i2c: mv64xxx: Add atomic_xfer method to driver
[platform/kernel/linux-rpi.git] / drivers / firmware / qcom_scm.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2010,2015,2019 The Linux Foundation. All rights reserved.
3  * Copyright (C) 2015 Linaro Ltd.
4  */
5 #include <linux/platform_device.h>
6 #include <linux/init.h>
7 #include <linux/cpumask.h>
8 #include <linux/export.h>
9 #include <linux/dma-mapping.h>
10 #include <linux/module.h>
11 #include <linux/types.h>
12 #include <linux/qcom_scm.h>
13 #include <linux/of.h>
14 #include <linux/of_address.h>
15 #include <linux/of_platform.h>
16 #include <linux/clk.h>
17 #include <linux/reset-controller.h>
18 #include <linux/arm-smccc.h>
19
20 #include "qcom_scm.h"
21
22 static bool download_mode = IS_ENABLED(CONFIG_QCOM_SCM_DOWNLOAD_MODE_DEFAULT);
23 module_param(download_mode, bool, 0);
24
25 #define SCM_HAS_CORE_CLK        BIT(0)
26 #define SCM_HAS_IFACE_CLK       BIT(1)
27 #define SCM_HAS_BUS_CLK         BIT(2)
28
29 struct qcom_scm {
30         struct device *dev;
31         struct clk *core_clk;
32         struct clk *iface_clk;
33         struct clk *bus_clk;
34         struct reset_controller_dev reset;
35
36         u64 dload_mode_addr;
37 };
38
39 struct qcom_scm_current_perm_info {
40         __le32 vmid;
41         __le32 perm;
42         __le64 ctx;
43         __le32 ctx_size;
44         __le32 unused;
45 };
46
47 struct qcom_scm_mem_map_info {
48         __le64 mem_addr;
49         __le64 mem_size;
50 };
51
52 #define QCOM_SCM_FLAG_COLDBOOT_CPU0     0x00
53 #define QCOM_SCM_FLAG_COLDBOOT_CPU1     0x01
54 #define QCOM_SCM_FLAG_COLDBOOT_CPU2     0x08
55 #define QCOM_SCM_FLAG_COLDBOOT_CPU3     0x20
56
57 #define QCOM_SCM_FLAG_WARMBOOT_CPU0     0x04
58 #define QCOM_SCM_FLAG_WARMBOOT_CPU1     0x02
59 #define QCOM_SCM_FLAG_WARMBOOT_CPU2     0x10
60 #define QCOM_SCM_FLAG_WARMBOOT_CPU3     0x40
61
62 struct qcom_scm_wb_entry {
63         int flag;
64         void *entry;
65 };
66
67 static struct qcom_scm_wb_entry qcom_scm_wb[] = {
68         { .flag = QCOM_SCM_FLAG_WARMBOOT_CPU0 },
69         { .flag = QCOM_SCM_FLAG_WARMBOOT_CPU1 },
70         { .flag = QCOM_SCM_FLAG_WARMBOOT_CPU2 },
71         { .flag = QCOM_SCM_FLAG_WARMBOOT_CPU3 },
72 };
73
74 static const char * const qcom_scm_convention_names[] = {
75         [SMC_CONVENTION_UNKNOWN] = "unknown",
76         [SMC_CONVENTION_ARM_32] = "smc arm 32",
77         [SMC_CONVENTION_ARM_64] = "smc arm 64",
78         [SMC_CONVENTION_LEGACY] = "smc legacy",
79 };
80
81 static struct qcom_scm *__scm;
82
83 static int qcom_scm_clk_enable(void)
84 {
85         int ret;
86
87         ret = clk_prepare_enable(__scm->core_clk);
88         if (ret)
89                 goto bail;
90
91         ret = clk_prepare_enable(__scm->iface_clk);
92         if (ret)
93                 goto disable_core;
94
95         ret = clk_prepare_enable(__scm->bus_clk);
96         if (ret)
97                 goto disable_iface;
98
99         return 0;
100
101 disable_iface:
102         clk_disable_unprepare(__scm->iface_clk);
103 disable_core:
104         clk_disable_unprepare(__scm->core_clk);
105 bail:
106         return ret;
107 }
108
109 static void qcom_scm_clk_disable(void)
110 {
111         clk_disable_unprepare(__scm->core_clk);
112         clk_disable_unprepare(__scm->iface_clk);
113         clk_disable_unprepare(__scm->bus_clk);
114 }
115
116 enum qcom_scm_convention qcom_scm_convention = SMC_CONVENTION_UNKNOWN;
117 static DEFINE_SPINLOCK(scm_query_lock);
118
119 static enum qcom_scm_convention __get_convention(void)
120 {
121         unsigned long flags;
122         struct qcom_scm_desc desc = {
123                 .svc = QCOM_SCM_SVC_INFO,
124                 .cmd = QCOM_SCM_INFO_IS_CALL_AVAIL,
125                 .args[0] = SCM_SMC_FNID(QCOM_SCM_SVC_INFO,
126                                            QCOM_SCM_INFO_IS_CALL_AVAIL) |
127                            (ARM_SMCCC_OWNER_SIP << ARM_SMCCC_OWNER_SHIFT),
128                 .arginfo = QCOM_SCM_ARGS(1),
129                 .owner = ARM_SMCCC_OWNER_SIP,
130         };
131         struct qcom_scm_res res;
132         enum qcom_scm_convention probed_convention;
133         int ret;
134         bool forced = false;
135
136         if (likely(qcom_scm_convention != SMC_CONVENTION_UNKNOWN))
137                 return qcom_scm_convention;
138
139         /*
140          * Device isn't required as there is only one argument - no device
141          * needed to dma_map_single to secure world
142          */
143         probed_convention = SMC_CONVENTION_ARM_64;
144         ret = __scm_smc_call(NULL, &desc, probed_convention, &res, true);
145         if (!ret && res.result[0] == 1)
146                 goto found;
147
148         /*
149          * Some SC7180 firmwares didn't implement the
150          * QCOM_SCM_INFO_IS_CALL_AVAIL call, so we fallback to forcing ARM_64
151          * calling conventions on these firmwares. Luckily we don't make any
152          * early calls into the firmware on these SoCs so the device pointer
153          * will be valid here to check if the compatible matches.
154          */
155         if (of_device_is_compatible(__scm ? __scm->dev->of_node : NULL, "qcom,scm-sc7180")) {
156                 forced = true;
157                 goto found;
158         }
159
160         probed_convention = SMC_CONVENTION_ARM_32;
161         ret = __scm_smc_call(NULL, &desc, probed_convention, &res, true);
162         if (!ret && res.result[0] == 1)
163                 goto found;
164
165         probed_convention = SMC_CONVENTION_LEGACY;
166 found:
167         spin_lock_irqsave(&scm_query_lock, flags);
168         if (probed_convention != qcom_scm_convention) {
169                 qcom_scm_convention = probed_convention;
170                 pr_info("qcom_scm: convention: %s%s\n",
171                         qcom_scm_convention_names[qcom_scm_convention],
172                         forced ? " (forced)" : "");
173         }
174         spin_unlock_irqrestore(&scm_query_lock, flags);
175
176         return qcom_scm_convention;
177 }
178
179 /**
180  * qcom_scm_call() - Invoke a syscall in the secure world
181  * @dev:        device
182  * @svc_id:     service identifier
183  * @cmd_id:     command identifier
184  * @desc:       Descriptor structure containing arguments and return values
185  *
186  * Sends a command to the SCM and waits for the command to finish processing.
187  * This should *only* be called in pre-emptible context.
188  */
189 static int qcom_scm_call(struct device *dev, const struct qcom_scm_desc *desc,
190                          struct qcom_scm_res *res)
191 {
192         might_sleep();
193         switch (__get_convention()) {
194         case SMC_CONVENTION_ARM_32:
195         case SMC_CONVENTION_ARM_64:
196                 return scm_smc_call(dev, desc, res, false);
197         case SMC_CONVENTION_LEGACY:
198                 return scm_legacy_call(dev, desc, res);
199         default:
200                 pr_err("Unknown current SCM calling convention.\n");
201                 return -EINVAL;
202         }
203 }
204
205 /**
206  * qcom_scm_call_atomic() - atomic variation of qcom_scm_call()
207  * @dev:        device
208  * @svc_id:     service identifier
209  * @cmd_id:     command identifier
210  * @desc:       Descriptor structure containing arguments and return values
211  * @res:        Structure containing results from SMC/HVC call
212  *
213  * Sends a command to the SCM and waits for the command to finish processing.
214  * This can be called in atomic context.
215  */
216 static int qcom_scm_call_atomic(struct device *dev,
217                                 const struct qcom_scm_desc *desc,
218                                 struct qcom_scm_res *res)
219 {
220         switch (__get_convention()) {
221         case SMC_CONVENTION_ARM_32:
222         case SMC_CONVENTION_ARM_64:
223                 return scm_smc_call(dev, desc, res, true);
224         case SMC_CONVENTION_LEGACY:
225                 return scm_legacy_call_atomic(dev, desc, res);
226         default:
227                 pr_err("Unknown current SCM calling convention.\n");
228                 return -EINVAL;
229         }
230 }
231
232 static bool __qcom_scm_is_call_available(struct device *dev, u32 svc_id,
233                                          u32 cmd_id)
234 {
235         int ret;
236         struct qcom_scm_desc desc = {
237                 .svc = QCOM_SCM_SVC_INFO,
238                 .cmd = QCOM_SCM_INFO_IS_CALL_AVAIL,
239                 .owner = ARM_SMCCC_OWNER_SIP,
240         };
241         struct qcom_scm_res res;
242
243         desc.arginfo = QCOM_SCM_ARGS(1);
244         switch (__get_convention()) {
245         case SMC_CONVENTION_ARM_32:
246         case SMC_CONVENTION_ARM_64:
247                 desc.args[0] = SCM_SMC_FNID(svc_id, cmd_id) |
248                                 (ARM_SMCCC_OWNER_SIP << ARM_SMCCC_OWNER_SHIFT);
249                 break;
250         case SMC_CONVENTION_LEGACY:
251                 desc.args[0] = SCM_LEGACY_FNID(svc_id, cmd_id);
252                 break;
253         default:
254                 pr_err("Unknown SMC convention being used\n");
255                 return false;
256         }
257
258         ret = qcom_scm_call(dev, &desc, &res);
259
260         return ret ? false : !!res.result[0];
261 }
262
263 /**
264  * qcom_scm_set_warm_boot_addr() - Set the warm boot address for cpus
265  * @entry: Entry point function for the cpus
266  * @cpus: The cpumask of cpus that will use the entry point
267  *
268  * Set the Linux entry point for the SCM to transfer control to when coming
269  * out of a power down. CPU power down may be executed on cpuidle or hotplug.
270  */
271 int qcom_scm_set_warm_boot_addr(void *entry, const cpumask_t *cpus)
272 {
273         int ret;
274         int flags = 0;
275         int cpu;
276         struct qcom_scm_desc desc = {
277                 .svc = QCOM_SCM_SVC_BOOT,
278                 .cmd = QCOM_SCM_BOOT_SET_ADDR,
279                 .arginfo = QCOM_SCM_ARGS(2),
280         };
281
282         /*
283          * Reassign only if we are switching from hotplug entry point
284          * to cpuidle entry point or vice versa.
285          */
286         for_each_cpu(cpu, cpus) {
287                 if (entry == qcom_scm_wb[cpu].entry)
288                         continue;
289                 flags |= qcom_scm_wb[cpu].flag;
290         }
291
292         /* No change in entry function */
293         if (!flags)
294                 return 0;
295
296         desc.args[0] = flags;
297         desc.args[1] = virt_to_phys(entry);
298
299         ret = qcom_scm_call(__scm->dev, &desc, NULL);
300         if (!ret) {
301                 for_each_cpu(cpu, cpus)
302                         qcom_scm_wb[cpu].entry = entry;
303         }
304
305         return ret;
306 }
307 EXPORT_SYMBOL(qcom_scm_set_warm_boot_addr);
308
309 /**
310  * qcom_scm_set_cold_boot_addr() - Set the cold boot address for cpus
311  * @entry: Entry point function for the cpus
312  * @cpus: The cpumask of cpus that will use the entry point
313  *
314  * Set the cold boot address of the cpus. Any cpu outside the supported
315  * range would be removed from the cpu present mask.
316  */
317 int qcom_scm_set_cold_boot_addr(void *entry, const cpumask_t *cpus)
318 {
319         int flags = 0;
320         int cpu;
321         int scm_cb_flags[] = {
322                 QCOM_SCM_FLAG_COLDBOOT_CPU0,
323                 QCOM_SCM_FLAG_COLDBOOT_CPU1,
324                 QCOM_SCM_FLAG_COLDBOOT_CPU2,
325                 QCOM_SCM_FLAG_COLDBOOT_CPU3,
326         };
327         struct qcom_scm_desc desc = {
328                 .svc = QCOM_SCM_SVC_BOOT,
329                 .cmd = QCOM_SCM_BOOT_SET_ADDR,
330                 .arginfo = QCOM_SCM_ARGS(2),
331                 .owner = ARM_SMCCC_OWNER_SIP,
332         };
333
334         if (!cpus || cpumask_empty(cpus))
335                 return -EINVAL;
336
337         for_each_cpu(cpu, cpus) {
338                 if (cpu < ARRAY_SIZE(scm_cb_flags))
339                         flags |= scm_cb_flags[cpu];
340                 else
341                         set_cpu_present(cpu, false);
342         }
343
344         desc.args[0] = flags;
345         desc.args[1] = virt_to_phys(entry);
346
347         return qcom_scm_call_atomic(__scm ? __scm->dev : NULL, &desc, NULL);
348 }
349 EXPORT_SYMBOL(qcom_scm_set_cold_boot_addr);
350
351 /**
352  * qcom_scm_cpu_power_down() - Power down the cpu
353  * @flags - Flags to flush cache
354  *
355  * This is an end point to power down cpu. If there was a pending interrupt,
356  * the control would return from this function, otherwise, the cpu jumps to the
357  * warm boot entry point set for this cpu upon reset.
358  */
359 void qcom_scm_cpu_power_down(u32 flags)
360 {
361         struct qcom_scm_desc desc = {
362                 .svc = QCOM_SCM_SVC_BOOT,
363                 .cmd = QCOM_SCM_BOOT_TERMINATE_PC,
364                 .args[0] = flags & QCOM_SCM_FLUSH_FLAG_MASK,
365                 .arginfo = QCOM_SCM_ARGS(1),
366                 .owner = ARM_SMCCC_OWNER_SIP,
367         };
368
369         qcom_scm_call_atomic(__scm ? __scm->dev : NULL, &desc, NULL);
370 }
371 EXPORT_SYMBOL(qcom_scm_cpu_power_down);
372
373 int qcom_scm_set_remote_state(u32 state, u32 id)
374 {
375         struct qcom_scm_desc desc = {
376                 .svc = QCOM_SCM_SVC_BOOT,
377                 .cmd = QCOM_SCM_BOOT_SET_REMOTE_STATE,
378                 .arginfo = QCOM_SCM_ARGS(2),
379                 .args[0] = state,
380                 .args[1] = id,
381                 .owner = ARM_SMCCC_OWNER_SIP,
382         };
383         struct qcom_scm_res res;
384         int ret;
385
386         ret = qcom_scm_call(__scm->dev, &desc, &res);
387
388         return ret ? : res.result[0];
389 }
390 EXPORT_SYMBOL(qcom_scm_set_remote_state);
391
392 static int __qcom_scm_set_dload_mode(struct device *dev, bool enable)
393 {
394         struct qcom_scm_desc desc = {
395                 .svc = QCOM_SCM_SVC_BOOT,
396                 .cmd = QCOM_SCM_BOOT_SET_DLOAD_MODE,
397                 .arginfo = QCOM_SCM_ARGS(2),
398                 .args[0] = QCOM_SCM_BOOT_SET_DLOAD_MODE,
399                 .owner = ARM_SMCCC_OWNER_SIP,
400         };
401
402         desc.args[1] = enable ? QCOM_SCM_BOOT_SET_DLOAD_MODE : 0;
403
404         return qcom_scm_call_atomic(__scm->dev, &desc, NULL);
405 }
406
407 static void qcom_scm_set_download_mode(bool enable)
408 {
409         bool avail;
410         int ret = 0;
411
412         avail = __qcom_scm_is_call_available(__scm->dev,
413                                              QCOM_SCM_SVC_BOOT,
414                                              QCOM_SCM_BOOT_SET_DLOAD_MODE);
415         if (avail) {
416                 ret = __qcom_scm_set_dload_mode(__scm->dev, enable);
417         } else if (__scm->dload_mode_addr) {
418                 ret = qcom_scm_io_writel(__scm->dload_mode_addr,
419                                 enable ? QCOM_SCM_BOOT_SET_DLOAD_MODE : 0);
420         } else {
421                 dev_err(__scm->dev,
422                         "No available mechanism for setting download mode\n");
423         }
424
425         if (ret)
426                 dev_err(__scm->dev, "failed to set download mode: %d\n", ret);
427 }
428
429 /**
430  * qcom_scm_pas_init_image() - Initialize peripheral authentication service
431  *                             state machine for a given peripheral, using the
432  *                             metadata
433  * @peripheral: peripheral id
434  * @metadata:   pointer to memory containing ELF header, program header table
435  *              and optional blob of data used for authenticating the metadata
436  *              and the rest of the firmware
437  * @size:       size of the metadata
438  *
439  * Returns 0 on success.
440  */
441 int qcom_scm_pas_init_image(u32 peripheral, const void *metadata, size_t size)
442 {
443         dma_addr_t mdata_phys;
444         void *mdata_buf;
445         int ret;
446         struct qcom_scm_desc desc = {
447                 .svc = QCOM_SCM_SVC_PIL,
448                 .cmd = QCOM_SCM_PIL_PAS_INIT_IMAGE,
449                 .arginfo = QCOM_SCM_ARGS(2, QCOM_SCM_VAL, QCOM_SCM_RW),
450                 .args[0] = peripheral,
451                 .owner = ARM_SMCCC_OWNER_SIP,
452         };
453         struct qcom_scm_res res;
454
455         /*
456          * During the scm call memory protection will be enabled for the meta
457          * data blob, so make sure it's physically contiguous, 4K aligned and
458          * non-cachable to avoid XPU violations.
459          */
460         mdata_buf = dma_alloc_coherent(__scm->dev, size, &mdata_phys,
461                                        GFP_KERNEL);
462         if (!mdata_buf) {
463                 dev_err(__scm->dev, "Allocation of metadata buffer failed.\n");
464                 return -ENOMEM;
465         }
466         memcpy(mdata_buf, metadata, size);
467
468         ret = qcom_scm_clk_enable();
469         if (ret)
470                 goto free_metadata;
471
472         desc.args[1] = mdata_phys;
473
474         ret = qcom_scm_call(__scm->dev, &desc, &res);
475
476         qcom_scm_clk_disable();
477
478 free_metadata:
479         dma_free_coherent(__scm->dev, size, mdata_buf, mdata_phys);
480
481         return ret ? : res.result[0];
482 }
483 EXPORT_SYMBOL(qcom_scm_pas_init_image);
484
485 /**
486  * qcom_scm_pas_mem_setup() - Prepare the memory related to a given peripheral
487  *                            for firmware loading
488  * @peripheral: peripheral id
489  * @addr:       start address of memory area to prepare
490  * @size:       size of the memory area to prepare
491  *
492  * Returns 0 on success.
493  */
494 int qcom_scm_pas_mem_setup(u32 peripheral, phys_addr_t addr, phys_addr_t size)
495 {
496         int ret;
497         struct qcom_scm_desc desc = {
498                 .svc = QCOM_SCM_SVC_PIL,
499                 .cmd = QCOM_SCM_PIL_PAS_MEM_SETUP,
500                 .arginfo = QCOM_SCM_ARGS(3),
501                 .args[0] = peripheral,
502                 .args[1] = addr,
503                 .args[2] = size,
504                 .owner = ARM_SMCCC_OWNER_SIP,
505         };
506         struct qcom_scm_res res;
507
508         ret = qcom_scm_clk_enable();
509         if (ret)
510                 return ret;
511
512         ret = qcom_scm_call(__scm->dev, &desc, &res);
513         qcom_scm_clk_disable();
514
515         return ret ? : res.result[0];
516 }
517 EXPORT_SYMBOL(qcom_scm_pas_mem_setup);
518
519 /**
520  * qcom_scm_pas_auth_and_reset() - Authenticate the given peripheral firmware
521  *                                 and reset the remote processor
522  * @peripheral: peripheral id
523  *
524  * Return 0 on success.
525  */
526 int qcom_scm_pas_auth_and_reset(u32 peripheral)
527 {
528         int ret;
529         struct qcom_scm_desc desc = {
530                 .svc = QCOM_SCM_SVC_PIL,
531                 .cmd = QCOM_SCM_PIL_PAS_AUTH_AND_RESET,
532                 .arginfo = QCOM_SCM_ARGS(1),
533                 .args[0] = peripheral,
534                 .owner = ARM_SMCCC_OWNER_SIP,
535         };
536         struct qcom_scm_res res;
537
538         ret = qcom_scm_clk_enable();
539         if (ret)
540                 return ret;
541
542         ret = qcom_scm_call(__scm->dev, &desc, &res);
543         qcom_scm_clk_disable();
544
545         return ret ? : res.result[0];
546 }
547 EXPORT_SYMBOL(qcom_scm_pas_auth_and_reset);
548
549 /**
550  * qcom_scm_pas_shutdown() - Shut down the remote processor
551  * @peripheral: peripheral id
552  *
553  * Returns 0 on success.
554  */
555 int qcom_scm_pas_shutdown(u32 peripheral)
556 {
557         int ret;
558         struct qcom_scm_desc desc = {
559                 .svc = QCOM_SCM_SVC_PIL,
560                 .cmd = QCOM_SCM_PIL_PAS_SHUTDOWN,
561                 .arginfo = QCOM_SCM_ARGS(1),
562                 .args[0] = peripheral,
563                 .owner = ARM_SMCCC_OWNER_SIP,
564         };
565         struct qcom_scm_res res;
566
567         ret = qcom_scm_clk_enable();
568         if (ret)
569                 return ret;
570
571         ret = qcom_scm_call(__scm->dev, &desc, &res);
572
573         qcom_scm_clk_disable();
574
575         return ret ? : res.result[0];
576 }
577 EXPORT_SYMBOL(qcom_scm_pas_shutdown);
578
579 /**
580  * qcom_scm_pas_supported() - Check if the peripheral authentication service is
581  *                            available for the given peripherial
582  * @peripheral: peripheral id
583  *
584  * Returns true if PAS is supported for this peripheral, otherwise false.
585  */
586 bool qcom_scm_pas_supported(u32 peripheral)
587 {
588         int ret;
589         struct qcom_scm_desc desc = {
590                 .svc = QCOM_SCM_SVC_PIL,
591                 .cmd = QCOM_SCM_PIL_PAS_IS_SUPPORTED,
592                 .arginfo = QCOM_SCM_ARGS(1),
593                 .args[0] = peripheral,
594                 .owner = ARM_SMCCC_OWNER_SIP,
595         };
596         struct qcom_scm_res res;
597
598         if (!__qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_PIL,
599                                           QCOM_SCM_PIL_PAS_IS_SUPPORTED))
600                 return false;
601
602         ret = qcom_scm_call(__scm->dev, &desc, &res);
603
604         return ret ? false : !!res.result[0];
605 }
606 EXPORT_SYMBOL(qcom_scm_pas_supported);
607
608 static int __qcom_scm_pas_mss_reset(struct device *dev, bool reset)
609 {
610         struct qcom_scm_desc desc = {
611                 .svc = QCOM_SCM_SVC_PIL,
612                 .cmd = QCOM_SCM_PIL_PAS_MSS_RESET,
613                 .arginfo = QCOM_SCM_ARGS(2),
614                 .args[0] = reset,
615                 .args[1] = 0,
616                 .owner = ARM_SMCCC_OWNER_SIP,
617         };
618         struct qcom_scm_res res;
619         int ret;
620
621         ret = qcom_scm_call(__scm->dev, &desc, &res);
622
623         return ret ? : res.result[0];
624 }
625
626 static int qcom_scm_pas_reset_assert(struct reset_controller_dev *rcdev,
627                                      unsigned long idx)
628 {
629         if (idx != 0)
630                 return -EINVAL;
631
632         return __qcom_scm_pas_mss_reset(__scm->dev, 1);
633 }
634
635 static int qcom_scm_pas_reset_deassert(struct reset_controller_dev *rcdev,
636                                        unsigned long idx)
637 {
638         if (idx != 0)
639                 return -EINVAL;
640
641         return __qcom_scm_pas_mss_reset(__scm->dev, 0);
642 }
643
644 static const struct reset_control_ops qcom_scm_pas_reset_ops = {
645         .assert = qcom_scm_pas_reset_assert,
646         .deassert = qcom_scm_pas_reset_deassert,
647 };
648
649 int qcom_scm_io_readl(phys_addr_t addr, unsigned int *val)
650 {
651         struct qcom_scm_desc desc = {
652                 .svc = QCOM_SCM_SVC_IO,
653                 .cmd = QCOM_SCM_IO_READ,
654                 .arginfo = QCOM_SCM_ARGS(1),
655                 .args[0] = addr,
656                 .owner = ARM_SMCCC_OWNER_SIP,
657         };
658         struct qcom_scm_res res;
659         int ret;
660
661
662         ret = qcom_scm_call_atomic(__scm->dev, &desc, &res);
663         if (ret >= 0)
664                 *val = res.result[0];
665
666         return ret < 0 ? ret : 0;
667 }
668 EXPORT_SYMBOL(qcom_scm_io_readl);
669
670 int qcom_scm_io_writel(phys_addr_t addr, unsigned int val)
671 {
672         struct qcom_scm_desc desc = {
673                 .svc = QCOM_SCM_SVC_IO,
674                 .cmd = QCOM_SCM_IO_WRITE,
675                 .arginfo = QCOM_SCM_ARGS(2),
676                 .args[0] = addr,
677                 .args[1] = val,
678                 .owner = ARM_SMCCC_OWNER_SIP,
679         };
680
681         return qcom_scm_call_atomic(__scm->dev, &desc, NULL);
682 }
683 EXPORT_SYMBOL(qcom_scm_io_writel);
684
685 /**
686  * qcom_scm_restore_sec_cfg_available() - Check if secure environment
687  * supports restore security config interface.
688  *
689  * Return true if restore-cfg interface is supported, false if not.
690  */
691 bool qcom_scm_restore_sec_cfg_available(void)
692 {
693         return __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_MP,
694                                             QCOM_SCM_MP_RESTORE_SEC_CFG);
695 }
696 EXPORT_SYMBOL(qcom_scm_restore_sec_cfg_available);
697
698 int qcom_scm_restore_sec_cfg(u32 device_id, u32 spare)
699 {
700         struct qcom_scm_desc desc = {
701                 .svc = QCOM_SCM_SVC_MP,
702                 .cmd = QCOM_SCM_MP_RESTORE_SEC_CFG,
703                 .arginfo = QCOM_SCM_ARGS(2),
704                 .args[0] = device_id,
705                 .args[1] = spare,
706                 .owner = ARM_SMCCC_OWNER_SIP,
707         };
708         struct qcom_scm_res res;
709         int ret;
710
711         ret = qcom_scm_call(__scm->dev, &desc, &res);
712
713         return ret ? : res.result[0];
714 }
715 EXPORT_SYMBOL(qcom_scm_restore_sec_cfg);
716
717 int qcom_scm_iommu_secure_ptbl_size(u32 spare, size_t *size)
718 {
719         struct qcom_scm_desc desc = {
720                 .svc = QCOM_SCM_SVC_MP,
721                 .cmd = QCOM_SCM_MP_IOMMU_SECURE_PTBL_SIZE,
722                 .arginfo = QCOM_SCM_ARGS(1),
723                 .args[0] = spare,
724                 .owner = ARM_SMCCC_OWNER_SIP,
725         };
726         struct qcom_scm_res res;
727         int ret;
728
729         ret = qcom_scm_call(__scm->dev, &desc, &res);
730
731         if (size)
732                 *size = res.result[0];
733
734         return ret ? : res.result[1];
735 }
736 EXPORT_SYMBOL(qcom_scm_iommu_secure_ptbl_size);
737
738 int qcom_scm_iommu_secure_ptbl_init(u64 addr, u32 size, u32 spare)
739 {
740         struct qcom_scm_desc desc = {
741                 .svc = QCOM_SCM_SVC_MP,
742                 .cmd = QCOM_SCM_MP_IOMMU_SECURE_PTBL_INIT,
743                 .arginfo = QCOM_SCM_ARGS(3, QCOM_SCM_RW, QCOM_SCM_VAL,
744                                          QCOM_SCM_VAL),
745                 .args[0] = addr,
746                 .args[1] = size,
747                 .args[2] = spare,
748                 .owner = ARM_SMCCC_OWNER_SIP,
749         };
750         int ret;
751
752         ret = qcom_scm_call(__scm->dev, &desc, NULL);
753
754         /* the pg table has been initialized already, ignore the error */
755         if (ret == -EPERM)
756                 ret = 0;
757
758         return ret;
759 }
760 EXPORT_SYMBOL(qcom_scm_iommu_secure_ptbl_init);
761
762 int qcom_scm_mem_protect_video_var(u32 cp_start, u32 cp_size,
763                                    u32 cp_nonpixel_start,
764                                    u32 cp_nonpixel_size)
765 {
766         int ret;
767         struct qcom_scm_desc desc = {
768                 .svc = QCOM_SCM_SVC_MP,
769                 .cmd = QCOM_SCM_MP_VIDEO_VAR,
770                 .arginfo = QCOM_SCM_ARGS(4, QCOM_SCM_VAL, QCOM_SCM_VAL,
771                                          QCOM_SCM_VAL, QCOM_SCM_VAL),
772                 .args[0] = cp_start,
773                 .args[1] = cp_size,
774                 .args[2] = cp_nonpixel_start,
775                 .args[3] = cp_nonpixel_size,
776                 .owner = ARM_SMCCC_OWNER_SIP,
777         };
778         struct qcom_scm_res res;
779
780         ret = qcom_scm_call(__scm->dev, &desc, &res);
781
782         return ret ? : res.result[0];
783 }
784 EXPORT_SYMBOL(qcom_scm_mem_protect_video_var);
785
786 static int __qcom_scm_assign_mem(struct device *dev, phys_addr_t mem_region,
787                                  size_t mem_sz, phys_addr_t src, size_t src_sz,
788                                  phys_addr_t dest, size_t dest_sz)
789 {
790         int ret;
791         struct qcom_scm_desc desc = {
792                 .svc = QCOM_SCM_SVC_MP,
793                 .cmd = QCOM_SCM_MP_ASSIGN,
794                 .arginfo = QCOM_SCM_ARGS(7, QCOM_SCM_RO, QCOM_SCM_VAL,
795                                          QCOM_SCM_RO, QCOM_SCM_VAL, QCOM_SCM_RO,
796                                          QCOM_SCM_VAL, QCOM_SCM_VAL),
797                 .args[0] = mem_region,
798                 .args[1] = mem_sz,
799                 .args[2] = src,
800                 .args[3] = src_sz,
801                 .args[4] = dest,
802                 .args[5] = dest_sz,
803                 .args[6] = 0,
804                 .owner = ARM_SMCCC_OWNER_SIP,
805         };
806         struct qcom_scm_res res;
807
808         ret = qcom_scm_call(dev, &desc, &res);
809
810         return ret ? : res.result[0];
811 }
812
813 /**
814  * qcom_scm_assign_mem() - Make a secure call to reassign memory ownership
815  * @mem_addr: mem region whose ownership need to be reassigned
816  * @mem_sz:   size of the region.
817  * @srcvm:    vmid for current set of owners, each set bit in
818  *            flag indicate a unique owner
819  * @newvm:    array having new owners and corresponding permission
820  *            flags
821  * @dest_cnt: number of owners in next set.
822  *
823  * Return negative errno on failure or 0 on success with @srcvm updated.
824  */
825 int qcom_scm_assign_mem(phys_addr_t mem_addr, size_t mem_sz,
826                         unsigned int *srcvm,
827                         const struct qcom_scm_vmperm *newvm,
828                         unsigned int dest_cnt)
829 {
830         struct qcom_scm_current_perm_info *destvm;
831         struct qcom_scm_mem_map_info *mem_to_map;
832         phys_addr_t mem_to_map_phys;
833         phys_addr_t dest_phys;
834         dma_addr_t ptr_phys;
835         size_t mem_to_map_sz;
836         size_t dest_sz;
837         size_t src_sz;
838         size_t ptr_sz;
839         int next_vm;
840         __le32 *src;
841         void *ptr;
842         int ret, i, b;
843         unsigned long srcvm_bits = *srcvm;
844
845         src_sz = hweight_long(srcvm_bits) * sizeof(*src);
846         mem_to_map_sz = sizeof(*mem_to_map);
847         dest_sz = dest_cnt * sizeof(*destvm);
848         ptr_sz = ALIGN(src_sz, SZ_64) + ALIGN(mem_to_map_sz, SZ_64) +
849                         ALIGN(dest_sz, SZ_64);
850
851         ptr = dma_alloc_coherent(__scm->dev, ptr_sz, &ptr_phys, GFP_KERNEL);
852         if (!ptr)
853                 return -ENOMEM;
854
855         /* Fill source vmid detail */
856         src = ptr;
857         i = 0;
858         for_each_set_bit(b, &srcvm_bits, BITS_PER_LONG)
859                 src[i++] = cpu_to_le32(b);
860
861         /* Fill details of mem buff to map */
862         mem_to_map = ptr + ALIGN(src_sz, SZ_64);
863         mem_to_map_phys = ptr_phys + ALIGN(src_sz, SZ_64);
864         mem_to_map->mem_addr = cpu_to_le64(mem_addr);
865         mem_to_map->mem_size = cpu_to_le64(mem_sz);
866
867         next_vm = 0;
868         /* Fill details of next vmid detail */
869         destvm = ptr + ALIGN(mem_to_map_sz, SZ_64) + ALIGN(src_sz, SZ_64);
870         dest_phys = ptr_phys + ALIGN(mem_to_map_sz, SZ_64) + ALIGN(src_sz, SZ_64);
871         for (i = 0; i < dest_cnt; i++, destvm++, newvm++) {
872                 destvm->vmid = cpu_to_le32(newvm->vmid);
873                 destvm->perm = cpu_to_le32(newvm->perm);
874                 destvm->ctx = 0;
875                 destvm->ctx_size = 0;
876                 next_vm |= BIT(newvm->vmid);
877         }
878
879         ret = __qcom_scm_assign_mem(__scm->dev, mem_to_map_phys, mem_to_map_sz,
880                                     ptr_phys, src_sz, dest_phys, dest_sz);
881         dma_free_coherent(__scm->dev, ptr_sz, ptr, ptr_phys);
882         if (ret) {
883                 dev_err(__scm->dev,
884                         "Assign memory protection call failed %d\n", ret);
885                 return -EINVAL;
886         }
887
888         *srcvm = next_vm;
889         return 0;
890 }
891 EXPORT_SYMBOL(qcom_scm_assign_mem);
892
893 /**
894  * qcom_scm_ocmem_lock_available() - is OCMEM lock/unlock interface available
895  */
896 bool qcom_scm_ocmem_lock_available(void)
897 {
898         return __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_OCMEM,
899                                             QCOM_SCM_OCMEM_LOCK_CMD);
900 }
901 EXPORT_SYMBOL(qcom_scm_ocmem_lock_available);
902
903 /**
904  * qcom_scm_ocmem_lock() - call OCMEM lock interface to assign an OCMEM
905  * region to the specified initiator
906  *
907  * @id:     tz initiator id
908  * @offset: OCMEM offset
909  * @size:   OCMEM size
910  * @mode:   access mode (WIDE/NARROW)
911  */
912 int qcom_scm_ocmem_lock(enum qcom_scm_ocmem_client id, u32 offset, u32 size,
913                         u32 mode)
914 {
915         struct qcom_scm_desc desc = {
916                 .svc = QCOM_SCM_SVC_OCMEM,
917                 .cmd = QCOM_SCM_OCMEM_LOCK_CMD,
918                 .args[0] = id,
919                 .args[1] = offset,
920                 .args[2] = size,
921                 .args[3] = mode,
922                 .arginfo = QCOM_SCM_ARGS(4),
923         };
924
925         return qcom_scm_call(__scm->dev, &desc, NULL);
926 }
927 EXPORT_SYMBOL(qcom_scm_ocmem_lock);
928
929 /**
930  * qcom_scm_ocmem_unlock() - call OCMEM unlock interface to release an OCMEM
931  * region from the specified initiator
932  *
933  * @id:     tz initiator id
934  * @offset: OCMEM offset
935  * @size:   OCMEM size
936  */
937 int qcom_scm_ocmem_unlock(enum qcom_scm_ocmem_client id, u32 offset, u32 size)
938 {
939         struct qcom_scm_desc desc = {
940                 .svc = QCOM_SCM_SVC_OCMEM,
941                 .cmd = QCOM_SCM_OCMEM_UNLOCK_CMD,
942                 .args[0] = id,
943                 .args[1] = offset,
944                 .args[2] = size,
945                 .arginfo = QCOM_SCM_ARGS(3),
946         };
947
948         return qcom_scm_call(__scm->dev, &desc, NULL);
949 }
950 EXPORT_SYMBOL(qcom_scm_ocmem_unlock);
951
952 /**
953  * qcom_scm_ice_available() - Is the ICE key programming interface available?
954  *
955  * Return: true iff the SCM calls wrapped by qcom_scm_ice_invalidate_key() and
956  *         qcom_scm_ice_set_key() are available.
957  */
958 bool qcom_scm_ice_available(void)
959 {
960         return __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_ES,
961                                             QCOM_SCM_ES_INVALIDATE_ICE_KEY) &&
962                 __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_ES,
963                                              QCOM_SCM_ES_CONFIG_SET_ICE_KEY);
964 }
965 EXPORT_SYMBOL(qcom_scm_ice_available);
966
967 /**
968  * qcom_scm_ice_invalidate_key() - Invalidate an inline encryption key
969  * @index: the keyslot to invalidate
970  *
971  * The UFSHCI and eMMC standards define a standard way to do this, but it
972  * doesn't work on these SoCs; only this SCM call does.
973  *
974  * It is assumed that the SoC has only one ICE instance being used, as this SCM
975  * call doesn't specify which ICE instance the keyslot belongs to.
976  *
977  * Return: 0 on success; -errno on failure.
978  */
979 int qcom_scm_ice_invalidate_key(u32 index)
980 {
981         struct qcom_scm_desc desc = {
982                 .svc = QCOM_SCM_SVC_ES,
983                 .cmd = QCOM_SCM_ES_INVALIDATE_ICE_KEY,
984                 .arginfo = QCOM_SCM_ARGS(1),
985                 .args[0] = index,
986                 .owner = ARM_SMCCC_OWNER_SIP,
987         };
988
989         return qcom_scm_call(__scm->dev, &desc, NULL);
990 }
991 EXPORT_SYMBOL(qcom_scm_ice_invalidate_key);
992
993 /**
994  * qcom_scm_ice_set_key() - Set an inline encryption key
995  * @index: the keyslot into which to set the key
996  * @key: the key to program
997  * @key_size: the size of the key in bytes
998  * @cipher: the encryption algorithm the key is for
999  * @data_unit_size: the encryption data unit size, i.e. the size of each
1000  *                  individual plaintext and ciphertext.  Given in 512-byte
1001  *                  units, e.g. 1 = 512 bytes, 8 = 4096 bytes, etc.
1002  *
1003  * Program a key into a keyslot of Qualcomm ICE (Inline Crypto Engine), where it
1004  * can then be used to encrypt/decrypt UFS or eMMC I/O requests inline.
1005  *
1006  * The UFSHCI and eMMC standards define a standard way to do this, but it
1007  * doesn't work on these SoCs; only this SCM call does.
1008  *
1009  * It is assumed that the SoC has only one ICE instance being used, as this SCM
1010  * call doesn't specify which ICE instance the keyslot belongs to.
1011  *
1012  * Return: 0 on success; -errno on failure.
1013  */
1014 int qcom_scm_ice_set_key(u32 index, const u8 *key, u32 key_size,
1015                          enum qcom_scm_ice_cipher cipher, u32 data_unit_size)
1016 {
1017         struct qcom_scm_desc desc = {
1018                 .svc = QCOM_SCM_SVC_ES,
1019                 .cmd = QCOM_SCM_ES_CONFIG_SET_ICE_KEY,
1020                 .arginfo = QCOM_SCM_ARGS(5, QCOM_SCM_VAL, QCOM_SCM_RW,
1021                                          QCOM_SCM_VAL, QCOM_SCM_VAL,
1022                                          QCOM_SCM_VAL),
1023                 .args[0] = index,
1024                 .args[2] = key_size,
1025                 .args[3] = cipher,
1026                 .args[4] = data_unit_size,
1027                 .owner = ARM_SMCCC_OWNER_SIP,
1028         };
1029         void *keybuf;
1030         dma_addr_t key_phys;
1031         int ret;
1032
1033         /*
1034          * 'key' may point to vmalloc()'ed memory, but we need to pass a
1035          * physical address that's been properly flushed.  The sanctioned way to
1036          * do this is by using the DMA API.  But as is best practice for crypto
1037          * keys, we also must wipe the key after use.  This makes kmemdup() +
1038          * dma_map_single() not clearly correct, since the DMA API can use
1039          * bounce buffers.  Instead, just use dma_alloc_coherent().  Programming
1040          * keys is normally rare and thus not performance-critical.
1041          */
1042
1043         keybuf = dma_alloc_coherent(__scm->dev, key_size, &key_phys,
1044                                     GFP_KERNEL);
1045         if (!keybuf)
1046                 return -ENOMEM;
1047         memcpy(keybuf, key, key_size);
1048         desc.args[1] = key_phys;
1049
1050         ret = qcom_scm_call(__scm->dev, &desc, NULL);
1051
1052         memzero_explicit(keybuf, key_size);
1053
1054         dma_free_coherent(__scm->dev, key_size, keybuf, key_phys);
1055         return ret;
1056 }
1057 EXPORT_SYMBOL(qcom_scm_ice_set_key);
1058
1059 /**
1060  * qcom_scm_hdcp_available() - Check if secure environment supports HDCP.
1061  *
1062  * Return true if HDCP is supported, false if not.
1063  */
1064 bool qcom_scm_hdcp_available(void)
1065 {
1066         bool avail;
1067         int ret = qcom_scm_clk_enable();
1068
1069         if (ret)
1070                 return ret;
1071
1072         avail = __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_HDCP,
1073                                                 QCOM_SCM_HDCP_INVOKE);
1074
1075         qcom_scm_clk_disable();
1076
1077         return avail;
1078 }
1079 EXPORT_SYMBOL(qcom_scm_hdcp_available);
1080
1081 /**
1082  * qcom_scm_hdcp_req() - Send HDCP request.
1083  * @req: HDCP request array
1084  * @req_cnt: HDCP request array count
1085  * @resp: response buffer passed to SCM
1086  *
1087  * Write HDCP register(s) through SCM.
1088  */
1089 int qcom_scm_hdcp_req(struct qcom_scm_hdcp_req *req, u32 req_cnt, u32 *resp)
1090 {
1091         int ret;
1092         struct qcom_scm_desc desc = {
1093                 .svc = QCOM_SCM_SVC_HDCP,
1094                 .cmd = QCOM_SCM_HDCP_INVOKE,
1095                 .arginfo = QCOM_SCM_ARGS(10),
1096                 .args = {
1097                         req[0].addr,
1098                         req[0].val,
1099                         req[1].addr,
1100                         req[1].val,
1101                         req[2].addr,
1102                         req[2].val,
1103                         req[3].addr,
1104                         req[3].val,
1105                         req[4].addr,
1106                         req[4].val
1107                 },
1108                 .owner = ARM_SMCCC_OWNER_SIP,
1109         };
1110         struct qcom_scm_res res;
1111
1112         if (req_cnt > QCOM_SCM_HDCP_MAX_REQ_CNT)
1113                 return -ERANGE;
1114
1115         ret = qcom_scm_clk_enable();
1116         if (ret)
1117                 return ret;
1118
1119         ret = qcom_scm_call(__scm->dev, &desc, &res);
1120         *resp = res.result[0];
1121
1122         qcom_scm_clk_disable();
1123
1124         return ret;
1125 }
1126 EXPORT_SYMBOL(qcom_scm_hdcp_req);
1127
1128 int qcom_scm_qsmmu500_wait_safe_toggle(bool en)
1129 {
1130         struct qcom_scm_desc desc = {
1131                 .svc = QCOM_SCM_SVC_SMMU_PROGRAM,
1132                 .cmd = QCOM_SCM_SMMU_CONFIG_ERRATA1,
1133                 .arginfo = QCOM_SCM_ARGS(2),
1134                 .args[0] = QCOM_SCM_SMMU_CONFIG_ERRATA1_CLIENT_ALL,
1135                 .args[1] = en,
1136                 .owner = ARM_SMCCC_OWNER_SIP,
1137         };
1138
1139
1140         return qcom_scm_call_atomic(__scm->dev, &desc, NULL);
1141 }
1142 EXPORT_SYMBOL(qcom_scm_qsmmu500_wait_safe_toggle);
1143
1144 bool qcom_scm_lmh_dcvsh_available(void)
1145 {
1146         return __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_LMH, QCOM_SCM_LMH_LIMIT_DCVSH);
1147 }
1148 EXPORT_SYMBOL(qcom_scm_lmh_dcvsh_available);
1149
1150 int qcom_scm_lmh_profile_change(u32 profile_id)
1151 {
1152         struct qcom_scm_desc desc = {
1153                 .svc = QCOM_SCM_SVC_LMH,
1154                 .cmd = QCOM_SCM_LMH_LIMIT_PROFILE_CHANGE,
1155                 .arginfo = QCOM_SCM_ARGS(1, QCOM_SCM_VAL),
1156                 .args[0] = profile_id,
1157                 .owner = ARM_SMCCC_OWNER_SIP,
1158         };
1159
1160         return qcom_scm_call(__scm->dev, &desc, NULL);
1161 }
1162 EXPORT_SYMBOL(qcom_scm_lmh_profile_change);
1163
1164 int qcom_scm_lmh_dcvsh(u32 payload_fn, u32 payload_reg, u32 payload_val,
1165                        u64 limit_node, u32 node_id, u64 version)
1166 {
1167         dma_addr_t payload_phys;
1168         u32 *payload_buf;
1169         int ret, payload_size = 5 * sizeof(u32);
1170
1171         struct qcom_scm_desc desc = {
1172                 .svc = QCOM_SCM_SVC_LMH,
1173                 .cmd = QCOM_SCM_LMH_LIMIT_DCVSH,
1174                 .arginfo = QCOM_SCM_ARGS(5, QCOM_SCM_RO, QCOM_SCM_VAL, QCOM_SCM_VAL,
1175                                         QCOM_SCM_VAL, QCOM_SCM_VAL),
1176                 .args[1] = payload_size,
1177                 .args[2] = limit_node,
1178                 .args[3] = node_id,
1179                 .args[4] = version,
1180                 .owner = ARM_SMCCC_OWNER_SIP,
1181         };
1182
1183         payload_buf = dma_alloc_coherent(__scm->dev, payload_size, &payload_phys, GFP_KERNEL);
1184         if (!payload_buf)
1185                 return -ENOMEM;
1186
1187         payload_buf[0] = payload_fn;
1188         payload_buf[1] = 0;
1189         payload_buf[2] = payload_reg;
1190         payload_buf[3] = 1;
1191         payload_buf[4] = payload_val;
1192
1193         desc.args[0] = payload_phys;
1194
1195         ret = qcom_scm_call(__scm->dev, &desc, NULL);
1196
1197         dma_free_coherent(__scm->dev, payload_size, payload_buf, payload_phys);
1198         return ret;
1199 }
1200 EXPORT_SYMBOL(qcom_scm_lmh_dcvsh);
1201
1202 static int qcom_scm_find_dload_address(struct device *dev, u64 *addr)
1203 {
1204         struct device_node *tcsr;
1205         struct device_node *np = dev->of_node;
1206         struct resource res;
1207         u32 offset;
1208         int ret;
1209
1210         tcsr = of_parse_phandle(np, "qcom,dload-mode", 0);
1211         if (!tcsr)
1212                 return 0;
1213
1214         ret = of_address_to_resource(tcsr, 0, &res);
1215         of_node_put(tcsr);
1216         if (ret)
1217                 return ret;
1218
1219         ret = of_property_read_u32_index(np, "qcom,dload-mode", 1, &offset);
1220         if (ret < 0)
1221                 return ret;
1222
1223         *addr = res.start + offset;
1224
1225         return 0;
1226 }
1227
1228 /**
1229  * qcom_scm_is_available() - Checks if SCM is available
1230  */
1231 bool qcom_scm_is_available(void)
1232 {
1233         return !!__scm;
1234 }
1235 EXPORT_SYMBOL(qcom_scm_is_available);
1236
1237 static int qcom_scm_probe(struct platform_device *pdev)
1238 {
1239         struct qcom_scm *scm;
1240         unsigned long clks;
1241         int ret;
1242
1243         scm = devm_kzalloc(&pdev->dev, sizeof(*scm), GFP_KERNEL);
1244         if (!scm)
1245                 return -ENOMEM;
1246
1247         ret = qcom_scm_find_dload_address(&pdev->dev, &scm->dload_mode_addr);
1248         if (ret < 0)
1249                 return ret;
1250
1251         clks = (unsigned long)of_device_get_match_data(&pdev->dev);
1252
1253         scm->core_clk = devm_clk_get(&pdev->dev, "core");
1254         if (IS_ERR(scm->core_clk)) {
1255                 if (PTR_ERR(scm->core_clk) == -EPROBE_DEFER)
1256                         return PTR_ERR(scm->core_clk);
1257
1258                 if (clks & SCM_HAS_CORE_CLK) {
1259                         dev_err(&pdev->dev, "failed to acquire core clk\n");
1260                         return PTR_ERR(scm->core_clk);
1261                 }
1262
1263                 scm->core_clk = NULL;
1264         }
1265
1266         scm->iface_clk = devm_clk_get(&pdev->dev, "iface");
1267         if (IS_ERR(scm->iface_clk)) {
1268                 if (PTR_ERR(scm->iface_clk) == -EPROBE_DEFER)
1269                         return PTR_ERR(scm->iface_clk);
1270
1271                 if (clks & SCM_HAS_IFACE_CLK) {
1272                         dev_err(&pdev->dev, "failed to acquire iface clk\n");
1273                         return PTR_ERR(scm->iface_clk);
1274                 }
1275
1276                 scm->iface_clk = NULL;
1277         }
1278
1279         scm->bus_clk = devm_clk_get(&pdev->dev, "bus");
1280         if (IS_ERR(scm->bus_clk)) {
1281                 if (PTR_ERR(scm->bus_clk) == -EPROBE_DEFER)
1282                         return PTR_ERR(scm->bus_clk);
1283
1284                 if (clks & SCM_HAS_BUS_CLK) {
1285                         dev_err(&pdev->dev, "failed to acquire bus clk\n");
1286                         return PTR_ERR(scm->bus_clk);
1287                 }
1288
1289                 scm->bus_clk = NULL;
1290         }
1291
1292         scm->reset.ops = &qcom_scm_pas_reset_ops;
1293         scm->reset.nr_resets = 1;
1294         scm->reset.of_node = pdev->dev.of_node;
1295         ret = devm_reset_controller_register(&pdev->dev, &scm->reset);
1296         if (ret)
1297                 return ret;
1298
1299         /* vote for max clk rate for highest performance */
1300         ret = clk_set_rate(scm->core_clk, INT_MAX);
1301         if (ret)
1302                 return ret;
1303
1304         __scm = scm;
1305         __scm->dev = &pdev->dev;
1306
1307         __get_convention();
1308
1309         /*
1310          * If requested enable "download mode", from this point on warmboot
1311          * will cause the the boot stages to enter download mode, unless
1312          * disabled below by a clean shutdown/reboot.
1313          */
1314         if (download_mode)
1315                 qcom_scm_set_download_mode(true);
1316
1317         return 0;
1318 }
1319
1320 static void qcom_scm_shutdown(struct platform_device *pdev)
1321 {
1322         /* Clean shutdown, disable download mode to allow normal restart */
1323         if (download_mode)
1324                 qcom_scm_set_download_mode(false);
1325 }
1326
1327 static const struct of_device_id qcom_scm_dt_match[] = {
1328         { .compatible = "qcom,scm-apq8064",
1329           /* FIXME: This should have .data = (void *) SCM_HAS_CORE_CLK */
1330         },
1331         { .compatible = "qcom,scm-apq8084", .data = (void *)(SCM_HAS_CORE_CLK |
1332                                                              SCM_HAS_IFACE_CLK |
1333                                                              SCM_HAS_BUS_CLK)
1334         },
1335         { .compatible = "qcom,scm-ipq4019" },
1336         { .compatible = "qcom,scm-mdm9607", .data = (void *)(SCM_HAS_CORE_CLK |
1337                                                              SCM_HAS_IFACE_CLK |
1338                                                              SCM_HAS_BUS_CLK) },
1339         { .compatible = "qcom,scm-msm8660", .data = (void *) SCM_HAS_CORE_CLK },
1340         { .compatible = "qcom,scm-msm8960", .data = (void *) SCM_HAS_CORE_CLK },
1341         { .compatible = "qcom,scm-msm8916", .data = (void *)(SCM_HAS_CORE_CLK |
1342                                                              SCM_HAS_IFACE_CLK |
1343                                                              SCM_HAS_BUS_CLK)
1344         },
1345         { .compatible = "qcom,scm-msm8974", .data = (void *)(SCM_HAS_CORE_CLK |
1346                                                              SCM_HAS_IFACE_CLK |
1347                                                              SCM_HAS_BUS_CLK)
1348         },
1349         { .compatible = "qcom,scm-msm8994" },
1350         { .compatible = "qcom,scm-msm8996" },
1351         { .compatible = "qcom,scm" },
1352         {}
1353 };
1354 MODULE_DEVICE_TABLE(of, qcom_scm_dt_match);
1355
1356 static struct platform_driver qcom_scm_driver = {
1357         .driver = {
1358                 .name   = "qcom_scm",
1359                 .of_match_table = qcom_scm_dt_match,
1360                 .suppress_bind_attrs = true,
1361         },
1362         .probe = qcom_scm_probe,
1363         .shutdown = qcom_scm_shutdown,
1364 };
1365
1366 static int __init qcom_scm_init(void)
1367 {
1368         return platform_driver_register(&qcom_scm_driver);
1369 }
1370 subsys_initcall(qcom_scm_init);
1371
1372 MODULE_DESCRIPTION("Qualcomm Technologies, Inc. SCM driver");
1373 MODULE_LICENSE("GPL v2");