Merge tag 'nfsd-6.6-1' of git://git.kernel.org/pub/scm/linux/kernel/git/cel/linux
[platform/kernel/linux-starfive.git] / drivers / firmware / qcom_scm.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2010,2015,2019 The Linux Foundation. All rights reserved.
3  * Copyright (C) 2015 Linaro Ltd.
4  */
5 #include <linux/platform_device.h>
6 #include <linux/init.h>
7 #include <linux/interrupt.h>
8 #include <linux/completion.h>
9 #include <linux/cpumask.h>
10 #include <linux/export.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/interconnect.h>
13 #include <linux/module.h>
14 #include <linux/types.h>
15 #include <linux/firmware/qcom/qcom_scm.h>
16 #include <linux/of.h>
17 #include <linux/of_address.h>
18 #include <linux/of_irq.h>
19 #include <linux/of_platform.h>
20 #include <linux/clk.h>
21 #include <linux/reset-controller.h>
22 #include <linux/arm-smccc.h>
23
24 #include "qcom_scm.h"
25
26 static bool download_mode = IS_ENABLED(CONFIG_QCOM_SCM_DOWNLOAD_MODE_DEFAULT);
27 module_param(download_mode, bool, 0);
28
29 struct qcom_scm {
30         struct device *dev;
31         struct clk *core_clk;
32         struct clk *iface_clk;
33         struct clk *bus_clk;
34         struct icc_path *path;
35         struct completion waitq_comp;
36         struct reset_controller_dev reset;
37
38         /* control access to the interconnect path */
39         struct mutex scm_bw_lock;
40         int scm_vote_count;
41
42         u64 dload_mode_addr;
43 };
44
45 struct qcom_scm_current_perm_info {
46         __le32 vmid;
47         __le32 perm;
48         __le64 ctx;
49         __le32 ctx_size;
50         __le32 unused;
51 };
52
53 struct qcom_scm_mem_map_info {
54         __le64 mem_addr;
55         __le64 mem_size;
56 };
57
58 /* Each bit configures cold/warm boot address for one of the 4 CPUs */
59 static const u8 qcom_scm_cpu_cold_bits[QCOM_SCM_BOOT_MAX_CPUS] = {
60         0, BIT(0), BIT(3), BIT(5)
61 };
62 static const u8 qcom_scm_cpu_warm_bits[QCOM_SCM_BOOT_MAX_CPUS] = {
63         BIT(2), BIT(1), BIT(4), BIT(6)
64 };
65
66 #define QCOM_SMC_WAITQ_FLAG_WAKE_ONE    BIT(0)
67 #define QCOM_SMC_WAITQ_FLAG_WAKE_ALL    BIT(1)
68
69 static const char * const qcom_scm_convention_names[] = {
70         [SMC_CONVENTION_UNKNOWN] = "unknown",
71         [SMC_CONVENTION_ARM_32] = "smc arm 32",
72         [SMC_CONVENTION_ARM_64] = "smc arm 64",
73         [SMC_CONVENTION_LEGACY] = "smc legacy",
74 };
75
76 static struct qcom_scm *__scm;
77
78 static int qcom_scm_clk_enable(void)
79 {
80         int ret;
81
82         ret = clk_prepare_enable(__scm->core_clk);
83         if (ret)
84                 goto bail;
85
86         ret = clk_prepare_enable(__scm->iface_clk);
87         if (ret)
88                 goto disable_core;
89
90         ret = clk_prepare_enable(__scm->bus_clk);
91         if (ret)
92                 goto disable_iface;
93
94         return 0;
95
96 disable_iface:
97         clk_disable_unprepare(__scm->iface_clk);
98 disable_core:
99         clk_disable_unprepare(__scm->core_clk);
100 bail:
101         return ret;
102 }
103
104 static void qcom_scm_clk_disable(void)
105 {
106         clk_disable_unprepare(__scm->core_clk);
107         clk_disable_unprepare(__scm->iface_clk);
108         clk_disable_unprepare(__scm->bus_clk);
109 }
110
111 static int qcom_scm_bw_enable(void)
112 {
113         int ret = 0;
114
115         if (!__scm->path)
116                 return 0;
117
118         if (IS_ERR(__scm->path))
119                 return -EINVAL;
120
121         mutex_lock(&__scm->scm_bw_lock);
122         if (!__scm->scm_vote_count) {
123                 ret = icc_set_bw(__scm->path, 0, UINT_MAX);
124                 if (ret < 0) {
125                         dev_err(__scm->dev, "failed to set bandwidth request\n");
126                         goto err_bw;
127                 }
128         }
129         __scm->scm_vote_count++;
130 err_bw:
131         mutex_unlock(&__scm->scm_bw_lock);
132
133         return ret;
134 }
135
136 static void qcom_scm_bw_disable(void)
137 {
138         if (IS_ERR_OR_NULL(__scm->path))
139                 return;
140
141         mutex_lock(&__scm->scm_bw_lock);
142         if (__scm->scm_vote_count-- == 1)
143                 icc_set_bw(__scm->path, 0, 0);
144         mutex_unlock(&__scm->scm_bw_lock);
145 }
146
147 enum qcom_scm_convention qcom_scm_convention = SMC_CONVENTION_UNKNOWN;
148 static DEFINE_SPINLOCK(scm_query_lock);
149
150 static enum qcom_scm_convention __get_convention(void)
151 {
152         unsigned long flags;
153         struct qcom_scm_desc desc = {
154                 .svc = QCOM_SCM_SVC_INFO,
155                 .cmd = QCOM_SCM_INFO_IS_CALL_AVAIL,
156                 .args[0] = SCM_SMC_FNID(QCOM_SCM_SVC_INFO,
157                                            QCOM_SCM_INFO_IS_CALL_AVAIL) |
158                            (ARM_SMCCC_OWNER_SIP << ARM_SMCCC_OWNER_SHIFT),
159                 .arginfo = QCOM_SCM_ARGS(1),
160                 .owner = ARM_SMCCC_OWNER_SIP,
161         };
162         struct qcom_scm_res res;
163         enum qcom_scm_convention probed_convention;
164         int ret;
165         bool forced = false;
166
167         if (likely(qcom_scm_convention != SMC_CONVENTION_UNKNOWN))
168                 return qcom_scm_convention;
169
170         /*
171          * Device isn't required as there is only one argument - no device
172          * needed to dma_map_single to secure world
173          */
174         probed_convention = SMC_CONVENTION_ARM_64;
175         ret = __scm_smc_call(NULL, &desc, probed_convention, &res, true);
176         if (!ret && res.result[0] == 1)
177                 goto found;
178
179         /*
180          * Some SC7180 firmwares didn't implement the
181          * QCOM_SCM_INFO_IS_CALL_AVAIL call, so we fallback to forcing ARM_64
182          * calling conventions on these firmwares. Luckily we don't make any
183          * early calls into the firmware on these SoCs so the device pointer
184          * will be valid here to check if the compatible matches.
185          */
186         if (of_device_is_compatible(__scm ? __scm->dev->of_node : NULL, "qcom,scm-sc7180")) {
187                 forced = true;
188                 goto found;
189         }
190
191         probed_convention = SMC_CONVENTION_ARM_32;
192         ret = __scm_smc_call(NULL, &desc, probed_convention, &res, true);
193         if (!ret && res.result[0] == 1)
194                 goto found;
195
196         probed_convention = SMC_CONVENTION_LEGACY;
197 found:
198         spin_lock_irqsave(&scm_query_lock, flags);
199         if (probed_convention != qcom_scm_convention) {
200                 qcom_scm_convention = probed_convention;
201                 pr_info("qcom_scm: convention: %s%s\n",
202                         qcom_scm_convention_names[qcom_scm_convention],
203                         forced ? " (forced)" : "");
204         }
205         spin_unlock_irqrestore(&scm_query_lock, flags);
206
207         return qcom_scm_convention;
208 }
209
210 /**
211  * qcom_scm_call() - Invoke a syscall in the secure world
212  * @dev:        device
213  * @desc:       Descriptor structure containing arguments and return values
214  * @res:        Structure containing results from SMC/HVC call
215  *
216  * Sends a command to the SCM and waits for the command to finish processing.
217  * This should *only* be called in pre-emptible context.
218  */
219 static int qcom_scm_call(struct device *dev, const struct qcom_scm_desc *desc,
220                          struct qcom_scm_res *res)
221 {
222         might_sleep();
223         switch (__get_convention()) {
224         case SMC_CONVENTION_ARM_32:
225         case SMC_CONVENTION_ARM_64:
226                 return scm_smc_call(dev, desc, res, false);
227         case SMC_CONVENTION_LEGACY:
228                 return scm_legacy_call(dev, desc, res);
229         default:
230                 pr_err("Unknown current SCM calling convention.\n");
231                 return -EINVAL;
232         }
233 }
234
235 /**
236  * qcom_scm_call_atomic() - atomic variation of qcom_scm_call()
237  * @dev:        device
238  * @desc:       Descriptor structure containing arguments and return values
239  * @res:        Structure containing results from SMC/HVC call
240  *
241  * Sends a command to the SCM and waits for the command to finish processing.
242  * This can be called in atomic context.
243  */
244 static int qcom_scm_call_atomic(struct device *dev,
245                                 const struct qcom_scm_desc *desc,
246                                 struct qcom_scm_res *res)
247 {
248         switch (__get_convention()) {
249         case SMC_CONVENTION_ARM_32:
250         case SMC_CONVENTION_ARM_64:
251                 return scm_smc_call(dev, desc, res, true);
252         case SMC_CONVENTION_LEGACY:
253                 return scm_legacy_call_atomic(dev, desc, res);
254         default:
255                 pr_err("Unknown current SCM calling convention.\n");
256                 return -EINVAL;
257         }
258 }
259
260 static bool __qcom_scm_is_call_available(struct device *dev, u32 svc_id,
261                                          u32 cmd_id)
262 {
263         int ret;
264         struct qcom_scm_desc desc = {
265                 .svc = QCOM_SCM_SVC_INFO,
266                 .cmd = QCOM_SCM_INFO_IS_CALL_AVAIL,
267                 .owner = ARM_SMCCC_OWNER_SIP,
268         };
269         struct qcom_scm_res res;
270
271         desc.arginfo = QCOM_SCM_ARGS(1);
272         switch (__get_convention()) {
273         case SMC_CONVENTION_ARM_32:
274         case SMC_CONVENTION_ARM_64:
275                 desc.args[0] = SCM_SMC_FNID(svc_id, cmd_id) |
276                                 (ARM_SMCCC_OWNER_SIP << ARM_SMCCC_OWNER_SHIFT);
277                 break;
278         case SMC_CONVENTION_LEGACY:
279                 desc.args[0] = SCM_LEGACY_FNID(svc_id, cmd_id);
280                 break;
281         default:
282                 pr_err("Unknown SMC convention being used\n");
283                 return false;
284         }
285
286         ret = qcom_scm_call(dev, &desc, &res);
287
288         return ret ? false : !!res.result[0];
289 }
290
291 static int qcom_scm_set_boot_addr(void *entry, const u8 *cpu_bits)
292 {
293         int cpu;
294         unsigned int flags = 0;
295         struct qcom_scm_desc desc = {
296                 .svc = QCOM_SCM_SVC_BOOT,
297                 .cmd = QCOM_SCM_BOOT_SET_ADDR,
298                 .arginfo = QCOM_SCM_ARGS(2),
299                 .owner = ARM_SMCCC_OWNER_SIP,
300         };
301
302         for_each_present_cpu(cpu) {
303                 if (cpu >= QCOM_SCM_BOOT_MAX_CPUS)
304                         return -EINVAL;
305                 flags |= cpu_bits[cpu];
306         }
307
308         desc.args[0] = flags;
309         desc.args[1] = virt_to_phys(entry);
310
311         return qcom_scm_call_atomic(__scm ? __scm->dev : NULL, &desc, NULL);
312 }
313
314 static int qcom_scm_set_boot_addr_mc(void *entry, unsigned int flags)
315 {
316         struct qcom_scm_desc desc = {
317                 .svc = QCOM_SCM_SVC_BOOT,
318                 .cmd = QCOM_SCM_BOOT_SET_ADDR_MC,
319                 .owner = ARM_SMCCC_OWNER_SIP,
320                 .arginfo = QCOM_SCM_ARGS(6),
321                 .args = {
322                         virt_to_phys(entry),
323                         /* Apply to all CPUs in all affinity levels */
324                         ~0ULL, ~0ULL, ~0ULL, ~0ULL,
325                         flags,
326                 },
327         };
328
329         /* Need a device for DMA of the additional arguments */
330         if (!__scm || __get_convention() == SMC_CONVENTION_LEGACY)
331                 return -EOPNOTSUPP;
332
333         return qcom_scm_call(__scm->dev, &desc, NULL);
334 }
335
336 /**
337  * qcom_scm_set_warm_boot_addr() - Set the warm boot address for all cpus
338  * @entry: Entry point function for the cpus
339  *
340  * Set the Linux entry point for the SCM to transfer control to when coming
341  * out of a power down. CPU power down may be executed on cpuidle or hotplug.
342  */
343 int qcom_scm_set_warm_boot_addr(void *entry)
344 {
345         if (qcom_scm_set_boot_addr_mc(entry, QCOM_SCM_BOOT_MC_FLAG_WARMBOOT))
346                 /* Fallback to old SCM call */
347                 return qcom_scm_set_boot_addr(entry, qcom_scm_cpu_warm_bits);
348         return 0;
349 }
350 EXPORT_SYMBOL_GPL(qcom_scm_set_warm_boot_addr);
351
352 /**
353  * qcom_scm_set_cold_boot_addr() - Set the cold boot address for all cpus
354  * @entry: Entry point function for the cpus
355  */
356 int qcom_scm_set_cold_boot_addr(void *entry)
357 {
358         if (qcom_scm_set_boot_addr_mc(entry, QCOM_SCM_BOOT_MC_FLAG_COLDBOOT))
359                 /* Fallback to old SCM call */
360                 return qcom_scm_set_boot_addr(entry, qcom_scm_cpu_cold_bits);
361         return 0;
362 }
363 EXPORT_SYMBOL_GPL(qcom_scm_set_cold_boot_addr);
364
365 /**
366  * qcom_scm_cpu_power_down() - Power down the cpu
367  * @flags:      Flags to flush cache
368  *
369  * This is an end point to power down cpu. If there was a pending interrupt,
370  * the control would return from this function, otherwise, the cpu jumps to the
371  * warm boot entry point set for this cpu upon reset.
372  */
373 void qcom_scm_cpu_power_down(u32 flags)
374 {
375         struct qcom_scm_desc desc = {
376                 .svc = QCOM_SCM_SVC_BOOT,
377                 .cmd = QCOM_SCM_BOOT_TERMINATE_PC,
378                 .args[0] = flags & QCOM_SCM_FLUSH_FLAG_MASK,
379                 .arginfo = QCOM_SCM_ARGS(1),
380                 .owner = ARM_SMCCC_OWNER_SIP,
381         };
382
383         qcom_scm_call_atomic(__scm ? __scm->dev : NULL, &desc, NULL);
384 }
385 EXPORT_SYMBOL_GPL(qcom_scm_cpu_power_down);
386
387 int qcom_scm_set_remote_state(u32 state, u32 id)
388 {
389         struct qcom_scm_desc desc = {
390                 .svc = QCOM_SCM_SVC_BOOT,
391                 .cmd = QCOM_SCM_BOOT_SET_REMOTE_STATE,
392                 .arginfo = QCOM_SCM_ARGS(2),
393                 .args[0] = state,
394                 .args[1] = id,
395                 .owner = ARM_SMCCC_OWNER_SIP,
396         };
397         struct qcom_scm_res res;
398         int ret;
399
400         ret = qcom_scm_call(__scm->dev, &desc, &res);
401
402         return ret ? : res.result[0];
403 }
404 EXPORT_SYMBOL_GPL(qcom_scm_set_remote_state);
405
406 static int __qcom_scm_set_dload_mode(struct device *dev, bool enable)
407 {
408         struct qcom_scm_desc desc = {
409                 .svc = QCOM_SCM_SVC_BOOT,
410                 .cmd = QCOM_SCM_BOOT_SET_DLOAD_MODE,
411                 .arginfo = QCOM_SCM_ARGS(2),
412                 .args[0] = QCOM_SCM_BOOT_SET_DLOAD_MODE,
413                 .owner = ARM_SMCCC_OWNER_SIP,
414         };
415
416         desc.args[1] = enable ? QCOM_SCM_BOOT_SET_DLOAD_MODE : 0;
417
418         return qcom_scm_call_atomic(__scm->dev, &desc, NULL);
419 }
420
421 static void qcom_scm_set_download_mode(bool enable)
422 {
423         bool avail;
424         int ret = 0;
425
426         avail = __qcom_scm_is_call_available(__scm->dev,
427                                              QCOM_SCM_SVC_BOOT,
428                                              QCOM_SCM_BOOT_SET_DLOAD_MODE);
429         if (avail) {
430                 ret = __qcom_scm_set_dload_mode(__scm->dev, enable);
431         } else if (__scm->dload_mode_addr) {
432                 ret = qcom_scm_io_writel(__scm->dload_mode_addr,
433                                 enable ? QCOM_SCM_BOOT_SET_DLOAD_MODE : 0);
434         } else {
435                 dev_err(__scm->dev,
436                         "No available mechanism for setting download mode\n");
437         }
438
439         if (ret)
440                 dev_err(__scm->dev, "failed to set download mode: %d\n", ret);
441 }
442
443 /**
444  * qcom_scm_pas_init_image() - Initialize peripheral authentication service
445  *                             state machine for a given peripheral, using the
446  *                             metadata
447  * @peripheral: peripheral id
448  * @metadata:   pointer to memory containing ELF header, program header table
449  *              and optional blob of data used for authenticating the metadata
450  *              and the rest of the firmware
451  * @size:       size of the metadata
452  * @ctx:        optional metadata context
453  *
454  * Return: 0 on success.
455  *
456  * Upon successful return, the PAS metadata context (@ctx) will be used to
457  * track the metadata allocation, this needs to be released by invoking
458  * qcom_scm_pas_metadata_release() by the caller.
459  */
460 int qcom_scm_pas_init_image(u32 peripheral, const void *metadata, size_t size,
461                             struct qcom_scm_pas_metadata *ctx)
462 {
463         dma_addr_t mdata_phys;
464         void *mdata_buf;
465         int ret;
466         struct qcom_scm_desc desc = {
467                 .svc = QCOM_SCM_SVC_PIL,
468                 .cmd = QCOM_SCM_PIL_PAS_INIT_IMAGE,
469                 .arginfo = QCOM_SCM_ARGS(2, QCOM_SCM_VAL, QCOM_SCM_RW),
470                 .args[0] = peripheral,
471                 .owner = ARM_SMCCC_OWNER_SIP,
472         };
473         struct qcom_scm_res res;
474
475         /*
476          * During the scm call memory protection will be enabled for the meta
477          * data blob, so make sure it's physically contiguous, 4K aligned and
478          * non-cachable to avoid XPU violations.
479          */
480         mdata_buf = dma_alloc_coherent(__scm->dev, size, &mdata_phys,
481                                        GFP_KERNEL);
482         if (!mdata_buf) {
483                 dev_err(__scm->dev, "Allocation of metadata buffer failed.\n");
484                 return -ENOMEM;
485         }
486         memcpy(mdata_buf, metadata, size);
487
488         ret = qcom_scm_clk_enable();
489         if (ret)
490                 goto out;
491
492         ret = qcom_scm_bw_enable();
493         if (ret)
494                 return ret;
495
496         desc.args[1] = mdata_phys;
497
498         ret = qcom_scm_call(__scm->dev, &desc, &res);
499
500         qcom_scm_bw_disable();
501         qcom_scm_clk_disable();
502
503 out:
504         if (ret < 0 || !ctx) {
505                 dma_free_coherent(__scm->dev, size, mdata_buf, mdata_phys);
506         } else if (ctx) {
507                 ctx->ptr = mdata_buf;
508                 ctx->phys = mdata_phys;
509                 ctx->size = size;
510         }
511
512         return ret ? : res.result[0];
513 }
514 EXPORT_SYMBOL_GPL(qcom_scm_pas_init_image);
515
516 /**
517  * qcom_scm_pas_metadata_release() - release metadata context
518  * @ctx:        metadata context
519  */
520 void qcom_scm_pas_metadata_release(struct qcom_scm_pas_metadata *ctx)
521 {
522         if (!ctx->ptr)
523                 return;
524
525         dma_free_coherent(__scm->dev, ctx->size, ctx->ptr, ctx->phys);
526
527         ctx->ptr = NULL;
528         ctx->phys = 0;
529         ctx->size = 0;
530 }
531 EXPORT_SYMBOL_GPL(qcom_scm_pas_metadata_release);
532
533 /**
534  * qcom_scm_pas_mem_setup() - Prepare the memory related to a given peripheral
535  *                            for firmware loading
536  * @peripheral: peripheral id
537  * @addr:       start address of memory area to prepare
538  * @size:       size of the memory area to prepare
539  *
540  * Returns 0 on success.
541  */
542 int qcom_scm_pas_mem_setup(u32 peripheral, phys_addr_t addr, phys_addr_t size)
543 {
544         int ret;
545         struct qcom_scm_desc desc = {
546                 .svc = QCOM_SCM_SVC_PIL,
547                 .cmd = QCOM_SCM_PIL_PAS_MEM_SETUP,
548                 .arginfo = QCOM_SCM_ARGS(3),
549                 .args[0] = peripheral,
550                 .args[1] = addr,
551                 .args[2] = size,
552                 .owner = ARM_SMCCC_OWNER_SIP,
553         };
554         struct qcom_scm_res res;
555
556         ret = qcom_scm_clk_enable();
557         if (ret)
558                 return ret;
559
560         ret = qcom_scm_bw_enable();
561         if (ret)
562                 return ret;
563
564         ret = qcom_scm_call(__scm->dev, &desc, &res);
565         qcom_scm_bw_disable();
566         qcom_scm_clk_disable();
567
568         return ret ? : res.result[0];
569 }
570 EXPORT_SYMBOL_GPL(qcom_scm_pas_mem_setup);
571
572 /**
573  * qcom_scm_pas_auth_and_reset() - Authenticate the given peripheral firmware
574  *                                 and reset the remote processor
575  * @peripheral: peripheral id
576  *
577  * Return 0 on success.
578  */
579 int qcom_scm_pas_auth_and_reset(u32 peripheral)
580 {
581         int ret;
582         struct qcom_scm_desc desc = {
583                 .svc = QCOM_SCM_SVC_PIL,
584                 .cmd = QCOM_SCM_PIL_PAS_AUTH_AND_RESET,
585                 .arginfo = QCOM_SCM_ARGS(1),
586                 .args[0] = peripheral,
587                 .owner = ARM_SMCCC_OWNER_SIP,
588         };
589         struct qcom_scm_res res;
590
591         ret = qcom_scm_clk_enable();
592         if (ret)
593                 return ret;
594
595         ret = qcom_scm_bw_enable();
596         if (ret)
597                 return ret;
598
599         ret = qcom_scm_call(__scm->dev, &desc, &res);
600         qcom_scm_bw_disable();
601         qcom_scm_clk_disable();
602
603         return ret ? : res.result[0];
604 }
605 EXPORT_SYMBOL_GPL(qcom_scm_pas_auth_and_reset);
606
607 /**
608  * qcom_scm_pas_shutdown() - Shut down the remote processor
609  * @peripheral: peripheral id
610  *
611  * Returns 0 on success.
612  */
613 int qcom_scm_pas_shutdown(u32 peripheral)
614 {
615         int ret;
616         struct qcom_scm_desc desc = {
617                 .svc = QCOM_SCM_SVC_PIL,
618                 .cmd = QCOM_SCM_PIL_PAS_SHUTDOWN,
619                 .arginfo = QCOM_SCM_ARGS(1),
620                 .args[0] = peripheral,
621                 .owner = ARM_SMCCC_OWNER_SIP,
622         };
623         struct qcom_scm_res res;
624
625         ret = qcom_scm_clk_enable();
626         if (ret)
627                 return ret;
628
629         ret = qcom_scm_bw_enable();
630         if (ret)
631                 return ret;
632
633         ret = qcom_scm_call(__scm->dev, &desc, &res);
634
635         qcom_scm_bw_disable();
636         qcom_scm_clk_disable();
637
638         return ret ? : res.result[0];
639 }
640 EXPORT_SYMBOL_GPL(qcom_scm_pas_shutdown);
641
642 /**
643  * qcom_scm_pas_supported() - Check if the peripheral authentication service is
644  *                            available for the given peripherial
645  * @peripheral: peripheral id
646  *
647  * Returns true if PAS is supported for this peripheral, otherwise false.
648  */
649 bool qcom_scm_pas_supported(u32 peripheral)
650 {
651         int ret;
652         struct qcom_scm_desc desc = {
653                 .svc = QCOM_SCM_SVC_PIL,
654                 .cmd = QCOM_SCM_PIL_PAS_IS_SUPPORTED,
655                 .arginfo = QCOM_SCM_ARGS(1),
656                 .args[0] = peripheral,
657                 .owner = ARM_SMCCC_OWNER_SIP,
658         };
659         struct qcom_scm_res res;
660
661         if (!__qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_PIL,
662                                           QCOM_SCM_PIL_PAS_IS_SUPPORTED))
663                 return false;
664
665         ret = qcom_scm_call(__scm->dev, &desc, &res);
666
667         return ret ? false : !!res.result[0];
668 }
669 EXPORT_SYMBOL_GPL(qcom_scm_pas_supported);
670
671 static int __qcom_scm_pas_mss_reset(struct device *dev, bool reset)
672 {
673         struct qcom_scm_desc desc = {
674                 .svc = QCOM_SCM_SVC_PIL,
675                 .cmd = QCOM_SCM_PIL_PAS_MSS_RESET,
676                 .arginfo = QCOM_SCM_ARGS(2),
677                 .args[0] = reset,
678                 .args[1] = 0,
679                 .owner = ARM_SMCCC_OWNER_SIP,
680         };
681         struct qcom_scm_res res;
682         int ret;
683
684         ret = qcom_scm_call(__scm->dev, &desc, &res);
685
686         return ret ? : res.result[0];
687 }
688
689 static int qcom_scm_pas_reset_assert(struct reset_controller_dev *rcdev,
690                                      unsigned long idx)
691 {
692         if (idx != 0)
693                 return -EINVAL;
694
695         return __qcom_scm_pas_mss_reset(__scm->dev, 1);
696 }
697
698 static int qcom_scm_pas_reset_deassert(struct reset_controller_dev *rcdev,
699                                        unsigned long idx)
700 {
701         if (idx != 0)
702                 return -EINVAL;
703
704         return __qcom_scm_pas_mss_reset(__scm->dev, 0);
705 }
706
707 static const struct reset_control_ops qcom_scm_pas_reset_ops = {
708         .assert = qcom_scm_pas_reset_assert,
709         .deassert = qcom_scm_pas_reset_deassert,
710 };
711
712 int qcom_scm_io_readl(phys_addr_t addr, unsigned int *val)
713 {
714         struct qcom_scm_desc desc = {
715                 .svc = QCOM_SCM_SVC_IO,
716                 .cmd = QCOM_SCM_IO_READ,
717                 .arginfo = QCOM_SCM_ARGS(1),
718                 .args[0] = addr,
719                 .owner = ARM_SMCCC_OWNER_SIP,
720         };
721         struct qcom_scm_res res;
722         int ret;
723
724
725         ret = qcom_scm_call_atomic(__scm->dev, &desc, &res);
726         if (ret >= 0)
727                 *val = res.result[0];
728
729         return ret < 0 ? ret : 0;
730 }
731 EXPORT_SYMBOL_GPL(qcom_scm_io_readl);
732
733 int qcom_scm_io_writel(phys_addr_t addr, unsigned int val)
734 {
735         struct qcom_scm_desc desc = {
736                 .svc = QCOM_SCM_SVC_IO,
737                 .cmd = QCOM_SCM_IO_WRITE,
738                 .arginfo = QCOM_SCM_ARGS(2),
739                 .args[0] = addr,
740                 .args[1] = val,
741                 .owner = ARM_SMCCC_OWNER_SIP,
742         };
743
744         return qcom_scm_call_atomic(__scm->dev, &desc, NULL);
745 }
746 EXPORT_SYMBOL_GPL(qcom_scm_io_writel);
747
748 /**
749  * qcom_scm_restore_sec_cfg_available() - Check if secure environment
750  * supports restore security config interface.
751  *
752  * Return true if restore-cfg interface is supported, false if not.
753  */
754 bool qcom_scm_restore_sec_cfg_available(void)
755 {
756         return __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_MP,
757                                             QCOM_SCM_MP_RESTORE_SEC_CFG);
758 }
759 EXPORT_SYMBOL_GPL(qcom_scm_restore_sec_cfg_available);
760
761 int qcom_scm_restore_sec_cfg(u32 device_id, u32 spare)
762 {
763         struct qcom_scm_desc desc = {
764                 .svc = QCOM_SCM_SVC_MP,
765                 .cmd = QCOM_SCM_MP_RESTORE_SEC_CFG,
766                 .arginfo = QCOM_SCM_ARGS(2),
767                 .args[0] = device_id,
768                 .args[1] = spare,
769                 .owner = ARM_SMCCC_OWNER_SIP,
770         };
771         struct qcom_scm_res res;
772         int ret;
773
774         ret = qcom_scm_call(__scm->dev, &desc, &res);
775
776         return ret ? : res.result[0];
777 }
778 EXPORT_SYMBOL_GPL(qcom_scm_restore_sec_cfg);
779
780 int qcom_scm_iommu_secure_ptbl_size(u32 spare, size_t *size)
781 {
782         struct qcom_scm_desc desc = {
783                 .svc = QCOM_SCM_SVC_MP,
784                 .cmd = QCOM_SCM_MP_IOMMU_SECURE_PTBL_SIZE,
785                 .arginfo = QCOM_SCM_ARGS(1),
786                 .args[0] = spare,
787                 .owner = ARM_SMCCC_OWNER_SIP,
788         };
789         struct qcom_scm_res res;
790         int ret;
791
792         ret = qcom_scm_call(__scm->dev, &desc, &res);
793
794         if (size)
795                 *size = res.result[0];
796
797         return ret ? : res.result[1];
798 }
799 EXPORT_SYMBOL_GPL(qcom_scm_iommu_secure_ptbl_size);
800
801 int qcom_scm_iommu_secure_ptbl_init(u64 addr, u32 size, u32 spare)
802 {
803         struct qcom_scm_desc desc = {
804                 .svc = QCOM_SCM_SVC_MP,
805                 .cmd = QCOM_SCM_MP_IOMMU_SECURE_PTBL_INIT,
806                 .arginfo = QCOM_SCM_ARGS(3, QCOM_SCM_RW, QCOM_SCM_VAL,
807                                          QCOM_SCM_VAL),
808                 .args[0] = addr,
809                 .args[1] = size,
810                 .args[2] = spare,
811                 .owner = ARM_SMCCC_OWNER_SIP,
812         };
813         int ret;
814
815         ret = qcom_scm_call(__scm->dev, &desc, NULL);
816
817         /* the pg table has been initialized already, ignore the error */
818         if (ret == -EPERM)
819                 ret = 0;
820
821         return ret;
822 }
823 EXPORT_SYMBOL_GPL(qcom_scm_iommu_secure_ptbl_init);
824
825 int qcom_scm_iommu_set_cp_pool_size(u32 spare, u32 size)
826 {
827         struct qcom_scm_desc desc = {
828                 .svc = QCOM_SCM_SVC_MP,
829                 .cmd = QCOM_SCM_MP_IOMMU_SET_CP_POOL_SIZE,
830                 .arginfo = QCOM_SCM_ARGS(2),
831                 .args[0] = size,
832                 .args[1] = spare,
833                 .owner = ARM_SMCCC_OWNER_SIP,
834         };
835
836         return qcom_scm_call(__scm->dev, &desc, NULL);
837 }
838 EXPORT_SYMBOL_GPL(qcom_scm_iommu_set_cp_pool_size);
839
840 int qcom_scm_mem_protect_video_var(u32 cp_start, u32 cp_size,
841                                    u32 cp_nonpixel_start,
842                                    u32 cp_nonpixel_size)
843 {
844         int ret;
845         struct qcom_scm_desc desc = {
846                 .svc = QCOM_SCM_SVC_MP,
847                 .cmd = QCOM_SCM_MP_VIDEO_VAR,
848                 .arginfo = QCOM_SCM_ARGS(4, QCOM_SCM_VAL, QCOM_SCM_VAL,
849                                          QCOM_SCM_VAL, QCOM_SCM_VAL),
850                 .args[0] = cp_start,
851                 .args[1] = cp_size,
852                 .args[2] = cp_nonpixel_start,
853                 .args[3] = cp_nonpixel_size,
854                 .owner = ARM_SMCCC_OWNER_SIP,
855         };
856         struct qcom_scm_res res;
857
858         ret = qcom_scm_call(__scm->dev, &desc, &res);
859
860         return ret ? : res.result[0];
861 }
862 EXPORT_SYMBOL_GPL(qcom_scm_mem_protect_video_var);
863
864 static int __qcom_scm_assign_mem(struct device *dev, phys_addr_t mem_region,
865                                  size_t mem_sz, phys_addr_t src, size_t src_sz,
866                                  phys_addr_t dest, size_t dest_sz)
867 {
868         int ret;
869         struct qcom_scm_desc desc = {
870                 .svc = QCOM_SCM_SVC_MP,
871                 .cmd = QCOM_SCM_MP_ASSIGN,
872                 .arginfo = QCOM_SCM_ARGS(7, QCOM_SCM_RO, QCOM_SCM_VAL,
873                                          QCOM_SCM_RO, QCOM_SCM_VAL, QCOM_SCM_RO,
874                                          QCOM_SCM_VAL, QCOM_SCM_VAL),
875                 .args[0] = mem_region,
876                 .args[1] = mem_sz,
877                 .args[2] = src,
878                 .args[3] = src_sz,
879                 .args[4] = dest,
880                 .args[5] = dest_sz,
881                 .args[6] = 0,
882                 .owner = ARM_SMCCC_OWNER_SIP,
883         };
884         struct qcom_scm_res res;
885
886         ret = qcom_scm_call(dev, &desc, &res);
887
888         return ret ? : res.result[0];
889 }
890
891 /**
892  * qcom_scm_assign_mem() - Make a secure call to reassign memory ownership
893  * @mem_addr: mem region whose ownership need to be reassigned
894  * @mem_sz:   size of the region.
895  * @srcvm:    vmid for current set of owners, each set bit in
896  *            flag indicate a unique owner
897  * @newvm:    array having new owners and corresponding permission
898  *            flags
899  * @dest_cnt: number of owners in next set.
900  *
901  * Return negative errno on failure or 0 on success with @srcvm updated.
902  */
903 int qcom_scm_assign_mem(phys_addr_t mem_addr, size_t mem_sz,
904                         u64 *srcvm,
905                         const struct qcom_scm_vmperm *newvm,
906                         unsigned int dest_cnt)
907 {
908         struct qcom_scm_current_perm_info *destvm;
909         struct qcom_scm_mem_map_info *mem_to_map;
910         phys_addr_t mem_to_map_phys;
911         phys_addr_t dest_phys;
912         dma_addr_t ptr_phys;
913         size_t mem_to_map_sz;
914         size_t dest_sz;
915         size_t src_sz;
916         size_t ptr_sz;
917         int next_vm;
918         __le32 *src;
919         void *ptr;
920         int ret, i, b;
921         u64 srcvm_bits = *srcvm;
922
923         src_sz = hweight64(srcvm_bits) * sizeof(*src);
924         mem_to_map_sz = sizeof(*mem_to_map);
925         dest_sz = dest_cnt * sizeof(*destvm);
926         ptr_sz = ALIGN(src_sz, SZ_64) + ALIGN(mem_to_map_sz, SZ_64) +
927                         ALIGN(dest_sz, SZ_64);
928
929         ptr = dma_alloc_coherent(__scm->dev, ptr_sz, &ptr_phys, GFP_KERNEL);
930         if (!ptr)
931                 return -ENOMEM;
932
933         /* Fill source vmid detail */
934         src = ptr;
935         i = 0;
936         for (b = 0; b < BITS_PER_TYPE(u64); b++) {
937                 if (srcvm_bits & BIT(b))
938                         src[i++] = cpu_to_le32(b);
939         }
940
941         /* Fill details of mem buff to map */
942         mem_to_map = ptr + ALIGN(src_sz, SZ_64);
943         mem_to_map_phys = ptr_phys + ALIGN(src_sz, SZ_64);
944         mem_to_map->mem_addr = cpu_to_le64(mem_addr);
945         mem_to_map->mem_size = cpu_to_le64(mem_sz);
946
947         next_vm = 0;
948         /* Fill details of next vmid detail */
949         destvm = ptr + ALIGN(mem_to_map_sz, SZ_64) + ALIGN(src_sz, SZ_64);
950         dest_phys = ptr_phys + ALIGN(mem_to_map_sz, SZ_64) + ALIGN(src_sz, SZ_64);
951         for (i = 0; i < dest_cnt; i++, destvm++, newvm++) {
952                 destvm->vmid = cpu_to_le32(newvm->vmid);
953                 destvm->perm = cpu_to_le32(newvm->perm);
954                 destvm->ctx = 0;
955                 destvm->ctx_size = 0;
956                 next_vm |= BIT(newvm->vmid);
957         }
958
959         ret = __qcom_scm_assign_mem(__scm->dev, mem_to_map_phys, mem_to_map_sz,
960                                     ptr_phys, src_sz, dest_phys, dest_sz);
961         dma_free_coherent(__scm->dev, ptr_sz, ptr, ptr_phys);
962         if (ret) {
963                 dev_err(__scm->dev,
964                         "Assign memory protection call failed %d\n", ret);
965                 return -EINVAL;
966         }
967
968         *srcvm = next_vm;
969         return 0;
970 }
971 EXPORT_SYMBOL_GPL(qcom_scm_assign_mem);
972
973 /**
974  * qcom_scm_ocmem_lock_available() - is OCMEM lock/unlock interface available
975  */
976 bool qcom_scm_ocmem_lock_available(void)
977 {
978         return __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_OCMEM,
979                                             QCOM_SCM_OCMEM_LOCK_CMD);
980 }
981 EXPORT_SYMBOL_GPL(qcom_scm_ocmem_lock_available);
982
983 /**
984  * qcom_scm_ocmem_lock() - call OCMEM lock interface to assign an OCMEM
985  * region to the specified initiator
986  *
987  * @id:     tz initiator id
988  * @offset: OCMEM offset
989  * @size:   OCMEM size
990  * @mode:   access mode (WIDE/NARROW)
991  */
992 int qcom_scm_ocmem_lock(enum qcom_scm_ocmem_client id, u32 offset, u32 size,
993                         u32 mode)
994 {
995         struct qcom_scm_desc desc = {
996                 .svc = QCOM_SCM_SVC_OCMEM,
997                 .cmd = QCOM_SCM_OCMEM_LOCK_CMD,
998                 .args[0] = id,
999                 .args[1] = offset,
1000                 .args[2] = size,
1001                 .args[3] = mode,
1002                 .arginfo = QCOM_SCM_ARGS(4),
1003         };
1004
1005         return qcom_scm_call(__scm->dev, &desc, NULL);
1006 }
1007 EXPORT_SYMBOL_GPL(qcom_scm_ocmem_lock);
1008
1009 /**
1010  * qcom_scm_ocmem_unlock() - call OCMEM unlock interface to release an OCMEM
1011  * region from the specified initiator
1012  *
1013  * @id:     tz initiator id
1014  * @offset: OCMEM offset
1015  * @size:   OCMEM size
1016  */
1017 int qcom_scm_ocmem_unlock(enum qcom_scm_ocmem_client id, u32 offset, u32 size)
1018 {
1019         struct qcom_scm_desc desc = {
1020                 .svc = QCOM_SCM_SVC_OCMEM,
1021                 .cmd = QCOM_SCM_OCMEM_UNLOCK_CMD,
1022                 .args[0] = id,
1023                 .args[1] = offset,
1024                 .args[2] = size,
1025                 .arginfo = QCOM_SCM_ARGS(3),
1026         };
1027
1028         return qcom_scm_call(__scm->dev, &desc, NULL);
1029 }
1030 EXPORT_SYMBOL_GPL(qcom_scm_ocmem_unlock);
1031
1032 /**
1033  * qcom_scm_ice_available() - Is the ICE key programming interface available?
1034  *
1035  * Return: true iff the SCM calls wrapped by qcom_scm_ice_invalidate_key() and
1036  *         qcom_scm_ice_set_key() are available.
1037  */
1038 bool qcom_scm_ice_available(void)
1039 {
1040         return __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_ES,
1041                                             QCOM_SCM_ES_INVALIDATE_ICE_KEY) &&
1042                 __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_ES,
1043                                              QCOM_SCM_ES_CONFIG_SET_ICE_KEY);
1044 }
1045 EXPORT_SYMBOL_GPL(qcom_scm_ice_available);
1046
1047 /**
1048  * qcom_scm_ice_invalidate_key() - Invalidate an inline encryption key
1049  * @index: the keyslot to invalidate
1050  *
1051  * The UFSHCI and eMMC standards define a standard way to do this, but it
1052  * doesn't work on these SoCs; only this SCM call does.
1053  *
1054  * It is assumed that the SoC has only one ICE instance being used, as this SCM
1055  * call doesn't specify which ICE instance the keyslot belongs to.
1056  *
1057  * Return: 0 on success; -errno on failure.
1058  */
1059 int qcom_scm_ice_invalidate_key(u32 index)
1060 {
1061         struct qcom_scm_desc desc = {
1062                 .svc = QCOM_SCM_SVC_ES,
1063                 .cmd = QCOM_SCM_ES_INVALIDATE_ICE_KEY,
1064                 .arginfo = QCOM_SCM_ARGS(1),
1065                 .args[0] = index,
1066                 .owner = ARM_SMCCC_OWNER_SIP,
1067         };
1068
1069         return qcom_scm_call(__scm->dev, &desc, NULL);
1070 }
1071 EXPORT_SYMBOL_GPL(qcom_scm_ice_invalidate_key);
1072
1073 /**
1074  * qcom_scm_ice_set_key() - Set an inline encryption key
1075  * @index: the keyslot into which to set the key
1076  * @key: the key to program
1077  * @key_size: the size of the key in bytes
1078  * @cipher: the encryption algorithm the key is for
1079  * @data_unit_size: the encryption data unit size, i.e. the size of each
1080  *                  individual plaintext and ciphertext.  Given in 512-byte
1081  *                  units, e.g. 1 = 512 bytes, 8 = 4096 bytes, etc.
1082  *
1083  * Program a key into a keyslot of Qualcomm ICE (Inline Crypto Engine), where it
1084  * can then be used to encrypt/decrypt UFS or eMMC I/O requests inline.
1085  *
1086  * The UFSHCI and eMMC standards define a standard way to do this, but it
1087  * doesn't work on these SoCs; only this SCM call does.
1088  *
1089  * It is assumed that the SoC has only one ICE instance being used, as this SCM
1090  * call doesn't specify which ICE instance the keyslot belongs to.
1091  *
1092  * Return: 0 on success; -errno on failure.
1093  */
1094 int qcom_scm_ice_set_key(u32 index, const u8 *key, u32 key_size,
1095                          enum qcom_scm_ice_cipher cipher, u32 data_unit_size)
1096 {
1097         struct qcom_scm_desc desc = {
1098                 .svc = QCOM_SCM_SVC_ES,
1099                 .cmd = QCOM_SCM_ES_CONFIG_SET_ICE_KEY,
1100                 .arginfo = QCOM_SCM_ARGS(5, QCOM_SCM_VAL, QCOM_SCM_RW,
1101                                          QCOM_SCM_VAL, QCOM_SCM_VAL,
1102                                          QCOM_SCM_VAL),
1103                 .args[0] = index,
1104                 .args[2] = key_size,
1105                 .args[3] = cipher,
1106                 .args[4] = data_unit_size,
1107                 .owner = ARM_SMCCC_OWNER_SIP,
1108         };
1109         void *keybuf;
1110         dma_addr_t key_phys;
1111         int ret;
1112
1113         /*
1114          * 'key' may point to vmalloc()'ed memory, but we need to pass a
1115          * physical address that's been properly flushed.  The sanctioned way to
1116          * do this is by using the DMA API.  But as is best practice for crypto
1117          * keys, we also must wipe the key after use.  This makes kmemdup() +
1118          * dma_map_single() not clearly correct, since the DMA API can use
1119          * bounce buffers.  Instead, just use dma_alloc_coherent().  Programming
1120          * keys is normally rare and thus not performance-critical.
1121          */
1122
1123         keybuf = dma_alloc_coherent(__scm->dev, key_size, &key_phys,
1124                                     GFP_KERNEL);
1125         if (!keybuf)
1126                 return -ENOMEM;
1127         memcpy(keybuf, key, key_size);
1128         desc.args[1] = key_phys;
1129
1130         ret = qcom_scm_call(__scm->dev, &desc, NULL);
1131
1132         memzero_explicit(keybuf, key_size);
1133
1134         dma_free_coherent(__scm->dev, key_size, keybuf, key_phys);
1135         return ret;
1136 }
1137 EXPORT_SYMBOL_GPL(qcom_scm_ice_set_key);
1138
1139 /**
1140  * qcom_scm_hdcp_available() - Check if secure environment supports HDCP.
1141  *
1142  * Return true if HDCP is supported, false if not.
1143  */
1144 bool qcom_scm_hdcp_available(void)
1145 {
1146         bool avail;
1147         int ret = qcom_scm_clk_enable();
1148
1149         if (ret)
1150                 return ret;
1151
1152         avail = __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_HDCP,
1153                                                 QCOM_SCM_HDCP_INVOKE);
1154
1155         qcom_scm_clk_disable();
1156
1157         return avail;
1158 }
1159 EXPORT_SYMBOL_GPL(qcom_scm_hdcp_available);
1160
1161 /**
1162  * qcom_scm_hdcp_req() - Send HDCP request.
1163  * @req: HDCP request array
1164  * @req_cnt: HDCP request array count
1165  * @resp: response buffer passed to SCM
1166  *
1167  * Write HDCP register(s) through SCM.
1168  */
1169 int qcom_scm_hdcp_req(struct qcom_scm_hdcp_req *req, u32 req_cnt, u32 *resp)
1170 {
1171         int ret;
1172         struct qcom_scm_desc desc = {
1173                 .svc = QCOM_SCM_SVC_HDCP,
1174                 .cmd = QCOM_SCM_HDCP_INVOKE,
1175                 .arginfo = QCOM_SCM_ARGS(10),
1176                 .args = {
1177                         req[0].addr,
1178                         req[0].val,
1179                         req[1].addr,
1180                         req[1].val,
1181                         req[2].addr,
1182                         req[2].val,
1183                         req[3].addr,
1184                         req[3].val,
1185                         req[4].addr,
1186                         req[4].val
1187                 },
1188                 .owner = ARM_SMCCC_OWNER_SIP,
1189         };
1190         struct qcom_scm_res res;
1191
1192         if (req_cnt > QCOM_SCM_HDCP_MAX_REQ_CNT)
1193                 return -ERANGE;
1194
1195         ret = qcom_scm_clk_enable();
1196         if (ret)
1197                 return ret;
1198
1199         ret = qcom_scm_call(__scm->dev, &desc, &res);
1200         *resp = res.result[0];
1201
1202         qcom_scm_clk_disable();
1203
1204         return ret;
1205 }
1206 EXPORT_SYMBOL_GPL(qcom_scm_hdcp_req);
1207
1208 int qcom_scm_iommu_set_pt_format(u32 sec_id, u32 ctx_num, u32 pt_fmt)
1209 {
1210         struct qcom_scm_desc desc = {
1211                 .svc = QCOM_SCM_SVC_SMMU_PROGRAM,
1212                 .cmd = QCOM_SCM_SMMU_PT_FORMAT,
1213                 .arginfo = QCOM_SCM_ARGS(3),
1214                 .args[0] = sec_id,
1215                 .args[1] = ctx_num,
1216                 .args[2] = pt_fmt, /* 0: LPAE AArch32 - 1: AArch64 */
1217                 .owner = ARM_SMCCC_OWNER_SIP,
1218         };
1219
1220         return qcom_scm_call(__scm->dev, &desc, NULL);
1221 }
1222 EXPORT_SYMBOL_GPL(qcom_scm_iommu_set_pt_format);
1223
1224 int qcom_scm_qsmmu500_wait_safe_toggle(bool en)
1225 {
1226         struct qcom_scm_desc desc = {
1227                 .svc = QCOM_SCM_SVC_SMMU_PROGRAM,
1228                 .cmd = QCOM_SCM_SMMU_CONFIG_ERRATA1,
1229                 .arginfo = QCOM_SCM_ARGS(2),
1230                 .args[0] = QCOM_SCM_SMMU_CONFIG_ERRATA1_CLIENT_ALL,
1231                 .args[1] = en,
1232                 .owner = ARM_SMCCC_OWNER_SIP,
1233         };
1234
1235
1236         return qcom_scm_call_atomic(__scm->dev, &desc, NULL);
1237 }
1238 EXPORT_SYMBOL_GPL(qcom_scm_qsmmu500_wait_safe_toggle);
1239
1240 bool qcom_scm_lmh_dcvsh_available(void)
1241 {
1242         return __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_LMH, QCOM_SCM_LMH_LIMIT_DCVSH);
1243 }
1244 EXPORT_SYMBOL_GPL(qcom_scm_lmh_dcvsh_available);
1245
1246 int qcom_scm_lmh_profile_change(u32 profile_id)
1247 {
1248         struct qcom_scm_desc desc = {
1249                 .svc = QCOM_SCM_SVC_LMH,
1250                 .cmd = QCOM_SCM_LMH_LIMIT_PROFILE_CHANGE,
1251                 .arginfo = QCOM_SCM_ARGS(1, QCOM_SCM_VAL),
1252                 .args[0] = profile_id,
1253                 .owner = ARM_SMCCC_OWNER_SIP,
1254         };
1255
1256         return qcom_scm_call(__scm->dev, &desc, NULL);
1257 }
1258 EXPORT_SYMBOL_GPL(qcom_scm_lmh_profile_change);
1259
1260 int qcom_scm_lmh_dcvsh(u32 payload_fn, u32 payload_reg, u32 payload_val,
1261                        u64 limit_node, u32 node_id, u64 version)
1262 {
1263         dma_addr_t payload_phys;
1264         u32 *payload_buf;
1265         int ret, payload_size = 5 * sizeof(u32);
1266
1267         struct qcom_scm_desc desc = {
1268                 .svc = QCOM_SCM_SVC_LMH,
1269                 .cmd = QCOM_SCM_LMH_LIMIT_DCVSH,
1270                 .arginfo = QCOM_SCM_ARGS(5, QCOM_SCM_RO, QCOM_SCM_VAL, QCOM_SCM_VAL,
1271                                         QCOM_SCM_VAL, QCOM_SCM_VAL),
1272                 .args[1] = payload_size,
1273                 .args[2] = limit_node,
1274                 .args[3] = node_id,
1275                 .args[4] = version,
1276                 .owner = ARM_SMCCC_OWNER_SIP,
1277         };
1278
1279         payload_buf = dma_alloc_coherent(__scm->dev, payload_size, &payload_phys, GFP_KERNEL);
1280         if (!payload_buf)
1281                 return -ENOMEM;
1282
1283         payload_buf[0] = payload_fn;
1284         payload_buf[1] = 0;
1285         payload_buf[2] = payload_reg;
1286         payload_buf[3] = 1;
1287         payload_buf[4] = payload_val;
1288
1289         desc.args[0] = payload_phys;
1290
1291         ret = qcom_scm_call(__scm->dev, &desc, NULL);
1292
1293         dma_free_coherent(__scm->dev, payload_size, payload_buf, payload_phys);
1294         return ret;
1295 }
1296 EXPORT_SYMBOL_GPL(qcom_scm_lmh_dcvsh);
1297
1298 static int qcom_scm_find_dload_address(struct device *dev, u64 *addr)
1299 {
1300         struct device_node *tcsr;
1301         struct device_node *np = dev->of_node;
1302         struct resource res;
1303         u32 offset;
1304         int ret;
1305
1306         tcsr = of_parse_phandle(np, "qcom,dload-mode", 0);
1307         if (!tcsr)
1308                 return 0;
1309
1310         ret = of_address_to_resource(tcsr, 0, &res);
1311         of_node_put(tcsr);
1312         if (ret)
1313                 return ret;
1314
1315         ret = of_property_read_u32_index(np, "qcom,dload-mode", 1, &offset);
1316         if (ret < 0)
1317                 return ret;
1318
1319         *addr = res.start + offset;
1320
1321         return 0;
1322 }
1323
1324 /**
1325  * qcom_scm_is_available() - Checks if SCM is available
1326  */
1327 bool qcom_scm_is_available(void)
1328 {
1329         return !!__scm;
1330 }
1331 EXPORT_SYMBOL_GPL(qcom_scm_is_available);
1332
1333 static int qcom_scm_assert_valid_wq_ctx(u32 wq_ctx)
1334 {
1335         /* FW currently only supports a single wq_ctx (zero).
1336          * TODO: Update this logic to include dynamic allocation and lookup of
1337          * completion structs when FW supports more wq_ctx values.
1338          */
1339         if (wq_ctx != 0) {
1340                 dev_err(__scm->dev, "Firmware unexpectedly passed non-zero wq_ctx\n");
1341                 return -EINVAL;
1342         }
1343
1344         return 0;
1345 }
1346
1347 int qcom_scm_wait_for_wq_completion(u32 wq_ctx)
1348 {
1349         int ret;
1350
1351         ret = qcom_scm_assert_valid_wq_ctx(wq_ctx);
1352         if (ret)
1353                 return ret;
1354
1355         wait_for_completion(&__scm->waitq_comp);
1356
1357         return 0;
1358 }
1359
1360 static int qcom_scm_waitq_wakeup(struct qcom_scm *scm, unsigned int wq_ctx)
1361 {
1362         int ret;
1363
1364         ret = qcom_scm_assert_valid_wq_ctx(wq_ctx);
1365         if (ret)
1366                 return ret;
1367
1368         complete(&__scm->waitq_comp);
1369
1370         return 0;
1371 }
1372
1373 static irqreturn_t qcom_scm_irq_handler(int irq, void *data)
1374 {
1375         int ret;
1376         struct qcom_scm *scm = data;
1377         u32 wq_ctx, flags, more_pending = 0;
1378
1379         do {
1380                 ret = scm_get_wq_ctx(&wq_ctx, &flags, &more_pending);
1381                 if (ret) {
1382                         dev_err(scm->dev, "GET_WQ_CTX SMC call failed: %d\n", ret);
1383                         goto out;
1384                 }
1385
1386                 if (flags != QCOM_SMC_WAITQ_FLAG_WAKE_ONE &&
1387                     flags != QCOM_SMC_WAITQ_FLAG_WAKE_ALL) {
1388                         dev_err(scm->dev, "Invalid flags found for wq_ctx: %u\n", flags);
1389                         goto out;
1390                 }
1391
1392                 ret = qcom_scm_waitq_wakeup(scm, wq_ctx);
1393                 if (ret)
1394                         goto out;
1395         } while (more_pending);
1396
1397 out:
1398         return IRQ_HANDLED;
1399 }
1400
1401 static int qcom_scm_probe(struct platform_device *pdev)
1402 {
1403         struct qcom_scm *scm;
1404         int irq, ret;
1405
1406         scm = devm_kzalloc(&pdev->dev, sizeof(*scm), GFP_KERNEL);
1407         if (!scm)
1408                 return -ENOMEM;
1409
1410         ret = qcom_scm_find_dload_address(&pdev->dev, &scm->dload_mode_addr);
1411         if (ret < 0)
1412                 return ret;
1413
1414         mutex_init(&scm->scm_bw_lock);
1415
1416         scm->path = devm_of_icc_get(&pdev->dev, NULL);
1417         if (IS_ERR(scm->path))
1418                 return dev_err_probe(&pdev->dev, PTR_ERR(scm->path),
1419                                      "failed to acquire interconnect path\n");
1420
1421         scm->core_clk = devm_clk_get_optional(&pdev->dev, "core");
1422         if (IS_ERR(scm->core_clk))
1423                 return PTR_ERR(scm->core_clk);
1424
1425         scm->iface_clk = devm_clk_get_optional(&pdev->dev, "iface");
1426         if (IS_ERR(scm->iface_clk))
1427                 return PTR_ERR(scm->iface_clk);
1428
1429         scm->bus_clk = devm_clk_get_optional(&pdev->dev, "bus");
1430         if (IS_ERR(scm->bus_clk))
1431                 return PTR_ERR(scm->bus_clk);
1432
1433         scm->reset.ops = &qcom_scm_pas_reset_ops;
1434         scm->reset.nr_resets = 1;
1435         scm->reset.of_node = pdev->dev.of_node;
1436         ret = devm_reset_controller_register(&pdev->dev, &scm->reset);
1437         if (ret)
1438                 return ret;
1439
1440         /* vote for max clk rate for highest performance */
1441         ret = clk_set_rate(scm->core_clk, INT_MAX);
1442         if (ret)
1443                 return ret;
1444
1445         __scm = scm;
1446         __scm->dev = &pdev->dev;
1447
1448         init_completion(&__scm->waitq_comp);
1449
1450         irq = platform_get_irq_optional(pdev, 0);
1451         if (irq < 0) {
1452                 if (irq != -ENXIO)
1453                         return irq;
1454         } else {
1455                 ret = devm_request_threaded_irq(__scm->dev, irq, NULL, qcom_scm_irq_handler,
1456                                                 IRQF_ONESHOT, "qcom-scm", __scm);
1457                 if (ret < 0)
1458                         return dev_err_probe(scm->dev, ret, "Failed to request qcom-scm irq\n");
1459         }
1460
1461         __get_convention();
1462
1463         /*
1464          * If requested enable "download mode", from this point on warmboot
1465          * will cause the boot stages to enter download mode, unless
1466          * disabled below by a clean shutdown/reboot.
1467          */
1468         if (download_mode)
1469                 qcom_scm_set_download_mode(true);
1470
1471         return 0;
1472 }
1473
1474 static void qcom_scm_shutdown(struct platform_device *pdev)
1475 {
1476         /* Clean shutdown, disable download mode to allow normal restart */
1477         qcom_scm_set_download_mode(false);
1478 }
1479
1480 static const struct of_device_id qcom_scm_dt_match[] = {
1481         { .compatible = "qcom,scm" },
1482
1483         /* Legacy entries kept for backwards compatibility */
1484         { .compatible = "qcom,scm-apq8064" },
1485         { .compatible = "qcom,scm-apq8084" },
1486         { .compatible = "qcom,scm-ipq4019" },
1487         { .compatible = "qcom,scm-msm8953" },
1488         { .compatible = "qcom,scm-msm8974" },
1489         { .compatible = "qcom,scm-msm8996" },
1490         {}
1491 };
1492 MODULE_DEVICE_TABLE(of, qcom_scm_dt_match);
1493
1494 static struct platform_driver qcom_scm_driver = {
1495         .driver = {
1496                 .name   = "qcom_scm",
1497                 .of_match_table = qcom_scm_dt_match,
1498                 .suppress_bind_attrs = true,
1499         },
1500         .probe = qcom_scm_probe,
1501         .shutdown = qcom_scm_shutdown,
1502 };
1503
1504 static int __init qcom_scm_init(void)
1505 {
1506         return platform_driver_register(&qcom_scm_driver);
1507 }
1508 subsys_initcall(qcom_scm_init);
1509
1510 MODULE_DESCRIPTION("Qualcomm Technologies, Inc. SCM driver");
1511 MODULE_LICENSE("GPL v2");