MAINTAINERS: update the LSM maintainer info
[platform/kernel/linux-starfive.git] / drivers / gpu / drm / amd / amdgpu / amdgpu_ttm.c
1 /*
2  * Copyright 2009 Jerome Glisse.
3  * All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the
7  * "Software"), to deal in the Software without restriction, including
8  * without limitation the rights to use, copy, modify, merge, publish,
9  * distribute, sub license, and/or sell copies of the Software, and to
10  * permit persons to whom the Software is furnished to do so, subject to
11  * the following conditions:
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19  * USE OR OTHER DEALINGS IN THE SOFTWARE.
20  *
21  * The above copyright notice and this permission notice (including the
22  * next paragraph) shall be included in all copies or substantial portions
23  * of the Software.
24  *
25  */
26 /*
27  * Authors:
28  *    Jerome Glisse <glisse@freedesktop.org>
29  *    Thomas Hellstrom <thomas-at-tungstengraphics-dot-com>
30  *    Dave Airlie
31  */
32
33 #include <linux/dma-mapping.h>
34 #include <linux/iommu.h>
35 #include <linux/pagemap.h>
36 #include <linux/sched/task.h>
37 #include <linux/sched/mm.h>
38 #include <linux/seq_file.h>
39 #include <linux/slab.h>
40 #include <linux/swap.h>
41 #include <linux/swiotlb.h>
42 #include <linux/dma-buf.h>
43 #include <linux/sizes.h>
44 #include <linux/module.h>
45
46 #include <drm/drm_drv.h>
47 #include <drm/ttm/ttm_bo_api.h>
48 #include <drm/ttm/ttm_bo_driver.h>
49 #include <drm/ttm/ttm_placement.h>
50 #include <drm/ttm/ttm_range_manager.h>
51
52 #include <drm/amdgpu_drm.h>
53 #include <drm/drm_drv.h>
54
55 #include "amdgpu.h"
56 #include "amdgpu_object.h"
57 #include "amdgpu_trace.h"
58 #include "amdgpu_amdkfd.h"
59 #include "amdgpu_sdma.h"
60 #include "amdgpu_ras.h"
61 #include "amdgpu_atomfirmware.h"
62 #include "amdgpu_res_cursor.h"
63 #include "bif/bif_4_1_d.h"
64
65 MODULE_IMPORT_NS(DMA_BUF);
66
67 #define AMDGPU_TTM_VRAM_MAX_DW_READ     (size_t)128
68
69 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
70                                    struct ttm_tt *ttm,
71                                    struct ttm_resource *bo_mem);
72 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
73                                       struct ttm_tt *ttm);
74
75 static int amdgpu_ttm_init_on_chip(struct amdgpu_device *adev,
76                                     unsigned int type,
77                                     uint64_t size_in_page)
78 {
79         return ttm_range_man_init(&adev->mman.bdev, type,
80                                   false, size_in_page);
81 }
82
83 /**
84  * amdgpu_evict_flags - Compute placement flags
85  *
86  * @bo: The buffer object to evict
87  * @placement: Possible destination(s) for evicted BO
88  *
89  * Fill in placement data when ttm_bo_evict() is called
90  */
91 static void amdgpu_evict_flags(struct ttm_buffer_object *bo,
92                                 struct ttm_placement *placement)
93 {
94         struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
95         struct amdgpu_bo *abo;
96         static const struct ttm_place placements = {
97                 .fpfn = 0,
98                 .lpfn = 0,
99                 .mem_type = TTM_PL_SYSTEM,
100                 .flags = 0
101         };
102
103         /* Don't handle scatter gather BOs */
104         if (bo->type == ttm_bo_type_sg) {
105                 placement->num_placement = 0;
106                 placement->num_busy_placement = 0;
107                 return;
108         }
109
110         /* Object isn't an AMDGPU object so ignore */
111         if (!amdgpu_bo_is_amdgpu_bo(bo)) {
112                 placement->placement = &placements;
113                 placement->busy_placement = &placements;
114                 placement->num_placement = 1;
115                 placement->num_busy_placement = 1;
116                 return;
117         }
118
119         abo = ttm_to_amdgpu_bo(bo);
120         if (abo->flags & AMDGPU_GEM_CREATE_DISCARDABLE) {
121                 placement->num_placement = 0;
122                 placement->num_busy_placement = 0;
123                 return;
124         }
125
126         switch (bo->resource->mem_type) {
127         case AMDGPU_PL_GDS:
128         case AMDGPU_PL_GWS:
129         case AMDGPU_PL_OA:
130                 placement->num_placement = 0;
131                 placement->num_busy_placement = 0;
132                 return;
133
134         case TTM_PL_VRAM:
135                 if (!adev->mman.buffer_funcs_enabled) {
136                         /* Move to system memory */
137                         amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
138                 } else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) &&
139                            !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) &&
140                            amdgpu_bo_in_cpu_visible_vram(abo)) {
141
142                         /* Try evicting to the CPU inaccessible part of VRAM
143                          * first, but only set GTT as busy placement, so this
144                          * BO will be evicted to GTT rather than causing other
145                          * BOs to be evicted from VRAM
146                          */
147                         amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM |
148                                                         AMDGPU_GEM_DOMAIN_GTT |
149                                                         AMDGPU_GEM_DOMAIN_CPU);
150                         abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT;
151                         abo->placements[0].lpfn = 0;
152                         abo->placement.busy_placement = &abo->placements[1];
153                         abo->placement.num_busy_placement = 1;
154                 } else {
155                         /* Move to GTT memory */
156                         amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT |
157                                                         AMDGPU_GEM_DOMAIN_CPU);
158                 }
159                 break;
160         case TTM_PL_TT:
161         case AMDGPU_PL_PREEMPT:
162         default:
163                 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
164                 break;
165         }
166         *placement = abo->placement;
167 }
168
169 /**
170  * amdgpu_ttm_map_buffer - Map memory into the GART windows
171  * @bo: buffer object to map
172  * @mem: memory object to map
173  * @mm_cur: range to map
174  * @window: which GART window to use
175  * @ring: DMA ring to use for the copy
176  * @tmz: if we should setup a TMZ enabled mapping
177  * @size: in number of bytes to map, out number of bytes mapped
178  * @addr: resulting address inside the MC address space
179  *
180  * Setup one of the GART windows to access a specific piece of memory or return
181  * the physical address for local memory.
182  */
183 static int amdgpu_ttm_map_buffer(struct ttm_buffer_object *bo,
184                                  struct ttm_resource *mem,
185                                  struct amdgpu_res_cursor *mm_cur,
186                                  unsigned window, struct amdgpu_ring *ring,
187                                  bool tmz, uint64_t *size, uint64_t *addr)
188 {
189         struct amdgpu_device *adev = ring->adev;
190         unsigned offset, num_pages, num_dw, num_bytes;
191         uint64_t src_addr, dst_addr;
192         struct dma_fence *fence;
193         struct amdgpu_job *job;
194         void *cpu_addr;
195         uint64_t flags;
196         unsigned int i;
197         int r;
198
199         BUG_ON(adev->mman.buffer_funcs->copy_max_bytes <
200                AMDGPU_GTT_MAX_TRANSFER_SIZE * 8);
201
202         if (WARN_ON(mem->mem_type == AMDGPU_PL_PREEMPT))
203                 return -EINVAL;
204
205         /* Map only what can't be accessed directly */
206         if (!tmz && mem->start != AMDGPU_BO_INVALID_OFFSET) {
207                 *addr = amdgpu_ttm_domain_start(adev, mem->mem_type) +
208                         mm_cur->start;
209                 return 0;
210         }
211
212
213         /*
214          * If start begins at an offset inside the page, then adjust the size
215          * and addr accordingly
216          */
217         offset = mm_cur->start & ~PAGE_MASK;
218
219         num_pages = PFN_UP(*size + offset);
220         num_pages = min_t(uint32_t, num_pages, AMDGPU_GTT_MAX_TRANSFER_SIZE);
221
222         *size = min(*size, (uint64_t)num_pages * PAGE_SIZE - offset);
223
224         *addr = adev->gmc.gart_start;
225         *addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE *
226                 AMDGPU_GPU_PAGE_SIZE;
227         *addr += offset;
228
229         num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
230         num_bytes = num_pages * 8 * AMDGPU_GPU_PAGES_IN_CPU_PAGE;
231
232         r = amdgpu_job_alloc_with_ib(adev, num_dw * 4 + num_bytes,
233                                      AMDGPU_IB_POOL_DELAYED, &job);
234         if (r)
235                 return r;
236
237         src_addr = num_dw * 4;
238         src_addr += job->ibs[0].gpu_addr;
239
240         dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo);
241         dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8;
242         amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr,
243                                 dst_addr, num_bytes, false);
244
245         amdgpu_ring_pad_ib(ring, &job->ibs[0]);
246         WARN_ON(job->ibs[0].length_dw > num_dw);
247
248         flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, mem);
249         if (tmz)
250                 flags |= AMDGPU_PTE_TMZ;
251
252         cpu_addr = &job->ibs[0].ptr[num_dw];
253
254         if (mem->mem_type == TTM_PL_TT) {
255                 dma_addr_t *dma_addr;
256
257                 dma_addr = &bo->ttm->dma_address[mm_cur->start >> PAGE_SHIFT];
258                 amdgpu_gart_map(adev, 0, num_pages, dma_addr, flags, cpu_addr);
259         } else {
260                 dma_addr_t dma_address;
261
262                 dma_address = mm_cur->start;
263                 dma_address += adev->vm_manager.vram_base_offset;
264
265                 for (i = 0; i < num_pages; ++i) {
266                         amdgpu_gart_map(adev, i << PAGE_SHIFT, 1, &dma_address,
267                                         flags, cpu_addr);
268                         dma_address += PAGE_SIZE;
269                 }
270         }
271
272         r = amdgpu_job_submit(job, &adev->mman.entity,
273                               AMDGPU_FENCE_OWNER_UNDEFINED, &fence);
274         if (r)
275                 goto error_free;
276
277         dma_fence_put(fence);
278
279         return r;
280
281 error_free:
282         amdgpu_job_free(job);
283         return r;
284 }
285
286 /**
287  * amdgpu_ttm_copy_mem_to_mem - Helper function for copy
288  * @adev: amdgpu device
289  * @src: buffer/address where to read from
290  * @dst: buffer/address where to write to
291  * @size: number of bytes to copy
292  * @tmz: if a secure copy should be used
293  * @resv: resv object to sync to
294  * @f: Returns the last fence if multiple jobs are submitted.
295  *
296  * The function copies @size bytes from {src->mem + src->offset} to
297  * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a
298  * move and different for a BO to BO copy.
299  *
300  */
301 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev,
302                                const struct amdgpu_copy_mem *src,
303                                const struct amdgpu_copy_mem *dst,
304                                uint64_t size, bool tmz,
305                                struct dma_resv *resv,
306                                struct dma_fence **f)
307 {
308         struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
309         struct amdgpu_res_cursor src_mm, dst_mm;
310         struct dma_fence *fence = NULL;
311         int r = 0;
312
313         if (!adev->mman.buffer_funcs_enabled) {
314                 DRM_ERROR("Trying to move memory with ring turned off.\n");
315                 return -EINVAL;
316         }
317
318         amdgpu_res_first(src->mem, src->offset, size, &src_mm);
319         amdgpu_res_first(dst->mem, dst->offset, size, &dst_mm);
320
321         mutex_lock(&adev->mman.gtt_window_lock);
322         while (src_mm.remaining) {
323                 uint64_t from, to, cur_size;
324                 struct dma_fence *next;
325
326                 /* Never copy more than 256MiB at once to avoid a timeout */
327                 cur_size = min3(src_mm.size, dst_mm.size, 256ULL << 20);
328
329                 /* Map src to window 0 and dst to window 1. */
330                 r = amdgpu_ttm_map_buffer(src->bo, src->mem, &src_mm,
331                                           0, ring, tmz, &cur_size, &from);
332                 if (r)
333                         goto error;
334
335                 r = amdgpu_ttm_map_buffer(dst->bo, dst->mem, &dst_mm,
336                                           1, ring, tmz, &cur_size, &to);
337                 if (r)
338                         goto error;
339
340                 r = amdgpu_copy_buffer(ring, from, to, cur_size,
341                                        resv, &next, false, true, tmz);
342                 if (r)
343                         goto error;
344
345                 dma_fence_put(fence);
346                 fence = next;
347
348                 amdgpu_res_next(&src_mm, cur_size);
349                 amdgpu_res_next(&dst_mm, cur_size);
350         }
351 error:
352         mutex_unlock(&adev->mman.gtt_window_lock);
353         if (f)
354                 *f = dma_fence_get(fence);
355         dma_fence_put(fence);
356         return r;
357 }
358
359 /*
360  * amdgpu_move_blit - Copy an entire buffer to another buffer
361  *
362  * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to
363  * help move buffers to and from VRAM.
364  */
365 static int amdgpu_move_blit(struct ttm_buffer_object *bo,
366                             bool evict,
367                             struct ttm_resource *new_mem,
368                             struct ttm_resource *old_mem)
369 {
370         struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
371         struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
372         struct amdgpu_copy_mem src, dst;
373         struct dma_fence *fence = NULL;
374         int r;
375
376         src.bo = bo;
377         dst.bo = bo;
378         src.mem = old_mem;
379         dst.mem = new_mem;
380         src.offset = 0;
381         dst.offset = 0;
382
383         r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst,
384                                        new_mem->num_pages << PAGE_SHIFT,
385                                        amdgpu_bo_encrypted(abo),
386                                        bo->base.resv, &fence);
387         if (r)
388                 goto error;
389
390         /* clear the space being freed */
391         if (old_mem->mem_type == TTM_PL_VRAM &&
392             (abo->flags & AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) {
393                 struct dma_fence *wipe_fence = NULL;
394
395                 r = amdgpu_fill_buffer(abo, AMDGPU_POISON, NULL, &wipe_fence);
396                 if (r) {
397                         goto error;
398                 } else if (wipe_fence) {
399                         dma_fence_put(fence);
400                         fence = wipe_fence;
401                 }
402         }
403
404         /* Always block for VM page tables before committing the new location */
405         if (bo->type == ttm_bo_type_kernel)
406                 r = ttm_bo_move_accel_cleanup(bo, fence, true, false, new_mem);
407         else
408                 r = ttm_bo_move_accel_cleanup(bo, fence, evict, true, new_mem);
409         dma_fence_put(fence);
410         return r;
411
412 error:
413         if (fence)
414                 dma_fence_wait(fence, false);
415         dma_fence_put(fence);
416         return r;
417 }
418
419 /*
420  * amdgpu_mem_visible - Check that memory can be accessed by ttm_bo_move_memcpy
421  *
422  * Called by amdgpu_bo_move()
423  */
424 static bool amdgpu_mem_visible(struct amdgpu_device *adev,
425                                struct ttm_resource *mem)
426 {
427         uint64_t mem_size = (u64)mem->num_pages << PAGE_SHIFT;
428         struct amdgpu_res_cursor cursor;
429
430         if (mem->mem_type == TTM_PL_SYSTEM ||
431             mem->mem_type == TTM_PL_TT)
432                 return true;
433         if (mem->mem_type != TTM_PL_VRAM)
434                 return false;
435
436         amdgpu_res_first(mem, 0, mem_size, &cursor);
437
438         /* ttm_resource_ioremap only supports contiguous memory */
439         if (cursor.size != mem_size)
440                 return false;
441
442         return cursor.start + cursor.size <= adev->gmc.visible_vram_size;
443 }
444
445 /*
446  * amdgpu_bo_move - Move a buffer object to a new memory location
447  *
448  * Called by ttm_bo_handle_move_mem()
449  */
450 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict,
451                           struct ttm_operation_ctx *ctx,
452                           struct ttm_resource *new_mem,
453                           struct ttm_place *hop)
454 {
455         struct amdgpu_device *adev;
456         struct amdgpu_bo *abo;
457         struct ttm_resource *old_mem = bo->resource;
458         int r;
459
460         if (new_mem->mem_type == TTM_PL_TT ||
461             new_mem->mem_type == AMDGPU_PL_PREEMPT) {
462                 r = amdgpu_ttm_backend_bind(bo->bdev, bo->ttm, new_mem);
463                 if (r)
464                         return r;
465         }
466
467         /* Can't move a pinned BO */
468         abo = ttm_to_amdgpu_bo(bo);
469         if (WARN_ON_ONCE(abo->tbo.pin_count > 0))
470                 return -EINVAL;
471
472         adev = amdgpu_ttm_adev(bo->bdev);
473
474         if (old_mem->mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
475                 ttm_bo_move_null(bo, new_mem);
476                 goto out;
477         }
478         if (old_mem->mem_type == TTM_PL_SYSTEM &&
479             (new_mem->mem_type == TTM_PL_TT ||
480              new_mem->mem_type == AMDGPU_PL_PREEMPT)) {
481                 ttm_bo_move_null(bo, new_mem);
482                 goto out;
483         }
484         if ((old_mem->mem_type == TTM_PL_TT ||
485              old_mem->mem_type == AMDGPU_PL_PREEMPT) &&
486             new_mem->mem_type == TTM_PL_SYSTEM) {
487                 r = ttm_bo_wait_ctx(bo, ctx);
488                 if (r)
489                         return r;
490
491                 amdgpu_ttm_backend_unbind(bo->bdev, bo->ttm);
492                 ttm_resource_free(bo, &bo->resource);
493                 ttm_bo_assign_mem(bo, new_mem);
494                 goto out;
495         }
496
497         if (old_mem->mem_type == AMDGPU_PL_GDS ||
498             old_mem->mem_type == AMDGPU_PL_GWS ||
499             old_mem->mem_type == AMDGPU_PL_OA ||
500             new_mem->mem_type == AMDGPU_PL_GDS ||
501             new_mem->mem_type == AMDGPU_PL_GWS ||
502             new_mem->mem_type == AMDGPU_PL_OA) {
503                 /* Nothing to save here */
504                 ttm_bo_move_null(bo, new_mem);
505                 goto out;
506         }
507
508         if (bo->type == ttm_bo_type_device &&
509             new_mem->mem_type == TTM_PL_VRAM &&
510             old_mem->mem_type != TTM_PL_VRAM) {
511                 /* amdgpu_bo_fault_reserve_notify will re-set this if the CPU
512                  * accesses the BO after it's moved.
513                  */
514                 abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
515         }
516
517         if (adev->mman.buffer_funcs_enabled) {
518                 if (((old_mem->mem_type == TTM_PL_SYSTEM &&
519                       new_mem->mem_type == TTM_PL_VRAM) ||
520                      (old_mem->mem_type == TTM_PL_VRAM &&
521                       new_mem->mem_type == TTM_PL_SYSTEM))) {
522                         hop->fpfn = 0;
523                         hop->lpfn = 0;
524                         hop->mem_type = TTM_PL_TT;
525                         hop->flags = TTM_PL_FLAG_TEMPORARY;
526                         return -EMULTIHOP;
527                 }
528
529                 r = amdgpu_move_blit(bo, evict, new_mem, old_mem);
530         } else {
531                 r = -ENODEV;
532         }
533
534         if (r) {
535                 /* Check that all memory is CPU accessible */
536                 if (!amdgpu_mem_visible(adev, old_mem) ||
537                     !amdgpu_mem_visible(adev, new_mem)) {
538                         pr_err("Move buffer fallback to memcpy unavailable\n");
539                         return r;
540                 }
541
542                 r = ttm_bo_move_memcpy(bo, ctx, new_mem);
543                 if (r)
544                         return r;
545         }
546
547 out:
548         /* update statistics */
549         atomic64_add(bo->base.size, &adev->num_bytes_moved);
550         amdgpu_bo_move_notify(bo, evict, new_mem);
551         return 0;
552 }
553
554 /*
555  * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault
556  *
557  * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault()
558  */
559 static int amdgpu_ttm_io_mem_reserve(struct ttm_device *bdev,
560                                      struct ttm_resource *mem)
561 {
562         struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
563         size_t bus_size = (size_t)mem->num_pages << PAGE_SHIFT;
564
565         switch (mem->mem_type) {
566         case TTM_PL_SYSTEM:
567                 /* system memory */
568                 return 0;
569         case TTM_PL_TT:
570         case AMDGPU_PL_PREEMPT:
571                 break;
572         case TTM_PL_VRAM:
573                 mem->bus.offset = mem->start << PAGE_SHIFT;
574                 /* check if it's visible */
575                 if ((mem->bus.offset + bus_size) > adev->gmc.visible_vram_size)
576                         return -EINVAL;
577
578                 if (adev->mman.aper_base_kaddr &&
579                     mem->placement & TTM_PL_FLAG_CONTIGUOUS)
580                         mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr +
581                                         mem->bus.offset;
582
583                 mem->bus.offset += adev->gmc.aper_base;
584                 mem->bus.is_iomem = true;
585                 break;
586         default:
587                 return -EINVAL;
588         }
589         return 0;
590 }
591
592 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
593                                            unsigned long page_offset)
594 {
595         struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
596         struct amdgpu_res_cursor cursor;
597
598         amdgpu_res_first(bo->resource, (u64)page_offset << PAGE_SHIFT, 0,
599                          &cursor);
600         return (adev->gmc.aper_base + cursor.start) >> PAGE_SHIFT;
601 }
602
603 /**
604  * amdgpu_ttm_domain_start - Returns GPU start address
605  * @adev: amdgpu device object
606  * @type: type of the memory
607  *
608  * Returns:
609  * GPU start address of a memory domain
610  */
611
612 uint64_t amdgpu_ttm_domain_start(struct amdgpu_device *adev, uint32_t type)
613 {
614         switch (type) {
615         case TTM_PL_TT:
616                 return adev->gmc.gart_start;
617         case TTM_PL_VRAM:
618                 return adev->gmc.vram_start;
619         }
620
621         return 0;
622 }
623
624 /*
625  * TTM backend functions.
626  */
627 struct amdgpu_ttm_tt {
628         struct ttm_tt   ttm;
629         struct drm_gem_object   *gobj;
630         u64                     offset;
631         uint64_t                userptr;
632         struct task_struct      *usertask;
633         uint32_t                userflags;
634         bool                    bound;
635 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
636         struct hmm_range        *range;
637 #endif
638 };
639
640 #ifdef CONFIG_DRM_AMDGPU_USERPTR
641 /*
642  * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user
643  * memory and start HMM tracking CPU page table update
644  *
645  * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only
646  * once afterwards to stop HMM tracking
647  */
648 int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages)
649 {
650         struct ttm_tt *ttm = bo->tbo.ttm;
651         struct amdgpu_ttm_tt *gtt = (void *)ttm;
652         unsigned long start = gtt->userptr;
653         struct vm_area_struct *vma;
654         struct mm_struct *mm;
655         bool readonly;
656         int r = 0;
657
658         mm = bo->notifier.mm;
659         if (unlikely(!mm)) {
660                 DRM_DEBUG_DRIVER("BO is not registered?\n");
661                 return -EFAULT;
662         }
663
664         /* Another get_user_pages is running at the same time?? */
665         if (WARN_ON(gtt->range))
666                 return -EFAULT;
667
668         if (!mmget_not_zero(mm)) /* Happens during process shutdown */
669                 return -ESRCH;
670
671         mmap_read_lock(mm);
672         vma = vma_lookup(mm, start);
673         if (unlikely(!vma)) {
674                 r = -EFAULT;
675                 goto out_unlock;
676         }
677         if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) &&
678                 vma->vm_file)) {
679                 r = -EPERM;
680                 goto out_unlock;
681         }
682
683         readonly = amdgpu_ttm_tt_is_readonly(ttm);
684         r = amdgpu_hmm_range_get_pages(&bo->notifier, mm, pages, start,
685                                        ttm->num_pages, &gtt->range, readonly,
686                                        true, NULL);
687 out_unlock:
688         mmap_read_unlock(mm);
689         if (r)
690                 pr_debug("failed %d to get user pages 0x%lx\n", r, start);
691
692         mmput(mm);
693
694         return r;
695 }
696
697 /*
698  * amdgpu_ttm_tt_userptr_range_done - stop HMM track the CPU page table change
699  * Check if the pages backing this ttm range have been invalidated
700  *
701  * Returns: true if pages are still valid
702  */
703 bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm)
704 {
705         struct amdgpu_ttm_tt *gtt = (void *)ttm;
706         bool r = false;
707
708         if (!gtt || !gtt->userptr)
709                 return false;
710
711         DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%x\n",
712                 gtt->userptr, ttm->num_pages);
713
714         WARN_ONCE(!gtt->range || !gtt->range->hmm_pfns,
715                 "No user pages to check\n");
716
717         if (gtt->range) {
718                 /*
719                  * FIXME: Must always hold notifier_lock for this, and must
720                  * not ignore the return code.
721                  */
722                 r = amdgpu_hmm_range_get_pages_done(gtt->range);
723                 gtt->range = NULL;
724         }
725
726         return !r;
727 }
728 #endif
729
730 /*
731  * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary.
732  *
733  * Called by amdgpu_cs_list_validate(). This creates the page list
734  * that backs user memory and will ultimately be mapped into the device
735  * address space.
736  */
737 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages)
738 {
739         unsigned long i;
740
741         for (i = 0; i < ttm->num_pages; ++i)
742                 ttm->pages[i] = pages ? pages[i] : NULL;
743 }
744
745 /*
746  * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages
747  *
748  * Called by amdgpu_ttm_backend_bind()
749  **/
750 static int amdgpu_ttm_tt_pin_userptr(struct ttm_device *bdev,
751                                      struct ttm_tt *ttm)
752 {
753         struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
754         struct amdgpu_ttm_tt *gtt = (void *)ttm;
755         int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
756         enum dma_data_direction direction = write ?
757                 DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
758         int r;
759
760         /* Allocate an SG array and squash pages into it */
761         r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0,
762                                       (u64)ttm->num_pages << PAGE_SHIFT,
763                                       GFP_KERNEL);
764         if (r)
765                 goto release_sg;
766
767         /* Map SG to device */
768         r = dma_map_sgtable(adev->dev, ttm->sg, direction, 0);
769         if (r)
770                 goto release_sg;
771
772         /* convert SG to linear array of pages and dma addresses */
773         drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
774                                        ttm->num_pages);
775
776         return 0;
777
778 release_sg:
779         kfree(ttm->sg);
780         ttm->sg = NULL;
781         return r;
782 }
783
784 /*
785  * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages
786  */
787 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_device *bdev,
788                                         struct ttm_tt *ttm)
789 {
790         struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
791         struct amdgpu_ttm_tt *gtt = (void *)ttm;
792         int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
793         enum dma_data_direction direction = write ?
794                 DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
795
796         /* double check that we don't free the table twice */
797         if (!ttm->sg || !ttm->sg->sgl)
798                 return;
799
800         /* unmap the pages mapped to the device */
801         dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0);
802         sg_free_table(ttm->sg);
803
804 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
805         if (gtt->range) {
806                 unsigned long i;
807
808                 for (i = 0; i < ttm->num_pages; i++) {
809                         if (ttm->pages[i] !=
810                             hmm_pfn_to_page(gtt->range->hmm_pfns[i]))
811                                 break;
812                 }
813
814                 WARN((i == ttm->num_pages), "Missing get_user_page_done\n");
815         }
816 #endif
817 }
818
819 static void amdgpu_ttm_gart_bind(struct amdgpu_device *adev,
820                                  struct ttm_buffer_object *tbo,
821                                  uint64_t flags)
822 {
823         struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo);
824         struct ttm_tt *ttm = tbo->ttm;
825         struct amdgpu_ttm_tt *gtt = (void *)ttm;
826
827         if (amdgpu_bo_encrypted(abo))
828                 flags |= AMDGPU_PTE_TMZ;
829
830         if (abo->flags & AMDGPU_GEM_CREATE_CP_MQD_GFX9) {
831                 uint64_t page_idx = 1;
832
833                 amdgpu_gart_bind(adev, gtt->offset, page_idx,
834                                  gtt->ttm.dma_address, flags);
835
836                 /* The memory type of the first page defaults to UC. Now
837                  * modify the memory type to NC from the second page of
838                  * the BO onward.
839                  */
840                 flags &= ~AMDGPU_PTE_MTYPE_VG10_MASK;
841                 flags |= AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC);
842
843                 amdgpu_gart_bind(adev, gtt->offset + (page_idx << PAGE_SHIFT),
844                                  ttm->num_pages - page_idx,
845                                  &(gtt->ttm.dma_address[page_idx]), flags);
846         } else {
847                 amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
848                                  gtt->ttm.dma_address, flags);
849         }
850 }
851
852 /*
853  * amdgpu_ttm_backend_bind - Bind GTT memory
854  *
855  * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem().
856  * This handles binding GTT memory to the device address space.
857  */
858 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
859                                    struct ttm_tt *ttm,
860                                    struct ttm_resource *bo_mem)
861 {
862         struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
863         struct amdgpu_ttm_tt *gtt = (void*)ttm;
864         uint64_t flags;
865         int r;
866
867         if (!bo_mem)
868                 return -EINVAL;
869
870         if (gtt->bound)
871                 return 0;
872
873         if (gtt->userptr) {
874                 r = amdgpu_ttm_tt_pin_userptr(bdev, ttm);
875                 if (r) {
876                         DRM_ERROR("failed to pin userptr\n");
877                         return r;
878                 }
879         } else if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) {
880                 if (!ttm->sg) {
881                         struct dma_buf_attachment *attach;
882                         struct sg_table *sgt;
883
884                         attach = gtt->gobj->import_attach;
885                         sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL);
886                         if (IS_ERR(sgt))
887                                 return PTR_ERR(sgt);
888
889                         ttm->sg = sgt;
890                 }
891
892                 drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
893                                                ttm->num_pages);
894         }
895
896         if (!ttm->num_pages) {
897                 WARN(1, "nothing to bind %u pages for mreg %p back %p!\n",
898                      ttm->num_pages, bo_mem, ttm);
899         }
900
901         if (bo_mem->mem_type != TTM_PL_TT ||
902             !amdgpu_gtt_mgr_has_gart_addr(bo_mem)) {
903                 gtt->offset = AMDGPU_BO_INVALID_OFFSET;
904                 return 0;
905         }
906
907         /* compute PTE flags relevant to this BO memory */
908         flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem);
909
910         /* bind pages into GART page tables */
911         gtt->offset = (u64)bo_mem->start << PAGE_SHIFT;
912         amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
913                          gtt->ttm.dma_address, flags);
914         gtt->bound = true;
915         return 0;
916 }
917
918 /*
919  * amdgpu_ttm_alloc_gart - Make sure buffer object is accessible either
920  * through AGP or GART aperture.
921  *
922  * If bo is accessible through AGP aperture, then use AGP aperture
923  * to access bo; otherwise allocate logical space in GART aperture
924  * and map bo to GART aperture.
925  */
926 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo)
927 {
928         struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
929         struct ttm_operation_ctx ctx = { false, false };
930         struct amdgpu_ttm_tt *gtt = (void *)bo->ttm;
931         struct ttm_placement placement;
932         struct ttm_place placements;
933         struct ttm_resource *tmp;
934         uint64_t addr, flags;
935         int r;
936
937         if (bo->resource->start != AMDGPU_BO_INVALID_OFFSET)
938                 return 0;
939
940         addr = amdgpu_gmc_agp_addr(bo);
941         if (addr != AMDGPU_BO_INVALID_OFFSET) {
942                 bo->resource->start = addr >> PAGE_SHIFT;
943                 return 0;
944         }
945
946         /* allocate GART space */
947         placement.num_placement = 1;
948         placement.placement = &placements;
949         placement.num_busy_placement = 1;
950         placement.busy_placement = &placements;
951         placements.fpfn = 0;
952         placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT;
953         placements.mem_type = TTM_PL_TT;
954         placements.flags = bo->resource->placement;
955
956         r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx);
957         if (unlikely(r))
958                 return r;
959
960         /* compute PTE flags for this buffer object */
961         flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, tmp);
962
963         /* Bind pages */
964         gtt->offset = (u64)tmp->start << PAGE_SHIFT;
965         amdgpu_ttm_gart_bind(adev, bo, flags);
966         amdgpu_gart_invalidate_tlb(adev);
967         ttm_resource_free(bo, &bo->resource);
968         ttm_bo_assign_mem(bo, tmp);
969
970         return 0;
971 }
972
973 /*
974  * amdgpu_ttm_recover_gart - Rebind GTT pages
975  *
976  * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to
977  * rebind GTT pages during a GPU reset.
978  */
979 void amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo)
980 {
981         struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev);
982         uint64_t flags;
983
984         if (!tbo->ttm)
985                 return;
986
987         flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, tbo->resource);
988         amdgpu_ttm_gart_bind(adev, tbo, flags);
989 }
990
991 /*
992  * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages
993  *
994  * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and
995  * ttm_tt_destroy().
996  */
997 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
998                                       struct ttm_tt *ttm)
999 {
1000         struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1001         struct amdgpu_ttm_tt *gtt = (void *)ttm;
1002
1003         /* if the pages have userptr pinning then clear that first */
1004         if (gtt->userptr) {
1005                 amdgpu_ttm_tt_unpin_userptr(bdev, ttm);
1006         } else if (ttm->sg && gtt->gobj->import_attach) {
1007                 struct dma_buf_attachment *attach;
1008
1009                 attach = gtt->gobj->import_attach;
1010                 dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL);
1011                 ttm->sg = NULL;
1012         }
1013
1014         if (!gtt->bound)
1015                 return;
1016
1017         if (gtt->offset == AMDGPU_BO_INVALID_OFFSET)
1018                 return;
1019
1020         /* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */
1021         amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages);
1022         gtt->bound = false;
1023 }
1024
1025 static void amdgpu_ttm_backend_destroy(struct ttm_device *bdev,
1026                                        struct ttm_tt *ttm)
1027 {
1028         struct amdgpu_ttm_tt *gtt = (void *)ttm;
1029
1030         if (gtt->usertask)
1031                 put_task_struct(gtt->usertask);
1032
1033         ttm_tt_fini(&gtt->ttm);
1034         kfree(gtt);
1035 }
1036
1037 /**
1038  * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO
1039  *
1040  * @bo: The buffer object to create a GTT ttm_tt object around
1041  * @page_flags: Page flags to be added to the ttm_tt object
1042  *
1043  * Called by ttm_tt_create().
1044  */
1045 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo,
1046                                            uint32_t page_flags)
1047 {
1048         struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1049         struct amdgpu_ttm_tt *gtt;
1050         enum ttm_caching caching;
1051
1052         gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL);
1053         if (gtt == NULL) {
1054                 return NULL;
1055         }
1056         gtt->gobj = &bo->base;
1057
1058         if (abo->flags & AMDGPU_GEM_CREATE_CPU_GTT_USWC)
1059                 caching = ttm_write_combined;
1060         else
1061                 caching = ttm_cached;
1062
1063         /* allocate space for the uninitialized page entries */
1064         if (ttm_sg_tt_init(&gtt->ttm, bo, page_flags, caching)) {
1065                 kfree(gtt);
1066                 return NULL;
1067         }
1068         return &gtt->ttm;
1069 }
1070
1071 /*
1072  * amdgpu_ttm_tt_populate - Map GTT pages visible to the device
1073  *
1074  * Map the pages of a ttm_tt object to an address space visible
1075  * to the underlying device.
1076  */
1077 static int amdgpu_ttm_tt_populate(struct ttm_device *bdev,
1078                                   struct ttm_tt *ttm,
1079                                   struct ttm_operation_ctx *ctx)
1080 {
1081         struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1082         struct amdgpu_ttm_tt *gtt = (void *)ttm;
1083         pgoff_t i;
1084         int ret;
1085
1086         /* user pages are bound by amdgpu_ttm_tt_pin_userptr() */
1087         if (gtt->userptr) {
1088                 ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL);
1089                 if (!ttm->sg)
1090                         return -ENOMEM;
1091                 return 0;
1092         }
1093
1094         if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL)
1095                 return 0;
1096
1097         ret = ttm_pool_alloc(&adev->mman.bdev.pool, ttm, ctx);
1098         if (ret)
1099                 return ret;
1100
1101         for (i = 0; i < ttm->num_pages; ++i)
1102                 ttm->pages[i]->mapping = bdev->dev_mapping;
1103
1104         return 0;
1105 }
1106
1107 /*
1108  * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays
1109  *
1110  * Unmaps pages of a ttm_tt object from the device address space and
1111  * unpopulates the page array backing it.
1112  */
1113 static void amdgpu_ttm_tt_unpopulate(struct ttm_device *bdev,
1114                                      struct ttm_tt *ttm)
1115 {
1116         struct amdgpu_ttm_tt *gtt = (void *)ttm;
1117         struct amdgpu_device *adev;
1118         pgoff_t i;
1119
1120         amdgpu_ttm_backend_unbind(bdev, ttm);
1121
1122         if (gtt->userptr) {
1123                 amdgpu_ttm_tt_set_user_pages(ttm, NULL);
1124                 kfree(ttm->sg);
1125                 ttm->sg = NULL;
1126                 return;
1127         }
1128
1129         if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL)
1130                 return;
1131
1132         for (i = 0; i < ttm->num_pages; ++i)
1133                 ttm->pages[i]->mapping = NULL;
1134
1135         adev = amdgpu_ttm_adev(bdev);
1136         return ttm_pool_free(&adev->mman.bdev.pool, ttm);
1137 }
1138
1139 /**
1140  * amdgpu_ttm_tt_get_userptr - Return the userptr GTT ttm_tt for the current
1141  * task
1142  *
1143  * @tbo: The ttm_buffer_object that contains the userptr
1144  * @user_addr:  The returned value
1145  */
1146 int amdgpu_ttm_tt_get_userptr(const struct ttm_buffer_object *tbo,
1147                               uint64_t *user_addr)
1148 {
1149         struct amdgpu_ttm_tt *gtt;
1150
1151         if (!tbo->ttm)
1152                 return -EINVAL;
1153
1154         gtt = (void *)tbo->ttm;
1155         *user_addr = gtt->userptr;
1156         return 0;
1157 }
1158
1159 /**
1160  * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current
1161  * task
1162  *
1163  * @bo: The ttm_buffer_object to bind this userptr to
1164  * @addr:  The address in the current tasks VM space to use
1165  * @flags: Requirements of userptr object.
1166  *
1167  * Called by amdgpu_gem_userptr_ioctl() to bind userptr pages
1168  * to current task
1169  */
1170 int amdgpu_ttm_tt_set_userptr(struct ttm_buffer_object *bo,
1171                               uint64_t addr, uint32_t flags)
1172 {
1173         struct amdgpu_ttm_tt *gtt;
1174
1175         if (!bo->ttm) {
1176                 /* TODO: We want a separate TTM object type for userptrs */
1177                 bo->ttm = amdgpu_ttm_tt_create(bo, 0);
1178                 if (bo->ttm == NULL)
1179                         return -ENOMEM;
1180         }
1181
1182         /* Set TTM_TT_FLAG_EXTERNAL before populate but after create. */
1183         bo->ttm->page_flags |= TTM_TT_FLAG_EXTERNAL;
1184
1185         gtt = (void *)bo->ttm;
1186         gtt->userptr = addr;
1187         gtt->userflags = flags;
1188
1189         if (gtt->usertask)
1190                 put_task_struct(gtt->usertask);
1191         gtt->usertask = current->group_leader;
1192         get_task_struct(gtt->usertask);
1193
1194         return 0;
1195 }
1196
1197 /*
1198  * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object
1199  */
1200 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm)
1201 {
1202         struct amdgpu_ttm_tt *gtt = (void *)ttm;
1203
1204         if (gtt == NULL)
1205                 return NULL;
1206
1207         if (gtt->usertask == NULL)
1208                 return NULL;
1209
1210         return gtt->usertask->mm;
1211 }
1212
1213 /*
1214  * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an
1215  * address range for the current task.
1216  *
1217  */
1218 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start,
1219                                   unsigned long end, unsigned long *userptr)
1220 {
1221         struct amdgpu_ttm_tt *gtt = (void *)ttm;
1222         unsigned long size;
1223
1224         if (gtt == NULL || !gtt->userptr)
1225                 return false;
1226
1227         /* Return false if no part of the ttm_tt object lies within
1228          * the range
1229          */
1230         size = (unsigned long)gtt->ttm.num_pages * PAGE_SIZE;
1231         if (gtt->userptr > end || gtt->userptr + size <= start)
1232                 return false;
1233
1234         if (userptr)
1235                 *userptr = gtt->userptr;
1236         return true;
1237 }
1238
1239 /*
1240  * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr?
1241  */
1242 bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm)
1243 {
1244         struct amdgpu_ttm_tt *gtt = (void *)ttm;
1245
1246         if (gtt == NULL || !gtt->userptr)
1247                 return false;
1248
1249         return true;
1250 }
1251
1252 /*
1253  * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only?
1254  */
1255 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm)
1256 {
1257         struct amdgpu_ttm_tt *gtt = (void *)ttm;
1258
1259         if (gtt == NULL)
1260                 return false;
1261
1262         return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1263 }
1264
1265 /**
1266  * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object
1267  *
1268  * @ttm: The ttm_tt object to compute the flags for
1269  * @mem: The memory registry backing this ttm_tt object
1270  *
1271  * Figure out the flags to use for a VM PDE (Page Directory Entry).
1272  */
1273 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_resource *mem)
1274 {
1275         uint64_t flags = 0;
1276
1277         if (mem && mem->mem_type != TTM_PL_SYSTEM)
1278                 flags |= AMDGPU_PTE_VALID;
1279
1280         if (mem && (mem->mem_type == TTM_PL_TT ||
1281                     mem->mem_type == AMDGPU_PL_PREEMPT)) {
1282                 flags |= AMDGPU_PTE_SYSTEM;
1283
1284                 if (ttm->caching == ttm_cached)
1285                         flags |= AMDGPU_PTE_SNOOPED;
1286         }
1287
1288         if (mem && mem->mem_type == TTM_PL_VRAM &&
1289                         mem->bus.caching == ttm_cached)
1290                 flags |= AMDGPU_PTE_SNOOPED;
1291
1292         return flags;
1293 }
1294
1295 /**
1296  * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object
1297  *
1298  * @adev: amdgpu_device pointer
1299  * @ttm: The ttm_tt object to compute the flags for
1300  * @mem: The memory registry backing this ttm_tt object
1301  *
1302  * Figure out the flags to use for a VM PTE (Page Table Entry).
1303  */
1304 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm,
1305                                  struct ttm_resource *mem)
1306 {
1307         uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem);
1308
1309         flags |= adev->gart.gart_pte_flags;
1310         flags |= AMDGPU_PTE_READABLE;
1311
1312         if (!amdgpu_ttm_tt_is_readonly(ttm))
1313                 flags |= AMDGPU_PTE_WRITEABLE;
1314
1315         return flags;
1316 }
1317
1318 /*
1319  * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer
1320  * object.
1321  *
1322  * Return true if eviction is sensible. Called by ttm_mem_evict_first() on
1323  * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until
1324  * it can find space for a new object and by ttm_bo_force_list_clean() which is
1325  * used to clean out a memory space.
1326  */
1327 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
1328                                             const struct ttm_place *place)
1329 {
1330         unsigned long num_pages = bo->resource->num_pages;
1331         struct dma_resv_iter resv_cursor;
1332         struct amdgpu_res_cursor cursor;
1333         struct dma_fence *f;
1334
1335         /* Swapout? */
1336         if (bo->resource->mem_type == TTM_PL_SYSTEM)
1337                 return true;
1338
1339         if (bo->type == ttm_bo_type_kernel &&
1340             !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo)))
1341                 return false;
1342
1343         /* If bo is a KFD BO, check if the bo belongs to the current process.
1344          * If true, then return false as any KFD process needs all its BOs to
1345          * be resident to run successfully
1346          */
1347         dma_resv_for_each_fence(&resv_cursor, bo->base.resv,
1348                                 DMA_RESV_USAGE_BOOKKEEP, f) {
1349                 if (amdkfd_fence_check_mm(f, current->mm))
1350                         return false;
1351         }
1352
1353         switch (bo->resource->mem_type) {
1354         case AMDGPU_PL_PREEMPT:
1355                 /* Preemptible BOs don't own system resources managed by the
1356                  * driver (pages, VRAM, GART space). They point to resources
1357                  * owned by someone else (e.g. pageable memory in user mode
1358                  * or a DMABuf). They are used in a preemptible context so we
1359                  * can guarantee no deadlocks and good QoS in case of MMU
1360                  * notifiers or DMABuf move notifiers from the resource owner.
1361                  */
1362                 return false;
1363         case TTM_PL_TT:
1364                 if (amdgpu_bo_is_amdgpu_bo(bo) &&
1365                     amdgpu_bo_encrypted(ttm_to_amdgpu_bo(bo)))
1366                         return false;
1367                 return true;
1368
1369         case TTM_PL_VRAM:
1370                 /* Check each drm MM node individually */
1371                 amdgpu_res_first(bo->resource, 0, (u64)num_pages << PAGE_SHIFT,
1372                                  &cursor);
1373                 while (cursor.remaining) {
1374                         if (place->fpfn < PFN_DOWN(cursor.start + cursor.size)
1375                             && !(place->lpfn &&
1376                                  place->lpfn <= PFN_DOWN(cursor.start)))
1377                                 return true;
1378
1379                         amdgpu_res_next(&cursor, cursor.size);
1380                 }
1381                 return false;
1382
1383         default:
1384                 break;
1385         }
1386
1387         return ttm_bo_eviction_valuable(bo, place);
1388 }
1389
1390 static void amdgpu_ttm_vram_mm_access(struct amdgpu_device *adev, loff_t pos,
1391                                       void *buf, size_t size, bool write)
1392 {
1393         while (size) {
1394                 uint64_t aligned_pos = ALIGN_DOWN(pos, 4);
1395                 uint64_t bytes = 4 - (pos & 0x3);
1396                 uint32_t shift = (pos & 0x3) * 8;
1397                 uint32_t mask = 0xffffffff << shift;
1398                 uint32_t value = 0;
1399
1400                 if (size < bytes) {
1401                         mask &= 0xffffffff >> (bytes - size) * 8;
1402                         bytes = size;
1403                 }
1404
1405                 if (mask != 0xffffffff) {
1406                         amdgpu_device_mm_access(adev, aligned_pos, &value, 4, false);
1407                         if (write) {
1408                                 value &= ~mask;
1409                                 value |= (*(uint32_t *)buf << shift) & mask;
1410                                 amdgpu_device_mm_access(adev, aligned_pos, &value, 4, true);
1411                         } else {
1412                                 value = (value & mask) >> shift;
1413                                 memcpy(buf, &value, bytes);
1414                         }
1415                 } else {
1416                         amdgpu_device_mm_access(adev, aligned_pos, buf, 4, write);
1417                 }
1418
1419                 pos += bytes;
1420                 buf += bytes;
1421                 size -= bytes;
1422         }
1423 }
1424
1425 static int amdgpu_ttm_access_memory_sdma(struct ttm_buffer_object *bo,
1426                                         unsigned long offset, void *buf, int len, int write)
1427 {
1428         struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1429         struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1430         struct amdgpu_res_cursor src_mm;
1431         struct amdgpu_job *job;
1432         struct dma_fence *fence;
1433         uint64_t src_addr, dst_addr;
1434         unsigned int num_dw;
1435         int r, idx;
1436
1437         if (len != PAGE_SIZE)
1438                 return -EINVAL;
1439
1440         if (!adev->mman.sdma_access_ptr)
1441                 return -EACCES;
1442
1443         if (!drm_dev_enter(adev_to_drm(adev), &idx))
1444                 return -ENODEV;
1445
1446         if (write)
1447                 memcpy(adev->mman.sdma_access_ptr, buf, len);
1448
1449         num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
1450         r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, AMDGPU_IB_POOL_DELAYED, &job);
1451         if (r)
1452                 goto out;
1453
1454         amdgpu_res_first(abo->tbo.resource, offset, len, &src_mm);
1455         src_addr = amdgpu_ttm_domain_start(adev, bo->resource->mem_type) + src_mm.start;
1456         dst_addr = amdgpu_bo_gpu_offset(adev->mman.sdma_access_bo);
1457         if (write)
1458                 swap(src_addr, dst_addr);
1459
1460         amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, dst_addr, PAGE_SIZE, false);
1461
1462         amdgpu_ring_pad_ib(adev->mman.buffer_funcs_ring, &job->ibs[0]);
1463         WARN_ON(job->ibs[0].length_dw > num_dw);
1464
1465         r = amdgpu_job_submit(job, &adev->mman.entity, AMDGPU_FENCE_OWNER_UNDEFINED, &fence);
1466         if (r) {
1467                 amdgpu_job_free(job);
1468                 goto out;
1469         }
1470
1471         if (!dma_fence_wait_timeout(fence, false, adev->sdma_timeout))
1472                 r = -ETIMEDOUT;
1473         dma_fence_put(fence);
1474
1475         if (!(r || write))
1476                 memcpy(buf, adev->mman.sdma_access_ptr, len);
1477 out:
1478         drm_dev_exit(idx);
1479         return r;
1480 }
1481
1482 /**
1483  * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object.
1484  *
1485  * @bo:  The buffer object to read/write
1486  * @offset:  Offset into buffer object
1487  * @buf:  Secondary buffer to write/read from
1488  * @len: Length in bytes of access
1489  * @write:  true if writing
1490  *
1491  * This is used to access VRAM that backs a buffer object via MMIO
1492  * access for debugging purposes.
1493  */
1494 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo,
1495                                     unsigned long offset, void *buf, int len,
1496                                     int write)
1497 {
1498         struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1499         struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1500         struct amdgpu_res_cursor cursor;
1501         int ret = 0;
1502
1503         if (bo->resource->mem_type != TTM_PL_VRAM)
1504                 return -EIO;
1505
1506         if (amdgpu_device_has_timeouts_enabled(adev) &&
1507                         !amdgpu_ttm_access_memory_sdma(bo, offset, buf, len, write))
1508                 return len;
1509
1510         amdgpu_res_first(bo->resource, offset, len, &cursor);
1511         while (cursor.remaining) {
1512                 size_t count, size = cursor.size;
1513                 loff_t pos = cursor.start;
1514
1515                 count = amdgpu_device_aper_access(adev, pos, buf, size, write);
1516                 size -= count;
1517                 if (size) {
1518                         /* using MM to access rest vram and handle un-aligned address */
1519                         pos += count;
1520                         buf += count;
1521                         amdgpu_ttm_vram_mm_access(adev, pos, buf, size, write);
1522                 }
1523
1524                 ret += cursor.size;
1525                 buf += cursor.size;
1526                 amdgpu_res_next(&cursor, cursor.size);
1527         }
1528
1529         return ret;
1530 }
1531
1532 static void
1533 amdgpu_bo_delete_mem_notify(struct ttm_buffer_object *bo)
1534 {
1535         amdgpu_bo_move_notify(bo, false, NULL);
1536 }
1537
1538 static struct ttm_device_funcs amdgpu_bo_driver = {
1539         .ttm_tt_create = &amdgpu_ttm_tt_create,
1540         .ttm_tt_populate = &amdgpu_ttm_tt_populate,
1541         .ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate,
1542         .ttm_tt_destroy = &amdgpu_ttm_backend_destroy,
1543         .eviction_valuable = amdgpu_ttm_bo_eviction_valuable,
1544         .evict_flags = &amdgpu_evict_flags,
1545         .move = &amdgpu_bo_move,
1546         .delete_mem_notify = &amdgpu_bo_delete_mem_notify,
1547         .release_notify = &amdgpu_bo_release_notify,
1548         .io_mem_reserve = &amdgpu_ttm_io_mem_reserve,
1549         .io_mem_pfn = amdgpu_ttm_io_mem_pfn,
1550         .access_memory = &amdgpu_ttm_access_memory,
1551 };
1552
1553 /*
1554  * Firmware Reservation functions
1555  */
1556 /**
1557  * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram
1558  *
1559  * @adev: amdgpu_device pointer
1560  *
1561  * free fw reserved vram if it has been reserved.
1562  */
1563 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev)
1564 {
1565         amdgpu_bo_free_kernel(&adev->mman.fw_vram_usage_reserved_bo,
1566                 NULL, &adev->mman.fw_vram_usage_va);
1567 }
1568
1569 /**
1570  * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw
1571  *
1572  * @adev: amdgpu_device pointer
1573  *
1574  * create bo vram reservation from fw.
1575  */
1576 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev)
1577 {
1578         uint64_t vram_size = adev->gmc.visible_vram_size;
1579
1580         adev->mman.fw_vram_usage_va = NULL;
1581         adev->mman.fw_vram_usage_reserved_bo = NULL;
1582
1583         if (adev->mman.fw_vram_usage_size == 0 ||
1584             adev->mman.fw_vram_usage_size > vram_size)
1585                 return 0;
1586
1587         return amdgpu_bo_create_kernel_at(adev,
1588                                           adev->mman.fw_vram_usage_start_offset,
1589                                           adev->mman.fw_vram_usage_size,
1590                                           AMDGPU_GEM_DOMAIN_VRAM,
1591                                           &adev->mman.fw_vram_usage_reserved_bo,
1592                                           &adev->mman.fw_vram_usage_va);
1593 }
1594
1595 /*
1596  * Memoy training reservation functions
1597  */
1598
1599 /**
1600  * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram
1601  *
1602  * @adev: amdgpu_device pointer
1603  *
1604  * free memory training reserved vram if it has been reserved.
1605  */
1606 static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev)
1607 {
1608         struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1609
1610         ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT;
1611         amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL);
1612         ctx->c2p_bo = NULL;
1613
1614         return 0;
1615 }
1616
1617 static void amdgpu_ttm_training_data_block_init(struct amdgpu_device *adev)
1618 {
1619         struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1620
1621         memset(ctx, 0, sizeof(*ctx));
1622
1623         ctx->c2p_train_data_offset =
1624                 ALIGN((adev->gmc.mc_vram_size - adev->mman.discovery_tmr_size - SZ_1M), SZ_1M);
1625         ctx->p2c_train_data_offset =
1626                 (adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET);
1627         ctx->train_data_size =
1628                 GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES;
1629
1630         DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n",
1631                         ctx->train_data_size,
1632                         ctx->p2c_train_data_offset,
1633                         ctx->c2p_train_data_offset);
1634 }
1635
1636 /*
1637  * reserve TMR memory at the top of VRAM which holds
1638  * IP Discovery data and is protected by PSP.
1639  */
1640 static int amdgpu_ttm_reserve_tmr(struct amdgpu_device *adev)
1641 {
1642         int ret;
1643         struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1644         bool mem_train_support = false;
1645
1646         if (!amdgpu_sriov_vf(adev)) {
1647                 if (amdgpu_atomfirmware_mem_training_supported(adev))
1648                         mem_train_support = true;
1649                 else
1650                         DRM_DEBUG("memory training does not support!\n");
1651         }
1652
1653         /*
1654          * Query reserved tmr size through atom firmwareinfo for Sienna_Cichlid and onwards for all
1655          * the use cases (IP discovery/G6 memory training/profiling/diagnostic data.etc)
1656          *
1657          * Otherwise, fallback to legacy approach to check and reserve tmr block for ip
1658          * discovery data and G6 memory training data respectively
1659          */
1660         adev->mman.discovery_tmr_size =
1661                 amdgpu_atomfirmware_get_fw_reserved_fb_size(adev);
1662         if (!adev->mman.discovery_tmr_size)
1663                 adev->mman.discovery_tmr_size = DISCOVERY_TMR_OFFSET;
1664
1665         if (mem_train_support) {
1666                 /* reserve vram for mem train according to TMR location */
1667                 amdgpu_ttm_training_data_block_init(adev);
1668                 ret = amdgpu_bo_create_kernel_at(adev,
1669                                          ctx->c2p_train_data_offset,
1670                                          ctx->train_data_size,
1671                                          AMDGPU_GEM_DOMAIN_VRAM,
1672                                          &ctx->c2p_bo,
1673                                          NULL);
1674                 if (ret) {
1675                         DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret);
1676                         amdgpu_ttm_training_reserve_vram_fini(adev);
1677                         return ret;
1678                 }
1679                 ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS;
1680         }
1681
1682         ret = amdgpu_bo_create_kernel_at(adev,
1683                                 adev->gmc.real_vram_size - adev->mman.discovery_tmr_size,
1684                                 adev->mman.discovery_tmr_size,
1685                                 AMDGPU_GEM_DOMAIN_VRAM,
1686                                 &adev->mman.discovery_memory,
1687                                 NULL);
1688         if (ret) {
1689                 DRM_ERROR("alloc tmr failed(%d)!\n", ret);
1690                 amdgpu_bo_free_kernel(&adev->mman.discovery_memory, NULL, NULL);
1691                 return ret;
1692         }
1693
1694         return 0;
1695 }
1696
1697 /*
1698  * amdgpu_ttm_init - Init the memory management (ttm) as well as various
1699  * gtt/vram related fields.
1700  *
1701  * This initializes all of the memory space pools that the TTM layer
1702  * will need such as the GTT space (system memory mapped to the device),
1703  * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which
1704  * can be mapped per VMID.
1705  */
1706 int amdgpu_ttm_init(struct amdgpu_device *adev)
1707 {
1708         uint64_t gtt_size;
1709         int r;
1710         u64 vis_vram_limit;
1711
1712         mutex_init(&adev->mman.gtt_window_lock);
1713
1714         /* No others user of address space so set it to 0 */
1715         r = ttm_device_init(&adev->mman.bdev, &amdgpu_bo_driver, adev->dev,
1716                                adev_to_drm(adev)->anon_inode->i_mapping,
1717                                adev_to_drm(adev)->vma_offset_manager,
1718                                adev->need_swiotlb,
1719                                dma_addressing_limited(adev->dev));
1720         if (r) {
1721                 DRM_ERROR("failed initializing buffer object driver(%d).\n", r);
1722                 return r;
1723         }
1724         adev->mman.initialized = true;
1725
1726         /* Initialize VRAM pool with all of VRAM divided into pages */
1727         r = amdgpu_vram_mgr_init(adev);
1728         if (r) {
1729                 DRM_ERROR("Failed initializing VRAM heap.\n");
1730                 return r;
1731         }
1732
1733         /* Reduce size of CPU-visible VRAM if requested */
1734         vis_vram_limit = (u64)amdgpu_vis_vram_limit * 1024 * 1024;
1735         if (amdgpu_vis_vram_limit > 0 &&
1736             vis_vram_limit <= adev->gmc.visible_vram_size)
1737                 adev->gmc.visible_vram_size = vis_vram_limit;
1738
1739         /* Change the size here instead of the init above so only lpfn is affected */
1740         amdgpu_ttm_set_buffer_funcs_status(adev, false);
1741 #ifdef CONFIG_64BIT
1742 #ifdef CONFIG_X86
1743         if (adev->gmc.xgmi.connected_to_cpu)
1744                 adev->mman.aper_base_kaddr = ioremap_cache(adev->gmc.aper_base,
1745                                 adev->gmc.visible_vram_size);
1746
1747         else
1748 #endif
1749                 adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base,
1750                                 adev->gmc.visible_vram_size);
1751 #endif
1752
1753         /*
1754          *The reserved vram for firmware must be pinned to the specified
1755          *place on the VRAM, so reserve it early.
1756          */
1757         r = amdgpu_ttm_fw_reserve_vram_init(adev);
1758         if (r) {
1759                 return r;
1760         }
1761
1762         /*
1763          * only NAVI10 and onwards ASIC support for IP discovery.
1764          * If IP discovery enabled, a block of memory should be
1765          * reserved for IP discovey.
1766          */
1767         if (adev->mman.discovery_bin) {
1768                 r = amdgpu_ttm_reserve_tmr(adev);
1769                 if (r)
1770                         return r;
1771         }
1772
1773         /* allocate memory as required for VGA
1774          * This is used for VGA emulation and pre-OS scanout buffers to
1775          * avoid display artifacts while transitioning between pre-OS
1776          * and driver.  */
1777         r = amdgpu_bo_create_kernel_at(adev, 0, adev->mman.stolen_vga_size,
1778                                        AMDGPU_GEM_DOMAIN_VRAM,
1779                                        &adev->mman.stolen_vga_memory,
1780                                        NULL);
1781         if (r)
1782                 return r;
1783         r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_vga_size,
1784                                        adev->mman.stolen_extended_size,
1785                                        AMDGPU_GEM_DOMAIN_VRAM,
1786                                        &adev->mman.stolen_extended_memory,
1787                                        NULL);
1788         if (r)
1789                 return r;
1790         r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_reserved_offset,
1791                                        adev->mman.stolen_reserved_size,
1792                                        AMDGPU_GEM_DOMAIN_VRAM,
1793                                        &adev->mman.stolen_reserved_memory,
1794                                        NULL);
1795         if (r)
1796                 return r;
1797
1798         DRM_INFO("amdgpu: %uM of VRAM memory ready\n",
1799                  (unsigned) (adev->gmc.real_vram_size / (1024 * 1024)));
1800
1801         /* Compute GTT size, either bsaed on 3/4th the size of RAM size
1802          * or whatever the user passed on module init */
1803         if (amdgpu_gtt_size == -1) {
1804                 struct sysinfo si;
1805
1806                 si_meminfo(&si);
1807                 gtt_size = min(max((AMDGPU_DEFAULT_GTT_SIZE_MB << 20),
1808                                adev->gmc.mc_vram_size),
1809                                ((uint64_t)si.totalram * si.mem_unit * 3/4));
1810         }
1811         else
1812                 gtt_size = (uint64_t)amdgpu_gtt_size << 20;
1813
1814         /* Initialize GTT memory pool */
1815         r = amdgpu_gtt_mgr_init(adev, gtt_size);
1816         if (r) {
1817                 DRM_ERROR("Failed initializing GTT heap.\n");
1818                 return r;
1819         }
1820         DRM_INFO("amdgpu: %uM of GTT memory ready.\n",
1821                  (unsigned)(gtt_size / (1024 * 1024)));
1822
1823         /* Initialize preemptible memory pool */
1824         r = amdgpu_preempt_mgr_init(adev);
1825         if (r) {
1826                 DRM_ERROR("Failed initializing PREEMPT heap.\n");
1827                 return r;
1828         }
1829
1830         /* Initialize various on-chip memory pools */
1831         r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GDS, adev->gds.gds_size);
1832         if (r) {
1833                 DRM_ERROR("Failed initializing GDS heap.\n");
1834                 return r;
1835         }
1836
1837         r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GWS, adev->gds.gws_size);
1838         if (r) {
1839                 DRM_ERROR("Failed initializing gws heap.\n");
1840                 return r;
1841         }
1842
1843         r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_OA, adev->gds.oa_size);
1844         if (r) {
1845                 DRM_ERROR("Failed initializing oa heap.\n");
1846                 return r;
1847         }
1848
1849         if (amdgpu_bo_create_kernel(adev, PAGE_SIZE, PAGE_SIZE,
1850                                 AMDGPU_GEM_DOMAIN_GTT,
1851                                 &adev->mman.sdma_access_bo, NULL,
1852                                 &adev->mman.sdma_access_ptr))
1853                 DRM_WARN("Debug VRAM access will use slowpath MM access\n");
1854
1855         return 0;
1856 }
1857
1858 /*
1859  * amdgpu_ttm_fini - De-initialize the TTM memory pools
1860  */
1861 void amdgpu_ttm_fini(struct amdgpu_device *adev)
1862 {
1863         int idx;
1864         if (!adev->mman.initialized)
1865                 return;
1866
1867         amdgpu_ttm_training_reserve_vram_fini(adev);
1868         /* return the stolen vga memory back to VRAM */
1869         amdgpu_bo_free_kernel(&adev->mman.stolen_vga_memory, NULL, NULL);
1870         amdgpu_bo_free_kernel(&adev->mman.stolen_extended_memory, NULL, NULL);
1871         /* return the IP Discovery TMR memory back to VRAM */
1872         amdgpu_bo_free_kernel(&adev->mman.discovery_memory, NULL, NULL);
1873         if (adev->mman.stolen_reserved_size)
1874                 amdgpu_bo_free_kernel(&adev->mman.stolen_reserved_memory,
1875                                       NULL, NULL);
1876         amdgpu_bo_free_kernel(&adev->mman.sdma_access_bo, NULL,
1877                                         &adev->mman.sdma_access_ptr);
1878         amdgpu_ttm_fw_reserve_vram_fini(adev);
1879
1880         if (drm_dev_enter(adev_to_drm(adev), &idx)) {
1881
1882                 if (adev->mman.aper_base_kaddr)
1883                         iounmap(adev->mman.aper_base_kaddr);
1884                 adev->mman.aper_base_kaddr = NULL;
1885
1886                 drm_dev_exit(idx);
1887         }
1888
1889         amdgpu_vram_mgr_fini(adev);
1890         amdgpu_gtt_mgr_fini(adev);
1891         amdgpu_preempt_mgr_fini(adev);
1892         ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GDS);
1893         ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GWS);
1894         ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_OA);
1895         ttm_device_fini(&adev->mman.bdev);
1896         adev->mman.initialized = false;
1897         DRM_INFO("amdgpu: ttm finalized\n");
1898 }
1899
1900 /**
1901  * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions
1902  *
1903  * @adev: amdgpu_device pointer
1904  * @enable: true when we can use buffer functions.
1905  *
1906  * Enable/disable use of buffer functions during suspend/resume. This should
1907  * only be called at bootup or when userspace isn't running.
1908  */
1909 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable)
1910 {
1911         struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, TTM_PL_VRAM);
1912         uint64_t size;
1913         int r;
1914
1915         if (!adev->mman.initialized || amdgpu_in_reset(adev) ||
1916             adev->mman.buffer_funcs_enabled == enable)
1917                 return;
1918
1919         if (enable) {
1920                 struct amdgpu_ring *ring;
1921                 struct drm_gpu_scheduler *sched;
1922
1923                 ring = adev->mman.buffer_funcs_ring;
1924                 sched = &ring->sched;
1925                 r = drm_sched_entity_init(&adev->mman.entity,
1926                                           DRM_SCHED_PRIORITY_KERNEL, &sched,
1927                                           1, NULL);
1928                 if (r) {
1929                         DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
1930                                   r);
1931                         return;
1932                 }
1933         } else {
1934                 drm_sched_entity_destroy(&adev->mman.entity);
1935                 dma_fence_put(man->move);
1936                 man->move = NULL;
1937         }
1938
1939         /* this just adjusts TTM size idea, which sets lpfn to the correct value */
1940         if (enable)
1941                 size = adev->gmc.real_vram_size;
1942         else
1943                 size = adev->gmc.visible_vram_size;
1944         man->size = size;
1945         adev->mman.buffer_funcs_enabled = enable;
1946 }
1947
1948 static int amdgpu_ttm_prepare_job(struct amdgpu_device *adev,
1949                                   bool direct_submit,
1950                                   unsigned int num_dw,
1951                                   struct dma_resv *resv,
1952                                   bool vm_needs_flush,
1953                                   struct amdgpu_job **job)
1954 {
1955         enum amdgpu_ib_pool_type pool = direct_submit ?
1956                 AMDGPU_IB_POOL_DIRECT :
1957                 AMDGPU_IB_POOL_DELAYED;
1958         int r;
1959
1960         r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, pool, job);
1961         if (r)
1962                 return r;
1963
1964         if (vm_needs_flush) {
1965                 (*job)->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gmc.pdb0_bo ?
1966                                                         adev->gmc.pdb0_bo :
1967                                                         adev->gart.bo);
1968                 (*job)->vm_needs_flush = true;
1969         }
1970         if (resv) {
1971                 r = amdgpu_sync_resv(adev, &(*job)->sync, resv,
1972                                      AMDGPU_SYNC_ALWAYS,
1973                                      AMDGPU_FENCE_OWNER_UNDEFINED);
1974                 if (r) {
1975                         DRM_ERROR("sync failed (%d).\n", r);
1976                         amdgpu_job_free(*job);
1977                         return r;
1978                 }
1979         }
1980         return 0;
1981 }
1982
1983 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset,
1984                        uint64_t dst_offset, uint32_t byte_count,
1985                        struct dma_resv *resv,
1986                        struct dma_fence **fence, bool direct_submit,
1987                        bool vm_needs_flush, bool tmz)
1988 {
1989         struct amdgpu_device *adev = ring->adev;
1990         unsigned num_loops, num_dw;
1991         struct amdgpu_job *job;
1992         uint32_t max_bytes;
1993         unsigned i;
1994         int r;
1995
1996         if (!direct_submit && !ring->sched.ready) {
1997                 DRM_ERROR("Trying to move memory with ring turned off.\n");
1998                 return -EINVAL;
1999         }
2000
2001         max_bytes = adev->mman.buffer_funcs->copy_max_bytes;
2002         num_loops = DIV_ROUND_UP(byte_count, max_bytes);
2003         num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8);
2004         r = amdgpu_ttm_prepare_job(adev, direct_submit, num_dw,
2005                                    resv, vm_needs_flush, &job);
2006         if (r)
2007                 return r;
2008
2009         for (i = 0; i < num_loops; i++) {
2010                 uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
2011
2012                 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset,
2013                                         dst_offset, cur_size_in_bytes, tmz);
2014
2015                 src_offset += cur_size_in_bytes;
2016                 dst_offset += cur_size_in_bytes;
2017                 byte_count -= cur_size_in_bytes;
2018         }
2019
2020         amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2021         WARN_ON(job->ibs[0].length_dw > num_dw);
2022         if (direct_submit)
2023                 r = amdgpu_job_submit_direct(job, ring, fence);
2024         else
2025                 r = amdgpu_job_submit(job, &adev->mman.entity,
2026                                       AMDGPU_FENCE_OWNER_UNDEFINED, fence);
2027         if (r)
2028                 goto error_free;
2029
2030         return r;
2031
2032 error_free:
2033         amdgpu_job_free(job);
2034         DRM_ERROR("Error scheduling IBs (%d)\n", r);
2035         return r;
2036 }
2037
2038 static int amdgpu_ttm_fill_mem(struct amdgpu_ring *ring, uint32_t src_data,
2039                                uint64_t dst_addr, uint32_t byte_count,
2040                                struct dma_resv *resv,
2041                                struct dma_fence **fence,
2042                                bool vm_needs_flush)
2043 {
2044         struct amdgpu_device *adev = ring->adev;
2045         unsigned int num_loops, num_dw;
2046         struct amdgpu_job *job;
2047         uint32_t max_bytes;
2048         unsigned int i;
2049         int r;
2050
2051         max_bytes = adev->mman.buffer_funcs->fill_max_bytes;
2052         num_loops = DIV_ROUND_UP_ULL(byte_count, max_bytes);
2053         num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->fill_num_dw, 8);
2054         r = amdgpu_ttm_prepare_job(adev, false, num_dw, resv, vm_needs_flush,
2055                                    &job);
2056         if (r)
2057                 return r;
2058
2059         for (i = 0; i < num_loops; i++) {
2060                 uint32_t cur_size = min(byte_count, max_bytes);
2061
2062                 amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data, dst_addr,
2063                                         cur_size);
2064
2065                 dst_addr += cur_size;
2066                 byte_count -= cur_size;
2067         }
2068
2069         amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2070         WARN_ON(job->ibs[0].length_dw > num_dw);
2071         r = amdgpu_job_submit(job, &adev->mman.entity,
2072                               AMDGPU_FENCE_OWNER_UNDEFINED, fence);
2073         if (r)
2074                 goto error_free;
2075
2076         return 0;
2077
2078 error_free:
2079         amdgpu_job_free(job);
2080         return r;
2081 }
2082
2083 int amdgpu_fill_buffer(struct amdgpu_bo *bo,
2084                         uint32_t src_data,
2085                         struct dma_resv *resv,
2086                         struct dma_fence **f)
2087 {
2088         struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
2089         struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
2090         struct dma_fence *fence = NULL;
2091         struct amdgpu_res_cursor dst;
2092         int r;
2093
2094         if (!adev->mman.buffer_funcs_enabled) {
2095                 DRM_ERROR("Trying to clear memory with ring turned off.\n");
2096                 return -EINVAL;
2097         }
2098
2099         amdgpu_res_first(bo->tbo.resource, 0, amdgpu_bo_size(bo), &dst);
2100
2101         mutex_lock(&adev->mman.gtt_window_lock);
2102         while (dst.remaining) {
2103                 struct dma_fence *next;
2104                 uint64_t cur_size, to;
2105
2106                 /* Never fill more than 256MiB at once to avoid timeouts */
2107                 cur_size = min(dst.size, 256ULL << 20);
2108
2109                 r = amdgpu_ttm_map_buffer(&bo->tbo, bo->tbo.resource, &dst,
2110                                           1, ring, false, &cur_size, &to);
2111                 if (r)
2112                         goto error;
2113
2114                 r = amdgpu_ttm_fill_mem(ring, src_data, to, cur_size, resv,
2115                                         &next, true);
2116                 if (r)
2117                         goto error;
2118
2119                 dma_fence_put(fence);
2120                 fence = next;
2121
2122                 amdgpu_res_next(&dst, cur_size);
2123         }
2124 error:
2125         mutex_unlock(&adev->mman.gtt_window_lock);
2126         if (f)
2127                 *f = dma_fence_get(fence);
2128         dma_fence_put(fence);
2129         return r;
2130 }
2131
2132 /**
2133  * amdgpu_ttm_evict_resources - evict memory buffers
2134  * @adev: amdgpu device object
2135  * @mem_type: evicted BO's memory type
2136  *
2137  * Evicts all @mem_type buffers on the lru list of the memory type.
2138  *
2139  * Returns:
2140  * 0 for success or a negative error code on failure.
2141  */
2142 int amdgpu_ttm_evict_resources(struct amdgpu_device *adev, int mem_type)
2143 {
2144         struct ttm_resource_manager *man;
2145
2146         switch (mem_type) {
2147         case TTM_PL_VRAM:
2148         case TTM_PL_TT:
2149         case AMDGPU_PL_GWS:
2150         case AMDGPU_PL_GDS:
2151         case AMDGPU_PL_OA:
2152                 man = ttm_manager_type(&adev->mman.bdev, mem_type);
2153                 break;
2154         default:
2155                 DRM_ERROR("Trying to evict invalid memory type\n");
2156                 return -EINVAL;
2157         }
2158
2159         return ttm_resource_manager_evict_all(&adev->mman.bdev, man);
2160 }
2161
2162 #if defined(CONFIG_DEBUG_FS)
2163
2164 static int amdgpu_ttm_page_pool_show(struct seq_file *m, void *unused)
2165 {
2166         struct amdgpu_device *adev = (struct amdgpu_device *)m->private;
2167
2168         return ttm_pool_debugfs(&adev->mman.bdev.pool, m);
2169 }
2170
2171 DEFINE_SHOW_ATTRIBUTE(amdgpu_ttm_page_pool);
2172
2173 /*
2174  * amdgpu_ttm_vram_read - Linear read access to VRAM
2175  *
2176  * Accesses VRAM via MMIO for debugging purposes.
2177  */
2178 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf,
2179                                     size_t size, loff_t *pos)
2180 {
2181         struct amdgpu_device *adev = file_inode(f)->i_private;
2182         ssize_t result = 0;
2183
2184         if (size & 0x3 || *pos & 0x3)
2185                 return -EINVAL;
2186
2187         if (*pos >= adev->gmc.mc_vram_size)
2188                 return -ENXIO;
2189
2190         size = min(size, (size_t)(adev->gmc.mc_vram_size - *pos));
2191         while (size) {
2192                 size_t bytes = min(size, AMDGPU_TTM_VRAM_MAX_DW_READ * 4);
2193                 uint32_t value[AMDGPU_TTM_VRAM_MAX_DW_READ];
2194
2195                 amdgpu_device_vram_access(adev, *pos, value, bytes, false);
2196                 if (copy_to_user(buf, value, bytes))
2197                         return -EFAULT;
2198
2199                 result += bytes;
2200                 buf += bytes;
2201                 *pos += bytes;
2202                 size -= bytes;
2203         }
2204
2205         return result;
2206 }
2207
2208 /*
2209  * amdgpu_ttm_vram_write - Linear write access to VRAM
2210  *
2211  * Accesses VRAM via MMIO for debugging purposes.
2212  */
2213 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf,
2214                                     size_t size, loff_t *pos)
2215 {
2216         struct amdgpu_device *adev = file_inode(f)->i_private;
2217         ssize_t result = 0;
2218         int r;
2219
2220         if (size & 0x3 || *pos & 0x3)
2221                 return -EINVAL;
2222
2223         if (*pos >= adev->gmc.mc_vram_size)
2224                 return -ENXIO;
2225
2226         while (size) {
2227                 uint32_t value;
2228
2229                 if (*pos >= adev->gmc.mc_vram_size)
2230                         return result;
2231
2232                 r = get_user(value, (uint32_t *)buf);
2233                 if (r)
2234                         return r;
2235
2236                 amdgpu_device_mm_access(adev, *pos, &value, 4, true);
2237
2238                 result += 4;
2239                 buf += 4;
2240                 *pos += 4;
2241                 size -= 4;
2242         }
2243
2244         return result;
2245 }
2246
2247 static const struct file_operations amdgpu_ttm_vram_fops = {
2248         .owner = THIS_MODULE,
2249         .read = amdgpu_ttm_vram_read,
2250         .write = amdgpu_ttm_vram_write,
2251         .llseek = default_llseek,
2252 };
2253
2254 /*
2255  * amdgpu_iomem_read - Virtual read access to GPU mapped memory
2256  *
2257  * This function is used to read memory that has been mapped to the
2258  * GPU and the known addresses are not physical addresses but instead
2259  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2260  */
2261 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf,
2262                                  size_t size, loff_t *pos)
2263 {
2264         struct amdgpu_device *adev = file_inode(f)->i_private;
2265         struct iommu_domain *dom;
2266         ssize_t result = 0;
2267         int r;
2268
2269         /* retrieve the IOMMU domain if any for this device */
2270         dom = iommu_get_domain_for_dev(adev->dev);
2271
2272         while (size) {
2273                 phys_addr_t addr = *pos & PAGE_MASK;
2274                 loff_t off = *pos & ~PAGE_MASK;
2275                 size_t bytes = PAGE_SIZE - off;
2276                 unsigned long pfn;
2277                 struct page *p;
2278                 void *ptr;
2279
2280                 bytes = bytes < size ? bytes : size;
2281
2282                 /* Translate the bus address to a physical address.  If
2283                  * the domain is NULL it means there is no IOMMU active
2284                  * and the address translation is the identity
2285                  */
2286                 addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2287
2288                 pfn = addr >> PAGE_SHIFT;
2289                 if (!pfn_valid(pfn))
2290                         return -EPERM;
2291
2292                 p = pfn_to_page(pfn);
2293                 if (p->mapping != adev->mman.bdev.dev_mapping)
2294                         return -EPERM;
2295
2296                 ptr = kmap(p);
2297                 r = copy_to_user(buf, ptr + off, bytes);
2298                 kunmap(p);
2299                 if (r)
2300                         return -EFAULT;
2301
2302                 size -= bytes;
2303                 *pos += bytes;
2304                 result += bytes;
2305         }
2306
2307         return result;
2308 }
2309
2310 /*
2311  * amdgpu_iomem_write - Virtual write access to GPU mapped memory
2312  *
2313  * This function is used to write memory that has been mapped to the
2314  * GPU and the known addresses are not physical addresses but instead
2315  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2316  */
2317 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf,
2318                                  size_t size, loff_t *pos)
2319 {
2320         struct amdgpu_device *adev = file_inode(f)->i_private;
2321         struct iommu_domain *dom;
2322         ssize_t result = 0;
2323         int r;
2324
2325         dom = iommu_get_domain_for_dev(adev->dev);
2326
2327         while (size) {
2328                 phys_addr_t addr = *pos & PAGE_MASK;
2329                 loff_t off = *pos & ~PAGE_MASK;
2330                 size_t bytes = PAGE_SIZE - off;
2331                 unsigned long pfn;
2332                 struct page *p;
2333                 void *ptr;
2334
2335                 bytes = bytes < size ? bytes : size;
2336
2337                 addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2338
2339                 pfn = addr >> PAGE_SHIFT;
2340                 if (!pfn_valid(pfn))
2341                         return -EPERM;
2342
2343                 p = pfn_to_page(pfn);
2344                 if (p->mapping != adev->mman.bdev.dev_mapping)
2345                         return -EPERM;
2346
2347                 ptr = kmap(p);
2348                 r = copy_from_user(ptr + off, buf, bytes);
2349                 kunmap(p);
2350                 if (r)
2351                         return -EFAULT;
2352
2353                 size -= bytes;
2354                 *pos += bytes;
2355                 result += bytes;
2356         }
2357
2358         return result;
2359 }
2360
2361 static const struct file_operations amdgpu_ttm_iomem_fops = {
2362         .owner = THIS_MODULE,
2363         .read = amdgpu_iomem_read,
2364         .write = amdgpu_iomem_write,
2365         .llseek = default_llseek
2366 };
2367
2368 #endif
2369
2370 void amdgpu_ttm_debugfs_init(struct amdgpu_device *adev)
2371 {
2372 #if defined(CONFIG_DEBUG_FS)
2373         struct drm_minor *minor = adev_to_drm(adev)->primary;
2374         struct dentry *root = minor->debugfs_root;
2375
2376         debugfs_create_file_size("amdgpu_vram", 0444, root, adev,
2377                                  &amdgpu_ttm_vram_fops, adev->gmc.mc_vram_size);
2378         debugfs_create_file("amdgpu_iomem", 0444, root, adev,
2379                             &amdgpu_ttm_iomem_fops);
2380         debugfs_create_file("ttm_page_pool", 0444, root, adev,
2381                             &amdgpu_ttm_page_pool_fops);
2382         ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2383                                                              TTM_PL_VRAM),
2384                                             root, "amdgpu_vram_mm");
2385         ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2386                                                              TTM_PL_TT),
2387                                             root, "amdgpu_gtt_mm");
2388         ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2389                                                              AMDGPU_PL_GDS),
2390                                             root, "amdgpu_gds_mm");
2391         ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2392                                                              AMDGPU_PL_GWS),
2393                                             root, "amdgpu_gws_mm");
2394         ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2395                                                              AMDGPU_PL_OA),
2396                                             root, "amdgpu_oa_mm");
2397
2398 #endif
2399 }