2 * Copyright (C) 2012 CERN (www.cern.ch)
3 * Author: Alessandro Rubini <rubini@gnudd.com>
5 * Released according to the GNU GPL, version 2 or any later version.
7 * This work is part of the White Rabbit project, a research effort led
8 * by CERN, the European Institute for Nuclear Research.
10 #include <linux/module.h>
11 #include <linux/slab.h>
12 #include <linux/fmc.h>
13 #include <linux/sdb.h>
14 #include <linux/err.h>
15 #include <linux/fmc-sdb.h>
16 #include <asm/byteorder.h>
18 static uint32_t __sdb_rd(struct fmc_device *fmc, unsigned long address,
21 uint32_t res = fmc_readl(fmc, address);
23 return __be32_to_cpu(res);
27 static struct sdb_array *__fmc_scan_sdb_tree(struct fmc_device *fmc,
28 unsigned long sdb_addr,
29 unsigned long reg_base, int level)
32 int i, j, n, convert = 0;
33 struct sdb_array *arr, *sub;
35 onew = fmc_readl(fmc, sdb_addr);
36 if (onew == SDB_MAGIC) {
37 /* Uh! If we are little-endian, we must convert */
38 if (SDB_MAGIC != __be32_to_cpu(SDB_MAGIC))
40 } else if (onew == __be32_to_cpu(SDB_MAGIC)) {
41 /* ok, don't convert */
43 return ERR_PTR(-ENOENT);
45 /* So, the magic was there: get the count from offset 4*/
46 onew = __sdb_rd(fmc, sdb_addr + 4, convert);
47 n = __be16_to_cpu(*(uint16_t *)&onew);
48 arr = kzalloc(sizeof(*arr), GFP_KERNEL);
50 return ERR_PTR(-ENOMEM);
51 arr->record = kzalloc(sizeof(arr->record[0]) * n, GFP_KERNEL);
52 arr->subtree = kzalloc(sizeof(arr->subtree[0]) * n, GFP_KERNEL);
53 if (!arr->record || !arr->subtree) {
57 return ERR_PTR(-ENOMEM);
63 for (i = 0; i < n; i++) {
66 for (j = 0; j < sizeof(arr->record[0]); j += 4) {
67 *(uint32_t *)((void *)(arr->record + i) + j) =
68 __sdb_rd(fmc, sdb_addr + (i * 64) + j, convert);
71 arr->subtree[i] = ERR_PTR(-ENODEV);
72 if (r->empty.record_type == sdb_type_bridge) {
73 struct sdb_component *c = &r->bridge.sdb_component;
74 uint64_t subaddr = __be64_to_cpu(r->bridge.sdb_child);
75 uint64_t newbase = __be64_to_cpu(c->addr_first);
79 sub = __fmc_scan_sdb_tree(fmc, subaddr, newbase,
81 arr->subtree[i] = sub; /* may be error */
85 sub->baseaddr = newbase;
91 int fmc_scan_sdb_tree(struct fmc_device *fmc, unsigned long address)
93 struct sdb_array *ret;
96 ret = __fmc_scan_sdb_tree(fmc, address, 0 /* regs */, 0);
102 EXPORT_SYMBOL(fmc_scan_sdb_tree);
104 static void __fmc_sdb_free(struct sdb_array *arr)
111 for (i = 0; i < n; i++) {
112 if (IS_ERR(arr->subtree[i]))
114 __fmc_sdb_free(arr->subtree[i]);
121 int fmc_free_sdb_tree(struct fmc_device *fmc)
123 __fmc_sdb_free(fmc->sdb);
127 EXPORT_SYMBOL(fmc_free_sdb_tree);
129 /* This helper calls reprogram and inizialized sdb as well */
130 int fmc_reprogram(struct fmc_device *fmc, struct fmc_driver *d, char *gw,
135 ret = fmc->op->reprogram(fmc, d, gw);
141 /* We are required to find SDB at a given offset */
142 ret = fmc_scan_sdb_tree(fmc, sdb_entry);
144 dev_err(&fmc->dev, "Can't find SDB at address 0x%x\n",
151 EXPORT_SYMBOL(fmc_reprogram);
153 static void __fmc_show_sdb_tree(const struct fmc_device *fmc,
154 const struct sdb_array *arr)
156 int i, j, n = arr->len, level = arr->level;
157 const struct sdb_array *ap;
159 for (i = 0; i < n; i++) {
162 struct sdb_product *p;
163 struct sdb_component *c;
165 c = &r->dev.sdb_component;
168 for (ap = arr; ap; ap = ap->parent)
169 base += ap->baseaddr;
170 dev_info(&fmc->dev, "SDB: ");
172 for (j = 0; j < level; j++)
173 printk(KERN_CONT " ");
174 switch (r->empty.record_type) {
175 case sdb_type_interconnect:
176 printk(KERN_CONT "%08llx:%08x %.19s\n",
177 __be64_to_cpu(p->vendor_id),
178 __be32_to_cpu(p->device_id),
181 case sdb_type_device:
182 printk(KERN_CONT "%08llx:%08x %.19s (%08llx-%08llx)\n",
183 __be64_to_cpu(p->vendor_id),
184 __be32_to_cpu(p->device_id),
186 __be64_to_cpu(c->addr_first) + base,
187 __be64_to_cpu(c->addr_last) + base);
189 case sdb_type_bridge:
190 printk(KERN_CONT "%08llx:%08x %.19s (bridge: %08llx)\n",
191 __be64_to_cpu(p->vendor_id),
192 __be32_to_cpu(p->device_id),
194 __be64_to_cpu(c->addr_first) + base);
195 if (IS_ERR(arr->subtree[i])) {
196 printk(KERN_CONT "(bridge error %li)\n",
197 PTR_ERR(arr->subtree[i]));
200 __fmc_show_sdb_tree(fmc, arr->subtree[i]);
202 case sdb_type_integration:
203 printk(KERN_CONT "integration\n");
205 case sdb_type_repo_url:
206 printk(KERN_CONT "repo-url\n");
208 case sdb_type_synthesis:
209 printk(KERN_CONT "synthesis-info\n");
212 printk(KERN_CONT "empty\n");
215 printk(KERN_CONT "UNKNOWN TYPE 0x%02x\n",
216 r->empty.record_type);
222 void fmc_show_sdb_tree(const struct fmc_device *fmc)
226 __fmc_show_sdb_tree(fmc, fmc->sdb);
228 EXPORT_SYMBOL(fmc_show_sdb_tree);
230 signed long fmc_find_sdb_device(struct sdb_array *tree,
231 uint64_t vid, uint32_t did, unsigned long *sz)
233 signed long res = -ENODEV;
235 struct sdb_product *p;
236 struct sdb_component *c;
237 int i, n = tree->len;
238 uint64_t last, first;
240 /* FIXME: what if the first interconnect is not at zero? */
241 for (i = 0; i < n; i++) {
242 r = &tree->record[i];
243 c = &r->dev.sdb_component;
246 if (!IS_ERR(tree->subtree[i]))
247 res = fmc_find_sdb_device(tree->subtree[i],
250 return res + tree->baseaddr;
251 if (r->empty.record_type != sdb_type_device)
253 if (__be64_to_cpu(p->vendor_id) != vid)
255 if (__be32_to_cpu(p->device_id) != did)
258 last = __be64_to_cpu(c->addr_last);
259 first = __be64_to_cpu(c->addr_first);
261 *sz = (typeof(*sz))(last + 1 - first);
262 return first + tree->baseaddr;
266 EXPORT_SYMBOL(fmc_find_sdb_device);