1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2010,2015,2019 The Linux Foundation. All rights reserved.
3 * Copyright (C) 2015 Linaro Ltd.
5 #include <linux/platform_device.h>
6 #include <linux/init.h>
7 #include <linux/cpumask.h>
8 #include <linux/export.h>
9 #include <linux/dma-mapping.h>
10 #include <linux/interconnect.h>
11 #include <linux/module.h>
12 #include <linux/types.h>
13 #include <linux/qcom_scm.h>
15 #include <linux/of_address.h>
16 #include <linux/of_platform.h>
17 #include <linux/clk.h>
18 #include <linux/reset-controller.h>
19 #include <linux/arm-smccc.h>
23 static bool download_mode = IS_ENABLED(CONFIG_QCOM_SCM_DOWNLOAD_MODE_DEFAULT);
24 module_param(download_mode, bool, 0);
26 #define SCM_HAS_CORE_CLK BIT(0)
27 #define SCM_HAS_IFACE_CLK BIT(1)
28 #define SCM_HAS_BUS_CLK BIT(2)
33 struct clk *iface_clk;
35 struct icc_path *path;
36 struct reset_controller_dev reset;
38 /* control access to the interconnect path */
39 struct mutex scm_bw_lock;
45 struct qcom_scm_current_perm_info {
53 struct qcom_scm_mem_map_info {
58 /* Each bit configures cold/warm boot address for one of the 4 CPUs */
59 static const u8 qcom_scm_cpu_cold_bits[QCOM_SCM_BOOT_MAX_CPUS] = {
60 0, BIT(0), BIT(3), BIT(5)
62 static const u8 qcom_scm_cpu_warm_bits[QCOM_SCM_BOOT_MAX_CPUS] = {
63 BIT(2), BIT(1), BIT(4), BIT(6)
66 static const char * const qcom_scm_convention_names[] = {
67 [SMC_CONVENTION_UNKNOWN] = "unknown",
68 [SMC_CONVENTION_ARM_32] = "smc arm 32",
69 [SMC_CONVENTION_ARM_64] = "smc arm 64",
70 [SMC_CONVENTION_LEGACY] = "smc legacy",
73 static struct qcom_scm *__scm;
75 static int qcom_scm_clk_enable(void)
79 ret = clk_prepare_enable(__scm->core_clk);
83 ret = clk_prepare_enable(__scm->iface_clk);
87 ret = clk_prepare_enable(__scm->bus_clk);
94 clk_disable_unprepare(__scm->iface_clk);
96 clk_disable_unprepare(__scm->core_clk);
101 static void qcom_scm_clk_disable(void)
103 clk_disable_unprepare(__scm->core_clk);
104 clk_disable_unprepare(__scm->iface_clk);
105 clk_disable_unprepare(__scm->bus_clk);
108 static int qcom_scm_bw_enable(void)
115 if (IS_ERR(__scm->path))
118 mutex_lock(&__scm->scm_bw_lock);
119 if (!__scm->scm_vote_count) {
120 ret = icc_set_bw(__scm->path, 0, UINT_MAX);
122 dev_err(__scm->dev, "failed to set bandwidth request\n");
126 __scm->scm_vote_count++;
128 mutex_unlock(&__scm->scm_bw_lock);
133 static void qcom_scm_bw_disable(void)
135 if (IS_ERR_OR_NULL(__scm->path))
138 mutex_lock(&__scm->scm_bw_lock);
139 if (__scm->scm_vote_count-- == 1)
140 icc_set_bw(__scm->path, 0, 0);
141 mutex_unlock(&__scm->scm_bw_lock);
144 enum qcom_scm_convention qcom_scm_convention = SMC_CONVENTION_UNKNOWN;
145 static DEFINE_SPINLOCK(scm_query_lock);
147 static enum qcom_scm_convention __get_convention(void)
150 struct qcom_scm_desc desc = {
151 .svc = QCOM_SCM_SVC_INFO,
152 .cmd = QCOM_SCM_INFO_IS_CALL_AVAIL,
153 .args[0] = SCM_SMC_FNID(QCOM_SCM_SVC_INFO,
154 QCOM_SCM_INFO_IS_CALL_AVAIL) |
155 (ARM_SMCCC_OWNER_SIP << ARM_SMCCC_OWNER_SHIFT),
156 .arginfo = QCOM_SCM_ARGS(1),
157 .owner = ARM_SMCCC_OWNER_SIP,
159 struct qcom_scm_res res;
160 enum qcom_scm_convention probed_convention;
164 if (likely(qcom_scm_convention != SMC_CONVENTION_UNKNOWN))
165 return qcom_scm_convention;
168 * Device isn't required as there is only one argument - no device
169 * needed to dma_map_single to secure world
171 probed_convention = SMC_CONVENTION_ARM_64;
172 ret = __scm_smc_call(NULL, &desc, probed_convention, &res, true);
173 if (!ret && res.result[0] == 1)
177 * Some SC7180 firmwares didn't implement the
178 * QCOM_SCM_INFO_IS_CALL_AVAIL call, so we fallback to forcing ARM_64
179 * calling conventions on these firmwares. Luckily we don't make any
180 * early calls into the firmware on these SoCs so the device pointer
181 * will be valid here to check if the compatible matches.
183 if (of_device_is_compatible(__scm ? __scm->dev->of_node : NULL, "qcom,scm-sc7180")) {
188 probed_convention = SMC_CONVENTION_ARM_32;
189 ret = __scm_smc_call(NULL, &desc, probed_convention, &res, true);
190 if (!ret && res.result[0] == 1)
193 probed_convention = SMC_CONVENTION_LEGACY;
195 spin_lock_irqsave(&scm_query_lock, flags);
196 if (probed_convention != qcom_scm_convention) {
197 qcom_scm_convention = probed_convention;
198 pr_info("qcom_scm: convention: %s%s\n",
199 qcom_scm_convention_names[qcom_scm_convention],
200 forced ? " (forced)" : "");
202 spin_unlock_irqrestore(&scm_query_lock, flags);
204 return qcom_scm_convention;
208 * qcom_scm_call() - Invoke a syscall in the secure world
210 * @desc: Descriptor structure containing arguments and return values
211 * @res: Structure containing results from SMC/HVC call
213 * Sends a command to the SCM and waits for the command to finish processing.
214 * This should *only* be called in pre-emptible context.
216 static int qcom_scm_call(struct device *dev, const struct qcom_scm_desc *desc,
217 struct qcom_scm_res *res)
220 switch (__get_convention()) {
221 case SMC_CONVENTION_ARM_32:
222 case SMC_CONVENTION_ARM_64:
223 return scm_smc_call(dev, desc, res, false);
224 case SMC_CONVENTION_LEGACY:
225 return scm_legacy_call(dev, desc, res);
227 pr_err("Unknown current SCM calling convention.\n");
233 * qcom_scm_call_atomic() - atomic variation of qcom_scm_call()
235 * @desc: Descriptor structure containing arguments and return values
236 * @res: Structure containing results from SMC/HVC call
238 * Sends a command to the SCM and waits for the command to finish processing.
239 * This can be called in atomic context.
241 static int qcom_scm_call_atomic(struct device *dev,
242 const struct qcom_scm_desc *desc,
243 struct qcom_scm_res *res)
245 switch (__get_convention()) {
246 case SMC_CONVENTION_ARM_32:
247 case SMC_CONVENTION_ARM_64:
248 return scm_smc_call(dev, desc, res, true);
249 case SMC_CONVENTION_LEGACY:
250 return scm_legacy_call_atomic(dev, desc, res);
252 pr_err("Unknown current SCM calling convention.\n");
257 static bool __qcom_scm_is_call_available(struct device *dev, u32 svc_id,
261 struct qcom_scm_desc desc = {
262 .svc = QCOM_SCM_SVC_INFO,
263 .cmd = QCOM_SCM_INFO_IS_CALL_AVAIL,
264 .owner = ARM_SMCCC_OWNER_SIP,
266 struct qcom_scm_res res;
268 desc.arginfo = QCOM_SCM_ARGS(1);
269 switch (__get_convention()) {
270 case SMC_CONVENTION_ARM_32:
271 case SMC_CONVENTION_ARM_64:
272 desc.args[0] = SCM_SMC_FNID(svc_id, cmd_id) |
273 (ARM_SMCCC_OWNER_SIP << ARM_SMCCC_OWNER_SHIFT);
275 case SMC_CONVENTION_LEGACY:
276 desc.args[0] = SCM_LEGACY_FNID(svc_id, cmd_id);
279 pr_err("Unknown SMC convention being used\n");
283 ret = qcom_scm_call(dev, &desc, &res);
285 return ret ? false : !!res.result[0];
288 static int qcom_scm_set_boot_addr(void *entry, const u8 *cpu_bits)
291 unsigned int flags = 0;
292 struct qcom_scm_desc desc = {
293 .svc = QCOM_SCM_SVC_BOOT,
294 .cmd = QCOM_SCM_BOOT_SET_ADDR,
295 .arginfo = QCOM_SCM_ARGS(2),
296 .owner = ARM_SMCCC_OWNER_SIP,
299 for_each_present_cpu(cpu) {
300 if (cpu >= QCOM_SCM_BOOT_MAX_CPUS)
302 flags |= cpu_bits[cpu];
305 desc.args[0] = flags;
306 desc.args[1] = virt_to_phys(entry);
308 return qcom_scm_call_atomic(__scm ? __scm->dev : NULL, &desc, NULL);
311 static int qcom_scm_set_boot_addr_mc(void *entry, unsigned int flags)
313 struct qcom_scm_desc desc = {
314 .svc = QCOM_SCM_SVC_BOOT,
315 .cmd = QCOM_SCM_BOOT_SET_ADDR_MC,
316 .owner = ARM_SMCCC_OWNER_SIP,
317 .arginfo = QCOM_SCM_ARGS(6),
320 /* Apply to all CPUs in all affinity levels */
321 ~0ULL, ~0ULL, ~0ULL, ~0ULL,
326 /* Need a device for DMA of the additional arguments */
327 if (!__scm || __get_convention() == SMC_CONVENTION_LEGACY)
330 return qcom_scm_call(__scm->dev, &desc, NULL);
334 * qcom_scm_set_warm_boot_addr() - Set the warm boot address for all cpus
335 * @entry: Entry point function for the cpus
337 * Set the Linux entry point for the SCM to transfer control to when coming
338 * out of a power down. CPU power down may be executed on cpuidle or hotplug.
340 int qcom_scm_set_warm_boot_addr(void *entry)
342 if (qcom_scm_set_boot_addr_mc(entry, QCOM_SCM_BOOT_MC_FLAG_WARMBOOT))
343 /* Fallback to old SCM call */
344 return qcom_scm_set_boot_addr(entry, qcom_scm_cpu_warm_bits);
347 EXPORT_SYMBOL(qcom_scm_set_warm_boot_addr);
350 * qcom_scm_set_cold_boot_addr() - Set the cold boot address for all cpus
351 * @entry: Entry point function for the cpus
353 int qcom_scm_set_cold_boot_addr(void *entry)
355 if (qcom_scm_set_boot_addr_mc(entry, QCOM_SCM_BOOT_MC_FLAG_COLDBOOT))
356 /* Fallback to old SCM call */
357 return qcom_scm_set_boot_addr(entry, qcom_scm_cpu_cold_bits);
360 EXPORT_SYMBOL(qcom_scm_set_cold_boot_addr);
363 * qcom_scm_cpu_power_down() - Power down the cpu
364 * @flags: Flags to flush cache
366 * This is an end point to power down cpu. If there was a pending interrupt,
367 * the control would return from this function, otherwise, the cpu jumps to the
368 * warm boot entry point set for this cpu upon reset.
370 void qcom_scm_cpu_power_down(u32 flags)
372 struct qcom_scm_desc desc = {
373 .svc = QCOM_SCM_SVC_BOOT,
374 .cmd = QCOM_SCM_BOOT_TERMINATE_PC,
375 .args[0] = flags & QCOM_SCM_FLUSH_FLAG_MASK,
376 .arginfo = QCOM_SCM_ARGS(1),
377 .owner = ARM_SMCCC_OWNER_SIP,
380 qcom_scm_call_atomic(__scm ? __scm->dev : NULL, &desc, NULL);
382 EXPORT_SYMBOL(qcom_scm_cpu_power_down);
384 int qcom_scm_set_remote_state(u32 state, u32 id)
386 struct qcom_scm_desc desc = {
387 .svc = QCOM_SCM_SVC_BOOT,
388 .cmd = QCOM_SCM_BOOT_SET_REMOTE_STATE,
389 .arginfo = QCOM_SCM_ARGS(2),
392 .owner = ARM_SMCCC_OWNER_SIP,
394 struct qcom_scm_res res;
397 ret = qcom_scm_call(__scm->dev, &desc, &res);
399 return ret ? : res.result[0];
401 EXPORT_SYMBOL(qcom_scm_set_remote_state);
403 static int __qcom_scm_set_dload_mode(struct device *dev, bool enable)
405 struct qcom_scm_desc desc = {
406 .svc = QCOM_SCM_SVC_BOOT,
407 .cmd = QCOM_SCM_BOOT_SET_DLOAD_MODE,
408 .arginfo = QCOM_SCM_ARGS(2),
409 .args[0] = QCOM_SCM_BOOT_SET_DLOAD_MODE,
410 .owner = ARM_SMCCC_OWNER_SIP,
413 desc.args[1] = enable ? QCOM_SCM_BOOT_SET_DLOAD_MODE : 0;
415 return qcom_scm_call_atomic(__scm->dev, &desc, NULL);
418 static void qcom_scm_set_download_mode(bool enable)
423 avail = __qcom_scm_is_call_available(__scm->dev,
425 QCOM_SCM_BOOT_SET_DLOAD_MODE);
427 ret = __qcom_scm_set_dload_mode(__scm->dev, enable);
428 } else if (__scm->dload_mode_addr) {
429 ret = qcom_scm_io_writel(__scm->dload_mode_addr,
430 enable ? QCOM_SCM_BOOT_SET_DLOAD_MODE : 0);
433 "No available mechanism for setting download mode\n");
437 dev_err(__scm->dev, "failed to set download mode: %d\n", ret);
441 * qcom_scm_pas_init_image() - Initialize peripheral authentication service
442 * state machine for a given peripheral, using the
444 * @peripheral: peripheral id
445 * @metadata: pointer to memory containing ELF header, program header table
446 * and optional blob of data used for authenticating the metadata
447 * and the rest of the firmware
448 * @size: size of the metadata
449 * @ctx: optional metadata context
451 * Return: 0 on success.
453 * Upon successful return, the PAS metadata context (@ctx) will be used to
454 * track the metadata allocation, this needs to be released by invoking
455 * qcom_scm_pas_metadata_release() by the caller.
457 int qcom_scm_pas_init_image(u32 peripheral, const void *metadata, size_t size,
458 struct qcom_scm_pas_metadata *ctx)
460 dma_addr_t mdata_phys;
463 struct qcom_scm_desc desc = {
464 .svc = QCOM_SCM_SVC_PIL,
465 .cmd = QCOM_SCM_PIL_PAS_INIT_IMAGE,
466 .arginfo = QCOM_SCM_ARGS(2, QCOM_SCM_VAL, QCOM_SCM_RW),
467 .args[0] = peripheral,
468 .owner = ARM_SMCCC_OWNER_SIP,
470 struct qcom_scm_res res;
473 * During the scm call memory protection will be enabled for the meta
474 * data blob, so make sure it's physically contiguous, 4K aligned and
475 * non-cachable to avoid XPU violations.
477 mdata_buf = dma_alloc_coherent(__scm->dev, size, &mdata_phys,
480 dev_err(__scm->dev, "Allocation of metadata buffer failed.\n");
483 memcpy(mdata_buf, metadata, size);
485 ret = qcom_scm_clk_enable();
489 ret = qcom_scm_bw_enable();
493 desc.args[1] = mdata_phys;
495 ret = qcom_scm_call(__scm->dev, &desc, &res);
497 qcom_scm_bw_disable();
498 qcom_scm_clk_disable();
501 if (ret < 0 || !ctx) {
502 dma_free_coherent(__scm->dev, size, mdata_buf, mdata_phys);
504 ctx->ptr = mdata_buf;
505 ctx->phys = mdata_phys;
509 return ret ? : res.result[0];
511 EXPORT_SYMBOL(qcom_scm_pas_init_image);
514 * qcom_scm_pas_metadata_release() - release metadata context
515 * @ctx: metadata context
517 void qcom_scm_pas_metadata_release(struct qcom_scm_pas_metadata *ctx)
522 dma_free_coherent(__scm->dev, ctx->size, ctx->ptr, ctx->phys);
528 EXPORT_SYMBOL(qcom_scm_pas_metadata_release);
531 * qcom_scm_pas_mem_setup() - Prepare the memory related to a given peripheral
532 * for firmware loading
533 * @peripheral: peripheral id
534 * @addr: start address of memory area to prepare
535 * @size: size of the memory area to prepare
537 * Returns 0 on success.
539 int qcom_scm_pas_mem_setup(u32 peripheral, phys_addr_t addr, phys_addr_t size)
542 struct qcom_scm_desc desc = {
543 .svc = QCOM_SCM_SVC_PIL,
544 .cmd = QCOM_SCM_PIL_PAS_MEM_SETUP,
545 .arginfo = QCOM_SCM_ARGS(3),
546 .args[0] = peripheral,
549 .owner = ARM_SMCCC_OWNER_SIP,
551 struct qcom_scm_res res;
553 ret = qcom_scm_clk_enable();
557 ret = qcom_scm_bw_enable();
561 ret = qcom_scm_call(__scm->dev, &desc, &res);
562 qcom_scm_bw_disable();
563 qcom_scm_clk_disable();
565 return ret ? : res.result[0];
567 EXPORT_SYMBOL(qcom_scm_pas_mem_setup);
570 * qcom_scm_pas_auth_and_reset() - Authenticate the given peripheral firmware
571 * and reset the remote processor
572 * @peripheral: peripheral id
574 * Return 0 on success.
576 int qcom_scm_pas_auth_and_reset(u32 peripheral)
579 struct qcom_scm_desc desc = {
580 .svc = QCOM_SCM_SVC_PIL,
581 .cmd = QCOM_SCM_PIL_PAS_AUTH_AND_RESET,
582 .arginfo = QCOM_SCM_ARGS(1),
583 .args[0] = peripheral,
584 .owner = ARM_SMCCC_OWNER_SIP,
586 struct qcom_scm_res res;
588 ret = qcom_scm_clk_enable();
592 ret = qcom_scm_bw_enable();
596 ret = qcom_scm_call(__scm->dev, &desc, &res);
597 qcom_scm_bw_disable();
598 qcom_scm_clk_disable();
600 return ret ? : res.result[0];
602 EXPORT_SYMBOL(qcom_scm_pas_auth_and_reset);
605 * qcom_scm_pas_shutdown() - Shut down the remote processor
606 * @peripheral: peripheral id
608 * Returns 0 on success.
610 int qcom_scm_pas_shutdown(u32 peripheral)
613 struct qcom_scm_desc desc = {
614 .svc = QCOM_SCM_SVC_PIL,
615 .cmd = QCOM_SCM_PIL_PAS_SHUTDOWN,
616 .arginfo = QCOM_SCM_ARGS(1),
617 .args[0] = peripheral,
618 .owner = ARM_SMCCC_OWNER_SIP,
620 struct qcom_scm_res res;
622 ret = qcom_scm_clk_enable();
626 ret = qcom_scm_bw_enable();
630 ret = qcom_scm_call(__scm->dev, &desc, &res);
632 qcom_scm_bw_disable();
633 qcom_scm_clk_disable();
635 return ret ? : res.result[0];
637 EXPORT_SYMBOL(qcom_scm_pas_shutdown);
640 * qcom_scm_pas_supported() - Check if the peripheral authentication service is
641 * available for the given peripherial
642 * @peripheral: peripheral id
644 * Returns true if PAS is supported for this peripheral, otherwise false.
646 bool qcom_scm_pas_supported(u32 peripheral)
649 struct qcom_scm_desc desc = {
650 .svc = QCOM_SCM_SVC_PIL,
651 .cmd = QCOM_SCM_PIL_PAS_IS_SUPPORTED,
652 .arginfo = QCOM_SCM_ARGS(1),
653 .args[0] = peripheral,
654 .owner = ARM_SMCCC_OWNER_SIP,
656 struct qcom_scm_res res;
658 if (!__qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_PIL,
659 QCOM_SCM_PIL_PAS_IS_SUPPORTED))
662 ret = qcom_scm_call(__scm->dev, &desc, &res);
664 return ret ? false : !!res.result[0];
666 EXPORT_SYMBOL(qcom_scm_pas_supported);
668 static int __qcom_scm_pas_mss_reset(struct device *dev, bool reset)
670 struct qcom_scm_desc desc = {
671 .svc = QCOM_SCM_SVC_PIL,
672 .cmd = QCOM_SCM_PIL_PAS_MSS_RESET,
673 .arginfo = QCOM_SCM_ARGS(2),
676 .owner = ARM_SMCCC_OWNER_SIP,
678 struct qcom_scm_res res;
681 ret = qcom_scm_call(__scm->dev, &desc, &res);
683 return ret ? : res.result[0];
686 static int qcom_scm_pas_reset_assert(struct reset_controller_dev *rcdev,
692 return __qcom_scm_pas_mss_reset(__scm->dev, 1);
695 static int qcom_scm_pas_reset_deassert(struct reset_controller_dev *rcdev,
701 return __qcom_scm_pas_mss_reset(__scm->dev, 0);
704 static const struct reset_control_ops qcom_scm_pas_reset_ops = {
705 .assert = qcom_scm_pas_reset_assert,
706 .deassert = qcom_scm_pas_reset_deassert,
709 int qcom_scm_io_readl(phys_addr_t addr, unsigned int *val)
711 struct qcom_scm_desc desc = {
712 .svc = QCOM_SCM_SVC_IO,
713 .cmd = QCOM_SCM_IO_READ,
714 .arginfo = QCOM_SCM_ARGS(1),
716 .owner = ARM_SMCCC_OWNER_SIP,
718 struct qcom_scm_res res;
722 ret = qcom_scm_call_atomic(__scm->dev, &desc, &res);
724 *val = res.result[0];
726 return ret < 0 ? ret : 0;
728 EXPORT_SYMBOL(qcom_scm_io_readl);
730 int qcom_scm_io_writel(phys_addr_t addr, unsigned int val)
732 struct qcom_scm_desc desc = {
733 .svc = QCOM_SCM_SVC_IO,
734 .cmd = QCOM_SCM_IO_WRITE,
735 .arginfo = QCOM_SCM_ARGS(2),
738 .owner = ARM_SMCCC_OWNER_SIP,
741 return qcom_scm_call_atomic(__scm->dev, &desc, NULL);
743 EXPORT_SYMBOL(qcom_scm_io_writel);
746 * qcom_scm_restore_sec_cfg_available() - Check if secure environment
747 * supports restore security config interface.
749 * Return true if restore-cfg interface is supported, false if not.
751 bool qcom_scm_restore_sec_cfg_available(void)
753 return __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_MP,
754 QCOM_SCM_MP_RESTORE_SEC_CFG);
756 EXPORT_SYMBOL(qcom_scm_restore_sec_cfg_available);
758 int qcom_scm_restore_sec_cfg(u32 device_id, u32 spare)
760 struct qcom_scm_desc desc = {
761 .svc = QCOM_SCM_SVC_MP,
762 .cmd = QCOM_SCM_MP_RESTORE_SEC_CFG,
763 .arginfo = QCOM_SCM_ARGS(2),
764 .args[0] = device_id,
766 .owner = ARM_SMCCC_OWNER_SIP,
768 struct qcom_scm_res res;
771 ret = qcom_scm_call(__scm->dev, &desc, &res);
773 return ret ? : res.result[0];
775 EXPORT_SYMBOL(qcom_scm_restore_sec_cfg);
777 int qcom_scm_iommu_secure_ptbl_size(u32 spare, size_t *size)
779 struct qcom_scm_desc desc = {
780 .svc = QCOM_SCM_SVC_MP,
781 .cmd = QCOM_SCM_MP_IOMMU_SECURE_PTBL_SIZE,
782 .arginfo = QCOM_SCM_ARGS(1),
784 .owner = ARM_SMCCC_OWNER_SIP,
786 struct qcom_scm_res res;
789 ret = qcom_scm_call(__scm->dev, &desc, &res);
792 *size = res.result[0];
794 return ret ? : res.result[1];
796 EXPORT_SYMBOL(qcom_scm_iommu_secure_ptbl_size);
798 int qcom_scm_iommu_secure_ptbl_init(u64 addr, u32 size, u32 spare)
800 struct qcom_scm_desc desc = {
801 .svc = QCOM_SCM_SVC_MP,
802 .cmd = QCOM_SCM_MP_IOMMU_SECURE_PTBL_INIT,
803 .arginfo = QCOM_SCM_ARGS(3, QCOM_SCM_RW, QCOM_SCM_VAL,
808 .owner = ARM_SMCCC_OWNER_SIP,
812 ret = qcom_scm_call(__scm->dev, &desc, NULL);
814 /* the pg table has been initialized already, ignore the error */
820 EXPORT_SYMBOL(qcom_scm_iommu_secure_ptbl_init);
822 int qcom_scm_iommu_set_cp_pool_size(u32 spare, u32 size)
824 struct qcom_scm_desc desc = {
825 .svc = QCOM_SCM_SVC_MP,
826 .cmd = QCOM_SCM_MP_IOMMU_SET_CP_POOL_SIZE,
827 .arginfo = QCOM_SCM_ARGS(2),
830 .owner = ARM_SMCCC_OWNER_SIP,
833 return qcom_scm_call(__scm->dev, &desc, NULL);
835 EXPORT_SYMBOL(qcom_scm_iommu_set_cp_pool_size);
837 int qcom_scm_mem_protect_video_var(u32 cp_start, u32 cp_size,
838 u32 cp_nonpixel_start,
839 u32 cp_nonpixel_size)
842 struct qcom_scm_desc desc = {
843 .svc = QCOM_SCM_SVC_MP,
844 .cmd = QCOM_SCM_MP_VIDEO_VAR,
845 .arginfo = QCOM_SCM_ARGS(4, QCOM_SCM_VAL, QCOM_SCM_VAL,
846 QCOM_SCM_VAL, QCOM_SCM_VAL),
849 .args[2] = cp_nonpixel_start,
850 .args[3] = cp_nonpixel_size,
851 .owner = ARM_SMCCC_OWNER_SIP,
853 struct qcom_scm_res res;
855 ret = qcom_scm_call(__scm->dev, &desc, &res);
857 return ret ? : res.result[0];
859 EXPORT_SYMBOL(qcom_scm_mem_protect_video_var);
861 static int __qcom_scm_assign_mem(struct device *dev, phys_addr_t mem_region,
862 size_t mem_sz, phys_addr_t src, size_t src_sz,
863 phys_addr_t dest, size_t dest_sz)
866 struct qcom_scm_desc desc = {
867 .svc = QCOM_SCM_SVC_MP,
868 .cmd = QCOM_SCM_MP_ASSIGN,
869 .arginfo = QCOM_SCM_ARGS(7, QCOM_SCM_RO, QCOM_SCM_VAL,
870 QCOM_SCM_RO, QCOM_SCM_VAL, QCOM_SCM_RO,
871 QCOM_SCM_VAL, QCOM_SCM_VAL),
872 .args[0] = mem_region,
879 .owner = ARM_SMCCC_OWNER_SIP,
881 struct qcom_scm_res res;
883 ret = qcom_scm_call(dev, &desc, &res);
885 return ret ? : res.result[0];
889 * qcom_scm_assign_mem() - Make a secure call to reassign memory ownership
890 * @mem_addr: mem region whose ownership need to be reassigned
891 * @mem_sz: size of the region.
892 * @srcvm: vmid for current set of owners, each set bit in
893 * flag indicate a unique owner
894 * @newvm: array having new owners and corresponding permission
896 * @dest_cnt: number of owners in next set.
898 * Return negative errno on failure or 0 on success with @srcvm updated.
900 int qcom_scm_assign_mem(phys_addr_t mem_addr, size_t mem_sz,
902 const struct qcom_scm_vmperm *newvm,
903 unsigned int dest_cnt)
905 struct qcom_scm_current_perm_info *destvm;
906 struct qcom_scm_mem_map_info *mem_to_map;
907 phys_addr_t mem_to_map_phys;
908 phys_addr_t dest_phys;
910 size_t mem_to_map_sz;
918 unsigned long srcvm_bits = *srcvm;
920 src_sz = hweight_long(srcvm_bits) * sizeof(*src);
921 mem_to_map_sz = sizeof(*mem_to_map);
922 dest_sz = dest_cnt * sizeof(*destvm);
923 ptr_sz = ALIGN(src_sz, SZ_64) + ALIGN(mem_to_map_sz, SZ_64) +
924 ALIGN(dest_sz, SZ_64);
926 ptr = dma_alloc_coherent(__scm->dev, ptr_sz, &ptr_phys, GFP_KERNEL);
930 /* Fill source vmid detail */
933 for_each_set_bit(b, &srcvm_bits, BITS_PER_LONG)
934 src[i++] = cpu_to_le32(b);
936 /* Fill details of mem buff to map */
937 mem_to_map = ptr + ALIGN(src_sz, SZ_64);
938 mem_to_map_phys = ptr_phys + ALIGN(src_sz, SZ_64);
939 mem_to_map->mem_addr = cpu_to_le64(mem_addr);
940 mem_to_map->mem_size = cpu_to_le64(mem_sz);
943 /* Fill details of next vmid detail */
944 destvm = ptr + ALIGN(mem_to_map_sz, SZ_64) + ALIGN(src_sz, SZ_64);
945 dest_phys = ptr_phys + ALIGN(mem_to_map_sz, SZ_64) + ALIGN(src_sz, SZ_64);
946 for (i = 0; i < dest_cnt; i++, destvm++, newvm++) {
947 destvm->vmid = cpu_to_le32(newvm->vmid);
948 destvm->perm = cpu_to_le32(newvm->perm);
950 destvm->ctx_size = 0;
951 next_vm |= BIT(newvm->vmid);
954 ret = __qcom_scm_assign_mem(__scm->dev, mem_to_map_phys, mem_to_map_sz,
955 ptr_phys, src_sz, dest_phys, dest_sz);
956 dma_free_coherent(__scm->dev, ptr_sz, ptr, ptr_phys);
959 "Assign memory protection call failed %d\n", ret);
966 EXPORT_SYMBOL(qcom_scm_assign_mem);
969 * qcom_scm_ocmem_lock_available() - is OCMEM lock/unlock interface available
971 bool qcom_scm_ocmem_lock_available(void)
973 return __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_OCMEM,
974 QCOM_SCM_OCMEM_LOCK_CMD);
976 EXPORT_SYMBOL(qcom_scm_ocmem_lock_available);
979 * qcom_scm_ocmem_lock() - call OCMEM lock interface to assign an OCMEM
980 * region to the specified initiator
982 * @id: tz initiator id
983 * @offset: OCMEM offset
985 * @mode: access mode (WIDE/NARROW)
987 int qcom_scm_ocmem_lock(enum qcom_scm_ocmem_client id, u32 offset, u32 size,
990 struct qcom_scm_desc desc = {
991 .svc = QCOM_SCM_SVC_OCMEM,
992 .cmd = QCOM_SCM_OCMEM_LOCK_CMD,
997 .arginfo = QCOM_SCM_ARGS(4),
1000 return qcom_scm_call(__scm->dev, &desc, NULL);
1002 EXPORT_SYMBOL(qcom_scm_ocmem_lock);
1005 * qcom_scm_ocmem_unlock() - call OCMEM unlock interface to release an OCMEM
1006 * region from the specified initiator
1008 * @id: tz initiator id
1009 * @offset: OCMEM offset
1012 int qcom_scm_ocmem_unlock(enum qcom_scm_ocmem_client id, u32 offset, u32 size)
1014 struct qcom_scm_desc desc = {
1015 .svc = QCOM_SCM_SVC_OCMEM,
1016 .cmd = QCOM_SCM_OCMEM_UNLOCK_CMD,
1020 .arginfo = QCOM_SCM_ARGS(3),
1023 return qcom_scm_call(__scm->dev, &desc, NULL);
1025 EXPORT_SYMBOL(qcom_scm_ocmem_unlock);
1028 * qcom_scm_ice_available() - Is the ICE key programming interface available?
1030 * Return: true iff the SCM calls wrapped by qcom_scm_ice_invalidate_key() and
1031 * qcom_scm_ice_set_key() are available.
1033 bool qcom_scm_ice_available(void)
1035 return __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_ES,
1036 QCOM_SCM_ES_INVALIDATE_ICE_KEY) &&
1037 __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_ES,
1038 QCOM_SCM_ES_CONFIG_SET_ICE_KEY);
1040 EXPORT_SYMBOL(qcom_scm_ice_available);
1043 * qcom_scm_ice_invalidate_key() - Invalidate an inline encryption key
1044 * @index: the keyslot to invalidate
1046 * The UFSHCI and eMMC standards define a standard way to do this, but it
1047 * doesn't work on these SoCs; only this SCM call does.
1049 * It is assumed that the SoC has only one ICE instance being used, as this SCM
1050 * call doesn't specify which ICE instance the keyslot belongs to.
1052 * Return: 0 on success; -errno on failure.
1054 int qcom_scm_ice_invalidate_key(u32 index)
1056 struct qcom_scm_desc desc = {
1057 .svc = QCOM_SCM_SVC_ES,
1058 .cmd = QCOM_SCM_ES_INVALIDATE_ICE_KEY,
1059 .arginfo = QCOM_SCM_ARGS(1),
1061 .owner = ARM_SMCCC_OWNER_SIP,
1064 return qcom_scm_call(__scm->dev, &desc, NULL);
1066 EXPORT_SYMBOL(qcom_scm_ice_invalidate_key);
1069 * qcom_scm_ice_set_key() - Set an inline encryption key
1070 * @index: the keyslot into which to set the key
1071 * @key: the key to program
1072 * @key_size: the size of the key in bytes
1073 * @cipher: the encryption algorithm the key is for
1074 * @data_unit_size: the encryption data unit size, i.e. the size of each
1075 * individual plaintext and ciphertext. Given in 512-byte
1076 * units, e.g. 1 = 512 bytes, 8 = 4096 bytes, etc.
1078 * Program a key into a keyslot of Qualcomm ICE (Inline Crypto Engine), where it
1079 * can then be used to encrypt/decrypt UFS or eMMC I/O requests inline.
1081 * The UFSHCI and eMMC standards define a standard way to do this, but it
1082 * doesn't work on these SoCs; only this SCM call does.
1084 * It is assumed that the SoC has only one ICE instance being used, as this SCM
1085 * call doesn't specify which ICE instance the keyslot belongs to.
1087 * Return: 0 on success; -errno on failure.
1089 int qcom_scm_ice_set_key(u32 index, const u8 *key, u32 key_size,
1090 enum qcom_scm_ice_cipher cipher, u32 data_unit_size)
1092 struct qcom_scm_desc desc = {
1093 .svc = QCOM_SCM_SVC_ES,
1094 .cmd = QCOM_SCM_ES_CONFIG_SET_ICE_KEY,
1095 .arginfo = QCOM_SCM_ARGS(5, QCOM_SCM_VAL, QCOM_SCM_RW,
1096 QCOM_SCM_VAL, QCOM_SCM_VAL,
1099 .args[2] = key_size,
1101 .args[4] = data_unit_size,
1102 .owner = ARM_SMCCC_OWNER_SIP,
1105 dma_addr_t key_phys;
1109 * 'key' may point to vmalloc()'ed memory, but we need to pass a
1110 * physical address that's been properly flushed. The sanctioned way to
1111 * do this is by using the DMA API. But as is best practice for crypto
1112 * keys, we also must wipe the key after use. This makes kmemdup() +
1113 * dma_map_single() not clearly correct, since the DMA API can use
1114 * bounce buffers. Instead, just use dma_alloc_coherent(). Programming
1115 * keys is normally rare and thus not performance-critical.
1118 keybuf = dma_alloc_coherent(__scm->dev, key_size, &key_phys,
1122 memcpy(keybuf, key, key_size);
1123 desc.args[1] = key_phys;
1125 ret = qcom_scm_call(__scm->dev, &desc, NULL);
1127 memzero_explicit(keybuf, key_size);
1129 dma_free_coherent(__scm->dev, key_size, keybuf, key_phys);
1132 EXPORT_SYMBOL(qcom_scm_ice_set_key);
1135 * qcom_scm_hdcp_available() - Check if secure environment supports HDCP.
1137 * Return true if HDCP is supported, false if not.
1139 bool qcom_scm_hdcp_available(void)
1142 int ret = qcom_scm_clk_enable();
1147 avail = __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_HDCP,
1148 QCOM_SCM_HDCP_INVOKE);
1150 qcom_scm_clk_disable();
1154 EXPORT_SYMBOL(qcom_scm_hdcp_available);
1157 * qcom_scm_hdcp_req() - Send HDCP request.
1158 * @req: HDCP request array
1159 * @req_cnt: HDCP request array count
1160 * @resp: response buffer passed to SCM
1162 * Write HDCP register(s) through SCM.
1164 int qcom_scm_hdcp_req(struct qcom_scm_hdcp_req *req, u32 req_cnt, u32 *resp)
1167 struct qcom_scm_desc desc = {
1168 .svc = QCOM_SCM_SVC_HDCP,
1169 .cmd = QCOM_SCM_HDCP_INVOKE,
1170 .arginfo = QCOM_SCM_ARGS(10),
1183 .owner = ARM_SMCCC_OWNER_SIP,
1185 struct qcom_scm_res res;
1187 if (req_cnt > QCOM_SCM_HDCP_MAX_REQ_CNT)
1190 ret = qcom_scm_clk_enable();
1194 ret = qcom_scm_call(__scm->dev, &desc, &res);
1195 *resp = res.result[0];
1197 qcom_scm_clk_disable();
1201 EXPORT_SYMBOL(qcom_scm_hdcp_req);
1203 int qcom_scm_iommu_set_pt_format(u32 sec_id, u32 ctx_num, u32 pt_fmt)
1205 struct qcom_scm_desc desc = {
1206 .svc = QCOM_SCM_SVC_SMMU_PROGRAM,
1207 .cmd = QCOM_SCM_SMMU_PT_FORMAT,
1208 .arginfo = QCOM_SCM_ARGS(3),
1211 .args[2] = pt_fmt, /* 0: LPAE AArch32 - 1: AArch64 */
1212 .owner = ARM_SMCCC_OWNER_SIP,
1215 return qcom_scm_call(__scm->dev, &desc, NULL);
1217 EXPORT_SYMBOL(qcom_scm_iommu_set_pt_format);
1219 int qcom_scm_qsmmu500_wait_safe_toggle(bool en)
1221 struct qcom_scm_desc desc = {
1222 .svc = QCOM_SCM_SVC_SMMU_PROGRAM,
1223 .cmd = QCOM_SCM_SMMU_CONFIG_ERRATA1,
1224 .arginfo = QCOM_SCM_ARGS(2),
1225 .args[0] = QCOM_SCM_SMMU_CONFIG_ERRATA1_CLIENT_ALL,
1227 .owner = ARM_SMCCC_OWNER_SIP,
1231 return qcom_scm_call_atomic(__scm->dev, &desc, NULL);
1233 EXPORT_SYMBOL(qcom_scm_qsmmu500_wait_safe_toggle);
1235 bool qcom_scm_lmh_dcvsh_available(void)
1237 return __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_LMH, QCOM_SCM_LMH_LIMIT_DCVSH);
1239 EXPORT_SYMBOL(qcom_scm_lmh_dcvsh_available);
1241 int qcom_scm_lmh_profile_change(u32 profile_id)
1243 struct qcom_scm_desc desc = {
1244 .svc = QCOM_SCM_SVC_LMH,
1245 .cmd = QCOM_SCM_LMH_LIMIT_PROFILE_CHANGE,
1246 .arginfo = QCOM_SCM_ARGS(1, QCOM_SCM_VAL),
1247 .args[0] = profile_id,
1248 .owner = ARM_SMCCC_OWNER_SIP,
1251 return qcom_scm_call(__scm->dev, &desc, NULL);
1253 EXPORT_SYMBOL(qcom_scm_lmh_profile_change);
1255 int qcom_scm_lmh_dcvsh(u32 payload_fn, u32 payload_reg, u32 payload_val,
1256 u64 limit_node, u32 node_id, u64 version)
1258 dma_addr_t payload_phys;
1260 int ret, payload_size = 5 * sizeof(u32);
1262 struct qcom_scm_desc desc = {
1263 .svc = QCOM_SCM_SVC_LMH,
1264 .cmd = QCOM_SCM_LMH_LIMIT_DCVSH,
1265 .arginfo = QCOM_SCM_ARGS(5, QCOM_SCM_RO, QCOM_SCM_VAL, QCOM_SCM_VAL,
1266 QCOM_SCM_VAL, QCOM_SCM_VAL),
1267 .args[1] = payload_size,
1268 .args[2] = limit_node,
1271 .owner = ARM_SMCCC_OWNER_SIP,
1274 payload_buf = dma_alloc_coherent(__scm->dev, payload_size, &payload_phys, GFP_KERNEL);
1278 payload_buf[0] = payload_fn;
1280 payload_buf[2] = payload_reg;
1282 payload_buf[4] = payload_val;
1284 desc.args[0] = payload_phys;
1286 ret = qcom_scm_call(__scm->dev, &desc, NULL);
1288 dma_free_coherent(__scm->dev, payload_size, payload_buf, payload_phys);
1291 EXPORT_SYMBOL(qcom_scm_lmh_dcvsh);
1293 static int qcom_scm_find_dload_address(struct device *dev, u64 *addr)
1295 struct device_node *tcsr;
1296 struct device_node *np = dev->of_node;
1297 struct resource res;
1301 tcsr = of_parse_phandle(np, "qcom,dload-mode", 0);
1305 ret = of_address_to_resource(tcsr, 0, &res);
1310 ret = of_property_read_u32_index(np, "qcom,dload-mode", 1, &offset);
1314 *addr = res.start + offset;
1320 * qcom_scm_is_available() - Checks if SCM is available
1322 bool qcom_scm_is_available(void)
1326 EXPORT_SYMBOL(qcom_scm_is_available);
1328 static int qcom_scm_probe(struct platform_device *pdev)
1330 struct qcom_scm *scm;
1334 scm = devm_kzalloc(&pdev->dev, sizeof(*scm), GFP_KERNEL);
1338 ret = qcom_scm_find_dload_address(&pdev->dev, &scm->dload_mode_addr);
1342 mutex_init(&scm->scm_bw_lock);
1344 clks = (unsigned long)of_device_get_match_data(&pdev->dev);
1346 scm->path = devm_of_icc_get(&pdev->dev, NULL);
1347 if (IS_ERR(scm->path))
1348 return dev_err_probe(&pdev->dev, PTR_ERR(scm->path),
1349 "failed to acquire interconnect path\n");
1351 scm->core_clk = devm_clk_get(&pdev->dev, "core");
1352 if (IS_ERR(scm->core_clk)) {
1353 if (PTR_ERR(scm->core_clk) == -EPROBE_DEFER)
1354 return PTR_ERR(scm->core_clk);
1356 if (clks & SCM_HAS_CORE_CLK) {
1357 dev_err(&pdev->dev, "failed to acquire core clk\n");
1358 return PTR_ERR(scm->core_clk);
1361 scm->core_clk = NULL;
1364 scm->iface_clk = devm_clk_get(&pdev->dev, "iface");
1365 if (IS_ERR(scm->iface_clk)) {
1366 if (PTR_ERR(scm->iface_clk) == -EPROBE_DEFER)
1367 return PTR_ERR(scm->iface_clk);
1369 if (clks & SCM_HAS_IFACE_CLK) {
1370 dev_err(&pdev->dev, "failed to acquire iface clk\n");
1371 return PTR_ERR(scm->iface_clk);
1374 scm->iface_clk = NULL;
1377 scm->bus_clk = devm_clk_get(&pdev->dev, "bus");
1378 if (IS_ERR(scm->bus_clk)) {
1379 if (PTR_ERR(scm->bus_clk) == -EPROBE_DEFER)
1380 return PTR_ERR(scm->bus_clk);
1382 if (clks & SCM_HAS_BUS_CLK) {
1383 dev_err(&pdev->dev, "failed to acquire bus clk\n");
1384 return PTR_ERR(scm->bus_clk);
1387 scm->bus_clk = NULL;
1390 scm->reset.ops = &qcom_scm_pas_reset_ops;
1391 scm->reset.nr_resets = 1;
1392 scm->reset.of_node = pdev->dev.of_node;
1393 ret = devm_reset_controller_register(&pdev->dev, &scm->reset);
1397 /* vote for max clk rate for highest performance */
1398 ret = clk_set_rate(scm->core_clk, INT_MAX);
1403 __scm->dev = &pdev->dev;
1408 * If requested enable "download mode", from this point on warmboot
1409 * will cause the boot stages to enter download mode, unless
1410 * disabled below by a clean shutdown/reboot.
1413 qcom_scm_set_download_mode(true);
1418 static void qcom_scm_shutdown(struct platform_device *pdev)
1420 /* Clean shutdown, disable download mode to allow normal restart */
1422 qcom_scm_set_download_mode(false);
1425 static const struct of_device_id qcom_scm_dt_match[] = {
1426 { .compatible = "qcom,scm-apq8064",
1427 /* FIXME: This should have .data = (void *) SCM_HAS_CORE_CLK */
1429 { .compatible = "qcom,scm-apq8084", .data = (void *)(SCM_HAS_CORE_CLK |
1433 { .compatible = "qcom,scm-ipq4019" },
1434 { .compatible = "qcom,scm-mdm9607", .data = (void *)(SCM_HAS_CORE_CLK |
1437 { .compatible = "qcom,scm-msm8660", .data = (void *) SCM_HAS_CORE_CLK },
1438 { .compatible = "qcom,scm-msm8960", .data = (void *) SCM_HAS_CORE_CLK },
1439 { .compatible = "qcom,scm-msm8916", .data = (void *)(SCM_HAS_CORE_CLK |
1443 { .compatible = "qcom,scm-msm8953", .data = (void *)(SCM_HAS_CORE_CLK |
1447 { .compatible = "qcom,scm-msm8974", .data = (void *)(SCM_HAS_CORE_CLK |
1451 { .compatible = "qcom,scm-msm8976", .data = (void *)(SCM_HAS_CORE_CLK |
1455 { .compatible = "qcom,scm-msm8994" },
1456 { .compatible = "qcom,scm-msm8996" },
1457 { .compatible = "qcom,scm" },
1460 MODULE_DEVICE_TABLE(of, qcom_scm_dt_match);
1462 static struct platform_driver qcom_scm_driver = {
1465 .of_match_table = qcom_scm_dt_match,
1466 .suppress_bind_attrs = true,
1468 .probe = qcom_scm_probe,
1469 .shutdown = qcom_scm_shutdown,
1472 static int __init qcom_scm_init(void)
1474 return platform_driver_register(&qcom_scm_driver);
1476 subsys_initcall(qcom_scm_init);
1478 MODULE_DESCRIPTION("Qualcomm Technologies, Inc. SCM driver");
1479 MODULE_LICENSE("GPL v2");