *buf,
1449                                         int len, int write)
1450 {
1451         struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1452         struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1453         struct amdgpu_res_cursor src_mm;
1454         struct amdgpu_job *job;
1455         struct dma_fence *fence;
1456         uint64_t src_addr, dst_addr;
1457         unsigned int num_dw;
1458         int r, idx;
1459
1460         if (len != PAGE_SIZE)
1461                 return -EINVAL;
1462
1463         if (!adev->mman.sdma_access_ptr)
1464                 return -EACCES;
1465
1466         if (!drm_dev_enter(adev_to_drm(adev), &idx))
1467                 return -ENODEV;
1468
1469         if (write)
1470                 memcpy(adev->mman.sdma_access_ptr, buf, len);
1471
1472         num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
1473         r = amdgpu_job_alloc_with_ib(adev, &adev->mman.high_pr,
1474                                      AMDGPU_FENCE_OWNER_UNDEFINED,
1475                                      num_dw * 4, AMDGPU_IB_POOL_DELAYED,
1476                                      &job);
1477         if (r)
1478                 goto out;
1479
1480         amdgpu_res_first(abo->tbo.resource, offset, len, &src_mm);
1481         src_addr = amdgpu_ttm_domain_start(adev, bo->resource->mem_type) +
1482                 src_mm.start;
1483         dst_addr = amdgpu_bo_gpu_offset(adev->mman.sdma_access_bo);
1484         if (write)
1485                 swap(src_addr, dst_addr);
1486
1487         amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, dst_addr,
1488                                 PAGE_SIZE, false);
1489
1490         amdgpu_ring_pad_ib(adev->mman.buffer_funcs_ring, &job->ibs[0]);
1491         WARN_ON(job->ibs[0].length_dw > num_dw);
1492
1493         fence = amdgpu_job_submit(job);
1494
1495         if (!dma_fence_wait_timeout(fence, false, adev->sdma_timeout))
1496                 r = -ETIMEDOUT;
1497         dma_fence_put(fence);
1498
1499         if (!(r || write))
1500                 memcpy(buf, adev->mman.sdma_access_ptr, len);
1501 out:
1502         drm_dev_exit(idx);
1503         return r;
1504 }
1505
1506 /**
1507  * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object.
1508  *
1509  * @bo:  The buffer object to read/write
1510  * @offset:  Offset into buffer object
1511  * @buf:  Secondary buffer to write/read from
1512  * @len: Length in bytes of access
1513  * @write:  true if writing
1514  *
1515  * This is used to access VRAM that backs a buffer object via MMIO
1516  * access for debugging purposes.
1517  */
1518 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo,
1519                                     unsigned long offset, void *buf, int len,
1520                                     int write)
1521 {
1522         struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1523         struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1524         struct amdgpu_res_cursor cursor;
1525         int ret = 0;
1526
1527         if (bo->resource->mem_type != TTM_PL_VRAM)
1528                 return -EIO;
1529
1530         if (amdgpu_device_has_timeouts_enabled(adev) &&
1531                         !amdgpu_ttm_access_memory_sdma(bo, offset, buf, len, write))
1532                 return len;
1533
1534         amdgpu_res_first(bo->resource, offset, len, &cursor);
1535         while (cursor.remaining) {
1536                 size_t count, size = cursor.size;
1537                 loff_t pos = cursor.start;
1538
1539                 count = amdgpu_device_aper_access(adev, pos, buf, size, write);
1540                 size -= count;
1541                 if (size) {
1542                         /* using MM to access rest vram and handle un-aligned address */
1543                         pos += count;
1544                         buf += count;
1545                         amdgpu_ttm_vram_mm_access(adev, pos, buf, size, write);
1546                 }
1547
1548                 ret += cursor.size;
1549                 buf += cursor.size;
1550                 amdgpu_res_next(&cursor, cursor.size);
1551         }
1552
1553         return ret;
1554 }
1555
1556 static void
1557 amdgpu_bo_delete_mem_notify(struct ttm_buffer_object *bo)
1558 {
1559         amdgpu_bo_move_notify(bo, false, NULL);
1560 }
1561
1562 static struct ttm_device_funcs amdgpu_bo_driver = {
1563         .ttm_tt_create = &amdgpu_ttm_tt_create,
1564         .ttm_tt_populate = &amdgpu_ttm_tt_populate,
1565         .ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate,
1566         .ttm_tt_destroy = &amdgpu_ttm_backend_destroy,
1567         .eviction_valuable = amdgpu_ttm_bo_eviction_valuable,
1568         .evict_flags = &amdgpu_evict_flags,
1569         .move = &amdgpu_bo_move,
1570         .delete_mem_notify = &amdgpu_bo_delete_mem_notify,
1571         .release_notify = &amdgpu_bo_release_notify,
1572         .io_mem_reserve = &amdgpu_ttm_io_mem_reserve,
1573         .io_mem_pfn = amdgpu_ttm_io_mem_pfn,
1574         .access_memory = &amdgpu_ttm_access_memory,
1575 };
1576
1577 /*
1578  * Firmware Reservation functions
1579  */
1580 /**
1581  * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram
1582  *
1583  * @adev: amdgpu_device pointer
1584  *
1585  * free fw reserved vram if it has been reserved.
1586  */
1587 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev)
1588 {
1589         amdgpu_bo_free_kernel(&adev->mman.fw_vram_usage_reserved_bo,
1590                 NULL, &adev->mman.fw_vram_usage_va);
1591 }
1592
1593 /*
1594  * Driver Reservation functions
1595  */
1596 /**
1597  * amdgpu_ttm_drv_reserve_vram_fini - free drv reserved vram
1598  *
1599  * @adev: amdgpu_device pointer
1600  *
1601  * free drv reserved vram if it has been reserved.
1602  */
1603 static void amdgpu_ttm_drv_reserve_vram_fini(struct amdgpu_device *adev)
1604 {
1605         amdgpu_bo_free_kernel(&adev->mman.drv_vram_usage_reserved_bo,
1606                                                   NULL,
1607                                                   &adev->mman.drv_vram_usage_va);
1608 }
1609
1610 /**
1611  * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw
1612  *
1613  * @adev: amdgpu_device pointer
1614  *
1615  * create bo vram reservation from fw.
1616  */
1617 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev)
1618 {
1619         uint64_t vram_size = adev->gmc.visible_vram_size;
1620
1621         adev->mman.fw_vram_usage_va = NULL;
1622         adev->mman.fw_vram_usage_reserved_bo = NULL;
1623
1624         if (adev->mman.fw_vram_usage_size == 0 ||
1625             adev->mman.fw_vram_usage_size > vram_size)
1626                 return 0;
1627
1628         return amdgpu_bo_create_kernel_at(adev,
1629                                           adev->mman.fw_vram_usage_start_offset,
1630                                           adev->mman.fw_vram_usage_size,
1631                                           &adev->mman.fw_vram_usage_reserved_bo,
1632                                           &adev->mman.fw_vram_usage_va);
1633 }
1634
1635 /**
1636  * amdgpu_ttm_drv_reserve_vram_init - create bo vram reservation from driver
1637  *
1638  * @adev: amdgpu_device pointer
1639  *
1640  * create bo vram reservation from drv.
1641  */
1642 static int amdgpu_ttm_drv_reserve_vram_init(struct amdgpu_device *adev)
1643 {
1644         u64 vram_size = adev->gmc.visible_vram_size;
1645
1646         adev->mman.drv_vram_usage_va = NULL;
1647         adev->mman.drv_vram_usage_reserved_bo = NULL;
1648
1649         if (adev->mman.drv_vram_usage_size == 0 ||
1650             adev->mman.drv_vram_usage_size > vram_size)
1651                 return 0;
1652
1653         return amdgpu_bo_create_kernel_at(adev,
1654                                           adev->mman.drv_vram_usage_start_offset,
1655                                           adev->mman.drv_vram_usage_size,
1656                                           &adev->mman.drv_vram_usage_reserved_bo,
1657                                           &adev->mman.drv_vram_usage_va);
1658 }
1659
1660 /*
1661  * Memoy training reservation functions
1662  */
1663
1664 /**
1665  * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram
1666  *
1667  * @adev: amdgpu_device pointer
1668  *
1669  * free memory training reserved vram if it has been reserved.
1670  */
1671 static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev)
1672 {
1673         struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1674
1675         ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT;
1676         amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL);
1677         ctx->c2p_bo = NULL;
1678
1679         return 0;
1680 }
1681
1682 static void amdgpu_ttm_training_data_block_init(struct amdgpu_device *adev,
1683                                                 uint32_t reserve_size)
1684 {
1685         struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1686
1687         memset(ctx, 0, sizeof(*ctx));
1688
1689         ctx->c2p_train_data_offset =
1690                 ALIGN((adev->gmc.mc_vram_size - reserve_size - SZ_1M), SZ_1M);
1691         ctx->p2c_train_data_offset =
1692                 (adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET);
1693         ctx->train_data_size =
1694                 GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES;
1695
1696         DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n",
1697                         ctx->train_data_size,
1698                         ctx->p2c_train_data_offset,
1699                         ctx->c2p_train_data_offset);
1700 }
1701
1702 /*
1703  * reserve TMR memory at the top of VRAM which holds
1704  * IP Discovery data and is protected by PSP.
1705  */
1706 static int amdgpu_ttm_reserve_tmr(struct amdgpu_device *adev)
1707 {
1708         struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1709         bool mem_train_support = false;
1710         uint32_t reserve_size = 0;
1711         int ret;
1712
1713         if (adev->bios && !amdgpu_sriov_vf(adev)) {
1714                 if (amdgpu_atomfirmware_mem_training_supported(adev))
1715                         mem_train_support = true;
1716                 else
1717                         DRM_DEBUG("memory training does not support!\n");
1718         }
1719
1720         /*
1721          * Query reserved tmr size through atom firmwareinfo for Sienna_Cichlid and onwards for all
1722          * the use cases (IP discovery/G6 memory training/profiling/diagnostic data.etc)
1723          *
1724          * Otherwise, fallback to legacy approach to check and reserve tmr block for ip
1725          * discovery data and G6 memory training data respectively
1726          */
1727         if (adev->bios)
1728                 reserve_size =
1729                         amdgpu_atomfirmware_get_fw_reserved_fb_size(adev);
1730
1731         if (!adev->bios && adev->ip_versions[GC_HWIP][0] == IP_VERSION(9, 4, 3))
1732                 reserve_size = max(reserve_size, (uint32_t)280 << 20);
1733         else if (!reserve_size)
1734                 reserve_size = DISCOVERY_TMR_OFFSET;
1735
1736         if (mem_train_support) {
1737                 /* reserve vram for mem train according to TMR location */
1738                 amdgpu_ttm_training_data_block_init(adev, reserve_size);
1739                 ret = amdgpu_bo_create_kernel_at(adev,
1740                                                  ctx->c2p_train_data_offset,
1741                                                  ctx->train_data_size,
1742                                                  &ctx->c2p_bo,
1743                                                  NULL);
1744                 if (ret) {
1745                         DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret);
1746                         amdgpu_ttm_training_reserve_vram_fini(adev);
1747                         return ret;
1748                 }
1749                 ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS;
1750         }
1751
1752         if (!adev->gmc.is_app_apu) {
1753                 ret = amdgpu_bo_create_kernel_at(
1754                         adev, adev->gmc.real_vram_size - reserve_size,
1755                         reserve_size, &adev->mman.fw_reserved_memory, NULL);
1756                 if (ret) {
1757                         DRM_ERROR("alloc tmr failed(%d)!\n", ret);
1758                         amdgpu_bo_free_kernel(&adev->mman.fw_reserved_memory,
1759                                               NULL, NULL);
1760                         return ret;
1761                 }
1762         } else {
1763                 DRM_DEBUG_DRIVER("backdoor fw loading path for PSP TMR, no reservation needed\n");
1764         }
1765
1766         return 0;
1767 }
1768
1769 static int amdgpu_ttm_pools_init(struct amdgpu_device *adev)
1770 {
1771         int i;
1772
1773         if (!adev->gmc.is_app_apu || !adev->gmc.num_mem_partitions)
1774                 return 0;
1775
1776         adev->mman.ttm_pools = kcalloc(adev->gmc.num_mem_partitions,
1777                                        sizeof(*adev->mman.ttm_pools),
1778                                        GFP_KERNEL);
1779         if (!adev->mman.ttm_pools)
1780                 return -ENOMEM;
1781
1782         for (i = 0; i < adev->gmc.num_mem_partitions; i++) {
1783                 ttm_pool_init(&adev->mman.ttm_pools[i], adev->dev,
1784                               adev->gmc.mem_partitions[i].numa.node,
1785                               false, false);
1786         }
1787         return 0;
1788 }
1789
1790 static void amdgpu_ttm_pools_fini(struct amdgpu_device *adev)
1791 {
1792         int i;
1793
1794         if (!adev->gmc.is_app_apu || !adev->mman.ttm_pools)
1795                 return;
1796
1797         for (i = 0; i < adev->gmc.num_mem_partitions; i++)
1798                 ttm_pool_fini(&adev->mman.ttm_pools[i]);
1799
1800         kfree(adev->mman.ttm_pools);
1801         adev->mman.ttm_pools = NULL;
1802 }
1803
1804 /*
1805  * amdgpu_ttm_init - Init the memory management (ttm) as well as various
1806  * gtt/vram related fields.
1807  *
1808  * This initializes all of the memory space pools that the TTM layer
1809  * will need such as the GTT space (system memory mapped to the device),
1810  * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which
1811  * can be mapped per VMID.
1812  */
1813 int amdgpu_ttm_init(struct amdgpu_device *adev)
1814 {
1815         uint64_t gtt_size;
1816         int r;
1817
1818         mutex_init(&adev->mman.gtt_window_lock);
1819
1820         /* No others user of address space so set it to 0 */
1821         r = ttm_device_init(&adev->mman.bdev, &amdgpu_bo_driver, adev->dev,
1822                                adev_to_drm(adev)->anon_inode->i_mapping,
1823                                adev_to_drm(adev)->vma_offset_manager,
1824                                adev->need_swiotlb,
1825                                dma_addressing_limited(adev->dev));
1826         if (r) {
1827                 DRM_ERROR("failed initializing buffer object driver(%d).\n", r);
1828                 return r;
1829         }
1830
1831         r = amdgpu_ttm_pools_init(adev);
1832         if (r) {
1833                 DRM_ERROR("failed to init ttm pools(%d).\n", r);
1834                 return r;
1835         }
1836         adev->mman.initialized = true;
1837
1838         /* Initialize VRAM pool with all of VRAM divided into pages */
1839         r = amdgpu_vram_mgr_init(adev);
1840         if (r) {
1841                 DRM_ERROR("Failed initializing VRAM heap.\n");
1842                 return r;
1843         }
1844
1845         /* Change the size here instead of the init above so only lpfn is affected */
1846         amdgpu_ttm_set_buffer_funcs_status(adev, false);
1847 #ifdef CONFIG_64BIT
1848 #ifdef CONFIG_X86
1849         if (adev->gmc.xgmi.connected_to_cpu)
1850                 adev->mman.aper_base_kaddr = ioremap_cache(adev->gmc.aper_base,
1851                                 adev->gmc.visible_vram_size);
1852
1853         else if (adev->gmc.is_app_apu)
1854                 DRM_DEBUG_DRIVER(
1855                         "No need to ioremap when real vram size is 0\n");
1856         else
1857 #endif
1858                 adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base,
1859                                 adev->gmc.visible_vram_size);
1860 #endif
1861
1862         /*
1863          *The reserved vram for firmware must be pinned to the specified
1864          *place on the VRAM, so reserve it early.
1865          */
1866         r = amdgpu_ttm_fw_reserve_vram_init(adev);
1867         if (r)
1868                 return r;
1869
1870         /*
1871          *The reserved vram for driver must be pinned to the specified
1872          *place on the VRAM, so reserve it early.
1873          */
1874         r = amdgpu_ttm_drv_reserve_vram_init(adev);
1875         if (r)
1876                 return r;
1877
1878         /*
1879          * only NAVI10 and onwards ASIC support for IP discovery.
1880          * If IP discovery enabled, a block of memory should be
1881          * reserved for IP discovey.
1882          */
1883         if (adev->mman.discovery_bin) {
1884                 r = amdgpu_ttm_reserve_tmr(adev);
1885                 if (r)
1886                         return r;
1887         }
1888
1889         /* allocate memory as required for VGA
1890          * This is used for VGA emulation and pre-OS scanout buffers to
1891          * avoid display artifacts while transitioning between pre-OS
1892          * and driver.
1893          */
1894         if (!adev->gmc.is_app_apu) {
1895                 r = amdgpu_bo_create_kernel_at(adev, 0,
1896                                                adev->mman.stolen_vga_size,
1897                                                &adev->mman.stolen_vga_memory,
1898                                                NULL);
1899                 if (r)
1900                         return r;
1901
1902                 r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_vga_size,
1903                                                adev->mman.stolen_extended_size,
1904                                                &adev->mman.stolen_extended_memory,
1905                                                NULL);
1906
1907                 if (r)
1908                         return r;
1909
1910                 r = amdgpu_bo_create_kernel_at(adev,
1911                                                adev->mman.stolen_reserved_offset,
1912                                                adev->mman.stolen_reserved_size,
1913                                                &adev->mman.stolen_reserved_memory,
1914                                                NULL);
1915                 if (r)
1916                         return r;
1917         } else {
1918                 DRM_DEBUG_DRIVER("Skipped stolen memory reservation\n");
1919         }
1920
1921         DRM_INFO("amdgpu: %uM of VRAM memory ready\n",
1922                  (unsigned int)(adev->gmc.real_vram_size / (1024 * 1024)));
1923
1924         /* Compute GTT size, either based on TTM limit
1925          * or whatever the user passed on module init.
1926          */
1927         if (amdgpu_gtt_size == -1)
1928                 gtt_size = ttm_tt_pages_limit() << PAGE_SHIFT;
1929         else
1930                 gtt_size = (uint64_t)amdgpu_gtt_size << 20;
1931
1932         /* Initialize GTT memory pool */
1933         r = amdgpu_gtt_mgr_init(adev, gtt_size);
1934         if (r) {
1935                 DRM_ERROR("Failed initializing GTT heap.\n");
1936                 return r;
1937         }
1938         DRM_INFO("amdgpu: %uM of GTT memory ready.\n",
1939                  (unsigned int)(gtt_size / (1024 * 1024)));
1940
1941         /* Initiailize doorbell pool on PCI BAR */
1942         r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_DOORBELL, adev->doorbell.size / PAGE_SIZE);
1943         if (r) {
1944                 DRM_ERROR("Failed initializing doorbell heap.\n");
1945                 return r;
1946         }
1947
1948         /* Create a boorbell page for kernel usages */
1949         r = amdgpu_doorbell_create_kernel_doorbells(adev);
1950         if (r) {
1951                 DRM_ERROR("Failed to initialize kernel doorbells.\n");
1952                 return r;
1953         }
1954
1955         /* Initialize preemptible memory pool */
1956         r = amdgpu_preempt_mgr_init(adev);
1957         if (r) {
1958                 DRM_ERROR("Failed initializing PREEMPT heap.\n");
1959                 return r;
1960         }
1961
1962         /* Initialize various on-chip memory pools */
1963         r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GDS, adev->gds.gds_size);
1964         if (r) {
1965                 DRM_ERROR("Failed initializing GDS heap.\n");
1966                 return r;
1967         }
1968
1969         r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GWS, adev->gds.gws_size);
1970         if (r) {
1971                 DRM_ERROR("Failed initializing gws heap.\n");
1972                 return r;
1973         }
1974
1975         r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_OA, adev->gds.oa_size);
1976         if (r) {
1977                 DRM_ERROR("Failed initializing oa heap.\n");
1978                 return r;
1979         }
1980         if (amdgpu_bo_create_kernel(adev, PAGE_SIZE, PAGE_SIZE,
1981                                 AMDGPU_GEM_DOMAIN_GTT,
1982                                 &adev->mman.sdma_access_bo, NULL,
1983                                 &adev->mman.sdma_access_ptr))
1984                 DRM_WARN("Debug VRAM access will use slowpath MM access\n");
1985
1986         return 0;
1987 }
1988
1989 /*
1990  * amdgpu_ttm_fini - De-initialize the TTM memory pools
1991  */
1992 void amdgpu_ttm_fini(struct amdgpu_device *adev)
1993 {
1994         int idx;
1995
1996         if (!adev->mman.initialized)
1997                 return;
1998
1999         amdgpu_ttm_pools_fini(adev);
2000
2001         amdgpu_ttm_training_reserve_vram_fini(adev);
2002         /* return the stolen vga memory back to VRAM */
2003         if (!adev->gmc.is_app_apu) {
2004                 amdgpu_bo_free_kernel(&adev->mman.stolen_vga_memory, NULL, NULL);
2005                 amdgpu_bo_free_kernel(&adev->mman.stolen_extended_memory, NULL, NULL);
2006                 /* return the FW reserved memory back to VRAM */
2007                 amdgpu_bo_free_kernel(&adev->mman.fw_reserved_memory, NULL,
2008                                       NULL);
2009                 if (adev->mman.stolen_reserved_size)
2010                         amdgpu_bo_free_kernel(&adev->mman.stolen_reserved_memory,
2011                                               NULL, NULL);
2012         }
2013         amdgpu_bo_free_kernel(&adev->mman.sdma_access_bo, NULL,
2014                                         &adev->mman.sdma_access_ptr);
2015         amdgpu_ttm_fw_reserve_vram_fini(adev);
2016         amdgpu_ttm_drv_reserve_vram_fini(adev);
2017
2018         if (drm_dev_enter(adev_to_drm(adev), &idx)) {
2019
2020                 if (adev->mman.aper_base_kaddr)
2021                         iounmap(adev->mman.aper_base_kaddr);
2022                 adev->mman.aper_base_kaddr = NULL;
2023
2024                 drm_dev_exit(idx);
2025         }
2026
2027         amdgpu_vram_mgr_fini(adev);
2028         amdgpu_gtt_mgr_fini(adev);
2029         amdgpu_preempt_mgr_fini(adev);
2030         ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GDS);
2031         ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GWS);
2032         ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_OA);
2033         ttm_device_fini(&adev->mman.bdev);
2034         adev->mman.initialized = false;
2035         DRM_INFO("amdgpu: ttm finalized\n");
2036 }
2037
2038 /**
2039  * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions
2040  *
2041  * @adev: amdgpu_device pointer
2042  * @enable: true when we can use buffer functions.
2043  *
2044  * Enable/disable use of buffer functions during suspend/resume. This should
2045  * only be called at bootup or when userspace isn't running.
2046  */
2047 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable)
2048 {
2049         struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, TTM_PL_VRAM);
2050         uint64_t size;
2051         int r;
2052
2053         if (!adev->mman.initialized || amdgpu_in_reset(adev) ||
2054             adev->mman.buffer_funcs_enabled == enable || adev->gmc.is_app_apu)
2055                 return;
2056
2057         if (enable) {
2058                 struct amdgpu_ring *ring;
2059                 struct drm_gpu_scheduler *sched;
2060
2061                 ring = adev->mman.buffer_funcs_ring;
2062                 sched = &ring->sched;
2063                 r = drm_sched_entity_init(&adev->mman.high_pr,
2064                                           DRM_SCHED_PRIORITY_KERNEL, &sched,
2065                                           1, NULL);
2066                 if (r) {
2067                         DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
2068                                   r);
2069                         return;
2070                 }
2071
2072                 r = drm_sched_entity_init(&adev->mman.low_pr,
2073                                           DRM_SCHED_PRIORITY_NORMAL, &sched,
2074                                           1, NULL);
2075                 if (r) {
2076                         DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
2077                                   r);
2078                         goto error_free_entity;
2079                 }
2080         } else {
2081                 drm_sched_entity_destroy(&adev->mman.high_pr);
2082                 drm_sched_entity_destroy(&adev->mman.low_pr);
2083                 dma_fence_put(man->move);
2084                 man->move = NULL;
2085         }
2086
2087         /* this just adjusts TTM size idea, which sets lpfn to the correct value */
2088         if (enable)
2089                 size = adev->gmc.real_vram_size;
2090         else
2091                 size = adev->gmc.visible_vram_size;
2092         man->size = size;
2093         adev->mman.buffer_funcs_enabled = enable;
2094
2095         return;
2096
2097 error_free_entity:
2098         drm_sched_entity_destroy(&adev->mman.high_pr);
2099 }
2100
2101 static int amdgpu_ttm_prepare_job(struct amdgpu_device *adev,
2102                                   bool direct_submit,
2103                                   unsigned int num_dw,
2104                                   struct dma_resv *resv,
2105                                   bool vm_needs_flush,
2106                                   struct amdgpu_job **job,
2107                                   bool delayed)
2108 {
2109         enum amdgpu_ib_pool_type pool = direct_submit ?
2110                 AMDGPU_IB_POOL_DIRECT :
2111                 AMDGPU_IB_POOL_DELAYED;
2112         int r;
2113         struct drm_sched_entity *entity = delayed ? &adev->mman.low_pr :
2114                                                     &adev->mman.high_pr;
2115         r = amdgpu_job_alloc_with_ib(adev, entity,
2116                                      AMDGPU_FENCE_OWNER_UNDEFINED,
2117                                      num_dw * 4, pool, job);
2118         if (r)
2119                 return r;
2120
2121         if (vm_needs_flush) {
2122                 (*job)->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gmc.pdb0_bo ?
2123                                                         adev->gmc.pdb0_bo :
2124                                                         adev->gart.bo);
2125                 (*job)->vm_needs_flush = true;
2126         }
2127         if (!resv)
2128                 return 0;
2129
2130         return drm_sched_job_add_resv_dependencies(&(*job)->base, resv,
2131                                                    DMA_RESV_USAGE_BOOKKEEP);
2132 }
2133
2134 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset,
2135                        uint64_t dst_offset, uint32_t byte_count,
2136                        struct dma_resv *resv,
2137                        struct dma_fence **fence, bool direct_submit,
2138                        bool vm_needs_flush, bool tmz)
2139 {
2140         struct amdgpu_device *adev = ring->adev;
2141         unsigned int num_loops, num_dw;
2142         struct amdgpu_job *job;
2143         uint32_t max_bytes;
2144         unsigned int i;
2145         int r;
2146
2147         if (!direct_submit && !ring->sched.ready) {
2148                 DRM_ERROR("Trying to move memory with ring turned off.\n");
2149                 return -EINVAL;
2150         }
2151
2152         max_bytes = adev->mman.buffer_funcs->copy_max_bytes;
2153         num_loops = DIV_ROUND_UP(byte_count, max_bytes);
2154         num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8);
2155         r = amdgpu_ttm_prepare_job(adev, direct_submit, num_dw,
2156                                    resv, vm_needs_flush, &job, false);
2157         if (r)
2158                 return r;
2159
2160         for (i = 0; i < num_loops; i++) {
2161                 uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
2162
2163                 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset,
2164                                         dst_offset, cur_size_in_bytes, tmz);
2165
2166                 src_offset += cur_size_in_bytes;
2167                 dst_offset += cur_size_in_bytes;
2168                 byte_count -= cur_size_in_bytes;
2169         }
2170
2171         amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2172         WARN_ON(job->ibs[0].length_dw > num_dw);
2173         if (direct_submit)
2174                 r = amdgpu_job_submit_direct(job, ring, fence);
2175         else
2176                 *fence = amdgpu_job_submit(job);
2177         if (r)
2178                 goto error_free;
2179
2180         return r;
2181
2182 error_free:
2183         amdgpu_job_free(job);
2184         DRM_ERROR("Error scheduling IBs (%d)\n", r);
2185         return r;
2186 }
2187
2188 static int amdgpu_ttm_fill_mem(struct amdgpu_ring *ring, uint32_t src_data,
2189                                uint64_t dst_addr, uint32_t byte_count,
2190                                struct dma_resv *resv,
2191                                struct dma_fence **fence,
2192                                bool vm_needs_flush, bool delayed)
2193 {
2194         struct amdgpu_device *adev = ring->adev;
2195         unsigned int num_loops, num_dw;
2196         struct amdgpu_job *job;
2197         uint32_t max_bytes;
2198         unsigned int i;
2199         int r;
2200
2201         max_bytes = adev->mman.buffer_funcs->fill_max_bytes;
2202         num_loops = DIV_ROUND_UP_ULL(byte_count, max_bytes);
2203         num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->fill_num_dw, 8);
2204         r = amdgpu_ttm_prepare_job(adev, false, num_dw, resv, vm_needs_flush,
2205                                    &job, delayed);
2206         if (r)
2207                 return r;
2208
2209         for (i = 0; i < num_loops; i++) {
2210                 uint32_t cur_size = min(byte_count, max_bytes);
2211
2212                 amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data, dst_addr,
2213                                         cur_size);
2214
2215                 dst_addr += cur_size;
2216                 byte_count -= cur_size;
2217         }
2218
2219         amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2220         WARN_ON(job->ibs[0].length_dw > num_dw);
2221         *fence = amdgpu_job_submit(job);
2222         return 0;
2223 }
2224
2225 int amdgpu_fill_buffer(struct amdgpu_bo *bo,
2226                         uint32_t src_data,
2227                         struct dma_resv *resv,
2228                         struct dma_fence **f,
2229                         bool delayed)
2230 {
2231         struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
2232         struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
2233         struct dma_fence *fence = NULL;
2234         struct amdgpu_res_cursor dst;
2235         int r;
2236
2237         if (!adev->mman.buffer_funcs_enabled) {
2238                 DRM_ERROR("Trying to clear memory with ring turned off.\n");
2239                 return -EINVAL;
2240         }
2241
2242         amdgpu_res_first(bo->tbo.resource, 0, amdgpu_bo_size(bo), &dst);
2243
2244         mutex_lock(&adev->mman.gtt_window_lock);
2245         while (dst.remaining) {
2246                 struct dma_fence *next;
2247                 uint64_t cur_size, to;
2248
2249                 /* Never fill more than 256MiB at once to avoid timeouts */
2250                 cur_size = min(dst.size, 256ULL << 20);
2251
2252                 r = amdgpu_ttm_map_buffer(&bo->tbo, bo->tbo.resource, &dst,
2253                                           1, ring, false, &cur_size, &to);
2254                 if (r)
2255                         goto error;
2256
2257                 r = amdgpu_ttm_fill_mem(ring, src_data, to, cur_size, resv,
2258                                         &next, true, delayed);
2259                 if (r)
2260                         goto error;
2261
2262                 dma_fence_put(fence);
2263                 fence = next;
2264
2265                 amdgpu_res_next(&dst, cur_size);
2266         }
2267 error:
2268         mutex_unlock(&adev->mman.gtt_window_lock);
2269         if (f)
2270                 *f = dma_fence_get(fence);
2271         dma_fence_put(fence);
2272         return r;
2273 }
2274
2275 /**
2276  * amdgpu_ttm_evict_resources - evict memory buffers
2277  * @adev: amdgpu device object
2278  * @mem_type: evicted BO's memory type
2279  *
2280  * Evicts all @mem_type buffers on the lru list of the memory type.
2281  *
2282  * Returns:
2283  * 0 for success or a negative error code on failure.
2284  */
2285 int amdgpu_ttm_evict_resources(struct amdgpu_device *adev, int mem_type)
2286 {
2287         struct ttm_resource_manager *man;
2288
2289         switch (mem_type) {
2290         case TTM_PL_VRAM:
2291         case TTM_PL_TT:
2292         case AMDGPU_PL_GWS:
2293         case AMDGPU_PL_GDS:
2294         case AMDGPU_PL_OA:
2295                 man = ttm_manager_type(&adev->mman.bdev, mem_type);
2296                 break;
2297         default:
2298                 DRM_ERROR("Trying to evict invalid memory type\n");
2299                 return -EINVAL;
2300         }
2301
2302         return ttm_resource_manager_evict_all(&adev->mman.bdev, man);
2303 }
2304
2305 #if defined(CONFIG_DEBUG_FS)
2306
2307 static int amdgpu_ttm_page_pool_show(struct seq_file *m, void *unused)
2308 {
2309         struct amdgpu_device *adev = m->private;
2310
2311         return ttm_pool_debugfs(&adev->mman.bdev.pool, m);
2312 }
2313
2314 DEFINE_SHOW_ATTRIBUTE(amdgpu_ttm_page_pool);
2315
2316 /*
2317  * amdgpu_ttm_vram_read - Linear read access to VRAM
2318  *
2319  * Accesses VRAM via MMIO for debugging purposes.
2320  */
2321 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf,
2322                                     size_t size, loff_t *pos)
2323 {
2324         struct amdgpu_device *adev = file_inode(f)->i_private;
2325         ssize_t result = 0;
2326
2327         if (size & 0x3 || *pos & 0x3)
2328                 return -EINVAL;
2329
2330         if (*pos >= adev->gmc.mc_vram_size)
2331                 return -ENXIO;
2332
2333         size = min(size, (size_t)(adev->gmc.mc_vram_size - *pos));
2334         while (size) {
2335                 size_t bytes = min(size, AMDGPU_TTM_VRAM_MAX_DW_READ * 4);
2336                 uint32_t value[AMDGPU_TTM_VRAM_MAX_DW_READ];
2337
2338                 amdgpu_device_vram_access(adev, *pos, value, bytes, false);
2339                 if (copy_to_user(buf, value, bytes))
2340                         return -EFAULT;
2341
2342                 result += bytes;
2343                 buf += bytes;
2344                 *pos += bytes;
2345                 size -= bytes;
2346         }
2347
2348         return result;
2349 }
2350
2351 /*
2352  * amdgpu_ttm_vram_write - Linear write access to VRAM
2353  *
2354  * Accesses VRAM via MMIO for debugging purposes.
2355  */
2356 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf,
2357                                     size_t size, loff_t *pos)
2358 {
2359         struct amdgpu_device *adev = file_inode(f)->i_private;
2360         ssize_t result = 0;
2361         int r;
2362
2363         if (size & 0x3 || *pos & 0x3)
2364                 return -EINVAL;
2365
2366         if (*pos >= adev->gmc.mc_vram_size)
2367                 return -ENXIO;
2368
2369         while (size) {
2370                 uint32_t value;
2371
2372                 if (*pos >= adev->gmc.mc_vram_size)
2373                         return result;
2374
2375                 r = get_user(value, (uint32_t *)buf);
2376                 if (r)
2377                         return r;
2378
2379                 amdgpu_device_mm_access(adev, *pos, &value, 4, true);
2380
2381                 result += 4;
2382                 buf += 4;
2383                 *pos += 4;
2384                 size -= 4;
2385         }
2386
2387         return result;
2388 }
2389
2390 static const struct file_operations amdgpu_ttm_vram_fops = {
2391         .owner = THIS_MODULE,
2392         .read = amdgpu_ttm_vram_read,
2393         .write = amdgpu_ttm_vram_write,
2394         .llseek = default_llseek,
2395 };
2396
2397 /*
2398  * amdgpu_iomem_read - Virtual read access to GPU mapped memory
2399  *
2400  * This function is used to read memory that has been mapped to the
2401  * GPU and the known addresses are not physical addresses but instead
2402  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2403  */
2404 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf,
2405                                  size_t size, loff_t *pos)
2406 {
2407         struct amdgpu_device *adev = file_inode(f)->i_private;
2408         struct iommu_domain *dom;
2409         ssize_t result = 0;
2410         int r;
2411
2412         /* retrieve the IOMMU domain if any for this device */
2413         dom = iommu_get_domain_for_dev(adev->dev);
2414
2415         while (size) {
2416                 phys_addr_t addr = *pos & PAGE_MASK;
2417                 loff_t off = *pos & ~PAGE_MASK;
2418                 size_t bytes = PAGE_SIZE - off;
2419                 unsigned long pfn;
2420                 struct page *p;
2421                 void *ptr;
2422
2423                 bytes = bytes < size ? bytes : size;
2424
2425                 /* Translate the bus address to a physical address.  If
2426                  * the domain is NULL it means there is no IOMMU active
2427                  * and the address translation is the identity
2428                  */
2429                 addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2430
2431                 pfn = addr >> PAGE_SHIFT;
2432                 if (!pfn_valid(pfn))
2433                         return -EPERM;
2434
2435                 p = pfn_to_page(pfn);
2436                 if (p->mapping != adev->mman.bdev.dev_mapping)
2437                         return -EPERM;
2438
2439                 ptr = kmap_local_page(p);
2440                 r = copy_to_user(buf, ptr + off, bytes);
2441                 kunmap_local(ptr);
2442                 if (r)
2443                         return -EFAULT;
2444
2445                 size -= bytes;
2446                 *pos += bytes;
2447                 result += bytes;
2448         }
2449
2450         return result;
2451 }
2452
2453 /*
2454  * amdgpu_iomem_write - Virtual write access to GPU mapped memory
2455  *
2456  * This function is used to write memory that has been mapped to the
2457  * GPU and the known addresses are not physical addresses but instead
2458  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2459  */
2460 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf,
2461                                  size_t size, loff_t *pos)
2462 {
2463         struct amdgpu_device *adev = file_inode(f)->i_private;
2464         struct iommu_domain *dom;
2465         ssize_t result = 0;
2466         int r;
2467
2468         dom = iommu_get_domain_for_dev(adev->dev);
2469
2470         while (size) {
2471                 phys_addr_t addr = *pos & PAGE_MASK;
2472                 loff_t off = *pos & ~PAGE_MASK;
2473                 size_t bytes = PAGE_SIZE - off;
2474                 unsigned long pfn;
2475                 struct page *p;
2476                 void *ptr;
2477
2478                 bytes = bytes < size ? bytes : size;
2479
2480                 addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2481
2482                 pfn = addr >> PAGE_SHIFT;
2483                 if (!pfn_valid(pfn))
2484                         return -EPERM;
2485
2486                 p = pfn_to_page(pfn);
2487                 if (p->mapping != adev->mman.bdev.dev_mapping)
2488                         return -EPERM;
2489
2490                 ptr = kmap_local_page(p);
2491                 r = copy_from_user(ptr + off, buf, bytes);
2492                 kunmap_local(ptr);
2493                 if (r)
2494                         return -EFAULT;
2495
2496                 size -= bytes;
2497                 *pos += bytes;
2498                 result += bytes;
2499         }
2500
2501         return result;
2502 }
2503
2504 static const struct file_operations amdgpu_ttm_iomem_fops = {
2505         .owner = THIS_MODULE,
2506         .read = amdgpu_iomem_read,
2507         .write = amdgpu_iomem_write,
2508         .llseek = default_llseek
2509 };
2510
2511 #endif
2512
2513 void amdgpu_ttm_debugfs_init(struct amdgpu_device *adev)
2514 {
2515 #if defined(CONFIG_DEBUG_FS)
2516         struct drm_minor *minor = adev_to_drm(adev)->primary;
2517         struct dentry *root = minor->debugfs_root;
2518
2519         debugfs_create_file_size("amdgpu_vram", 0444, root, adev,
2520                                  &amdgpu_ttm_vram_fops, adev->gmc.mc_vram_size);
2521         debugfs_create_file("amdgpu_iomem", 0444, root, adev,
2522                             &amdgpu_ttm_iomem_fops);
2523         debugfs_create_file("ttm_page_pool", 0444, root, adev,
2524                             &amdgpu_ttm_page_pool_fops);
2525         ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2526                                                              TTM_PL_VRAM),
2527                                             root, "amdgpu_vram_mm");
2528         ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2529                                                              TTM_PL_TT),
2530                                             root, "amdgpu_gtt_mm");
2531         ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2532                                                              AMDGPU_PL_GDS),
2533                                             root, "amdgpu_gds_mm");
2534         ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2535                                                              AMDGPU_PL_GWS),
2536                                             root, "amdgpu_gws_mm");
2537         ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2538                                                              AMDGPU_PL_OA),
2539                                             root, "amdgpu_oa_mm");
2540
2541 #endif
2542 }