ath10k: Fix NULL pointer dereference in AHB device probe
[platform/kernel/linux-starfive.git] / drivers / firmware / psci / psci_checker.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *
4  * Copyright (C) 2016 ARM Limited
5  */
6
7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
8
9 #include <linux/atomic.h>
10 #include <linux/completion.h>
11 #include <linux/cpu.h>
12 #include <linux/cpuidle.h>
13 #include <linux/cpu_pm.h>
14 #include <linux/kernel.h>
15 #include <linux/kthread.h>
16 #include <uapi/linux/sched/types.h>
17 #include <linux/module.h>
18 #include <linux/preempt.h>
19 #include <linux/psci.h>
20 #include <linux/slab.h>
21 #include <linux/tick.h>
22 #include <linux/topology.h>
23
24 #include <asm/cpuidle.h>
25
26 #include <uapi/linux/psci.h>
27
28 #define NUM_SUSPEND_CYCLE (10)
29
30 static unsigned int nb_available_cpus;
31 static int tos_resident_cpu = -1;
32
33 static atomic_t nb_active_threads;
34 static struct completion suspend_threads_started =
35         COMPLETION_INITIALIZER(suspend_threads_started);
36 static struct completion suspend_threads_done =
37         COMPLETION_INITIALIZER(suspend_threads_done);
38
39 /*
40  * We assume that PSCI operations are used if they are available. This is not
41  * necessarily true on arm64, since the decision is based on the
42  * "enable-method" property of each CPU in the DT, but given that there is no
43  * arch-specific way to check this, we assume that the DT is sensible.
44  */
45 static int psci_ops_check(void)
46 {
47         int migrate_type = -1;
48         int cpu;
49
50         if (!(psci_ops.cpu_off && psci_ops.cpu_on && psci_ops.cpu_suspend)) {
51                 pr_warn("Missing PSCI operations, aborting tests\n");
52                 return -EOPNOTSUPP;
53         }
54
55         if (psci_ops.migrate_info_type)
56                 migrate_type = psci_ops.migrate_info_type();
57
58         if (migrate_type == PSCI_0_2_TOS_UP_MIGRATE ||
59             migrate_type == PSCI_0_2_TOS_UP_NO_MIGRATE) {
60                 /* There is a UP Trusted OS, find on which core it resides. */
61                 for_each_online_cpu(cpu)
62                         if (psci_tos_resident_on(cpu)) {
63                                 tos_resident_cpu = cpu;
64                                 break;
65                         }
66                 if (tos_resident_cpu == -1)
67                         pr_warn("UP Trusted OS resides on no online CPU\n");
68         }
69
70         return 0;
71 }
72
73 /*
74  * offlined_cpus is a temporary array but passing it as an argument avoids
75  * multiple allocations.
76  */
77 static unsigned int down_and_up_cpus(const struct cpumask *cpus,
78                                      struct cpumask *offlined_cpus)
79 {
80         int cpu;
81         int err = 0;
82
83         cpumask_clear(offlined_cpus);
84
85         /* Try to power down all CPUs in the mask. */
86         for_each_cpu(cpu, cpus) {
87                 int ret = remove_cpu(cpu);
88
89                 /*
90                  * cpu_down() checks the number of online CPUs before the TOS
91                  * resident CPU.
92                  */
93                 if (cpumask_weight(offlined_cpus) + 1 == nb_available_cpus) {
94                         if (ret != -EBUSY) {
95                                 pr_err("Unexpected return code %d while trying "
96                                        "to power down last online CPU %d\n",
97                                        ret, cpu);
98                                 ++err;
99                         }
100                 } else if (cpu == tos_resident_cpu) {
101                         if (ret != -EPERM) {
102                                 pr_err("Unexpected return code %d while trying "
103                                        "to power down TOS resident CPU %d\n",
104                                        ret, cpu);
105                                 ++err;
106                         }
107                 } else if (ret != 0) {
108                         pr_err("Error occurred (%d) while trying "
109                                "to power down CPU %d\n", ret, cpu);
110                         ++err;
111                 }
112
113                 if (ret == 0)
114                         cpumask_set_cpu(cpu, offlined_cpus);
115         }
116
117         /* Try to power up all the CPUs that have been offlined. */
118         for_each_cpu(cpu, offlined_cpus) {
119                 int ret = add_cpu(cpu);
120
121                 if (ret != 0) {
122                         pr_err("Error occurred (%d) while trying "
123                                "to power up CPU %d\n", ret, cpu);
124                         ++err;
125                 } else {
126                         cpumask_clear_cpu(cpu, offlined_cpus);
127                 }
128         }
129
130         /*
131          * Something went bad at some point and some CPUs could not be turned
132          * back on.
133          */
134         WARN_ON(!cpumask_empty(offlined_cpus) ||
135                 num_online_cpus() != nb_available_cpus);
136
137         return err;
138 }
139
140 static void free_cpu_groups(int num, cpumask_var_t **pcpu_groups)
141 {
142         int i;
143         cpumask_var_t *cpu_groups = *pcpu_groups;
144
145         for (i = 0; i < num; ++i)
146                 free_cpumask_var(cpu_groups[i]);
147         kfree(cpu_groups);
148 }
149
150 static int alloc_init_cpu_groups(cpumask_var_t **pcpu_groups)
151 {
152         int num_groups = 0;
153         cpumask_var_t tmp, *cpu_groups;
154
155         if (!alloc_cpumask_var(&tmp, GFP_KERNEL))
156                 return -ENOMEM;
157
158         cpu_groups = kcalloc(nb_available_cpus, sizeof(cpu_groups),
159                              GFP_KERNEL);
160         if (!cpu_groups)
161                 return -ENOMEM;
162
163         cpumask_copy(tmp, cpu_online_mask);
164
165         while (!cpumask_empty(tmp)) {
166                 const struct cpumask *cpu_group =
167                         topology_core_cpumask(cpumask_any(tmp));
168
169                 if (!alloc_cpumask_var(&cpu_groups[num_groups], GFP_KERNEL)) {
170                         free_cpu_groups(num_groups, &cpu_groups);
171                         return -ENOMEM;
172                 }
173                 cpumask_copy(cpu_groups[num_groups++], cpu_group);
174                 cpumask_andnot(tmp, tmp, cpu_group);
175         }
176
177         free_cpumask_var(tmp);
178         *pcpu_groups = cpu_groups;
179
180         return num_groups;
181 }
182
183 static int hotplug_tests(void)
184 {
185         int i, nb_cpu_group, err = -ENOMEM;
186         cpumask_var_t offlined_cpus, *cpu_groups;
187         char *page_buf;
188
189         if (!alloc_cpumask_var(&offlined_cpus, GFP_KERNEL))
190                 return err;
191
192         nb_cpu_group = alloc_init_cpu_groups(&cpu_groups);
193         if (nb_cpu_group < 0)
194                 goto out_free_cpus;
195         page_buf = (char *)__get_free_page(GFP_KERNEL);
196         if (!page_buf)
197                 goto out_free_cpu_groups;
198
199         err = 0;
200         /*
201          * Of course the last CPU cannot be powered down and cpu_down() should
202          * refuse doing that.
203          */
204         pr_info("Trying to turn off and on again all CPUs\n");
205         err += down_and_up_cpus(cpu_online_mask, offlined_cpus);
206
207         /*
208          * Take down CPUs by cpu group this time. When the last CPU is turned
209          * off, the cpu group itself should shut down.
210          */
211         for (i = 0; i < nb_cpu_group; ++i) {
212                 ssize_t len = cpumap_print_to_pagebuf(true, page_buf,
213                                                       cpu_groups[i]);
214                 /* Remove trailing newline. */
215                 page_buf[len - 1] = '\0';
216                 pr_info("Trying to turn off and on again group %d (CPUs %s)\n",
217                         i, page_buf);
218                 err += down_and_up_cpus(cpu_groups[i], offlined_cpus);
219         }
220
221         free_page((unsigned long)page_buf);
222 out_free_cpu_groups:
223         free_cpu_groups(nb_cpu_group, &cpu_groups);
224 out_free_cpus:
225         free_cpumask_var(offlined_cpus);
226         return err;
227 }
228
229 static void dummy_callback(struct timer_list *unused) {}
230
231 static int suspend_cpu(struct cpuidle_device *dev,
232                        struct cpuidle_driver *drv, int index)
233 {
234         struct cpuidle_state *state = &drv->states[index];
235         bool broadcast = state->flags & CPUIDLE_FLAG_TIMER_STOP;
236         int ret;
237
238         arch_cpu_idle_enter();
239
240         if (broadcast) {
241                 /*
242                  * The local timer will be shut down, we need to enter tick
243                  * broadcast.
244                  */
245                 ret = tick_broadcast_enter();
246                 if (ret) {
247                         /*
248                          * In the absence of hardware broadcast mechanism,
249                          * this CPU might be used to broadcast wakeups, which
250                          * may be why entering tick broadcast has failed.
251                          * There is little the kernel can do to work around
252                          * that, so enter WFI instead (idle state 0).
253                          */
254                         cpu_do_idle();
255                         ret = 0;
256                         goto out_arch_exit;
257                 }
258         }
259
260         ret = state->enter(dev, drv, index);
261
262         if (broadcast)
263                 tick_broadcast_exit();
264
265 out_arch_exit:
266         arch_cpu_idle_exit();
267
268         return ret;
269 }
270
271 static int suspend_test_thread(void *arg)
272 {
273         int cpu = (long)arg;
274         int i, nb_suspend = 0, nb_shallow_sleep = 0, nb_err = 0;
275         struct sched_param sched_priority = { .sched_priority = MAX_RT_PRIO-1 };
276         struct cpuidle_device *dev;
277         struct cpuidle_driver *drv;
278         /* No need for an actual callback, we just want to wake up the CPU. */
279         struct timer_list wakeup_timer;
280
281         /* Wait for the main thread to give the start signal. */
282         wait_for_completion(&suspend_threads_started);
283
284         /* Set maximum priority to preempt all other threads on this CPU. */
285         if (sched_setscheduler_nocheck(current, SCHED_FIFO, &sched_priority))
286                 pr_warn("Failed to set suspend thread scheduler on CPU %d\n",
287                         cpu);
288
289         dev = this_cpu_read(cpuidle_devices);
290         drv = cpuidle_get_cpu_driver(dev);
291
292         pr_info("CPU %d entering suspend cycles, states 1 through %d\n",
293                 cpu, drv->state_count - 1);
294
295         timer_setup_on_stack(&wakeup_timer, dummy_callback, 0);
296         for (i = 0; i < NUM_SUSPEND_CYCLE; ++i) {
297                 int index;
298                 /*
299                  * Test all possible states, except 0 (which is usually WFI and
300                  * doesn't use PSCI).
301                  */
302                 for (index = 1; index < drv->state_count; ++index) {
303                         int ret;
304                         struct cpuidle_state *state = &drv->states[index];
305
306                         /*
307                          * Set the timer to wake this CPU up in some time (which
308                          * should be largely sufficient for entering suspend).
309                          * If the local tick is disabled when entering suspend,
310                          * suspend_cpu() takes care of switching to a broadcast
311                          * tick, so the timer will still wake us up.
312                          */
313                         mod_timer(&wakeup_timer, jiffies +
314                                   usecs_to_jiffies(state->target_residency));
315
316                         /* IRQs must be disabled during suspend operations. */
317                         local_irq_disable();
318
319                         ret = suspend_cpu(dev, drv, index);
320
321                         /*
322                          * We have woken up. Re-enable IRQs to handle any
323                          * pending interrupt, do not wait until the end of the
324                          * loop.
325                          */
326                         local_irq_enable();
327
328                         if (ret == index) {
329                                 ++nb_suspend;
330                         } else if (ret >= 0) {
331                                 /* We did not enter the expected state. */
332                                 ++nb_shallow_sleep;
333                         } else {
334                                 pr_err("Failed to suspend CPU %d: error %d "
335                                        "(requested state %d, cycle %d)\n",
336                                        cpu, ret, index, i);
337                                 ++nb_err;
338                         }
339                 }
340         }
341
342         /*
343          * Disable the timer to make sure that the timer will not trigger
344          * later.
345          */
346         del_timer(&wakeup_timer);
347         destroy_timer_on_stack(&wakeup_timer);
348
349         if (atomic_dec_return_relaxed(&nb_active_threads) == 0)
350                 complete(&suspend_threads_done);
351
352         /* Give up on RT scheduling and wait for termination. */
353         sched_priority.sched_priority = 0;
354         if (sched_setscheduler_nocheck(current, SCHED_NORMAL, &sched_priority))
355                 pr_warn("Failed to set suspend thread scheduler on CPU %d\n",
356                         cpu);
357         for (;;) {
358                 /* Needs to be set first to avoid missing a wakeup. */
359                 set_current_state(TASK_INTERRUPTIBLE);
360                 if (kthread_should_park())
361                         break;
362                 schedule();
363         }
364
365         pr_info("CPU %d suspend test results: success %d, shallow states %d, errors %d\n",
366                 cpu, nb_suspend, nb_shallow_sleep, nb_err);
367
368         kthread_parkme();
369
370         return nb_err;
371 }
372
373 static int suspend_tests(void)
374 {
375         int i, cpu, err = 0;
376         struct task_struct **threads;
377         int nb_threads = 0;
378
379         threads = kmalloc_array(nb_available_cpus, sizeof(*threads),
380                                 GFP_KERNEL);
381         if (!threads)
382                 return -ENOMEM;
383
384         /*
385          * Stop cpuidle to prevent the idle tasks from entering a deep sleep
386          * mode, as it might interfere with the suspend threads on other CPUs.
387          * This does not prevent the suspend threads from using cpuidle (only
388          * the idle tasks check this status). Take the idle lock so that
389          * the cpuidle driver and device look-up can be carried out safely.
390          */
391         cpuidle_pause_and_lock();
392
393         for_each_online_cpu(cpu) {
394                 struct task_struct *thread;
395                 /* Check that cpuidle is available on that CPU. */
396                 struct cpuidle_device *dev = per_cpu(cpuidle_devices, cpu);
397                 struct cpuidle_driver *drv = cpuidle_get_cpu_driver(dev);
398
399                 if (!dev || !drv) {
400                         pr_warn("cpuidle not available on CPU %d, ignoring\n",
401                                 cpu);
402                         continue;
403                 }
404
405                 thread = kthread_create_on_cpu(suspend_test_thread,
406                                                (void *)(long)cpu, cpu,
407                                                "psci_suspend_test");
408                 if (IS_ERR(thread))
409                         pr_err("Failed to create kthread on CPU %d\n", cpu);
410                 else
411                         threads[nb_threads++] = thread;
412         }
413
414         if (nb_threads < 1) {
415                 err = -ENODEV;
416                 goto out;
417         }
418
419         atomic_set(&nb_active_threads, nb_threads);
420
421         /*
422          * Wake up the suspend threads. To avoid the main thread being preempted
423          * before all the threads have been unparked, the suspend threads will
424          * wait for the completion of suspend_threads_started.
425          */
426         for (i = 0; i < nb_threads; ++i)
427                 wake_up_process(threads[i]);
428         complete_all(&suspend_threads_started);
429
430         wait_for_completion(&suspend_threads_done);
431
432
433         /* Stop and destroy all threads, get return status. */
434         for (i = 0; i < nb_threads; ++i) {
435                 err += kthread_park(threads[i]);
436                 err += kthread_stop(threads[i]);
437         }
438  out:
439         cpuidle_resume_and_unlock();
440         kfree(threads);
441         return err;
442 }
443
444 static int __init psci_checker(void)
445 {
446         int ret;
447
448         /*
449          * Since we're in an initcall, we assume that all the CPUs that all
450          * CPUs that can be onlined have been onlined.
451          *
452          * The tests assume that hotplug is enabled but nobody else is using it,
453          * otherwise the results will be unpredictable. However, since there
454          * is no userspace yet in initcalls, that should be fine, as long as
455          * no torture test is running at the same time (see Kconfig).
456          */
457         nb_available_cpus = num_online_cpus();
458
459         /* Check PSCI operations are set up and working. */
460         ret = psci_ops_check();
461         if (ret)
462                 return ret;
463
464         pr_info("PSCI checker started using %u CPUs\n", nb_available_cpus);
465
466         pr_info("Starting hotplug tests\n");
467         ret = hotplug_tests();
468         if (ret == 0)
469                 pr_info("Hotplug tests passed OK\n");
470         else if (ret > 0)
471                 pr_err("%d error(s) encountered in hotplug tests\n", ret);
472         else {
473                 pr_err("Out of memory\n");
474                 return ret;
475         }
476
477         pr_info("Starting suspend tests (%d cycles per state)\n",
478                 NUM_SUSPEND_CYCLE);
479         ret = suspend_tests();
480         if (ret == 0)
481                 pr_info("Suspend tests passed OK\n");
482         else if (ret > 0)
483                 pr_err("%d error(s) encountered in suspend tests\n", ret);
484         else {
485                 switch (ret) {
486                 case -ENOMEM:
487                         pr_err("Out of memory\n");
488                         break;
489                 case -ENODEV:
490                         pr_warn("Could not start suspend tests on any CPU\n");
491                         break;
492                 }
493         }
494
495         pr_info("PSCI checker completed\n");
496         return ret < 0 ? ret : 0;
497 }
498 late_initcall(psci_checker);