Merge branches 'clk-baikal', 'clk-broadcom', 'clk-vc5' and 'clk-versaclock' into...
[platform/kernel/linux-starfive.git] / drivers / gpu / drm / amd / amdgpu / amdgpu_ttm.c
1 /*
2  * Copyright 2009 Jerome Glisse.
3  * All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the
7  * "Software"), to deal in the Software without restriction, including
8  * without limitation the rights to use, copy, modify, merge, publish,
9  * distribute, sub license, and/or sell copies of the Software, and to
10  * permit persons to whom the Software is furnished to do so, subject to
11  * the following conditions:
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19  * USE OR OTHER DEALINGS IN THE SOFTWARE.
20  *
21  * The above copyright notice and this permission notice (including the
22  * next paragraph) shall be included in all copies or substantial portions
23  * of the Software.
24  *
25  */
26 /*
27  * Authors:
28  *    Jerome Glisse <glisse@freedesktop.org>
29  *    Thomas Hellstrom <thomas-at-tungstengraphics-dot-com>
30  *    Dave Airlie
31  */
32
33 #include <linux/dma-mapping.h>
34 #include <linux/iommu.h>
35 #include <linux/pagemap.h>
36 #include <linux/sched/task.h>
37 #include <linux/sched/mm.h>
38 #include <linux/seq_file.h>
39 #include <linux/slab.h>
40 #include <linux/swap.h>
41 #include <linux/swiotlb.h>
42 #include <linux/dma-buf.h>
43 #include <linux/sizes.h>
44 #include <linux/module.h>
45
46 #include <drm/drm_drv.h>
47 #include <drm/ttm/ttm_bo_api.h>
48 #include <drm/ttm/ttm_bo_driver.h>
49 #include <drm/ttm/ttm_placement.h>
50 #include <drm/ttm/ttm_range_manager.h>
51
52 #include <drm/amdgpu_drm.h>
53 #include <drm/drm_drv.h>
54
55 #include "amdgpu.h"
56 #include "amdgpu_object.h"
57 #include "amdgpu_trace.h"
58 #include "amdgpu_amdkfd.h"
59 #include "amdgpu_sdma.h"
60 #include "amdgpu_ras.h"
61 #include "amdgpu_atomfirmware.h"
62 #include "amdgpu_res_cursor.h"
63 #include "bif/bif_4_1_d.h"
64
65 MODULE_IMPORT_NS(DMA_BUF);
66
67 #define AMDGPU_TTM_VRAM_MAX_DW_READ     (size_t)128
68
69 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
70                                    struct ttm_tt *ttm,
71                                    struct ttm_resource *bo_mem);
72 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
73                                       struct ttm_tt *ttm);
74
75 static int amdgpu_ttm_init_on_chip(struct amdgpu_device *adev,
76                                     unsigned int type,
77                                     uint64_t size_in_page)
78 {
79         return ttm_range_man_init(&adev->mman.bdev, type,
80                                   false, size_in_page);
81 }
82
83 /**
84  * amdgpu_evict_flags - Compute placement flags
85  *
86  * @bo: The buffer object to evict
87  * @placement: Possible destination(s) for evicted BO
88  *
89  * Fill in placement data when ttm_bo_evict() is called
90  */
91 static void amdgpu_evict_flags(struct ttm_buffer_object *bo,
92                                 struct ttm_placement *placement)
93 {
94         struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
95         struct amdgpu_bo *abo;
96         static const struct ttm_place placements = {
97                 .fpfn = 0,
98                 .lpfn = 0,
99                 .mem_type = TTM_PL_SYSTEM,
100                 .flags = 0
101         };
102
103         /* Don't handle scatter gather BOs */
104         if (bo->type == ttm_bo_type_sg) {
105                 placement->num_placement = 0;
106                 placement->num_busy_placement = 0;
107                 return;
108         }
109
110         /* Object isn't an AMDGPU object so ignore */
111         if (!amdgpu_bo_is_amdgpu_bo(bo)) {
112                 placement->placement = &placements;
113                 placement->busy_placement = &placements;
114                 placement->num_placement = 1;
115                 placement->num_busy_placement = 1;
116                 return;
117         }
118
119         abo = ttm_to_amdgpu_bo(bo);
120         if (abo->flags & AMDGPU_GEM_CREATE_DISCARDABLE) {
121                 placement->num_placement = 0;
122                 placement->num_busy_placement = 0;
123                 return;
124         }
125
126         switch (bo->resource->mem_type) {
127         case AMDGPU_PL_GDS:
128         case AMDGPU_PL_GWS:
129         case AMDGPU_PL_OA:
130                 placement->num_placement = 0;
131                 placement->num_busy_placement = 0;
132                 return;
133
134         case TTM_PL_VRAM:
135                 if (!adev->mman.buffer_funcs_enabled) {
136                         /* Move to system memory */
137                         amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
138                 } else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) &&
139                            !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) &&
140                            amdgpu_bo_in_cpu_visible_vram(abo)) {
141
142                         /* Try evicting to the CPU inaccessible part of VRAM
143                          * first, but only set GTT as busy placement, so this
144                          * BO will be evicted to GTT rather than causing other
145                          * BOs to be evicted from VRAM
146                          */
147                         amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM |
148                                                         AMDGPU_GEM_DOMAIN_GTT |
149                                                         AMDGPU_GEM_DOMAIN_CPU);
150                         abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT;
151                         abo->placements[0].lpfn = 0;
152                         abo->placement.busy_placement = &abo->placements[1];
153                         abo->placement.num_busy_placement = 1;
154                 } else {
155                         /* Move to GTT memory */
156                         amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT |
157                                                         AMDGPU_GEM_DOMAIN_CPU);
158                 }
159                 break;
160         case TTM_PL_TT:
161         case AMDGPU_PL_PREEMPT:
162         default:
163                 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
164                 break;
165         }
166         *placement = abo->placement;
167 }
168
169 /**
170  * amdgpu_ttm_map_buffer - Map memory into the GART windows
171  * @bo: buffer object to map
172  * @mem: memory object to map
173  * @mm_cur: range to map
174  * @window: which GART window to use
175  * @ring: DMA ring to use for the copy
176  * @tmz: if we should setup a TMZ enabled mapping
177  * @size: in number of bytes to map, out number of bytes mapped
178  * @addr: resulting address inside the MC address space
179  *
180  * Setup one of the GART windows to access a specific piece of memory or return
181  * the physical address for local memory.
182  */
183 static int amdgpu_ttm_map_buffer(struct ttm_buffer_object *bo,
184                                  struct ttm_resource *mem,
185                                  struct amdgpu_res_cursor *mm_cur,
186                                  unsigned window, struct amdgpu_ring *ring,
187                                  bool tmz, uint64_t *size, uint64_t *addr)
188 {
189         struct amdgpu_device *adev = ring->adev;
190         unsigned offset, num_pages, num_dw, num_bytes;
191         uint64_t src_addr, dst_addr;
192         struct dma_fence *fence;
193         struct amdgpu_job *job;
194         void *cpu_addr;
195         uint64_t flags;
196         unsigned int i;
197         int r;
198
199         BUG_ON(adev->mman.buffer_funcs->copy_max_bytes <
200                AMDGPU_GTT_MAX_TRANSFER_SIZE * 8);
201
202         if (WARN_ON(mem->mem_type == AMDGPU_PL_PREEMPT))
203                 return -EINVAL;
204
205         /* Map only what can't be accessed directly */
206         if (!tmz && mem->start != AMDGPU_BO_INVALID_OFFSET) {
207                 *addr = amdgpu_ttm_domain_start(adev, mem->mem_type) +
208                         mm_cur->start;
209                 return 0;
210         }
211
212
213         /*
214          * If start begins at an offset inside the page, then adjust the size
215          * and addr accordingly
216          */
217         offset = mm_cur->start & ~PAGE_MASK;
218
219         num_pages = PFN_UP(*size + offset);
220         num_pages = min_t(uint32_t, num_pages, AMDGPU_GTT_MAX_TRANSFER_SIZE);
221
222         *size = min(*size, (uint64_t)num_pages * PAGE_SIZE - offset);
223
224         *addr = adev->gmc.gart_start;
225         *addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE *
226                 AMDGPU_GPU_PAGE_SIZE;
227         *addr += offset;
228
229         num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
230         num_bytes = num_pages * 8 * AMDGPU_GPU_PAGES_IN_CPU_PAGE;
231
232         r = amdgpu_job_alloc_with_ib(adev, num_dw * 4 + num_bytes,
233                                      AMDGPU_IB_POOL_DELAYED, &job);
234         if (r)
235                 return r;
236
237         src_addr = num_dw * 4;
238         src_addr += job->ibs[0].gpu_addr;
239
240         dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo);
241         dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8;
242         amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr,
243                                 dst_addr, num_bytes, false);
244
245         amdgpu_ring_pad_ib(ring, &job->ibs[0]);
246         WARN_ON(job->ibs[0].length_dw > num_dw);
247
248         flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, mem);
249         if (tmz)
250                 flags |= AMDGPU_PTE_TMZ;
251
252         cpu_addr = &job->ibs[0].ptr[num_dw];
253
254         if (mem->mem_type == TTM_PL_TT) {
255                 dma_addr_t *dma_addr;
256
257                 dma_addr = &bo->ttm->dma_address[mm_cur->start >> PAGE_SHIFT];
258                 amdgpu_gart_map(adev, 0, num_pages, dma_addr, flags, cpu_addr);
259         } else {
260                 dma_addr_t dma_address;
261
262                 dma_address = mm_cur->start;
263                 dma_address += adev->vm_manager.vram_base_offset;
264
265                 for (i = 0; i < num_pages; ++i) {
266                         amdgpu_gart_map(adev, i << PAGE_SHIFT, 1, &dma_address,
267                                         flags, cpu_addr);
268                         dma_address += PAGE_SIZE;
269                 }
270         }
271
272         r = amdgpu_job_submit(job, &adev->mman.entity,
273                               AMDGPU_FENCE_OWNER_UNDEFINED, &fence);
274         if (r)
275                 goto error_free;
276
277         dma_fence_put(fence);
278
279         return r;
280
281 error_free:
282         amdgpu_job_free(job);
283         return r;
284 }
285
286 /**
287  * amdgpu_ttm_copy_mem_to_mem - Helper function for copy
288  * @adev: amdgpu device
289  * @src: buffer/address where to read from
290  * @dst: buffer/address where to write to
291  * @size: number of bytes to copy
292  * @tmz: if a secure copy should be used
293  * @resv: resv object to sync to
294  * @f: Returns the last fence if multiple jobs are submitted.
295  *
296  * The function copies @size bytes from {src->mem + src->offset} to
297  * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a
298  * move and different for a BO to BO copy.
299  *
300  */
301 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev,
302                                const struct amdgpu_copy_mem *src,
303                                const struct amdgpu_copy_mem *dst,
304                                uint64_t size, bool tmz,
305                                struct dma_resv *resv,
306                                struct dma_fence **f)
307 {
308         struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
309         struct amdgpu_res_cursor src_mm, dst_mm;
310         struct dma_fence *fence = NULL;
311         int r = 0;
312
313         if (!adev->mman.buffer_funcs_enabled) {
314                 DRM_ERROR("Trying to move memory with ring turned off.\n");
315                 return -EINVAL;
316         }
317
318         amdgpu_res_first(src->mem, src->offset, size, &src_mm);
319         amdgpu_res_first(dst->mem, dst->offset, size, &dst_mm);
320
321         mutex_lock(&adev->mman.gtt_window_lock);
322         while (src_mm.remaining) {
323                 uint64_t from, to, cur_size;
324                 struct dma_fence *next;
325
326                 /* Never copy more than 256MiB at once to avoid a timeout */
327                 cur_size = min3(src_mm.size, dst_mm.size, 256ULL << 20);
328
329                 /* Map src to window 0 and dst to window 1. */
330                 r = amdgpu_ttm_map_buffer(src->bo, src->mem, &src_mm,
331                                           0, ring, tmz, &cur_size, &from);
332                 if (r)
333                         goto error;
334
335                 r = amdgpu_ttm_map_buffer(dst->bo, dst->mem, &dst_mm,
336                                           1, ring, tmz, &cur_size, &to);
337                 if (r)
338                         goto error;
339
340                 r = amdgpu_copy_buffer(ring, from, to, cur_size,
341                                        resv, &next, false, true, tmz);
342                 if (r)
343                         goto error;
344
345                 dma_fence_put(fence);
346                 fence = next;
347
348                 amdgpu_res_next(&src_mm, cur_size);
349                 amdgpu_res_next(&dst_mm, cur_size);
350         }
351 error:
352         mutex_unlock(&adev->mman.gtt_window_lock);
353         if (f)
354                 *f = dma_fence_get(fence);
355         dma_fence_put(fence);
356         return r;
357 }
358
359 /*
360  * amdgpu_move_blit - Copy an entire buffer to another buffer
361  *
362  * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to
363  * help move buffers to and from VRAM.
364  */
365 static int amdgpu_move_blit(struct ttm_buffer_object *bo,
366                             bool evict,
367                             struct ttm_resource *new_mem,
368                             struct ttm_resource *old_mem)
369 {
370         struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
371         struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
372         struct amdgpu_copy_mem src, dst;
373         struct dma_fence *fence = NULL;
374         int r;
375
376         src.bo = bo;
377         dst.bo = bo;
378         src.mem = old_mem;
379         dst.mem = new_mem;
380         src.offset = 0;
381         dst.offset = 0;
382
383         r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst,
384                                        new_mem->num_pages << PAGE_SHIFT,
385                                        amdgpu_bo_encrypted(abo),
386                                        bo->base.resv, &fence);
387         if (r)
388                 goto error;
389
390         /* clear the space being freed */
391         if (old_mem->mem_type == TTM_PL_VRAM &&
392             (abo->flags & AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) {
393                 struct dma_fence *wipe_fence = NULL;
394
395                 r = amdgpu_fill_buffer(abo, AMDGPU_POISON, NULL, &wipe_fence);
396                 if (r) {
397                         goto error;
398                 } else if (wipe_fence) {
399                         dma_fence_put(fence);
400                         fence = wipe_fence;
401                 }
402         }
403
404         /* Always block for VM page tables before committing the new location */
405         if (bo->type == ttm_bo_type_kernel)
406                 r = ttm_bo_move_accel_cleanup(bo, fence, true, false, new_mem);
407         else
408                 r = ttm_bo_move_accel_cleanup(bo, fence, evict, true, new_mem);
409         dma_fence_put(fence);
410         return r;
411
412 error:
413         if (fence)
414                 dma_fence_wait(fence, false);
415         dma_fence_put(fence);
416         return r;
417 }
418
419 /*
420  * amdgpu_mem_visible - Check that memory can be accessed by ttm_bo_move_memcpy
421  *
422  * Called by amdgpu_bo_move()
423  */
424 static bool amdgpu_mem_visible(struct amdgpu_device *adev,
425                                struct ttm_resource *mem)
426 {
427         uint64_t mem_size = (u64)mem->num_pages << PAGE_SHIFT;
428         struct amdgpu_res_cursor cursor;
429
430         if (mem->mem_type == TTM_PL_SYSTEM ||
431             mem->mem_type == TTM_PL_TT)
432                 return true;
433         if (mem->mem_type != TTM_PL_VRAM)
434                 return false;
435
436         amdgpu_res_first(mem, 0, mem_size, &cursor);
437
438         /* ttm_resource_ioremap only supports contiguous memory */
439         if (cursor.size != mem_size)
440                 return false;
441
442         return cursor.start + cursor.size <= adev->gmc.visible_vram_size;
443 }
444
445 /*
446  * amdgpu_bo_move - Move a buffer object to a new memory location
447  *
448  * Called by ttm_bo_handle_move_mem()
449  */
450 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict,
451                           struct ttm_operation_ctx *ctx,
452                           struct ttm_resource *new_mem,
453                           struct ttm_place *hop)
454 {
455         struct amdgpu_device *adev;
456         struct amdgpu_bo *abo;
457         struct ttm_resource *old_mem = bo->resource;
458         int r;
459
460         if (new_mem->mem_type == TTM_PL_TT ||
461             new_mem->mem_type == AMDGPU_PL_PREEMPT) {
462                 r = amdgpu_ttm_backend_bind(bo->bdev, bo->ttm, new_mem);
463                 if (r)
464                         return r;
465         }
466
467         /* Can't move a pinned BO */
468         abo = ttm_to_amdgpu_bo(bo);
469         if (WARN_ON_ONCE(abo->tbo.pin_count > 0))
470                 return -EINVAL;
471
472         adev = amdgpu_ttm_adev(bo->bdev);
473
474         if (old_mem->mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
475                 ttm_bo_move_null(bo, new_mem);
476                 goto out;
477         }
478         if (old_mem->mem_type == TTM_PL_SYSTEM &&
479             (new_mem->mem_type == TTM_PL_TT ||
480              new_mem->mem_type == AMDGPU_PL_PREEMPT)) {
481                 ttm_bo_move_null(bo, new_mem);
482                 goto out;
483         }
484         if ((old_mem->mem_type == TTM_PL_TT ||
485              old_mem->mem_type == AMDGPU_PL_PREEMPT) &&
486             new_mem->mem_type == TTM_PL_SYSTEM) {
487                 r = ttm_bo_wait_ctx(bo, ctx);
488                 if (r)
489                         return r;
490
491                 amdgpu_ttm_backend_unbind(bo->bdev, bo->ttm);
492                 ttm_resource_free(bo, &bo->resource);
493                 ttm_bo_assign_mem(bo, new_mem);
494                 goto out;
495         }
496
497         if (old_mem->mem_type == AMDGPU_PL_GDS ||
498             old_mem->mem_type == AMDGPU_PL_GWS ||
499             old_mem->mem_type == AMDGPU_PL_OA ||
500             new_mem->mem_type == AMDGPU_PL_GDS ||
501             new_mem->mem_type == AMDGPU_PL_GWS ||
502             new_mem->mem_type == AMDGPU_PL_OA) {
503                 /* Nothing to save here */
504                 ttm_bo_move_null(bo, new_mem);
505                 goto out;
506         }
507
508         if (bo->type == ttm_bo_type_device &&
509             new_mem->mem_type == TTM_PL_VRAM &&
510             old_mem->mem_type != TTM_PL_VRAM) {
511                 /* amdgpu_bo_fault_reserve_notify will re-set this if the CPU
512                  * accesses the BO after it's moved.
513                  */
514                 abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
515         }
516
517         if (adev->mman.buffer_funcs_enabled) {
518                 if (((old_mem->mem_type == TTM_PL_SYSTEM &&
519                       new_mem->mem_type == TTM_PL_VRAM) ||
520                      (old_mem->mem_type == TTM_PL_VRAM &&
521                       new_mem->mem_type == TTM_PL_SYSTEM))) {
522                         hop->fpfn = 0;
523                         hop->lpfn = 0;
524                         hop->mem_type = TTM_PL_TT;
525                         hop->flags = TTM_PL_FLAG_TEMPORARY;
526                         return -EMULTIHOP;
527                 }
528
529                 r = amdgpu_move_blit(bo, evict, new_mem, old_mem);
530         } else {
531                 r = -ENODEV;
532         }
533
534         if (r) {
535                 /* Check that all memory is CPU accessible */
536                 if (!amdgpu_mem_visible(adev, old_mem) ||
537                     !amdgpu_mem_visible(adev, new_mem)) {
538                         pr_err("Move buffer fallback to memcpy unavailable\n");
539                         return r;
540                 }
541
542                 r = ttm_bo_move_memcpy(bo, ctx, new_mem);
543                 if (r)
544                         return r;
545         }
546
547 out:
548         /* update statistics */
549         atomic64_add(bo->base.size, &adev->num_bytes_moved);
550         amdgpu_bo_move_notify(bo, evict, new_mem);
551         return 0;
552 }
553
554 /*
555  * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault
556  *
557  * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault()
558  */
559 static int amdgpu_ttm_io_mem_reserve(struct ttm_device *bdev,
560                                      struct ttm_resource *mem)
561 {
562         struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
563         size_t bus_size = (size_t)mem->num_pages << PAGE_SHIFT;
564
565         switch (mem->mem_type) {
566         case TTM_PL_SYSTEM:
567                 /* system memory */
568                 return 0;
569         case TTM_PL_TT:
570         case AMDGPU_PL_PREEMPT:
571                 break;
572         case TTM_PL_VRAM:
573                 mem->bus.offset = mem->start << PAGE_SHIFT;
574                 /* check if it's visible */
575                 if ((mem->bus.offset + bus_size) > adev->gmc.visible_vram_size)
576                         return -EINVAL;
577
578                 if (adev->mman.aper_base_kaddr &&
579                     mem->placement & TTM_PL_FLAG_CONTIGUOUS)
580                         mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr +
581                                         mem->bus.offset;
582
583                 mem->bus.offset += adev->gmc.aper_base;
584                 mem->bus.is_iomem = true;
585                 break;
586         default:
587                 return -EINVAL;
588         }
589         return 0;
590 }
591
592 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
593                                            unsigned long page_offset)
594 {
595         struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
596         struct amdgpu_res_cursor cursor;
597
598         amdgpu_res_first(bo->resource, (u64)page_offset << PAGE_SHIFT, 0,
599                          &cursor);
600         return (adev->gmc.aper_base + cursor.start) >> PAGE_SHIFT;
601 }
602
603 /**
604  * amdgpu_ttm_domain_start - Returns GPU start address
605  * @adev: amdgpu device object
606  * @type: type of the memory
607  *
608  * Returns:
609  * GPU start address of a memory domain
610  */
611
612 uint64_t amdgpu_ttm_domain_start(struct amdgpu_device *adev, uint32_t type)
613 {
614         switch (type) {
615         case TTM_PL_TT:
616                 return adev->gmc.gart_start;
617         case TTM_PL_VRAM:
618                 return adev->gmc.vram_start;
619         }
620
621         return 0;
622 }
623
624 /*
625  * TTM backend functions.
626  */
627 struct amdgpu_ttm_tt {
628         struct ttm_tt   ttm;
629         struct drm_gem_object   *gobj;
630         u64                     offset;
631         uint64_t                userptr;
632         struct task_struct      *usertask;
633         uint32_t                userflags;
634         bool                    bound;
635 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
636         struct hmm_range        *range;
637 #endif
638 };
639
640 #define ttm_to_amdgpu_ttm_tt(ptr)       container_of(ptr, struct amdgpu_ttm_tt, ttm)
641
642 #ifdef CONFIG_DRM_AMDGPU_USERPTR
643 /*
644  * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user
645  * memory and start HMM tracking CPU page table update
646  *
647  * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only
648  * once afterwards to stop HMM tracking
649  */
650 int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages)
651 {
652         struct ttm_tt *ttm = bo->tbo.ttm;
653         struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
654         unsigned long start = gtt->userptr;
655         struct vm_area_struct *vma;
656         struct mm_struct *mm;
657         bool readonly;
658         int r = 0;
659
660         mm = bo->notifier.mm;
661         if (unlikely(!mm)) {
662                 DRM_DEBUG_DRIVER("BO is not registered?\n");
663                 return -EFAULT;
664         }
665
666         /* Another get_user_pages is running at the same time?? */
667         if (WARN_ON(gtt->range))
668                 return -EFAULT;
669
670         if (!mmget_not_zero(mm)) /* Happens during process shutdown */
671                 return -ESRCH;
672
673         mmap_read_lock(mm);
674         vma = vma_lookup(mm, start);
675         if (unlikely(!vma)) {
676                 r = -EFAULT;
677                 goto out_unlock;
678         }
679         if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) &&
680                 vma->vm_file)) {
681                 r = -EPERM;
682                 goto out_unlock;
683         }
684
685         readonly = amdgpu_ttm_tt_is_readonly(ttm);
686         r = amdgpu_hmm_range_get_pages(&bo->notifier, mm, pages, start,
687                                        ttm->num_pages, &gtt->range, readonly,
688                                        true, NULL);
689 out_unlock:
690         mmap_read_unlock(mm);
691         if (r)
692                 pr_debug("failed %d to get user pages 0x%lx\n", r, start);
693
694         mmput(mm);
695
696         return r;
697 }
698
699 /*
700  * amdgpu_ttm_tt_userptr_range_done - stop HMM track the CPU page table change
701  * Check if the pages backing this ttm range have been invalidated
702  *
703  * Returns: true if pages are still valid
704  */
705 bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm)
706 {
707         struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
708         bool r = false;
709
710         if (!gtt || !gtt->userptr)
711                 return false;
712
713         DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%x\n",
714                 gtt->userptr, ttm->num_pages);
715
716         WARN_ONCE(!gtt->range || !gtt->range->hmm_pfns,
717                 "No user pages to check\n");
718
719         if (gtt->range) {
720                 /*
721                  * FIXME: Must always hold notifier_lock for this, and must
722                  * not ignore the return code.
723                  */
724                 r = amdgpu_hmm_range_get_pages_done(gtt->range);
725                 gtt->range = NULL;
726         }
727
728         return !r;
729 }
730 #endif
731
732 /*
733  * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary.
734  *
735  * Called by amdgpu_cs_list_validate(). This creates the page list
736  * that backs user memory and will ultimately be mapped into the device
737  * address space.
738  */
739 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages)
740 {
741         unsigned long i;
742
743         for (i = 0; i < ttm->num_pages; ++i)
744                 ttm->pages[i] = pages ? pages[i] : NULL;
745 }
746
747 /*
748  * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages
749  *
750  * Called by amdgpu_ttm_backend_bind()
751  **/
752 static int amdgpu_ttm_tt_pin_userptr(struct ttm_device *bdev,
753                                      struct ttm_tt *ttm)
754 {
755         struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
756         struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
757         int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
758         enum dma_data_direction direction = write ?
759                 DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
760         int r;
761
762         /* Allocate an SG array and squash pages into it */
763         r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0,
764                                       (u64)ttm->num_pages << PAGE_SHIFT,
765                                       GFP_KERNEL);
766         if (r)
767                 goto release_sg;
768
769         /* Map SG to device */
770         r = dma_map_sgtable(adev->dev, ttm->sg, direction, 0);
771         if (r)
772                 goto release_sg;
773
774         /* convert SG to linear array of pages and dma addresses */
775         drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
776                                        ttm->num_pages);
777
778         return 0;
779
780 release_sg:
781         kfree(ttm->sg);
782         ttm->sg = NULL;
783         return r;
784 }
785
786 /*
787  * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages
788  */
789 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_device *bdev,
790                                         struct ttm_tt *ttm)
791 {
792         struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
793         struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
794         int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
795         enum dma_data_direction direction = write ?
796                 DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
797
798         /* double check that we don't free the table twice */
799         if (!ttm->sg || !ttm->sg->sgl)
800                 return;
801
802         /* unmap the pages mapped to the device */
803         dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0);
804         sg_free_table(ttm->sg);
805
806 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
807         if (gtt->range) {
808                 unsigned long i;
809
810                 for (i = 0; i < ttm->num_pages; i++) {
811                         if (ttm->pages[i] !=
812                             hmm_pfn_to_page(gtt->range->hmm_pfns[i]))
813                                 break;
814                 }
815
816                 WARN((i == ttm->num_pages), "Missing get_user_page_done\n");
817         }
818 #endif
819 }
820
821 static void amdgpu_ttm_gart_bind(struct amdgpu_device *adev,
822                                  struct ttm_buffer_object *tbo,
823                                  uint64_t flags)
824 {
825         struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo);
826         struct ttm_tt *ttm = tbo->ttm;
827         struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
828
829         if (amdgpu_bo_encrypted(abo))
830                 flags |= AMDGPU_PTE_TMZ;
831
832         if (abo->flags & AMDGPU_GEM_CREATE_CP_MQD_GFX9) {
833                 uint64_t page_idx = 1;
834
835                 amdgpu_gart_bind(adev, gtt->offset, page_idx,
836                                  gtt->ttm.dma_address, flags);
837
838                 /* The memory type of the first page defaults to UC. Now
839                  * modify the memory type to NC from the second page of
840                  * the BO onward.
841                  */
842                 flags &= ~AMDGPU_PTE_MTYPE_VG10_MASK;
843                 flags |= AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC);
844
845                 amdgpu_gart_bind(adev, gtt->offset + (page_idx << PAGE_SHIFT),
846                                  ttm->num_pages - page_idx,
847                                  &(gtt->ttm.dma_address[page_idx]), flags);
848         } else {
849                 amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
850                                  gtt->ttm.dma_address, flags);
851         }
852 }
853
854 /*
855  * amdgpu_ttm_backend_bind - Bind GTT memory
856  *
857  * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem().
858  * This handles binding GTT memory to the device address space.
859  */
860 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
861                                    struct ttm_tt *ttm,
862                                    struct ttm_resource *bo_mem)
863 {
864         struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
865         struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
866         uint64_t flags;
867         int r;
868
869         if (!bo_mem)
870                 return -EINVAL;
871
872         if (gtt->bound)
873                 return 0;
874
875         if (gtt->userptr) {
876                 r = amdgpu_ttm_tt_pin_userptr(bdev, ttm);
877                 if (r) {
878                         DRM_ERROR("failed to pin userptr\n");
879                         return r;
880                 }
881         } else if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) {
882                 if (!ttm->sg) {
883                         struct dma_buf_attachment *attach;
884                         struct sg_table *sgt;
885
886                         attach = gtt->gobj->import_attach;
887                         sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL);
888                         if (IS_ERR(sgt))
889                                 return PTR_ERR(sgt);
890
891                         ttm->sg = sgt;
892                 }
893
894                 drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
895                                                ttm->num_pages);
896         }
897
898         if (!ttm->num_pages) {
899                 WARN(1, "nothing to bind %u pages for mreg %p back %p!\n",
900                      ttm->num_pages, bo_mem, ttm);
901         }
902
903         if (bo_mem->mem_type != TTM_PL_TT ||
904             !amdgpu_gtt_mgr_has_gart_addr(bo_mem)) {
905                 gtt->offset = AMDGPU_BO_INVALID_OFFSET;
906                 return 0;
907         }
908
909         /* compute PTE flags relevant to this BO memory */
910         flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem);
911
912         /* bind pages into GART page tables */
913         gtt->offset = (u64)bo_mem->start << PAGE_SHIFT;
914         amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
915                          gtt->ttm.dma_address, flags);
916         gtt->bound = true;
917         return 0;
918 }
919
920 /*
921  * amdgpu_ttm_alloc_gart - Make sure buffer object is accessible either
922  * through AGP or GART aperture.
923  *
924  * If bo is accessible through AGP aperture, then use AGP aperture
925  * to access bo; otherwise allocate logical space in GART aperture
926  * and map bo to GART aperture.
927  */
928 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo)
929 {
930         struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
931         struct ttm_operation_ctx ctx = { false, false };
932         struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(bo->ttm);
933         struct ttm_placement placement;
934         struct ttm_place placements;
935         struct ttm_resource *tmp;
936         uint64_t addr, flags;
937         int r;
938
939         if (bo->resource->start != AMDGPU_BO_INVALID_OFFSET)
940                 return 0;
941
942         addr = amdgpu_gmc_agp_addr(bo);
943         if (addr != AMDGPU_BO_INVALID_OFFSET) {
944                 bo->resource->start = addr >> PAGE_SHIFT;
945                 return 0;
946         }
947
948         /* allocate GART space */
949         placement.num_placement = 1;
950         placement.placement = &placements;
951         placement.num_busy_placement = 1;
952         placement.busy_placement = &placements;
953         placements.fpfn = 0;
954         placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT;
955         placements.mem_type = TTM_PL_TT;
956         placements.flags = bo->resource->placement;
957
958         r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx);
959         if (unlikely(r))
960                 return r;
961
962         /* compute PTE flags for this buffer object */
963         flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, tmp);
964
965         /* Bind pages */
966         gtt->offset = (u64)tmp->start << PAGE_SHIFT;
967         amdgpu_ttm_gart_bind(adev, bo, flags);
968         amdgpu_gart_invalidate_tlb(adev);
969         ttm_resource_free(bo, &bo->resource);
970         ttm_bo_assign_mem(bo, tmp);
971
972         return 0;
973 }
974
975 /*
976  * amdgpu_ttm_recover_gart - Rebind GTT pages
977  *
978  * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to
979  * rebind GTT pages during a GPU reset.
980  */
981 void amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo)
982 {
983         struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev);
984         uint64_t flags;
985
986         if (!tbo->ttm)
987                 return;
988
989         flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, tbo->resource);
990         amdgpu_ttm_gart_bind(adev, tbo, flags);
991 }
992
993 /*
994  * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages
995  *
996  * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and
997  * ttm_tt_destroy().
998  */
999 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
1000                                       struct ttm_tt *ttm)
1001 {
1002         struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1003         struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1004
1005         /* if the pages have userptr pinning then clear that first */
1006         if (gtt->userptr) {
1007                 amdgpu_ttm_tt_unpin_userptr(bdev, ttm);
1008         } else if (ttm->sg && gtt->gobj->import_attach) {
1009                 struct dma_buf_attachment *attach;
1010
1011                 attach = gtt->gobj->import_attach;
1012                 dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL);
1013                 ttm->sg = NULL;
1014         }
1015
1016         if (!gtt->bound)
1017                 return;
1018
1019         if (gtt->offset == AMDGPU_BO_INVALID_OFFSET)
1020                 return;
1021
1022         /* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */
1023         amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages);
1024         gtt->bound = false;
1025 }
1026
1027 static void amdgpu_ttm_backend_destroy(struct ttm_device *bdev,
1028                                        struct ttm_tt *ttm)
1029 {
1030         struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1031
1032         if (gtt->usertask)
1033                 put_task_struct(gtt->usertask);
1034
1035         ttm_tt_fini(&gtt->ttm);
1036         kfree(gtt);
1037 }
1038
1039 /**
1040  * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO
1041  *
1042  * @bo: The buffer object to create a GTT ttm_tt object around
1043  * @page_flags: Page flags to be added to the ttm_tt object
1044  *
1045  * Called by ttm_tt_create().
1046  */
1047 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo,
1048                                            uint32_t page_flags)
1049 {
1050         struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1051         struct amdgpu_ttm_tt *gtt;
1052         enum ttm_caching caching;
1053
1054         gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL);
1055         if (gtt == NULL) {
1056                 return NULL;
1057         }
1058         gtt->gobj = &bo->base;
1059
1060         if (abo->flags & AMDGPU_GEM_CREATE_CPU_GTT_USWC)
1061                 caching = ttm_write_combined;
1062         else
1063                 caching = ttm_cached;
1064
1065         /* allocate space for the uninitialized page entries */
1066         if (ttm_sg_tt_init(&gtt->ttm, bo, page_flags, caching)) {
1067                 kfree(gtt);
1068                 return NULL;
1069         }
1070         return &gtt->ttm;
1071 }
1072
1073 /*
1074  * amdgpu_ttm_tt_populate - Map GTT pages visible to the device
1075  *
1076  * Map the pages of a ttm_tt object to an address space visible
1077  * to the underlying device.
1078  */
1079 static int amdgpu_ttm_tt_populate(struct ttm_device *bdev,
1080                                   struct ttm_tt *ttm,
1081                                   struct ttm_operation_ctx *ctx)
1082 {
1083         struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1084         struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1085         pgoff_t i;
1086         int ret;
1087
1088         /* user pages are bound by amdgpu_ttm_tt_pin_userptr() */
1089         if (gtt->userptr) {
1090                 ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL);
1091                 if (!ttm->sg)
1092                         return -ENOMEM;
1093                 return 0;
1094         }
1095
1096         if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL)
1097                 return 0;
1098
1099         ret = ttm_pool_alloc(&adev->mman.bdev.pool, ttm, ctx);
1100         if (ret)
1101                 return ret;
1102
1103         for (i = 0; i < ttm->num_pages; ++i)
1104                 ttm->pages[i]->mapping = bdev->dev_mapping;
1105
1106         return 0;
1107 }
1108
1109 /*
1110  * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays
1111  *
1112  * Unmaps pages of a ttm_tt object from the device address space and
1113  * unpopulates the page array backing it.
1114  */
1115 static void amdgpu_ttm_tt_unpopulate(struct ttm_device *bdev,
1116                                      struct ttm_tt *ttm)
1117 {
1118         struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1119         struct amdgpu_device *adev;
1120         pgoff_t i;
1121
1122         amdgpu_ttm_backend_unbind(bdev, ttm);
1123
1124         if (gtt->userptr) {
1125                 amdgpu_ttm_tt_set_user_pages(ttm, NULL);
1126                 kfree(ttm->sg);
1127                 ttm->sg = NULL;
1128                 return;
1129         }
1130
1131         if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL)
1132                 return;
1133
1134         for (i = 0; i < ttm->num_pages; ++i)
1135                 ttm->pages[i]->mapping = NULL;
1136
1137         adev = amdgpu_ttm_adev(bdev);
1138         return ttm_pool_free(&adev->mman.bdev.pool, ttm);
1139 }
1140
1141 /**
1142  * amdgpu_ttm_tt_get_userptr - Return the userptr GTT ttm_tt for the current
1143  * task
1144  *
1145  * @tbo: The ttm_buffer_object that contains the userptr
1146  * @user_addr:  The returned value
1147  */
1148 int amdgpu_ttm_tt_get_userptr(const struct ttm_buffer_object *tbo,
1149                               uint64_t *user_addr)
1150 {
1151         struct amdgpu_ttm_tt *gtt;
1152
1153         if (!tbo->ttm)
1154                 return -EINVAL;
1155
1156         gtt = (void *)tbo->ttm;
1157         *user_addr = gtt->userptr;
1158         return 0;
1159 }
1160
1161 /**
1162  * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current
1163  * task
1164  *
1165  * @bo: The ttm_buffer_object to bind this userptr to
1166  * @addr:  The address in the current tasks VM space to use
1167  * @flags: Requirements of userptr object.
1168  *
1169  * Called by amdgpu_gem_userptr_ioctl() to bind userptr pages
1170  * to current task
1171  */
1172 int amdgpu_ttm_tt_set_userptr(struct ttm_buffer_object *bo,
1173                               uint64_t addr, uint32_t flags)
1174 {
1175         struct amdgpu_ttm_tt *gtt;
1176
1177         if (!bo->ttm) {
1178                 /* TODO: We want a separate TTM object type for userptrs */
1179                 bo->ttm = amdgpu_ttm_tt_create(bo, 0);
1180                 if (bo->ttm == NULL)
1181                         return -ENOMEM;
1182         }
1183
1184         /* Set TTM_TT_FLAG_EXTERNAL before populate but after create. */
1185         bo->ttm->page_flags |= TTM_TT_FLAG_EXTERNAL;
1186
1187         gtt = ttm_to_amdgpu_ttm_tt(bo->ttm);
1188         gtt->userptr = addr;
1189         gtt->userflags = flags;
1190
1191         if (gtt->usertask)
1192                 put_task_struct(gtt->usertask);
1193         gtt->usertask = current->group_leader;
1194         get_task_struct(gtt->usertask);
1195
1196         return 0;
1197 }
1198
1199 /*
1200  * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object
1201  */
1202 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm)
1203 {
1204         struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1205
1206         if (gtt == NULL)
1207                 return NULL;
1208
1209         if (gtt->usertask == NULL)
1210                 return NULL;
1211
1212         return gtt->usertask->mm;
1213 }
1214
1215 /*
1216  * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an
1217  * address range for the current task.
1218  *
1219  */
1220 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start,
1221                                   unsigned long end, unsigned long *userptr)
1222 {
1223         struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1224         unsigned long size;
1225
1226         if (gtt == NULL || !gtt->userptr)
1227                 return false;
1228
1229         /* Return false if no part of the ttm_tt object lies within
1230          * the range
1231          */
1232         size = (unsigned long)gtt->ttm.num_pages * PAGE_SIZE;
1233         if (gtt->userptr > end || gtt->userptr + size <= start)
1234                 return false;
1235
1236         if (userptr)
1237                 *userptr = gtt->userptr;
1238         return true;
1239 }
1240
1241 /*
1242  * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr?
1243  */
1244 bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm)
1245 {
1246         struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1247
1248         if (gtt == NULL || !gtt->userptr)
1249                 return false;
1250
1251         return true;
1252 }
1253
1254 /*
1255  * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only?
1256  */
1257 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm)
1258 {
1259         struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1260
1261         if (gtt == NULL)
1262                 return false;
1263
1264         return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1265 }
1266
1267 /**
1268  * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object
1269  *
1270  * @ttm: The ttm_tt object to compute the flags for
1271  * @mem: The memory registry backing this ttm_tt object
1272  *
1273  * Figure out the flags to use for a VM PDE (Page Directory Entry).
1274  */
1275 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_resource *mem)
1276 {
1277         uint64_t flags = 0;
1278
1279         if (mem && mem->mem_type != TTM_PL_SYSTEM)
1280                 flags |= AMDGPU_PTE_VALID;
1281
1282         if (mem && (mem->mem_type == TTM_PL_TT ||
1283                     mem->mem_type == AMDGPU_PL_PREEMPT)) {
1284                 flags |= AMDGPU_PTE_SYSTEM;
1285
1286                 if (ttm->caching == ttm_cached)
1287                         flags |= AMDGPU_PTE_SNOOPED;
1288         }
1289
1290         if (mem && mem->mem_type == TTM_PL_VRAM &&
1291                         mem->bus.caching == ttm_cached)
1292                 flags |= AMDGPU_PTE_SNOOPED;
1293
1294         return flags;
1295 }
1296
1297 /**
1298  * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object
1299  *
1300  * @adev: amdgpu_device pointer
1301  * @ttm: The ttm_tt object to compute the flags for
1302  * @mem: The memory registry backing this ttm_tt object
1303  *
1304  * Figure out the flags to use for a VM PTE (Page Table Entry).
1305  */
1306 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm,
1307                                  struct ttm_resource *mem)
1308 {
1309         uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem);
1310
1311         flags |= adev->gart.gart_pte_flags;
1312         flags |= AMDGPU_PTE_READABLE;
1313
1314         if (!amdgpu_ttm_tt_is_readonly(ttm))
1315                 flags |= AMDGPU_PTE_WRITEABLE;
1316
1317         return flags;
1318 }
1319
1320 /*
1321  * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer
1322  * object.
1323  *
1324  * Return true if eviction is sensible. Called by ttm_mem_evict_first() on
1325  * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until
1326  * it can find space for a new object and by ttm_bo_force_list_clean() which is
1327  * used to clean out a memory space.
1328  */
1329 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
1330                                             const struct ttm_place *place)
1331 {
1332         unsigned long num_pages = bo->resource->num_pages;
1333         struct dma_resv_iter resv_cursor;
1334         struct amdgpu_res_cursor cursor;
1335         struct dma_fence *f;
1336
1337         /* Swapout? */
1338         if (bo->resource->mem_type == TTM_PL_SYSTEM)
1339                 return true;
1340
1341         if (bo->type == ttm_bo_type_kernel &&
1342             !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo)))
1343                 return false;
1344
1345         /* If bo is a KFD BO, check if the bo belongs to the current process.
1346          * If true, then return false as any KFD process needs all its BOs to
1347          * be resident to run successfully
1348          */
1349         dma_resv_for_each_fence(&resv_cursor, bo->base.resv,
1350                                 DMA_RESV_USAGE_BOOKKEEP, f) {
1351                 if (amdkfd_fence_check_mm(f, current->mm))
1352                         return false;
1353         }
1354
1355         switch (bo->resource->mem_type) {
1356         case AMDGPU_PL_PREEMPT:
1357                 /* Preemptible BOs don't own system resources managed by the
1358                  * driver (pages, VRAM, GART space). They point to resources
1359                  * owned by someone else (e.g. pageable memory in user mode
1360                  * or a DMABuf). They are used in a preemptible context so we
1361                  * can guarantee no deadlocks and good QoS in case of MMU
1362                  * notifiers or DMABuf move notifiers from the resource owner.
1363                  */
1364                 return false;
1365         case TTM_PL_TT:
1366                 if (amdgpu_bo_is_amdgpu_bo(bo) &&
1367                     amdgpu_bo_encrypted(ttm_to_amdgpu_bo(bo)))
1368                         return false;
1369                 return true;
1370
1371         case TTM_PL_VRAM:
1372                 /* Check each drm MM node individually */
1373                 amdgpu_res_first(bo->resource, 0, (u64)num_pages << PAGE_SHIFT,
1374                                  &cursor);
1375                 while (cursor.remaining) {
1376                         if (place->fpfn < PFN_DOWN(cursor.start + cursor.size)
1377                             && !(place->lpfn &&
1378                                  place->lpfn <= PFN_DOWN(cursor.start)))
1379                                 return true;
1380
1381                         amdgpu_res_next(&cursor, cursor.size);
1382                 }
1383                 return false;
1384
1385         default:
1386                 break;
1387         }
1388
1389         return ttm_bo_eviction_valuable(bo, place);
1390 }
1391
1392 static void amdgpu_ttm_vram_mm_access(struct amdgpu_device *adev, loff_t pos,
1393                                       void *buf, size_t size, bool write)
1394 {
1395         while (size) {
1396                 uint64_t aligned_pos = ALIGN_DOWN(pos, 4);
1397                 uint64_t bytes = 4 - (pos & 0x3);
1398                 uint32_t shift = (pos & 0x3) * 8;
1399                 uint32_t mask = 0xffffffff << shift;
1400                 uint32_t value = 0;
1401
1402                 if (size < bytes) {
1403                         mask &= 0xffffffff >> (bytes - size) * 8;
1404                         bytes = size;
1405                 }
1406
1407                 if (mask != 0xffffffff) {
1408                         amdgpu_device_mm_access(adev, aligned_pos, &value, 4, false);
1409                         if (write) {
1410                                 value &= ~mask;
1411                                 value |= (*(uint32_t *)buf << shift) & mask;
1412                                 amdgpu_device_mm_access(adev, aligned_pos, &value, 4, true);
1413                         } else {
1414                                 value = (value & mask) >> shift;
1415                                 memcpy(buf, &value, bytes);
1416                         }
1417                 } else {
1418                         amdgpu_device_mm_access(adev, aligned_pos, buf, 4, write);
1419                 }
1420
1421                 pos += bytes;
1422                 buf += bytes;
1423                 size -= bytes;
1424         }
1425 }
1426
1427 static int amdgpu_ttm_access_memory_sdma(struct ttm_buffer_object *bo,
1428                                         unsigned long offset, void *buf, int len, int write)
1429 {
1430         struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1431         struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1432         struct amdgpu_res_cursor src_mm;
1433         struct amdgpu_job *job;
1434         struct dma_fence *fence;
1435         uint64_t src_addr, dst_addr;
1436         unsigned int num_dw;
1437         int r, idx;
1438
1439         if (len != PAGE_SIZE)
1440                 return -EINVAL;
1441
1442         if (!adev->mman.sdma_access_ptr)
1443                 return -EACCES;
1444
1445         if (!drm_dev_enter(adev_to_drm(adev), &idx))
1446                 return -ENODEV;
1447
1448         if (write)
1449                 memcpy(adev->mman.sdma_access_ptr, buf, len);
1450
1451         num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
1452         r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, AMDGPU_IB_POOL_DELAYED, &job);
1453         if (r)
1454                 goto out;
1455
1456         amdgpu_res_first(abo->tbo.resource, offset, len, &src_mm);
1457         src_addr = amdgpu_ttm_domain_start(adev, bo->resource->mem_type) + src_mm.start;
1458         dst_addr = amdgpu_bo_gpu_offset(adev->mman.sdma_access_bo);
1459         if (write)
1460                 swap(src_addr, dst_addr);
1461
1462         amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, dst_addr, PAGE_SIZE, false);
1463
1464         amdgpu_ring_pad_ib(adev->mman.buffer_funcs_ring, &job->ibs[0]);
1465         WARN_ON(job->ibs[0].length_dw > num_dw);
1466
1467         r = amdgpu_job_submit(job, &adev->mman.entity, AMDGPU_FENCE_OWNER_UNDEFINED, &fence);
1468         if (r) {
1469                 amdgpu_job_free(job);
1470                 goto out;
1471         }
1472
1473         if (!dma_fence_wait_timeout(fence, false, adev->sdma_timeout))
1474                 r = -ETIMEDOUT;
1475         dma_fence_put(fence);
1476
1477         if (!(r || write))
1478                 memcpy(buf, adev->mman.sdma_access_ptr, len);
1479 out:
1480         drm_dev_exit(idx);
1481         return r;
1482 }
1483
1484 /**
1485  * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object.
1486  *
1487  * @bo:  The buffer object to read/write
1488  * @offset:  Offset into buffer object
1489  * @buf:  Secondary buffer to write/read from
1490  * @len: Length in bytes of access
1491  * @write:  true if writing
1492  *
1493  * This is used to access VRAM that backs a buffer object via MMIO
1494  * access for debugging purposes.
1495  */
1496 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo,
1497                                     unsigned long offset, void *buf, int len,
1498                                     int write)
1499 {
1500         struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1501         struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1502         struct amdgpu_res_cursor cursor;
1503         int ret = 0;
1504
1505         if (bo->resource->mem_type != TTM_PL_VRAM)
1506                 return -EIO;
1507
1508         if (amdgpu_device_has_timeouts_enabled(adev) &&
1509                         !amdgpu_ttm_access_memory_sdma(bo, offset, buf, len, write))
1510                 return len;
1511
1512         amdgpu_res_first(bo->resource, offset, len, &cursor);
1513         while (cursor.remaining) {
1514                 size_t count, size = cursor.size;
1515                 loff_t pos = cursor.start;
1516
1517                 count = amdgpu_device_aper_access(adev, pos, buf, size, write);
1518                 size -= count;
1519                 if (size) {
1520                         /* using MM to access rest vram and handle un-aligned address */
1521                         pos += count;
1522                         buf += count;
1523                         amdgpu_ttm_vram_mm_access(adev, pos, buf, size, write);
1524                 }
1525
1526                 ret += cursor.size;
1527                 buf += cursor.size;
1528                 amdgpu_res_next(&cursor, cursor.size);
1529         }
1530
1531         return ret;
1532 }
1533
1534 static void
1535 amdgpu_bo_delete_mem_notify(struct ttm_buffer_object *bo)
1536 {
1537         amdgpu_bo_move_notify(bo, false, NULL);
1538 }
1539
1540 static struct ttm_device_funcs amdgpu_bo_driver = {
1541         .ttm_tt_create = &amdgpu_ttm_tt_create,
1542         .ttm_tt_populate = &amdgpu_ttm_tt_populate,
1543         .ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate,
1544         .ttm_tt_destroy = &amdgpu_ttm_backend_destroy,
1545         .eviction_valuable = amdgpu_ttm_bo_eviction_valuable,
1546         .evict_flags = &amdgpu_evict_flags,
1547         .move = &amdgpu_bo_move,
1548         .delete_mem_notify = &amdgpu_bo_delete_mem_notify,
1549         .release_notify = &amdgpu_bo_release_notify,
1550         .io_mem_reserve = &amdgpu_ttm_io_mem_reserve,
1551         .io_mem_pfn = amdgpu_ttm_io_mem_pfn,
1552         .access_memory = &amdgpu_ttm_access_memory,
1553 };
1554
1555 /*
1556  * Firmware Reservation functions
1557  */
1558 /**
1559  * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram
1560  *
1561  * @adev: amdgpu_device pointer
1562  *
1563  * free fw reserved vram if it has been reserved.
1564  */
1565 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev)
1566 {
1567         amdgpu_bo_free_kernel(&adev->mman.fw_vram_usage_reserved_bo,
1568                 NULL, &adev->mman.fw_vram_usage_va);
1569 }
1570
1571 /**
1572  * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw
1573  *
1574  * @adev: amdgpu_device pointer
1575  *
1576  * create bo vram reservation from fw.
1577  */
1578 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev)
1579 {
1580         uint64_t vram_size = adev->gmc.visible_vram_size;
1581
1582         adev->mman.fw_vram_usage_va = NULL;
1583         adev->mman.fw_vram_usage_reserved_bo = NULL;
1584
1585         if (adev->mman.fw_vram_usage_size == 0 ||
1586             adev->mman.fw_vram_usage_size > vram_size)
1587                 return 0;
1588
1589         return amdgpu_bo_create_kernel_at(adev,
1590                                           adev->mman.fw_vram_usage_start_offset,
1591                                           adev->mman.fw_vram_usage_size,
1592                                           AMDGPU_GEM_DOMAIN_VRAM,
1593                                           &adev->mman.fw_vram_usage_reserved_bo,
1594                                           &adev->mman.fw_vram_usage_va);
1595 }
1596
1597 /*
1598  * Memoy training reservation functions
1599  */
1600
1601 /**
1602  * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram
1603  *
1604  * @adev: amdgpu_device pointer
1605  *
1606  * free memory training reserved vram if it has been reserved.
1607  */
1608 static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev)
1609 {
1610         struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1611
1612         ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT;
1613         amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL);
1614         ctx->c2p_bo = NULL;
1615
1616         return 0;
1617 }
1618
1619 static void amdgpu_ttm_training_data_block_init(struct amdgpu_device *adev)
1620 {
1621         struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1622
1623         memset(ctx, 0, sizeof(*ctx));
1624
1625         ctx->c2p_train_data_offset =
1626                 ALIGN((adev->gmc.mc_vram_size - adev->mman.discovery_tmr_size - SZ_1M), SZ_1M);
1627         ctx->p2c_train_data_offset =
1628                 (adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET);
1629         ctx->train_data_size =
1630                 GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES;
1631
1632         DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n",
1633                         ctx->train_data_size,
1634                         ctx->p2c_train_data_offset,
1635                         ctx->c2p_train_data_offset);
1636 }
1637
1638 /*
1639  * reserve TMR memory at the top of VRAM which holds
1640  * IP Discovery data and is protected by PSP.
1641  */
1642 static int amdgpu_ttm_reserve_tmr(struct amdgpu_device *adev)
1643 {
1644         int ret;
1645         struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1646         bool mem_train_support = false;
1647
1648         if (!amdgpu_sriov_vf(adev)) {
1649                 if (amdgpu_atomfirmware_mem_training_supported(adev))
1650                         mem_train_support = true;
1651                 else
1652                         DRM_DEBUG("memory training does not support!\n");
1653         }
1654
1655         /*
1656          * Query reserved tmr size through atom firmwareinfo for Sienna_Cichlid and onwards for all
1657          * the use cases (IP discovery/G6 memory training/profiling/diagnostic data.etc)
1658          *
1659          * Otherwise, fallback to legacy approach to check and reserve tmr block for ip
1660          * discovery data and G6 memory training data respectively
1661          */
1662         adev->mman.discovery_tmr_size =
1663                 amdgpu_atomfirmware_get_fw_reserved_fb_size(adev);
1664         if (!adev->mman.discovery_tmr_size)
1665                 adev->mman.discovery_tmr_size = DISCOVERY_TMR_OFFSET;
1666
1667         if (mem_train_support) {
1668                 /* reserve vram for mem train according to TMR location */
1669                 amdgpu_ttm_training_data_block_init(adev);
1670                 ret = amdgpu_bo_create_kernel_at(adev,
1671                                          ctx->c2p_train_data_offset,
1672                                          ctx->train_data_size,
1673                                          AMDGPU_GEM_DOMAIN_VRAM,
1674                                          &ctx->c2p_bo,
1675                                          NULL);
1676                 if (ret) {
1677                         DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret);
1678                         amdgpu_ttm_training_reserve_vram_fini(adev);
1679                         return ret;
1680                 }
1681                 ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS;
1682         }
1683
1684         ret = amdgpu_bo_create_kernel_at(adev,
1685                                 adev->gmc.real_vram_size - adev->mman.discovery_tmr_size,
1686                                 adev->mman.discovery_tmr_size,
1687                                 AMDGPU_GEM_DOMAIN_VRAM,
1688                                 &adev->mman.discovery_memory,
1689                                 NULL);
1690         if (ret) {
1691                 DRM_ERROR("alloc tmr failed(%d)!\n", ret);
1692                 amdgpu_bo_free_kernel(&adev->mman.discovery_memory, NULL, NULL);
1693                 return ret;
1694         }
1695
1696         return 0;
1697 }
1698
1699 /*
1700  * amdgpu_ttm_init - Init the memory management (ttm) as well as various
1701  * gtt/vram related fields.
1702  *
1703  * This initializes all of the memory space pools that the TTM layer
1704  * will need such as the GTT space (system memory mapped to the device),
1705  * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which
1706  * can be mapped per VMID.
1707  */
1708 int amdgpu_ttm_init(struct amdgpu_device *adev)
1709 {
1710         uint64_t gtt_size;
1711         int r;
1712         u64 vis_vram_limit;
1713
1714         mutex_init(&adev->mman.gtt_window_lock);
1715
1716         /* No others user of address space so set it to 0 */
1717         r = ttm_device_init(&adev->mman.bdev, &amdgpu_bo_driver, adev->dev,
1718                                adev_to_drm(adev)->anon_inode->i_mapping,
1719                                adev_to_drm(adev)->vma_offset_manager,
1720                                adev->need_swiotlb,
1721                                dma_addressing_limited(adev->dev));
1722         if (r) {
1723                 DRM_ERROR("failed initializing buffer object driver(%d).\n", r);
1724                 return r;
1725         }
1726         adev->mman.initialized = true;
1727
1728         /* Initialize VRAM pool with all of VRAM divided into pages */
1729         r = amdgpu_vram_mgr_init(adev);
1730         if (r) {
1731                 DRM_ERROR("Failed initializing VRAM heap.\n");
1732                 return r;
1733         }
1734
1735         /* Reduce size of CPU-visible VRAM if requested */
1736         vis_vram_limit = (u64)amdgpu_vis_vram_limit * 1024 * 1024;
1737         if (amdgpu_vis_vram_limit > 0 &&
1738             vis_vram_limit <= adev->gmc.visible_vram_size)
1739                 adev->gmc.visible_vram_size = vis_vram_limit;
1740
1741         /* Change the size here instead of the init above so only lpfn is affected */
1742         amdgpu_ttm_set_buffer_funcs_status(adev, false);
1743 #ifdef CONFIG_64BIT
1744 #ifdef CONFIG_X86
1745         if (adev->gmc.xgmi.connected_to_cpu)
1746                 adev->mman.aper_base_kaddr = ioremap_cache(adev->gmc.aper_base,
1747                                 adev->gmc.visible_vram_size);
1748
1749         else
1750 #endif
1751                 adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base,
1752                                 adev->gmc.visible_vram_size);
1753 #endif
1754
1755         /*
1756          *The reserved vram for firmware must be pinned to the specified
1757          *place on the VRAM, so reserve it early.
1758          */
1759         r = amdgpu_ttm_fw_reserve_vram_init(adev);
1760         if (r) {
1761                 return r;
1762         }
1763
1764         /*
1765          * only NAVI10 and onwards ASIC support for IP discovery.
1766          * If IP discovery enabled, a block of memory should be
1767          * reserved for IP discovey.
1768          */
1769         if (adev->mman.discovery_bin) {
1770                 r = amdgpu_ttm_reserve_tmr(adev);
1771                 if (r)
1772                         return r;
1773         }
1774
1775         /* allocate memory as required for VGA
1776          * This is used for VGA emulation and pre-OS scanout buffers to
1777          * avoid display artifacts while transitioning between pre-OS
1778          * and driver.  */
1779         r = amdgpu_bo_create_kernel_at(adev, 0, adev->mman.stolen_vga_size,
1780                                        AMDGPU_GEM_DOMAIN_VRAM,
1781                                        &adev->mman.stolen_vga_memory,
1782                                        NULL);
1783         if (r)
1784                 return r;
1785         r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_vga_size,
1786                                        adev->mman.stolen_extended_size,
1787                                        AMDGPU_GEM_DOMAIN_VRAM,
1788                                        &adev->mman.stolen_extended_memory,
1789                                        NULL);
1790         if (r)
1791                 return r;
1792         r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_reserved_offset,
1793                                        adev->mman.stolen_reserved_size,
1794                                        AMDGPU_GEM_DOMAIN_VRAM,
1795                                        &adev->mman.stolen_reserved_memory,
1796                                        NULL);
1797         if (r)
1798                 return r;
1799
1800         DRM_INFO("amdgpu: %uM of VRAM memory ready\n",
1801                  (unsigned) (adev->gmc.real_vram_size / (1024 * 1024)));
1802
1803         /* Compute GTT size, either based on 1/2 the size of RAM size
1804          * or whatever the user passed on module init */
1805         if (amdgpu_gtt_size == -1) {
1806                 struct sysinfo si;
1807
1808                 si_meminfo(&si);
1809                 /* Certain GL unit tests for large textures can cause problems
1810                  * with the OOM killer since there is no way to link this memory
1811                  * to a process.  This was originally mitigated (but not necessarily
1812                  * eliminated) by limiting the GTT size.  The problem is this limit
1813                  * is often too low for many modern games so just make the limit 1/2
1814                  * of system memory which aligns with TTM. The OOM accounting needs
1815                  * to be addressed, but we shouldn't prevent common 3D applications
1816                  * from being usable just to potentially mitigate that corner case.
1817                  */
1818                 gtt_size = max((AMDGPU_DEFAULT_GTT_SIZE_MB << 20),
1819                                (u64)si.totalram * si.mem_unit / 2);
1820         } else {
1821                 gtt_size = (uint64_t)amdgpu_gtt_size << 20;
1822         }
1823
1824         /* Initialize GTT memory pool */
1825         r = amdgpu_gtt_mgr_init(adev, gtt_size);
1826         if (r) {
1827                 DRM_ERROR("Failed initializing GTT heap.\n");
1828                 return r;
1829         }
1830         DRM_INFO("amdgpu: %uM of GTT memory ready.\n",
1831                  (unsigned)(gtt_size / (1024 * 1024)));
1832
1833         /* Initialize preemptible memory pool */
1834         r = amdgpu_preempt_mgr_init(adev);
1835         if (r) {
1836                 DRM_ERROR("Failed initializing PREEMPT heap.\n");
1837                 return r;
1838         }
1839
1840         /* Initialize various on-chip memory pools */
1841         r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GDS, adev->gds.gds_size);
1842         if (r) {
1843                 DRM_ERROR("Failed initializing GDS heap.\n");
1844                 return r;
1845         }
1846
1847         r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GWS, adev->gds.gws_size);
1848         if (r) {
1849                 DRM_ERROR("Failed initializing gws heap.\n");
1850                 return r;
1851         }
1852
1853         r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_OA, adev->gds.oa_size);
1854         if (r) {
1855                 DRM_ERROR("Failed initializing oa heap.\n");
1856                 return r;
1857         }
1858
1859         if (amdgpu_bo_create_kernel(adev, PAGE_SIZE, PAGE_SIZE,
1860                                 AMDGPU_GEM_DOMAIN_GTT,
1861                                 &adev->mman.sdma_access_bo, NULL,
1862                                 &adev->mman.sdma_access_ptr))
1863                 DRM_WARN("Debug VRAM access will use slowpath MM access\n");
1864
1865         return 0;
1866 }
1867
1868 /*
1869  * amdgpu_ttm_fini - De-initialize the TTM memory pools
1870  */
1871 void amdgpu_ttm_fini(struct amdgpu_device *adev)
1872 {
1873         int idx;
1874         if (!adev->mman.initialized)
1875                 return;
1876
1877         amdgpu_ttm_training_reserve_vram_fini(adev);
1878         /* return the stolen vga memory back to VRAM */
1879         amdgpu_bo_free_kernel(&adev->mman.stolen_vga_memory, NULL, NULL);
1880         amdgpu_bo_free_kernel(&adev->mman.stolen_extended_memory, NULL, NULL);
1881         /* return the IP Discovery TMR memory back to VRAM */
1882         amdgpu_bo_free_kernel(&adev->mman.discovery_memory, NULL, NULL);
1883         if (adev->mman.stolen_reserved_size)
1884                 amdgpu_bo_free_kernel(&adev->mman.stolen_reserved_memory,
1885                                       NULL, NULL);
1886         amdgpu_bo_free_kernel(&adev->mman.sdma_access_bo, NULL,
1887                                         &adev->mman.sdma_access_ptr);
1888         amdgpu_ttm_fw_reserve_vram_fini(adev);
1889
1890         if (drm_dev_enter(adev_to_drm(adev), &idx)) {
1891
1892                 if (adev->mman.aper_base_kaddr)
1893                         iounmap(adev->mman.aper_base_kaddr);
1894                 adev->mman.aper_base_kaddr = NULL;
1895
1896                 drm_dev_exit(idx);
1897         }
1898
1899         amdgpu_vram_mgr_fini(adev);
1900         amdgpu_gtt_mgr_fini(adev);
1901         amdgpu_preempt_mgr_fini(adev);
1902         ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GDS);
1903         ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GWS);
1904         ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_OA);
1905         ttm_device_fini(&adev->mman.bdev);
1906         adev->mman.initialized = false;
1907         DRM_INFO("amdgpu: ttm finalized\n");
1908 }
1909
1910 /**
1911  * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions
1912  *
1913  * @adev: amdgpu_device pointer
1914  * @enable: true when we can use buffer functions.
1915  *
1916  * Enable/disable use of buffer functions during suspend/resume. This should
1917  * only be called at bootup or when userspace isn't running.
1918  */
1919 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable)
1920 {
1921         struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, TTM_PL_VRAM);
1922         uint64_t size;
1923         int r;
1924
1925         if (!adev->mman.initialized || amdgpu_in_reset(adev) ||
1926             adev->mman.buffer_funcs_enabled == enable)
1927                 return;
1928
1929         if (enable) {
1930                 struct amdgpu_ring *ring;
1931                 struct drm_gpu_scheduler *sched;
1932
1933                 ring = adev->mman.buffer_funcs_ring;
1934                 sched = &ring->sched;
1935                 r = drm_sched_entity_init(&adev->mman.entity,
1936                                           DRM_SCHED_PRIORITY_KERNEL, &sched,
1937                                           1, NULL);
1938                 if (r) {
1939                         DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
1940                                   r);
1941                         return;
1942                 }
1943         } else {
1944                 drm_sched_entity_destroy(&adev->mman.entity);
1945                 dma_fence_put(man->move);
1946                 man->move = NULL;
1947         }
1948
1949         /* this just adjusts TTM size idea, which sets lpfn to the correct value */
1950         if (enable)
1951                 size = adev->gmc.real_vram_size;
1952         else
1953                 size = adev->gmc.visible_vram_size;
1954         man->size = size;
1955         adev->mman.buffer_funcs_enabled = enable;
1956 }
1957
1958 static int amdgpu_ttm_prepare_job(struct amdgpu_device *adev,
1959                                   bool direct_submit,
1960                                   unsigned int num_dw,
1961                                   struct dma_resv *resv,
1962                                   bool vm_needs_flush,
1963                                   struct amdgpu_job **job)
1964 {
1965         enum amdgpu_ib_pool_type pool = direct_submit ?
1966                 AMDGPU_IB_POOL_DIRECT :
1967                 AMDGPU_IB_POOL_DELAYED;
1968         int r;
1969
1970         r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, pool, job);
1971         if (r)
1972                 return r;
1973
1974         if (vm_needs_flush) {
1975                 (*job)->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gmc.pdb0_bo ?
1976                                                         adev->gmc.pdb0_bo :
1977                                                         adev->gart.bo);
1978                 (*job)->vm_needs_flush = true;
1979         }
1980         if (resv) {
1981                 r = amdgpu_sync_resv(adev, &(*job)->sync, resv,
1982                                      AMDGPU_SYNC_ALWAYS,
1983                                      AMDGPU_FENCE_OWNER_UNDEFINED);
1984                 if (r) {
1985                         DRM_ERROR("sync failed (%d).\n", r);
1986                         amdgpu_job_free(*job);
1987                         return r;
1988                 }
1989         }
1990         return 0;
1991 }
1992
1993 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset,
1994                        uint64_t dst_offset, uint32_t byte_count,
1995                        struct dma_resv *resv,
1996                        struct dma_fence **fence, bool direct_submit,
1997                        bool vm_needs_flush, bool tmz)
1998 {
1999         struct amdgpu_device *adev = ring->adev;
2000         unsigned num_loops, num_dw;
2001         struct amdgpu_job *job;
2002         uint32_t max_bytes;
2003         unsigned i;
2004         int r;
2005
2006         if (!direct_submit && !ring->sched.ready) {
2007                 DRM_ERROR("Trying to move memory with ring turned off.\n");
2008                 return -EINVAL;
2009         }
2010
2011         max_bytes = adev->mman.buffer_funcs->copy_max_bytes;
2012         num_loops = DIV_ROUND_UP(byte_count, max_bytes);
2013         num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8);
2014         r = amdgpu_ttm_prepare_job(adev, direct_submit, num_dw,
2015                                    resv, vm_needs_flush, &job);
2016         if (r)
2017                 return r;
2018
2019         for (i = 0; i < num_loops; i++) {
2020                 uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
2021
2022                 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset,
2023                                         dst_offset, cur_size_in_bytes, tmz);
2024
2025                 src_offset += cur_size_in_bytes;
2026                 dst_offset += cur_size_in_bytes;
2027                 byte_count -= cur_size_in_bytes;
2028         }
2029
2030         amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2031         WARN_ON(job->ibs[0].length_dw > num_dw);
2032         if (direct_submit)
2033                 r = amdgpu_job_submit_direct(job, ring, fence);
2034         else
2035                 r = amdgpu_job_submit(job, &adev->mman.entity,
2036                                       AMDGPU_FENCE_OWNER_UNDEFINED, fence);
2037         if (r)
2038                 goto error_free;
2039
2040         return r;
2041
2042 error_free:
2043         amdgpu_job_free(job);
2044         DRM_ERROR("Error scheduling IBs (%d)\n", r);
2045         return r;
2046 }
2047
2048 static int amdgpu_ttm_fill_mem(struct amdgpu_ring *ring, uint32_t src_data,
2049                                uint64_t dst_addr, uint32_t byte_count,
2050                                struct dma_resv *resv,
2051                                struct dma_fence **fence,
2052                                bool vm_needs_flush)
2053 {
2054         struct amdgpu_device *adev = ring->adev;
2055         unsigned int num_loops, num_dw;
2056         struct amdgpu_job *job;
2057         uint32_t max_bytes;
2058         unsigned int i;
2059         int r;
2060
2061         max_bytes = adev->mman.buffer_funcs->fill_max_bytes;
2062         num_loops = DIV_ROUND_UP_ULL(byte_count, max_bytes);
2063         num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->fill_num_dw, 8);
2064         r = amdgpu_ttm_prepare_job(adev, false, num_dw, resv, vm_needs_flush,
2065                                    &job);
2066         if (r)
2067                 return r;
2068
2069         for (i = 0; i < num_loops; i++) {
2070                 uint32_t cur_size = min(byte_count, max_bytes);
2071
2072                 amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data, dst_addr,
2073                                         cur_size);
2074
2075                 dst_addr += cur_size;
2076                 byte_count -= cur_size;
2077         }
2078
2079         amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2080         WARN_ON(job->ibs[0].length_dw > num_dw);
2081         r = amdgpu_job_submit(job, &adev->mman.entity,
2082                               AMDGPU_FENCE_OWNER_UNDEFINED, fence);
2083         if (r)
2084                 goto error_free;
2085
2086         return 0;
2087
2088 error_free:
2089         amdgpu_job_free(job);
2090         return r;
2091 }
2092
2093 int amdgpu_fill_buffer(struct amdgpu_bo *bo,
2094                         uint32_t src_data,
2095                         struct dma_resv *resv,
2096                         struct dma_fence **f)
2097 {
2098         struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
2099         struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
2100         struct dma_fence *fence = NULL;
2101         struct amdgpu_res_cursor dst;
2102         int r;
2103
2104         if (!adev->mman.buffer_funcs_enabled) {
2105                 DRM_ERROR("Trying to clear memory with ring turned off.\n");
2106                 return -EINVAL;
2107         }
2108
2109         amdgpu_res_first(bo->tbo.resource, 0, amdgpu_bo_size(bo), &dst);
2110
2111         mutex_lock(&adev->mman.gtt_window_lock);
2112         while (dst.remaining) {
2113                 struct dma_fence *next;
2114                 uint64_t cur_size, to;
2115
2116                 /* Never fill more than 256MiB at once to avoid timeouts */
2117                 cur_size = min(dst.size, 256ULL << 20);
2118
2119                 r = amdgpu_ttm_map_buffer(&bo->tbo, bo->tbo.resource, &dst,
2120                                           1, ring, false, &cur_size, &to);
2121                 if (r)
2122                         goto error;
2123
2124                 r = amdgpu_ttm_fill_mem(ring, src_data, to, cur_size, resv,
2125                                         &next, true);
2126                 if (r)
2127                         goto error;
2128
2129                 dma_fence_put(fence);
2130                 fence = next;
2131
2132                 amdgpu_res_next(&dst, cur_size);
2133         }
2134 error:
2135         mutex_unlock(&adev->mman.gtt_window_lock);
2136         if (f)
2137                 *f = dma_fence_get(fence);
2138         dma_fence_put(fence);
2139         return r;
2140 }
2141
2142 /**
2143  * amdgpu_ttm_evict_resources - evict memory buffers
2144  * @adev: amdgpu device object
2145  * @mem_type: evicted BO's memory type
2146  *
2147  * Evicts all @mem_type buffers on the lru list of the memory type.
2148  *
2149  * Returns:
2150  * 0 for success or a negative error code on failure.
2151  */
2152 int amdgpu_ttm_evict_resources(struct amdgpu_device *adev, int mem_type)
2153 {
2154         struct ttm_resource_manager *man;
2155
2156         switch (mem_type) {
2157         case TTM_PL_VRAM:
2158         case TTM_PL_TT:
2159         case AMDGPU_PL_GWS:
2160         case AMDGPU_PL_GDS:
2161         case AMDGPU_PL_OA:
2162                 man = ttm_manager_type(&adev->mman.bdev, mem_type);
2163                 break;
2164         default:
2165                 DRM_ERROR("Trying to evict invalid memory type\n");
2166                 return -EINVAL;
2167         }
2168
2169         return ttm_resource_manager_evict_all(&adev->mman.bdev, man);
2170 }
2171
2172 #if defined(CONFIG_DEBUG_FS)
2173
2174 static int amdgpu_ttm_page_pool_show(struct seq_file *m, void *unused)
2175 {
2176         struct amdgpu_device *adev = (struct amdgpu_device *)m->private;
2177
2178         return ttm_pool_debugfs(&adev->mman.bdev.pool, m);
2179 }
2180
2181 DEFINE_SHOW_ATTRIBUTE(amdgpu_ttm_page_pool);
2182
2183 /*
2184  * amdgpu_ttm_vram_read - Linear read access to VRAM
2185  *
2186  * Accesses VRAM via MMIO for debugging purposes.
2187  */
2188 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf,
2189                                     size_t size, loff_t *pos)
2190 {
2191         struct amdgpu_device *adev = file_inode(f)->i_private;
2192         ssize_t result = 0;
2193
2194         if (size & 0x3 || *pos & 0x3)
2195                 return -EINVAL;
2196
2197         if (*pos >= adev->gmc.mc_vram_size)
2198                 return -ENXIO;
2199
2200         size = min(size, (size_t)(adev->gmc.mc_vram_size - *pos));
2201         while (size) {
2202                 size_t bytes = min(size, AMDGPU_TTM_VRAM_MAX_DW_READ * 4);
2203                 uint32_t value[AMDGPU_TTM_VRAM_MAX_DW_READ];
2204
2205                 amdgpu_device_vram_access(adev, *pos, value, bytes, false);
2206                 if (copy_to_user(buf, value, bytes))
2207                         return -EFAULT;
2208
2209                 result += bytes;
2210                 buf += bytes;
2211                 *pos += bytes;
2212                 size -= bytes;
2213         }
2214
2215         return result;
2216 }
2217
2218 /*
2219  * amdgpu_ttm_vram_write - Linear write access to VRAM
2220  *
2221  * Accesses VRAM via MMIO for debugging purposes.
2222  */
2223 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf,
2224                                     size_t size, loff_t *pos)
2225 {
2226         struct amdgpu_device *adev = file_inode(f)->i_private;
2227         ssize_t result = 0;
2228         int r;
2229
2230         if (size & 0x3 || *pos & 0x3)
2231                 return -EINVAL;
2232
2233         if (*pos >= adev->gmc.mc_vram_size)
2234                 return -ENXIO;
2235
2236         while (size) {
2237                 uint32_t value;
2238
2239                 if (*pos >= adev->gmc.mc_vram_size)
2240                         return result;
2241
2242                 r = get_user(value, (uint32_t *)buf);
2243                 if (r)
2244                         return r;
2245
2246                 amdgpu_device_mm_access(adev, *pos, &value, 4, true);
2247
2248                 result += 4;
2249                 buf += 4;
2250                 *pos += 4;
2251                 size -= 4;
2252         }
2253
2254         return result;
2255 }
2256
2257 static const struct file_operations amdgpu_ttm_vram_fops = {
2258         .owner = THIS_MODULE,
2259         .read = amdgpu_ttm_vram_read,
2260         .write = amdgpu_ttm_vram_write,
2261         .llseek = default_llseek,
2262 };
2263
2264 /*
2265  * amdgpu_iomem_read - Virtual read access to GPU mapped memory
2266  *
2267  * This function is used to read memory that has been mapped to the
2268  * GPU and the known addresses are not physical addresses but instead
2269  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2270  */
2271 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf,
2272                                  size_t size, loff_t *pos)
2273 {
2274         struct amdgpu_device *adev = file_inode(f)->i_private;
2275         struct iommu_domain *dom;
2276         ssize_t result = 0;
2277         int r;
2278
2279         /* retrieve the IOMMU domain if any for this device */
2280         dom = iommu_get_domain_for_dev(adev->dev);
2281
2282         while (size) {
2283                 phys_addr_t addr = *pos & PAGE_MASK;
2284                 loff_t off = *pos & ~PAGE_MASK;
2285                 size_t bytes = PAGE_SIZE - off;
2286                 unsigned long pfn;
2287                 struct page *p;
2288                 void *ptr;
2289
2290                 bytes = bytes < size ? bytes : size;
2291
2292                 /* Translate the bus address to a physical address.  If
2293                  * the domain is NULL it means there is no IOMMU active
2294                  * and the address translation is the identity
2295                  */
2296                 addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2297
2298                 pfn = addr >> PAGE_SHIFT;
2299                 if (!pfn_valid(pfn))
2300                         return -EPERM;
2301
2302                 p = pfn_to_page(pfn);
2303                 if (p->mapping != adev->mman.bdev.dev_mapping)
2304                         return -EPERM;
2305
2306                 ptr = kmap(p);
2307                 r = copy_to_user(buf, ptr + off, bytes);
2308                 kunmap(p);
2309                 if (r)
2310                         return -EFAULT;
2311
2312                 size -= bytes;
2313                 *pos += bytes;
2314                 result += bytes;
2315         }
2316
2317         return result;
2318 }
2319
2320 /*
2321  * amdgpu_iomem_write - Virtual write access to GPU mapped memory
2322  *
2323  * This function is used to write memory that has been mapped to the
2324  * GPU and the known addresses are not physical addresses but instead
2325  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2326  */
2327 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf,
2328                                  size_t size, loff_t *pos)
2329 {
2330         struct amdgpu_device *adev = file_inode(f)->i_private;
2331         struct iommu_domain *dom;
2332         ssize_t result = 0;
2333         int r;
2334
2335         dom = iommu_get_domain_for_dev(adev->dev);
2336
2337         while (size) {
2338                 phys_addr_t addr = *pos & PAGE_MASK;
2339                 loff_t off = *pos & ~PAGE_MASK;
2340                 size_t bytes = PAGE_SIZE - off;
2341                 unsigned long pfn;
2342                 struct page *p;
2343                 void *ptr;
2344
2345                 bytes = bytes < size ? bytes : size;
2346
2347                 addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2348
2349                 pfn = addr >> PAGE_SHIFT;
2350                 if (!pfn_valid(pfn))
2351                         return -EPERM;
2352
2353                 p = pfn_to_page(pfn);
2354                 if (p->mapping != adev->mman.bdev.dev_mapping)
2355                         return -EPERM;
2356
2357                 ptr = kmap(p);
2358                 r = copy_from_user(ptr + off, buf, bytes);
2359                 kunmap(p);
2360                 if (r)
2361                         return -EFAULT;
2362
2363                 size -= bytes;
2364                 *pos += bytes;
2365                 result += bytes;
2366         }
2367
2368         return result;
2369 }
2370
2371 static const struct file_operations amdgpu_ttm_iomem_fops = {
2372         .owner = THIS_MODULE,
2373         .read = amdgpu_iomem_read,
2374         .write = amdgpu_iomem_write,
2375         .llseek = default_llseek
2376 };
2377
2378 #endif
2379
2380 void amdgpu_ttm_debugfs_init(struct amdgpu_device *adev)
2381 {
2382 #if defined(CONFIG_DEBUG_FS)
2383         struct drm_minor *minor = adev_to_drm(adev)->primary;
2384         struct dentry *root = minor->debugfs_root;
2385
2386         debugfs_create_file_size("amdgpu_vram", 0444, root, adev,
2387                                  &amdgpu_ttm_vram_fops, adev->gmc.mc_vram_size);
2388         debugfs_create_file("amdgpu_iomem", 0444, root, adev,
2389                             &amdgpu_ttm_iomem_fops);
2390         debugfs_create_file("ttm_page_pool", 0444, root, adev,
2391                             &amdgpu_ttm_page_pool_fops);
2392         ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2393                                                              TTM_PL_VRAM),
2394                                             root, "amdgpu_vram_mm");
2395         ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2396                                                              TTM_PL_TT),
2397                                             root, "amdgpu_gtt_mm");
2398         ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2399                                                              AMDGPU_PL_GDS),
2400                                             root, "amdgpu_gds_mm");
2401         ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2402                                                              AMDGPU_PL_GWS),
2403                                             root, "amdgpu_gws_mm");
2404         ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2405                                                              AMDGPU_PL_OA),
2406                                             root, "amdgpu_oa_mm");
2407
2408 #endif
2409 }