Merge tag 'media/v5.14-2' of git://git.kernel.org/pub/scm/linux/kernel/git/mchehab...
[platform/kernel/linux-rpi.git] / drivers / fsi / fsi-master-ast-cf.c
1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright 2018 IBM Corp
3 /*
4  * A FSI master controller, using a simple GPIO bit-banging interface
5  */
6
7 #include <linux/crc4.h>
8 #include <linux/delay.h>
9 #include <linux/device.h>
10 #include <linux/fsi.h>
11 #include <linux/gpio/consumer.h>
12 #include <linux/io.h>
13 #include <linux/irqflags.h>
14 #include <linux/module.h>
15 #include <linux/of.h>
16 #include <linux/platform_device.h>
17 #include <linux/slab.h>
18 #include <linux/regmap.h>
19 #include <linux/firmware.h>
20 #include <linux/gpio/aspeed.h>
21 #include <linux/mfd/syscon.h>
22 #include <linux/of_address.h>
23 #include <linux/genalloc.h>
24
25 #include "fsi-master.h"
26 #include "cf-fsi-fw.h"
27
28 #define FW_FILE_NAME    "cf-fsi-fw.bin"
29
30 /* Common SCU based coprocessor control registers */
31 #define SCU_COPRO_CTRL                  0x100
32 #define   SCU_COPRO_RESET                       0x00000002
33 #define   SCU_COPRO_CLK_EN                      0x00000001
34
35 /* AST2500 specific ones */
36 #define SCU_2500_COPRO_SEG0             0x104
37 #define SCU_2500_COPRO_SEG1             0x108
38 #define SCU_2500_COPRO_SEG2             0x10c
39 #define SCU_2500_COPRO_SEG3             0x110
40 #define SCU_2500_COPRO_SEG4             0x114
41 #define SCU_2500_COPRO_SEG5             0x118
42 #define SCU_2500_COPRO_SEG6             0x11c
43 #define SCU_2500_COPRO_SEG7             0x120
44 #define SCU_2500_COPRO_SEG8             0x124
45 #define   SCU_2500_COPRO_SEG_SWAP               0x00000001
46 #define SCU_2500_COPRO_CACHE_CTL        0x128
47 #define   SCU_2500_COPRO_CACHE_EN               0x00000001
48 #define   SCU_2500_COPRO_SEG0_CACHE_EN          0x00000002
49 #define   SCU_2500_COPRO_SEG1_CACHE_EN          0x00000004
50 #define   SCU_2500_COPRO_SEG2_CACHE_EN          0x00000008
51 #define   SCU_2500_COPRO_SEG3_CACHE_EN          0x00000010
52 #define   SCU_2500_COPRO_SEG4_CACHE_EN          0x00000020
53 #define   SCU_2500_COPRO_SEG5_CACHE_EN          0x00000040
54 #define   SCU_2500_COPRO_SEG6_CACHE_EN          0x00000080
55 #define   SCU_2500_COPRO_SEG7_CACHE_EN          0x00000100
56 #define   SCU_2500_COPRO_SEG8_CACHE_EN          0x00000200
57
58 #define SCU_2400_COPRO_SEG0             0x104
59 #define SCU_2400_COPRO_SEG2             0x108
60 #define SCU_2400_COPRO_SEG4             0x10c
61 #define SCU_2400_COPRO_SEG6             0x110
62 #define SCU_2400_COPRO_SEG8             0x114
63 #define   SCU_2400_COPRO_SEG_SWAP               0x80000000
64 #define SCU_2400_COPRO_CACHE_CTL        0x118
65 #define   SCU_2400_COPRO_CACHE_EN               0x00000001
66 #define   SCU_2400_COPRO_SEG0_CACHE_EN          0x00000002
67 #define   SCU_2400_COPRO_SEG2_CACHE_EN          0x00000004
68 #define   SCU_2400_COPRO_SEG4_CACHE_EN          0x00000008
69 #define   SCU_2400_COPRO_SEG6_CACHE_EN          0x00000010
70 #define   SCU_2400_COPRO_SEG8_CACHE_EN          0x00000020
71
72 /* CVIC registers */
73 #define CVIC_EN_REG                     0x10
74 #define CVIC_TRIG_REG                   0x18
75
76 /*
77  * System register base address (needed for configuring the
78  * coldfire maps)
79  */
80 #define SYSREG_BASE                     0x1e600000
81
82 /* Amount of SRAM required */
83 #define SRAM_SIZE                       0x1000
84
85 #define LAST_ADDR_INVALID               0x1
86
87 struct fsi_master_acf {
88         struct fsi_master       master;
89         struct device           *dev;
90         struct regmap           *scu;
91         struct mutex            lock;   /* mutex for command ordering */
92         struct gpio_desc        *gpio_clk;
93         struct gpio_desc        *gpio_data;
94         struct gpio_desc        *gpio_trans;    /* Voltage translator */
95         struct gpio_desc        *gpio_enable;   /* FSI enable */
96         struct gpio_desc        *gpio_mux;      /* Mux control */
97         uint16_t                gpio_clk_vreg;
98         uint16_t                gpio_clk_dreg;
99         uint16_t                gpio_dat_vreg;
100         uint16_t                gpio_dat_dreg;
101         uint16_t                gpio_tra_vreg;
102         uint16_t                gpio_tra_dreg;
103         uint8_t                 gpio_clk_bit;
104         uint8_t                 gpio_dat_bit;
105         uint8_t                 gpio_tra_bit;
106         uint32_t                cf_mem_addr;
107         size_t                  cf_mem_size;
108         void __iomem            *cf_mem;
109         void __iomem            *cvic;
110         struct gen_pool         *sram_pool;
111         void __iomem            *sram;
112         bool                    is_ast2500;
113         bool                    external_mode;
114         bool                    trace_enabled;
115         uint32_t                last_addr;
116         uint8_t                 t_send_delay;
117         uint8_t                 t_echo_delay;
118         uint32_t                cvic_sw_irq;
119 };
120 #define to_fsi_master_acf(m) container_of(m, struct fsi_master_acf, master)
121
122 struct fsi_msg {
123         uint64_t        msg;
124         uint8_t         bits;
125 };
126
127 #define CREATE_TRACE_POINTS
128 #include <trace/events/fsi_master_ast_cf.h>
129
130 static void msg_push_bits(struct fsi_msg *msg, uint64_t data, int bits)
131 {
132         msg->msg <<= bits;
133         msg->msg |= data & ((1ull << bits) - 1);
134         msg->bits += bits;
135 }
136
137 static void msg_push_crc(struct fsi_msg *msg)
138 {
139         uint8_t crc;
140         int top;
141
142         top = msg->bits & 0x3;
143
144         /* start bit, and any non-aligned top bits */
145         crc = crc4(0, 1 << top | msg->msg >> (msg->bits - top), top + 1);
146
147         /* aligned bits */
148         crc = crc4(crc, msg->msg, msg->bits - top);
149
150         msg_push_bits(msg, crc, 4);
151 }
152
153 static void msg_finish_cmd(struct fsi_msg *cmd)
154 {
155         /* Left align message */
156         cmd->msg <<= (64 - cmd->bits);
157 }
158
159 static bool check_same_address(struct fsi_master_acf *master, int id,
160                                uint32_t addr)
161 {
162         /* this will also handle LAST_ADDR_INVALID */
163         return master->last_addr == (((id & 0x3) << 21) | (addr & ~0x3));
164 }
165
166 static bool check_relative_address(struct fsi_master_acf *master, int id,
167                                    uint32_t addr, uint32_t *rel_addrp)
168 {
169         uint32_t last_addr = master->last_addr;
170         int32_t rel_addr;
171
172         if (last_addr == LAST_ADDR_INVALID)
173                 return false;
174
175         /* We may be in 23-bit addressing mode, which uses the id as the
176          * top two address bits. So, if we're referencing a different ID,
177          * use absolute addresses.
178          */
179         if (((last_addr >> 21) & 0x3) != id)
180                 return false;
181
182         /* remove the top two bits from any 23-bit addressing */
183         last_addr &= (1 << 21) - 1;
184
185         /* We know that the addresses are limited to 21 bits, so this won't
186          * overflow the signed rel_addr */
187         rel_addr = addr - last_addr;
188         if (rel_addr > 255 || rel_addr < -256)
189                 return false;
190
191         *rel_addrp = (uint32_t)rel_addr;
192
193         return true;
194 }
195
196 static void last_address_update(struct fsi_master_acf *master,
197                                 int id, bool valid, uint32_t addr)
198 {
199         if (!valid)
200                 master->last_addr = LAST_ADDR_INVALID;
201         else
202                 master->last_addr = ((id & 0x3) << 21) | (addr & ~0x3);
203 }
204
205 /*
206  * Encode an Absolute/Relative/Same Address command
207  */
208 static void build_ar_command(struct fsi_master_acf *master,
209                              struct fsi_msg *cmd, uint8_t id,
210                              uint32_t addr, size_t size,
211                              const void *data)
212 {
213         int i, addr_bits, opcode_bits;
214         bool write = !!data;
215         uint8_t ds, opcode;
216         uint32_t rel_addr;
217
218         cmd->bits = 0;
219         cmd->msg = 0;
220
221         /* we have 21 bits of address max */
222         addr &= ((1 << 21) - 1);
223
224         /* cmd opcodes are variable length - SAME_AR is only two bits */
225         opcode_bits = 3;
226
227         if (check_same_address(master, id, addr)) {
228                 /* we still address the byte offset within the word */
229                 addr_bits = 2;
230                 opcode_bits = 2;
231                 opcode = FSI_CMD_SAME_AR;
232                 trace_fsi_master_acf_cmd_same_addr(master);
233
234         } else if (check_relative_address(master, id, addr, &rel_addr)) {
235                 /* 8 bits plus sign */
236                 addr_bits = 9;
237                 addr = rel_addr;
238                 opcode = FSI_CMD_REL_AR;
239                 trace_fsi_master_acf_cmd_rel_addr(master, rel_addr);
240
241         } else {
242                 addr_bits = 21;
243                 opcode = FSI_CMD_ABS_AR;
244                 trace_fsi_master_acf_cmd_abs_addr(master, addr);
245         }
246
247         /*
248          * The read/write size is encoded in the lower bits of the address
249          * (as it must be naturally-aligned), and the following ds bit.
250          *
251          *      size    addr:1  addr:0  ds
252          *      1       x       x       0
253          *      2       x       0       1
254          *      4       0       1       1
255          *
256          */
257         ds = size > 1 ? 1 : 0;
258         addr &= ~(size - 1);
259         if (size == 4)
260                 addr |= 1;
261
262         msg_push_bits(cmd, id, 2);
263         msg_push_bits(cmd, opcode, opcode_bits);
264         msg_push_bits(cmd, write ? 0 : 1, 1);
265         msg_push_bits(cmd, addr, addr_bits);
266         msg_push_bits(cmd, ds, 1);
267         for (i = 0; write && i < size; i++)
268                 msg_push_bits(cmd, ((uint8_t *)data)[i], 8);
269
270         msg_push_crc(cmd);
271         msg_finish_cmd(cmd);
272 }
273
274 static void build_dpoll_command(struct fsi_msg *cmd, uint8_t slave_id)
275 {
276         cmd->bits = 0;
277         cmd->msg = 0;
278
279         msg_push_bits(cmd, slave_id, 2);
280         msg_push_bits(cmd, FSI_CMD_DPOLL, 3);
281         msg_push_crc(cmd);
282         msg_finish_cmd(cmd);
283 }
284
285 static void build_epoll_command(struct fsi_msg *cmd, uint8_t slave_id)
286 {
287         cmd->bits = 0;
288         cmd->msg = 0;
289
290         msg_push_bits(cmd, slave_id, 2);
291         msg_push_bits(cmd, FSI_CMD_EPOLL, 3);
292         msg_push_crc(cmd);
293         msg_finish_cmd(cmd);
294 }
295
296 static void build_term_command(struct fsi_msg *cmd, uint8_t slave_id)
297 {
298         cmd->bits = 0;
299         cmd->msg = 0;
300
301         msg_push_bits(cmd, slave_id, 2);
302         msg_push_bits(cmd, FSI_CMD_TERM, 6);
303         msg_push_crc(cmd);
304         msg_finish_cmd(cmd);
305 }
306
307 static int do_copro_command(struct fsi_master_acf *master, uint32_t op)
308 {
309         uint32_t timeout = 10000000;
310         uint8_t stat;
311
312         trace_fsi_master_acf_copro_command(master, op);
313
314         /* Send command */
315         iowrite32be(op, master->sram + CMD_STAT_REG);
316
317         /* Ring doorbell if any */
318         if (master->cvic)
319                 iowrite32(0x2, master->cvic + CVIC_TRIG_REG);
320
321         /* Wait for status to indicate completion (or error) */
322         do {
323                 if (timeout-- == 0) {
324                         dev_warn(master->dev,
325                                  "Timeout waiting for coprocessor completion\n");
326                         return -ETIMEDOUT;
327                 }
328                 stat = ioread8(master->sram + CMD_STAT_REG);
329         } while(stat < STAT_COMPLETE || stat == 0xff);
330
331         if (stat == STAT_COMPLETE)
332                 return 0;
333         switch(stat) {
334         case STAT_ERR_INVAL_CMD:
335                 return -EINVAL;
336         case STAT_ERR_INVAL_IRQ:
337                 return -EIO;
338         case STAT_ERR_MTOE:
339                 return -ESHUTDOWN;
340         }
341         return -ENXIO;
342 }
343
344 static int clock_zeros(struct fsi_master_acf *master, int count)
345 {
346         while (count) {
347                 int rc, lcnt = min(count, 255);
348
349                 rc = do_copro_command(master,
350                                       CMD_IDLE_CLOCKS | (lcnt << CMD_REG_CLEN_SHIFT));
351                 if (rc)
352                         return rc;
353                 count -= lcnt;
354         }
355         return 0;
356 }
357
358 static int send_request(struct fsi_master_acf *master, struct fsi_msg *cmd,
359                         unsigned int resp_bits)
360 {
361         uint32_t op;
362
363         trace_fsi_master_acf_send_request(master, cmd, resp_bits);
364
365         /* Store message into SRAM */
366         iowrite32be((cmd->msg >> 32), master->sram + CMD_DATA);
367         iowrite32be((cmd->msg & 0xffffffff), master->sram + CMD_DATA + 4);
368
369         op = CMD_COMMAND;
370         op |= cmd->bits << CMD_REG_CLEN_SHIFT;
371         if (resp_bits)
372                 op |= resp_bits << CMD_REG_RLEN_SHIFT;
373
374         return do_copro_command(master, op);
375 }
376
377 static int read_copro_response(struct fsi_master_acf *master, uint8_t size,
378                                uint32_t *response, u8 *tag)
379 {
380         uint8_t rtag = ioread8(master->sram + STAT_RTAG) & 0xf;
381         uint8_t rcrc = ioread8(master->sram + STAT_RCRC) & 0xf;
382         uint32_t rdata = 0;
383         uint32_t crc;
384         uint8_t ack;
385
386         *tag = ack = rtag & 3;
387
388         /* we have a whole message now; check CRC */
389         crc = crc4(0, 1, 1);
390         crc = crc4(crc, rtag, 4);
391         if (ack == FSI_RESP_ACK && size) {
392                 rdata = ioread32be(master->sram + RSP_DATA);
393                 crc = crc4(crc, rdata, size);
394                 if (response)
395                         *response = rdata;
396         }
397         crc = crc4(crc, rcrc, 4);
398
399         trace_fsi_master_acf_copro_response(master, rtag, rcrc, rdata, crc == 0);
400
401         if (crc) {
402                 /*
403                  * Check if it's all 1's or all 0's, that probably means
404                  * the host is off
405                  */
406                 if ((rtag == 0xf && rcrc == 0xf) || (rtag == 0 && rcrc == 0))
407                         return -ENODEV;
408                 dev_dbg(master->dev, "Bad response CRC !\n");
409                 return -EAGAIN;
410         }
411         return 0;
412 }
413
414 static int send_term(struct fsi_master_acf *master, uint8_t slave)
415 {
416         struct fsi_msg cmd;
417         uint8_t tag;
418         int rc;
419
420         build_term_command(&cmd, slave);
421
422         rc = send_request(master, &cmd, 0);
423         if (rc) {
424                 dev_warn(master->dev, "Error %d sending term\n", rc);
425                 return rc;
426         }
427
428         rc = read_copro_response(master, 0, NULL, &tag);
429         if (rc < 0) {
430                 dev_err(master->dev,
431                                 "TERM failed; lost communication with slave\n");
432                 return -EIO;
433         } else if (tag != FSI_RESP_ACK) {
434                 dev_err(master->dev, "TERM failed; response %d\n", tag);
435                 return -EIO;
436         }
437         return 0;
438 }
439
440 static void dump_ucode_trace(struct fsi_master_acf *master)
441 {
442         char trbuf[52];
443         char *p;
444         int i;
445
446         dev_dbg(master->dev,
447                 "CMDSTAT:%08x RTAG=%02x RCRC=%02x RDATA=%02x #INT=%08x\n",
448                 ioread32be(master->sram + CMD_STAT_REG),
449                 ioread8(master->sram + STAT_RTAG),
450                 ioread8(master->sram + STAT_RCRC),
451                 ioread32be(master->sram + RSP_DATA),
452                 ioread32be(master->sram + INT_CNT));
453
454         for (i = 0; i < 512; i++) {
455                 uint8_t v;
456                 if ((i % 16) == 0)
457                         p = trbuf;
458                 v = ioread8(master->sram + TRACEBUF + i);
459                 p += sprintf(p, "%02x ", v);
460                 if (((i % 16) == 15) || v == TR_END)
461                         dev_dbg(master->dev, "%s\n", trbuf);
462                 if (v == TR_END)
463                         break;
464         }
465 }
466
467 static int handle_response(struct fsi_master_acf *master,
468                            uint8_t slave, uint8_t size, void *data)
469 {
470         int busy_count = 0, rc;
471         int crc_err_retries = 0;
472         struct fsi_msg cmd;
473         uint32_t response;
474         uint8_t tag;
475 retry:
476         rc = read_copro_response(master, size, &response, &tag);
477
478         /* Handle retries on CRC errors */
479         if (rc == -EAGAIN) {
480                 /* Too many retries ? */
481                 if (crc_err_retries++ > FSI_CRC_ERR_RETRIES) {
482                         /*
483                          * Pass it up as a -EIO otherwise upper level will retry
484                          * the whole command which isn't what we want here.
485                          */
486                         rc = -EIO;
487                         goto bail;
488                 }
489                 trace_fsi_master_acf_crc_rsp_error(master, crc_err_retries);
490                 if (master->trace_enabled)
491                         dump_ucode_trace(master);
492                 rc = clock_zeros(master, FSI_MASTER_EPOLL_CLOCKS);
493                 if (rc) {
494                         dev_warn(master->dev,
495                                  "Error %d clocking zeros for E_POLL\n", rc);
496                         return rc;
497                 }
498                 build_epoll_command(&cmd, slave);
499                 rc = send_request(master, &cmd, size);
500                 if (rc) {
501                         dev_warn(master->dev, "Error %d sending E_POLL\n", rc);
502                         return -EIO;
503                 }
504                 goto retry;
505         }
506         if (rc)
507                 return rc;
508
509         switch (tag) {
510         case FSI_RESP_ACK:
511                 if (size && data) {
512                         if (size == 32)
513                                 *(__be32 *)data = cpu_to_be32(response);
514                         else if (size == 16)
515                                 *(__be16 *)data = cpu_to_be16(response);
516                         else
517                                 *(u8 *)data = response;
518                 }
519                 break;
520         case FSI_RESP_BUSY:
521                 /*
522                  * Its necessary to clock slave before issuing
523                  * d-poll, not indicated in the hardware protocol
524                  * spec. < 20 clocks causes slave to hang, 21 ok.
525                  */
526                 dev_dbg(master->dev, "Busy, retrying...\n");
527                 if (master->trace_enabled)
528                         dump_ucode_trace(master);
529                 rc = clock_zeros(master, FSI_MASTER_DPOLL_CLOCKS);
530                 if (rc) {
531                         dev_warn(master->dev,
532                                  "Error %d clocking zeros for D_POLL\n", rc);
533                         break;
534                 }
535                 if (busy_count++ < FSI_MASTER_MAX_BUSY) {
536                         build_dpoll_command(&cmd, slave);
537                         rc = send_request(master, &cmd, size);
538                         if (rc) {
539                                 dev_warn(master->dev, "Error %d sending D_POLL\n", rc);
540                                 break;
541                         }
542                         goto retry;
543                 }
544                 dev_dbg(master->dev,
545                         "ERR slave is stuck in busy state, issuing TERM\n");
546                 send_term(master, slave);
547                 rc = -EIO;
548                 break;
549
550         case FSI_RESP_ERRA:
551                 dev_dbg(master->dev, "ERRA received\n");
552                 if (master->trace_enabled)
553                         dump_ucode_trace(master);
554                 rc = -EIO;
555                 break;
556         case FSI_RESP_ERRC:
557                 dev_dbg(master->dev, "ERRC received\n");
558                 if (master->trace_enabled)
559                         dump_ucode_trace(master);
560                 rc = -EAGAIN;
561                 break;
562         }
563  bail:
564         if (busy_count > 0) {
565                 trace_fsi_master_acf_poll_response_busy(master, busy_count);
566         }
567
568         return rc;
569 }
570
571 static int fsi_master_acf_xfer(struct fsi_master_acf *master, uint8_t slave,
572                                struct fsi_msg *cmd, size_t resp_len, void *resp)
573 {
574         int rc = -EAGAIN, retries = 0;
575
576         resp_len <<= 3;
577         while ((retries++) < FSI_CRC_ERR_RETRIES) {
578                 rc = send_request(master, cmd, resp_len);
579                 if (rc) {
580                         if (rc != -ESHUTDOWN)
581                                 dev_warn(master->dev, "Error %d sending command\n", rc);
582                         break;
583                 }
584                 rc = handle_response(master, slave, resp_len, resp);
585                 if (rc != -EAGAIN)
586                         break;
587                 rc = -EIO;
588                 dev_dbg(master->dev, "ECRC retry %d\n", retries);
589
590                 /* Pace it a bit before retry */
591                 msleep(1);
592         }
593
594         return rc;
595 }
596
597 static int fsi_master_acf_read(struct fsi_master *_master, int link,
598                                uint8_t id, uint32_t addr, void *val,
599                                size_t size)
600 {
601         struct fsi_master_acf *master = to_fsi_master_acf(_master);
602         struct fsi_msg cmd;
603         int rc;
604
605         if (link != 0)
606                 return -ENODEV;
607
608         mutex_lock(&master->lock);
609         dev_dbg(master->dev, "read id %d addr %x size %zd\n", id, addr, size);
610         build_ar_command(master, &cmd, id, addr, size, NULL);
611         rc = fsi_master_acf_xfer(master, id, &cmd, size, val);
612         last_address_update(master, id, rc == 0, addr);
613         if (rc)
614                 dev_dbg(master->dev, "read id %d addr 0x%08x err: %d\n",
615                         id, addr, rc);
616         mutex_unlock(&master->lock);
617
618         return rc;
619 }
620
621 static int fsi_master_acf_write(struct fsi_master *_master, int link,
622                                 uint8_t id, uint32_t addr, const void *val,
623                                 size_t size)
624 {
625         struct fsi_master_acf *master = to_fsi_master_acf(_master);
626         struct fsi_msg cmd;
627         int rc;
628
629         if (link != 0)
630                 return -ENODEV;
631
632         mutex_lock(&master->lock);
633         build_ar_command(master, &cmd, id, addr, size, val);
634         dev_dbg(master->dev, "write id %d addr %x size %zd raw_data: %08x\n",
635                 id, addr, size, *(uint32_t *)val);
636         rc = fsi_master_acf_xfer(master, id, &cmd, 0, NULL);
637         last_address_update(master, id, rc == 0, addr);
638         if (rc)
639                 dev_dbg(master->dev, "write id %d addr 0x%08x err: %d\n",
640                         id, addr, rc);
641         mutex_unlock(&master->lock);
642
643         return rc;
644 }
645
646 static int fsi_master_acf_term(struct fsi_master *_master,
647                                int link, uint8_t id)
648 {
649         struct fsi_master_acf *master = to_fsi_master_acf(_master);
650         struct fsi_msg cmd;
651         int rc;
652
653         if (link != 0)
654                 return -ENODEV;
655
656         mutex_lock(&master->lock);
657         build_term_command(&cmd, id);
658         dev_dbg(master->dev, "term id %d\n", id);
659         rc = fsi_master_acf_xfer(master, id, &cmd, 0, NULL);
660         last_address_update(master, id, false, 0);
661         mutex_unlock(&master->lock);
662
663         return rc;
664 }
665
666 static int fsi_master_acf_break(struct fsi_master *_master, int link)
667 {
668         struct fsi_master_acf *master = to_fsi_master_acf(_master);
669         int rc;
670
671         if (link != 0)
672                 return -ENODEV;
673
674         mutex_lock(&master->lock);
675         if (master->external_mode) {
676                 mutex_unlock(&master->lock);
677                 return -EBUSY;
678         }
679         dev_dbg(master->dev, "sending BREAK\n");
680         rc = do_copro_command(master, CMD_BREAK);
681         last_address_update(master, 0, false, 0);
682         mutex_unlock(&master->lock);
683
684         /* Wait for logic reset to take effect */
685         udelay(200);
686
687         return rc;
688 }
689
690 static void reset_cf(struct fsi_master_acf *master)
691 {
692         regmap_write(master->scu, SCU_COPRO_CTRL, SCU_COPRO_RESET);
693         usleep_range(20,20);
694         regmap_write(master->scu, SCU_COPRO_CTRL, 0);
695         usleep_range(20,20);
696 }
697
698 static void start_cf(struct fsi_master_acf *master)
699 {
700         regmap_write(master->scu, SCU_COPRO_CTRL, SCU_COPRO_CLK_EN);
701 }
702
703 static void setup_ast2500_cf_maps(struct fsi_master_acf *master)
704 {
705         /*
706          * Note about byteswap setting: the bus is wired backwards,
707          * so setting the byteswap bit actually makes the ColdFire
708          * work "normally" for a BE processor, ie, put the MSB in
709          * the lowest address byte.
710          *
711          * We thus need to set the bit for our main memory which
712          * contains our program code. We create two mappings for
713          * the register, one with each setting.
714          *
715          * Segments 2 and 3 has a "swapped" mapping (BE)
716          * and 6 and 7 have a non-swapped mapping (LE) which allows
717          * us to avoid byteswapping register accesses since the
718          * registers are all LE.
719          */
720
721         /* Setup segment 0 to our memory region */
722         regmap_write(master->scu, SCU_2500_COPRO_SEG0, master->cf_mem_addr |
723                      SCU_2500_COPRO_SEG_SWAP);
724
725         /* Segments 2 and 3 to sysregs with byteswap (for SRAM) */
726         regmap_write(master->scu, SCU_2500_COPRO_SEG2, SYSREG_BASE |
727                      SCU_2500_COPRO_SEG_SWAP);
728         regmap_write(master->scu, SCU_2500_COPRO_SEG3, SYSREG_BASE | 0x100000 |
729                      SCU_2500_COPRO_SEG_SWAP);
730
731         /* And segment 6 and 7 to sysregs no byteswap */
732         regmap_write(master->scu, SCU_2500_COPRO_SEG6, SYSREG_BASE);
733         regmap_write(master->scu, SCU_2500_COPRO_SEG7, SYSREG_BASE | 0x100000);
734
735         /* Memory cachable, regs and SRAM not cachable */
736         regmap_write(master->scu, SCU_2500_COPRO_CACHE_CTL,
737                      SCU_2500_COPRO_SEG0_CACHE_EN | SCU_2500_COPRO_CACHE_EN);
738 }
739
740 static void setup_ast2400_cf_maps(struct fsi_master_acf *master)
741 {
742         /* Setup segment 0 to our memory region */
743         regmap_write(master->scu, SCU_2400_COPRO_SEG0, master->cf_mem_addr |
744                      SCU_2400_COPRO_SEG_SWAP);
745
746         /* Segments 2 to sysregs with byteswap (for SRAM) */
747         regmap_write(master->scu, SCU_2400_COPRO_SEG2, SYSREG_BASE |
748                      SCU_2400_COPRO_SEG_SWAP);
749
750         /* And segment 6 to sysregs no byteswap */
751         regmap_write(master->scu, SCU_2400_COPRO_SEG6, SYSREG_BASE);
752
753         /* Memory cachable, regs and SRAM not cachable */
754         regmap_write(master->scu, SCU_2400_COPRO_CACHE_CTL,
755                      SCU_2400_COPRO_SEG0_CACHE_EN | SCU_2400_COPRO_CACHE_EN);
756 }
757
758 static void setup_common_fw_config(struct fsi_master_acf *master,
759                                    void __iomem *base)
760 {
761         iowrite16be(master->gpio_clk_vreg, base + HDR_CLOCK_GPIO_VADDR);
762         iowrite16be(master->gpio_clk_dreg, base + HDR_CLOCK_GPIO_DADDR);
763         iowrite16be(master->gpio_dat_vreg, base + HDR_DATA_GPIO_VADDR);
764         iowrite16be(master->gpio_dat_dreg, base + HDR_DATA_GPIO_DADDR);
765         iowrite16be(master->gpio_tra_vreg, base + HDR_TRANS_GPIO_VADDR);
766         iowrite16be(master->gpio_tra_dreg, base + HDR_TRANS_GPIO_DADDR);
767         iowrite8(master->gpio_clk_bit, base + HDR_CLOCK_GPIO_BIT);
768         iowrite8(master->gpio_dat_bit, base + HDR_DATA_GPIO_BIT);
769         iowrite8(master->gpio_tra_bit, base + HDR_TRANS_GPIO_BIT);
770 }
771
772 static void setup_ast2500_fw_config(struct fsi_master_acf *master)
773 {
774         void __iomem *base = master->cf_mem + HDR_OFFSET;
775
776         setup_common_fw_config(master, base);
777         iowrite32be(FW_CONTROL_USE_STOP, base + HDR_FW_CONTROL);
778 }
779
780 static void setup_ast2400_fw_config(struct fsi_master_acf *master)
781 {
782         void __iomem *base = master->cf_mem + HDR_OFFSET;
783
784         setup_common_fw_config(master, base);
785         iowrite32be(FW_CONTROL_CONT_CLOCK|FW_CONTROL_DUMMY_RD, base + HDR_FW_CONTROL);
786 }
787
788 static int setup_gpios_for_copro(struct fsi_master_acf *master)
789 {
790
791         int rc;
792
793         /* This aren't under ColdFire control, just set them up appropriately */
794         gpiod_direction_output(master->gpio_mux, 1);
795         gpiod_direction_output(master->gpio_enable, 1);
796
797         /* Those are under ColdFire control, let it configure them */
798         rc = aspeed_gpio_copro_grab_gpio(master->gpio_clk, &master->gpio_clk_vreg,
799                                          &master->gpio_clk_dreg, &master->gpio_clk_bit);
800         if (rc) {
801                 dev_err(master->dev, "failed to assign clock gpio to coprocessor\n");
802                 return rc;
803         }
804         rc = aspeed_gpio_copro_grab_gpio(master->gpio_data, &master->gpio_dat_vreg,
805                                          &master->gpio_dat_dreg, &master->gpio_dat_bit);
806         if (rc) {
807                 dev_err(master->dev, "failed to assign data gpio to coprocessor\n");
808                 aspeed_gpio_copro_release_gpio(master->gpio_clk);
809                 return rc;
810         }
811         rc = aspeed_gpio_copro_grab_gpio(master->gpio_trans, &master->gpio_tra_vreg,
812                                          &master->gpio_tra_dreg, &master->gpio_tra_bit);
813         if (rc) {
814                 dev_err(master->dev, "failed to assign trans gpio to coprocessor\n");
815                 aspeed_gpio_copro_release_gpio(master->gpio_clk);
816                 aspeed_gpio_copro_release_gpio(master->gpio_data);
817                 return rc;
818         }
819         return 0;
820 }
821
822 static void release_copro_gpios(struct fsi_master_acf *master)
823 {
824         aspeed_gpio_copro_release_gpio(master->gpio_clk);
825         aspeed_gpio_copro_release_gpio(master->gpio_data);
826         aspeed_gpio_copro_release_gpio(master->gpio_trans);
827 }
828
829 static int load_copro_firmware(struct fsi_master_acf *master)
830 {
831         const struct firmware *fw;
832         uint16_t sig = 0, wanted_sig;
833         const u8 *data;
834         size_t size = 0;
835         int rc;
836
837         /* Get the binary */
838         rc = request_firmware(&fw, FW_FILE_NAME, master->dev);
839         if (rc) {
840                 dev_err(
841                         master->dev, "Error %d to load firmware '%s' !\n",
842                         rc, FW_FILE_NAME);
843                 return rc;
844         }
845
846         /* Which image do we want ? (shared vs. split clock/data GPIOs) */
847         if (master->gpio_clk_vreg == master->gpio_dat_vreg)
848                 wanted_sig = SYS_SIG_SHARED;
849         else
850                 wanted_sig = SYS_SIG_SPLIT;
851         dev_dbg(master->dev, "Looking for image sig %04x\n", wanted_sig);
852
853         /* Try to find it */
854         for (data = fw->data; data < (fw->data + fw->size);) {
855                 sig = be16_to_cpup((__be16 *)(data + HDR_OFFSET + HDR_SYS_SIG));
856                 size = be32_to_cpup((__be32 *)(data + HDR_OFFSET + HDR_FW_SIZE));
857                 if (sig == wanted_sig)
858                         break;
859                 data += size;
860         }
861         if (sig != wanted_sig) {
862                 dev_err(master->dev, "Failed to locate image sig %04x in FW blob\n",
863                         wanted_sig);
864                 rc = -ENODEV;
865                 goto release_fw;
866         }
867         if (size > master->cf_mem_size) {
868                 dev_err(master->dev, "FW size (%zd) bigger than memory reserve (%zd)\n",
869                         fw->size, master->cf_mem_size);
870                 rc = -ENOMEM;
871         } else {
872                 memcpy_toio(master->cf_mem, data, size);
873         }
874
875 release_fw:
876         release_firmware(fw);
877         return rc;
878 }
879
880 static int check_firmware_image(struct fsi_master_acf *master)
881 {
882         uint32_t fw_vers, fw_api, fw_options;
883
884         fw_vers = ioread16be(master->cf_mem + HDR_OFFSET + HDR_FW_VERS);
885         fw_api = ioread16be(master->cf_mem + HDR_OFFSET + HDR_API_VERS);
886         fw_options = ioread32be(master->cf_mem + HDR_OFFSET + HDR_FW_OPTIONS);
887         master->trace_enabled = !!(fw_options & FW_OPTION_TRACE_EN);
888
889         /* Check version and signature */
890         dev_info(master->dev, "ColdFire initialized, firmware v%d API v%d.%d (trace %s)\n",
891                  fw_vers, fw_api >> 8, fw_api & 0xff,
892                  master->trace_enabled ? "enabled" : "disabled");
893
894         if ((fw_api >> 8) != API_VERSION_MAJ) {
895                 dev_err(master->dev, "Unsupported coprocessor API version !\n");
896                 return -ENODEV;
897         }
898
899         return 0;
900 }
901
902 static int copro_enable_sw_irq(struct fsi_master_acf *master)
903 {
904         int timeout;
905         uint32_t val;
906
907         /*
908          * Enable coprocessor interrupt input. I've had problems getting the
909          * value to stick, so try in a loop
910          */
911         for (timeout = 0; timeout < 10; timeout++) {
912                 iowrite32(0x2, master->cvic + CVIC_EN_REG);
913                 val = ioread32(master->cvic + CVIC_EN_REG);
914                 if (val & 2)
915                         break;
916                 msleep(1);
917         }
918         if (!(val & 2)) {
919                 dev_err(master->dev, "Failed to enable coprocessor interrupt !\n");
920                 return -ENODEV;
921         }
922         return 0;
923 }
924
925 static int fsi_master_acf_setup(struct fsi_master_acf *master)
926 {
927         int timeout, rc;
928         uint32_t val;
929
930         /* Make sure the ColdFire is stopped  */
931         reset_cf(master);
932
933         /*
934          * Clear SRAM. This needs to happen before we setup the GPIOs
935          * as we might start trying to arbitrate as soon as that happens.
936          */
937         memset_io(master->sram, 0, SRAM_SIZE);
938
939         /* Configure GPIOs */
940         rc = setup_gpios_for_copro(master);
941         if (rc)
942                 return rc;
943
944         /* Load the firmware into the reserved memory */
945         rc = load_copro_firmware(master);
946         if (rc)
947                 return rc;
948
949         /* Read signature and check versions */
950         rc = check_firmware_image(master);
951         if (rc)
952                 return rc;
953
954         /* Setup coldfire memory map */
955         if (master->is_ast2500) {
956                 setup_ast2500_cf_maps(master);
957                 setup_ast2500_fw_config(master);
958         } else {
959                 setup_ast2400_cf_maps(master);
960                 setup_ast2400_fw_config(master);
961         }
962
963         /* Start the ColdFire */
964         start_cf(master);
965
966         /* Wait for status register to indicate command completion
967          * which signals the initialization is complete
968          */
969         for (timeout = 0; timeout < 10; timeout++) {
970                 val = ioread8(master->sram + CF_STARTED);
971                 if (val)
972                         break;
973                 msleep(1);
974         }
975         if (!val) {
976                 dev_err(master->dev, "Coprocessor startup timeout !\n");
977                 rc = -ENODEV;
978                 goto err;
979         }
980
981         /* Configure echo & send delay */
982         iowrite8(master->t_send_delay, master->sram + SEND_DLY_REG);
983         iowrite8(master->t_echo_delay, master->sram + ECHO_DLY_REG);
984
985         /* Enable SW interrupt to copro if any */
986         if (master->cvic) {
987                 rc = copro_enable_sw_irq(master);
988                 if (rc)
989                         goto err;
990         }
991         return 0;
992  err:
993         /* An error occurred, don't leave the coprocessor running */
994         reset_cf(master);
995
996         /* Release the GPIOs */
997         release_copro_gpios(master);
998
999         return rc;
1000 }
1001
1002
1003 static void fsi_master_acf_terminate(struct fsi_master_acf *master)
1004 {
1005         unsigned long flags;
1006
1007         /*
1008          * A GPIO arbitration requestion could come in while this is
1009          * happening. To avoid problems, we disable interrupts so it
1010          * cannot preempt us on this CPU
1011          */
1012
1013         local_irq_save(flags);
1014
1015         /* Stop the coprocessor */
1016         reset_cf(master);
1017
1018         /* We mark the copro not-started */
1019         iowrite32(0, master->sram + CF_STARTED);
1020
1021         /* We mark the ARB register as having given up arbitration to
1022          * deal with a potential race with the arbitration request
1023          */
1024         iowrite8(ARB_ARM_ACK, master->sram + ARB_REG);
1025
1026         local_irq_restore(flags);
1027
1028         /* Return the GPIOs to the ARM */
1029         release_copro_gpios(master);
1030 }
1031
1032 static void fsi_master_acf_setup_external(struct fsi_master_acf *master)
1033 {
1034         /* Setup GPIOs for external FSI master (FSP box) */
1035         gpiod_direction_output(master->gpio_mux, 0);
1036         gpiod_direction_output(master->gpio_trans, 0);
1037         gpiod_direction_output(master->gpio_enable, 1);
1038         gpiod_direction_input(master->gpio_clk);
1039         gpiod_direction_input(master->gpio_data);
1040 }
1041
1042 static int fsi_master_acf_link_enable(struct fsi_master *_master, int link,
1043                                       bool enable)
1044 {
1045         struct fsi_master_acf *master = to_fsi_master_acf(_master);
1046         int rc = -EBUSY;
1047
1048         if (link != 0)
1049                 return -ENODEV;
1050
1051         mutex_lock(&master->lock);
1052         if (!master->external_mode) {
1053                 gpiod_set_value(master->gpio_enable, enable ? 1 : 0);
1054                 rc = 0;
1055         }
1056         mutex_unlock(&master->lock);
1057
1058         return rc;
1059 }
1060
1061 static int fsi_master_acf_link_config(struct fsi_master *_master, int link,
1062                                       u8 t_send_delay, u8 t_echo_delay)
1063 {
1064         struct fsi_master_acf *master = to_fsi_master_acf(_master);
1065
1066         if (link != 0)
1067                 return -ENODEV;
1068
1069         mutex_lock(&master->lock);
1070         master->t_send_delay = t_send_delay;
1071         master->t_echo_delay = t_echo_delay;
1072         dev_dbg(master->dev, "Changing delays: send=%d echo=%d\n",
1073                 t_send_delay, t_echo_delay);
1074         iowrite8(master->t_send_delay, master->sram + SEND_DLY_REG);
1075         iowrite8(master->t_echo_delay, master->sram + ECHO_DLY_REG);
1076         mutex_unlock(&master->lock);
1077
1078         return 0;
1079 }
1080
1081 static ssize_t external_mode_show(struct device *dev,
1082                                   struct device_attribute *attr, char *buf)
1083 {
1084         struct fsi_master_acf *master = dev_get_drvdata(dev);
1085
1086         return snprintf(buf, PAGE_SIZE - 1, "%u\n",
1087                         master->external_mode ? 1 : 0);
1088 }
1089
1090 static ssize_t external_mode_store(struct device *dev,
1091                 struct device_attribute *attr, const char *buf, size_t count)
1092 {
1093         struct fsi_master_acf *master = dev_get_drvdata(dev);
1094         unsigned long val;
1095         bool external_mode;
1096         int err;
1097
1098         err = kstrtoul(buf, 0, &val);
1099         if (err)
1100                 return err;
1101
1102         external_mode = !!val;
1103
1104         mutex_lock(&master->lock);
1105
1106         if (external_mode == master->external_mode) {
1107                 mutex_unlock(&master->lock);
1108                 return count;
1109         }
1110
1111         master->external_mode = external_mode;
1112         if (master->external_mode) {
1113                 fsi_master_acf_terminate(master);
1114                 fsi_master_acf_setup_external(master);
1115         } else
1116                 fsi_master_acf_setup(master);
1117
1118         mutex_unlock(&master->lock);
1119
1120         fsi_master_rescan(&master->master);
1121
1122         return count;
1123 }
1124
1125 static DEVICE_ATTR(external_mode, 0664,
1126                 external_mode_show, external_mode_store);
1127
1128 static int fsi_master_acf_gpio_request(void *data)
1129 {
1130         struct fsi_master_acf *master = data;
1131         int timeout;
1132         u8 val;
1133
1134         /* Note: This doesn't require holding out mutex */
1135
1136         /* Write reqest */
1137         iowrite8(ARB_ARM_REQ, master->sram + ARB_REG);
1138
1139         /*
1140          * There is a race (which does happen at boot time) when we get an
1141          * arbitration request as we are either about to or just starting
1142          * the coprocessor.
1143          *
1144          * To handle it, we first check if we are running. If not yet we
1145          * check whether the copro is started in the SCU.
1146          *
1147          * If it's not started, we can basically just assume we have arbitration
1148          * and return. Otherwise, we wait normally expecting for the arbitration
1149          * to eventually complete.
1150          */
1151         if (ioread32(master->sram + CF_STARTED) == 0) {
1152                 unsigned int reg = 0;
1153
1154                 regmap_read(master->scu, SCU_COPRO_CTRL, &reg);
1155                 if (!(reg & SCU_COPRO_CLK_EN))
1156                         return 0;
1157         }
1158
1159         /* Ring doorbell if any */
1160         if (master->cvic)
1161                 iowrite32(0x2, master->cvic + CVIC_TRIG_REG);
1162
1163         for (timeout = 0; timeout < 10000; timeout++) {
1164                 val = ioread8(master->sram + ARB_REG);
1165                 if (val != ARB_ARM_REQ)
1166                         break;
1167                 udelay(1);
1168         }
1169
1170         /* If it failed, override anyway */
1171         if (val != ARB_ARM_ACK)
1172                 dev_warn(master->dev, "GPIO request arbitration timeout\n");
1173
1174         return 0;
1175 }
1176
1177 static int fsi_master_acf_gpio_release(void *data)
1178 {
1179         struct fsi_master_acf *master = data;
1180
1181         /* Write release */
1182         iowrite8(0, master->sram + ARB_REG);
1183
1184         /* Ring doorbell if any */
1185         if (master->cvic)
1186                 iowrite32(0x2, master->cvic + CVIC_TRIG_REG);
1187
1188         return 0;
1189 }
1190
1191 static void fsi_master_acf_release(struct device *dev)
1192 {
1193         struct fsi_master_acf *master = to_fsi_master_acf(dev_to_fsi_master(dev));
1194
1195         /* Cleanup, stop coprocessor */
1196         mutex_lock(&master->lock);
1197         fsi_master_acf_terminate(master);
1198         aspeed_gpio_copro_set_ops(NULL, NULL);
1199         mutex_unlock(&master->lock);
1200
1201         /* Free resources */
1202         gen_pool_free(master->sram_pool, (unsigned long)master->sram, SRAM_SIZE);
1203         of_node_put(dev_of_node(master->dev));
1204
1205         kfree(master);
1206 }
1207
1208 static const struct aspeed_gpio_copro_ops fsi_master_acf_gpio_ops = {
1209         .request_access = fsi_master_acf_gpio_request,
1210         .release_access = fsi_master_acf_gpio_release,
1211 };
1212
1213 static int fsi_master_acf_probe(struct platform_device *pdev)
1214 {
1215         struct device_node *np, *mnode = dev_of_node(&pdev->dev);
1216         struct genpool_data_fixed gpdf;
1217         struct fsi_master_acf *master;
1218         struct gpio_desc *gpio;
1219         struct resource res;
1220         uint32_t cf_mem_align;
1221         int rc;
1222
1223         master = kzalloc(sizeof(*master), GFP_KERNEL);
1224         if (!master)
1225                 return -ENOMEM;
1226
1227         master->dev = &pdev->dev;
1228         master->master.dev.parent = master->dev;
1229         master->last_addr = LAST_ADDR_INVALID;
1230
1231         /* AST2400 vs. AST2500 */
1232         master->is_ast2500 = of_device_is_compatible(mnode, "aspeed,ast2500-cf-fsi-master");
1233
1234         /* Grab the SCU, we'll need to access it to configure the coprocessor */
1235         if (master->is_ast2500)
1236                 master->scu = syscon_regmap_lookup_by_compatible("aspeed,ast2500-scu");
1237         else
1238                 master->scu = syscon_regmap_lookup_by_compatible("aspeed,ast2400-scu");
1239         if (IS_ERR(master->scu)) {
1240                 dev_err(&pdev->dev, "failed to find SCU regmap\n");
1241                 rc = PTR_ERR(master->scu);
1242                 goto err_free;
1243         }
1244
1245         /* Grab all the GPIOs we need */
1246         gpio = devm_gpiod_get(&pdev->dev, "clock", 0);
1247         if (IS_ERR(gpio)) {
1248                 dev_err(&pdev->dev, "failed to get clock gpio\n");
1249                 rc = PTR_ERR(gpio);
1250                 goto err_free;
1251         }
1252         master->gpio_clk = gpio;
1253
1254         gpio = devm_gpiod_get(&pdev->dev, "data", 0);
1255         if (IS_ERR(gpio)) {
1256                 dev_err(&pdev->dev, "failed to get data gpio\n");
1257                 rc = PTR_ERR(gpio);
1258                 goto err_free;
1259         }
1260         master->gpio_data = gpio;
1261
1262         /* Optional GPIOs */
1263         gpio = devm_gpiod_get_optional(&pdev->dev, "trans", 0);
1264         if (IS_ERR(gpio)) {
1265                 dev_err(&pdev->dev, "failed to get trans gpio\n");
1266                 rc = PTR_ERR(gpio);
1267                 goto err_free;
1268         }
1269         master->gpio_trans = gpio;
1270
1271         gpio = devm_gpiod_get_optional(&pdev->dev, "enable", 0);
1272         if (IS_ERR(gpio)) {
1273                 dev_err(&pdev->dev, "failed to get enable gpio\n");
1274                 rc = PTR_ERR(gpio);
1275                 goto err_free;
1276         }
1277         master->gpio_enable = gpio;
1278
1279         gpio = devm_gpiod_get_optional(&pdev->dev, "mux", 0);
1280         if (IS_ERR(gpio)) {
1281                 dev_err(&pdev->dev, "failed to get mux gpio\n");
1282                 rc = PTR_ERR(gpio);
1283                 goto err_free;
1284         }
1285         master->gpio_mux = gpio;
1286
1287         /* Grab the reserved memory region (use DMA API instead ?) */
1288         np = of_parse_phandle(mnode, "memory-region", 0);
1289         if (!np) {
1290                 dev_err(&pdev->dev, "Didn't find reserved memory\n");
1291                 rc = -EINVAL;
1292                 goto err_free;
1293         }
1294         rc = of_address_to_resource(np, 0, &res);
1295         of_node_put(np);
1296         if (rc) {
1297                 dev_err(&pdev->dev, "Couldn't address to resource for reserved memory\n");
1298                 rc = -ENOMEM;
1299                 goto err_free;
1300         }
1301         master->cf_mem_size = resource_size(&res);
1302         master->cf_mem_addr = (uint32_t)res.start;
1303         cf_mem_align = master->is_ast2500 ? 0x00100000 : 0x00200000;
1304         if (master->cf_mem_addr & (cf_mem_align - 1)) {
1305                 dev_err(&pdev->dev, "Reserved memory has insufficient alignment\n");
1306                 rc = -ENOMEM;
1307                 goto err_free;
1308         }
1309         master->cf_mem = devm_ioremap_resource(&pdev->dev, &res);
1310         if (IS_ERR(master->cf_mem)) {
1311                 rc = PTR_ERR(master->cf_mem);
1312                 goto err_free;
1313         }
1314         dev_dbg(&pdev->dev, "DRAM allocation @%x\n", master->cf_mem_addr);
1315
1316         /* AST2500 has a SW interrupt to the coprocessor */
1317         if (master->is_ast2500) {
1318                 /* Grab the CVIC (ColdFire interrupts controller) */
1319                 np = of_parse_phandle(mnode, "aspeed,cvic", 0);
1320                 if (!np) {
1321                         dev_err(&pdev->dev, "Didn't find CVIC\n");
1322                         rc = -EINVAL;
1323                         goto err_free;
1324                 }
1325                 master->cvic = devm_of_iomap(&pdev->dev, np, 0, NULL);
1326                 if (IS_ERR(master->cvic)) {
1327                         rc = PTR_ERR(master->cvic);
1328                         dev_err(&pdev->dev, "Error %d mapping CVIC\n", rc);
1329                         goto err_free;
1330                 }
1331                 rc = of_property_read_u32(np, "copro-sw-interrupts",
1332                                           &master->cvic_sw_irq);
1333                 if (rc) {
1334                         dev_err(&pdev->dev, "Can't find coprocessor SW interrupt\n");
1335                         goto err_free;
1336                 }
1337         }
1338
1339         /* Grab the SRAM */
1340         master->sram_pool = of_gen_pool_get(dev_of_node(&pdev->dev), "aspeed,sram", 0);
1341         if (!master->sram_pool) {
1342                 rc = -ENODEV;
1343                 dev_err(&pdev->dev, "Can't find sram pool\n");
1344                 goto err_free;
1345         }
1346
1347         /* Current microcode only deals with fixed location in SRAM */
1348         gpdf.offset = 0;
1349         master->sram = (void __iomem *)gen_pool_alloc_algo(master->sram_pool, SRAM_SIZE,
1350                                                            gen_pool_fixed_alloc, &gpdf);
1351         if (!master->sram) {
1352                 rc = -ENOMEM;
1353                 dev_err(&pdev->dev, "Failed to allocate sram from pool\n");
1354                 goto err_free;
1355         }
1356         dev_dbg(&pdev->dev, "SRAM allocation @%lx\n",
1357                 (unsigned long)gen_pool_virt_to_phys(master->sram_pool,
1358                                                      (unsigned long)master->sram));
1359
1360         /*
1361          * Hookup with the GPIO driver for arbitration of GPIO banks
1362          * ownership.
1363          */
1364         aspeed_gpio_copro_set_ops(&fsi_master_acf_gpio_ops, master);
1365
1366         /* Default FSI command delays */
1367         master->t_send_delay = FSI_SEND_DELAY_CLOCKS;
1368         master->t_echo_delay = FSI_ECHO_DELAY_CLOCKS;
1369         master->master.n_links = 1;
1370         if (master->is_ast2500)
1371                 master->master.flags = FSI_MASTER_FLAG_SWCLOCK;
1372         master->master.read = fsi_master_acf_read;
1373         master->master.write = fsi_master_acf_write;
1374         master->master.term = fsi_master_acf_term;
1375         master->master.send_break = fsi_master_acf_break;
1376         master->master.link_enable = fsi_master_acf_link_enable;
1377         master->master.link_config = fsi_master_acf_link_config;
1378         master->master.dev.of_node = of_node_get(dev_of_node(master->dev));
1379         master->master.dev.release = fsi_master_acf_release;
1380         platform_set_drvdata(pdev, master);
1381         mutex_init(&master->lock);
1382
1383         mutex_lock(&master->lock);
1384         rc = fsi_master_acf_setup(master);
1385         mutex_unlock(&master->lock);
1386         if (rc)
1387                 goto release_of_dev;
1388
1389         rc = device_create_file(&pdev->dev, &dev_attr_external_mode);
1390         if (rc)
1391                 goto stop_copro;
1392
1393         rc = fsi_master_register(&master->master);
1394         if (!rc)
1395                 return 0;
1396
1397         device_remove_file(master->dev, &dev_attr_external_mode);
1398         put_device(&master->master.dev);
1399         return rc;
1400
1401  stop_copro:
1402         fsi_master_acf_terminate(master);
1403  release_of_dev:
1404         aspeed_gpio_copro_set_ops(NULL, NULL);
1405         gen_pool_free(master->sram_pool, (unsigned long)master->sram, SRAM_SIZE);
1406         of_node_put(dev_of_node(master->dev));
1407  err_free:
1408         kfree(master);
1409         return rc;
1410 }
1411
1412
1413 static int fsi_master_acf_remove(struct platform_device *pdev)
1414 {
1415         struct fsi_master_acf *master = platform_get_drvdata(pdev);
1416
1417         device_remove_file(master->dev, &dev_attr_external_mode);
1418
1419         fsi_master_unregister(&master->master);
1420
1421         return 0;
1422 }
1423
1424 static const struct of_device_id fsi_master_acf_match[] = {
1425         { .compatible = "aspeed,ast2400-cf-fsi-master" },
1426         { .compatible = "aspeed,ast2500-cf-fsi-master" },
1427         { },
1428 };
1429 MODULE_DEVICE_TABLE(of, fsi_master_acf_match);
1430
1431 static struct platform_driver fsi_master_acf = {
1432         .driver = {
1433                 .name           = "fsi-master-acf",
1434                 .of_match_table = fsi_master_acf_match,
1435         },
1436         .probe  = fsi_master_acf_probe,
1437         .remove = fsi_master_acf_remove,
1438 };
1439
1440 module_platform_driver(fsi_master_acf);
1441 MODULE_LICENSE("GPL");