Merge tag 'sh-for-v6.6-tag1' of git://git.kernel.org/pub/scm/linux/kernel/git/glaubit...
[platform/kernel/linux-rpi.git] / drivers / firmware / efi / efi.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * efi.c - EFI subsystem
4  *
5  * Copyright (C) 2001,2003,2004 Dell <Matt_Domsch@dell.com>
6  * Copyright (C) 2004 Intel Corporation <matthew.e.tolentino@intel.com>
7  * Copyright (C) 2013 Tom Gundersen <teg@jklm.no>
8  *
9  * This code registers /sys/firmware/efi{,/efivars} when EFI is supported,
10  * allowing the efivarfs to be mounted or the efivars module to be loaded.
11  * The existance of /sys/firmware/efi may also be used by userspace to
12  * determine that the system supports EFI.
13  */
14
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16
17 #include <linux/kobject.h>
18 #include <linux/module.h>
19 #include <linux/init.h>
20 #include <linux/debugfs.h>
21 #include <linux/device.h>
22 #include <linux/efi.h>
23 #include <linux/of.h>
24 #include <linux/initrd.h>
25 #include <linux/io.h>
26 #include <linux/kexec.h>
27 #include <linux/platform_device.h>
28 #include <linux/random.h>
29 #include <linux/reboot.h>
30 #include <linux/slab.h>
31 #include <linux/acpi.h>
32 #include <linux/ucs2_string.h>
33 #include <linux/memblock.h>
34 #include <linux/security.h>
35
36 #include <asm/early_ioremap.h>
37
38 struct efi __read_mostly efi = {
39         .runtime_supported_mask = EFI_RT_SUPPORTED_ALL,
40         .acpi                   = EFI_INVALID_TABLE_ADDR,
41         .acpi20                 = EFI_INVALID_TABLE_ADDR,
42         .smbios                 = EFI_INVALID_TABLE_ADDR,
43         .smbios3                = EFI_INVALID_TABLE_ADDR,
44         .esrt                   = EFI_INVALID_TABLE_ADDR,
45         .tpm_log                = EFI_INVALID_TABLE_ADDR,
46         .tpm_final_log          = EFI_INVALID_TABLE_ADDR,
47 #ifdef CONFIG_LOAD_UEFI_KEYS
48         .mokvar_table           = EFI_INVALID_TABLE_ADDR,
49 #endif
50 #ifdef CONFIG_EFI_COCO_SECRET
51         .coco_secret            = EFI_INVALID_TABLE_ADDR,
52 #endif
53 #ifdef CONFIG_UNACCEPTED_MEMORY
54         .unaccepted             = EFI_INVALID_TABLE_ADDR,
55 #endif
56 };
57 EXPORT_SYMBOL(efi);
58
59 unsigned long __ro_after_init efi_rng_seed = EFI_INVALID_TABLE_ADDR;
60 static unsigned long __initdata mem_reserve = EFI_INVALID_TABLE_ADDR;
61 static unsigned long __initdata rt_prop = EFI_INVALID_TABLE_ADDR;
62 static unsigned long __initdata initrd = EFI_INVALID_TABLE_ADDR;
63
64 extern unsigned long screen_info_table;
65
66 struct mm_struct efi_mm = {
67         .mm_mt                  = MTREE_INIT_EXT(mm_mt, MM_MT_FLAGS, efi_mm.mmap_lock),
68         .mm_users               = ATOMIC_INIT(2),
69         .mm_count               = ATOMIC_INIT(1),
70         .write_protect_seq      = SEQCNT_ZERO(efi_mm.write_protect_seq),
71         MMAP_LOCK_INITIALIZER(efi_mm)
72         .page_table_lock        = __SPIN_LOCK_UNLOCKED(efi_mm.page_table_lock),
73         .mmlist                 = LIST_HEAD_INIT(efi_mm.mmlist),
74         .cpu_bitmap             = { [BITS_TO_LONGS(NR_CPUS)] = 0},
75 };
76
77 struct workqueue_struct *efi_rts_wq;
78
79 static bool disable_runtime = IS_ENABLED(CONFIG_EFI_DISABLE_RUNTIME);
80 static int __init setup_noefi(char *arg)
81 {
82         disable_runtime = true;
83         return 0;
84 }
85 early_param("noefi", setup_noefi);
86
87 bool efi_runtime_disabled(void)
88 {
89         return disable_runtime;
90 }
91
92 bool __pure __efi_soft_reserve_enabled(void)
93 {
94         return !efi_enabled(EFI_MEM_NO_SOFT_RESERVE);
95 }
96
97 static int __init parse_efi_cmdline(char *str)
98 {
99         if (!str) {
100                 pr_warn("need at least one option\n");
101                 return -EINVAL;
102         }
103
104         if (parse_option_str(str, "debug"))
105                 set_bit(EFI_DBG, &efi.flags);
106
107         if (parse_option_str(str, "noruntime"))
108                 disable_runtime = true;
109
110         if (parse_option_str(str, "runtime"))
111                 disable_runtime = false;
112
113         if (parse_option_str(str, "nosoftreserve"))
114                 set_bit(EFI_MEM_NO_SOFT_RESERVE, &efi.flags);
115
116         return 0;
117 }
118 early_param("efi", parse_efi_cmdline);
119
120 struct kobject *efi_kobj;
121
122 /*
123  * Let's not leave out systab information that snuck into
124  * the efivars driver
125  * Note, do not add more fields in systab sysfs file as it breaks sysfs
126  * one value per file rule!
127  */
128 static ssize_t systab_show(struct kobject *kobj,
129                            struct kobj_attribute *attr, char *buf)
130 {
131         char *str = buf;
132
133         if (!kobj || !buf)
134                 return -EINVAL;
135
136         if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
137                 str += sprintf(str, "ACPI20=0x%lx\n", efi.acpi20);
138         if (efi.acpi != EFI_INVALID_TABLE_ADDR)
139                 str += sprintf(str, "ACPI=0x%lx\n", efi.acpi);
140         /*
141          * If both SMBIOS and SMBIOS3 entry points are implemented, the
142          * SMBIOS3 entry point shall be preferred, so we list it first to
143          * let applications stop parsing after the first match.
144          */
145         if (efi.smbios3 != EFI_INVALID_TABLE_ADDR)
146                 str += sprintf(str, "SMBIOS3=0x%lx\n", efi.smbios3);
147         if (efi.smbios != EFI_INVALID_TABLE_ADDR)
148                 str += sprintf(str, "SMBIOS=0x%lx\n", efi.smbios);
149
150         if (IS_ENABLED(CONFIG_IA64) || IS_ENABLED(CONFIG_X86))
151                 str = efi_systab_show_arch(str);
152
153         return str - buf;
154 }
155
156 static struct kobj_attribute efi_attr_systab = __ATTR_RO_MODE(systab, 0400);
157
158 static ssize_t fw_platform_size_show(struct kobject *kobj,
159                                      struct kobj_attribute *attr, char *buf)
160 {
161         return sprintf(buf, "%d\n", efi_enabled(EFI_64BIT) ? 64 : 32);
162 }
163
164 extern __weak struct kobj_attribute efi_attr_fw_vendor;
165 extern __weak struct kobj_attribute efi_attr_runtime;
166 extern __weak struct kobj_attribute efi_attr_config_table;
167 static struct kobj_attribute efi_attr_fw_platform_size =
168         __ATTR_RO(fw_platform_size);
169
170 static struct attribute *efi_subsys_attrs[] = {
171         &efi_attr_systab.attr,
172         &efi_attr_fw_platform_size.attr,
173         &efi_attr_fw_vendor.attr,
174         &efi_attr_runtime.attr,
175         &efi_attr_config_table.attr,
176         NULL,
177 };
178
179 umode_t __weak efi_attr_is_visible(struct kobject *kobj, struct attribute *attr,
180                                    int n)
181 {
182         return attr->mode;
183 }
184
185 static const struct attribute_group efi_subsys_attr_group = {
186         .attrs = efi_subsys_attrs,
187         .is_visible = efi_attr_is_visible,
188 };
189
190 static struct efivars generic_efivars;
191 static struct efivar_operations generic_ops;
192
193 static bool generic_ops_supported(void)
194 {
195         unsigned long name_size;
196         efi_status_t status;
197         efi_char16_t name;
198         efi_guid_t guid;
199
200         name_size = sizeof(name);
201
202         status = efi.get_next_variable(&name_size, &name, &guid);
203         if (status == EFI_UNSUPPORTED)
204                 return false;
205
206         return true;
207 }
208
209 static int generic_ops_register(void)
210 {
211         if (!generic_ops_supported())
212                 return 0;
213
214         generic_ops.get_variable = efi.get_variable;
215         generic_ops.get_next_variable = efi.get_next_variable;
216         generic_ops.query_variable_store = efi_query_variable_store;
217         generic_ops.query_variable_info = efi.query_variable_info;
218
219         if (efi_rt_services_supported(EFI_RT_SUPPORTED_SET_VARIABLE)) {
220                 generic_ops.set_variable = efi.set_variable;
221                 generic_ops.set_variable_nonblocking = efi.set_variable_nonblocking;
222         }
223         return efivars_register(&generic_efivars, &generic_ops);
224 }
225
226 static void generic_ops_unregister(void)
227 {
228         if (!generic_ops.get_variable)
229                 return;
230
231         efivars_unregister(&generic_efivars);
232 }
233
234 #ifdef CONFIG_EFI_CUSTOM_SSDT_OVERLAYS
235 #define EFIVAR_SSDT_NAME_MAX    16UL
236 static char efivar_ssdt[EFIVAR_SSDT_NAME_MAX] __initdata;
237 static int __init efivar_ssdt_setup(char *str)
238 {
239         int ret = security_locked_down(LOCKDOWN_ACPI_TABLES);
240
241         if (ret)
242                 return ret;
243
244         if (strlen(str) < sizeof(efivar_ssdt))
245                 memcpy(efivar_ssdt, str, strlen(str));
246         else
247                 pr_warn("efivar_ssdt: name too long: %s\n", str);
248         return 1;
249 }
250 __setup("efivar_ssdt=", efivar_ssdt_setup);
251
252 static __init int efivar_ssdt_load(void)
253 {
254         unsigned long name_size = 256;
255         efi_char16_t *name = NULL;
256         efi_status_t status;
257         efi_guid_t guid;
258
259         if (!efivar_ssdt[0])
260                 return 0;
261
262         name = kzalloc(name_size, GFP_KERNEL);
263         if (!name)
264                 return -ENOMEM;
265
266         for (;;) {
267                 char utf8_name[EFIVAR_SSDT_NAME_MAX];
268                 unsigned long data_size = 0;
269                 void *data;
270                 int limit;
271
272                 status = efi.get_next_variable(&name_size, name, &guid);
273                 if (status == EFI_NOT_FOUND) {
274                         break;
275                 } else if (status == EFI_BUFFER_TOO_SMALL) {
276                         name = krealloc(name, name_size, GFP_KERNEL);
277                         if (!name)
278                                 return -ENOMEM;
279                         continue;
280                 }
281
282                 limit = min(EFIVAR_SSDT_NAME_MAX, name_size);
283                 ucs2_as_utf8(utf8_name, name, limit - 1);
284                 if (strncmp(utf8_name, efivar_ssdt, limit) != 0)
285                         continue;
286
287                 pr_info("loading SSDT from variable %s-%pUl\n", efivar_ssdt, &guid);
288
289                 status = efi.get_variable(name, &guid, NULL, &data_size, NULL);
290                 if (status != EFI_BUFFER_TOO_SMALL || !data_size)
291                         return -EIO;
292
293                 data = kmalloc(data_size, GFP_KERNEL);
294                 if (!data)
295                         return -ENOMEM;
296
297                 status = efi.get_variable(name, &guid, NULL, &data_size, data);
298                 if (status == EFI_SUCCESS) {
299                         acpi_status ret = acpi_load_table(data, NULL);
300                         if (ret)
301                                 pr_err("failed to load table: %u\n", ret);
302                         else
303                                 continue;
304                 } else {
305                         pr_err("failed to get var data: 0x%lx\n", status);
306                 }
307                 kfree(data);
308         }
309         return 0;
310 }
311 #else
312 static inline int efivar_ssdt_load(void) { return 0; }
313 #endif
314
315 #ifdef CONFIG_DEBUG_FS
316
317 #define EFI_DEBUGFS_MAX_BLOBS 32
318
319 static struct debugfs_blob_wrapper debugfs_blob[EFI_DEBUGFS_MAX_BLOBS];
320
321 static void __init efi_debugfs_init(void)
322 {
323         struct dentry *efi_debugfs;
324         efi_memory_desc_t *md;
325         char name[32];
326         int type_count[EFI_BOOT_SERVICES_DATA + 1] = {};
327         int i = 0;
328
329         efi_debugfs = debugfs_create_dir("efi", NULL);
330         if (IS_ERR_OR_NULL(efi_debugfs))
331                 return;
332
333         for_each_efi_memory_desc(md) {
334                 switch (md->type) {
335                 case EFI_BOOT_SERVICES_CODE:
336                         snprintf(name, sizeof(name), "boot_services_code%d",
337                                  type_count[md->type]++);
338                         break;
339                 case EFI_BOOT_SERVICES_DATA:
340                         snprintf(name, sizeof(name), "boot_services_data%d",
341                                  type_count[md->type]++);
342                         break;
343                 default:
344                         continue;
345                 }
346
347                 if (i >= EFI_DEBUGFS_MAX_BLOBS) {
348                         pr_warn("More then %d EFI boot service segments, only showing first %d in debugfs\n",
349                                 EFI_DEBUGFS_MAX_BLOBS, EFI_DEBUGFS_MAX_BLOBS);
350                         break;
351                 }
352
353                 debugfs_blob[i].size = md->num_pages << EFI_PAGE_SHIFT;
354                 debugfs_blob[i].data = memremap(md->phys_addr,
355                                                 debugfs_blob[i].size,
356                                                 MEMREMAP_WB);
357                 if (!debugfs_blob[i].data)
358                         continue;
359
360                 debugfs_create_blob(name, 0400, efi_debugfs, &debugfs_blob[i]);
361                 i++;
362         }
363 }
364 #else
365 static inline void efi_debugfs_init(void) {}
366 #endif
367
368 /*
369  * We register the efi subsystem with the firmware subsystem and the
370  * efivars subsystem with the efi subsystem, if the system was booted with
371  * EFI.
372  */
373 static int __init efisubsys_init(void)
374 {
375         int error;
376
377         if (!efi_enabled(EFI_RUNTIME_SERVICES))
378                 efi.runtime_supported_mask = 0;
379
380         if (!efi_enabled(EFI_BOOT))
381                 return 0;
382
383         if (efi.runtime_supported_mask) {
384                 /*
385                  * Since we process only one efi_runtime_service() at a time, an
386                  * ordered workqueue (which creates only one execution context)
387                  * should suffice for all our needs.
388                  */
389                 efi_rts_wq = alloc_ordered_workqueue("efi_rts_wq", 0);
390                 if (!efi_rts_wq) {
391                         pr_err("Creating efi_rts_wq failed, EFI runtime services disabled.\n");
392                         clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
393                         efi.runtime_supported_mask = 0;
394                         return 0;
395                 }
396         }
397
398         if (efi_rt_services_supported(EFI_RT_SUPPORTED_TIME_SERVICES))
399                 platform_device_register_simple("rtc-efi", 0, NULL, 0);
400
401         /* We register the efi directory at /sys/firmware/efi */
402         efi_kobj = kobject_create_and_add("efi", firmware_kobj);
403         if (!efi_kobj) {
404                 pr_err("efi: Firmware registration failed.\n");
405                 error = -ENOMEM;
406                 goto err_destroy_wq;
407         }
408
409         if (efi_rt_services_supported(EFI_RT_SUPPORTED_GET_VARIABLE |
410                                       EFI_RT_SUPPORTED_GET_NEXT_VARIABLE_NAME)) {
411                 error = generic_ops_register();
412                 if (error)
413                         goto err_put;
414                 efivar_ssdt_load();
415                 platform_device_register_simple("efivars", 0, NULL, 0);
416         }
417
418         error = sysfs_create_group(efi_kobj, &efi_subsys_attr_group);
419         if (error) {
420                 pr_err("efi: Sysfs attribute export failed with error %d.\n",
421                        error);
422                 goto err_unregister;
423         }
424
425         /* and the standard mountpoint for efivarfs */
426         error = sysfs_create_mount_point(efi_kobj, "efivars");
427         if (error) {
428                 pr_err("efivars: Subsystem registration failed.\n");
429                 goto err_remove_group;
430         }
431
432         if (efi_enabled(EFI_DBG) && efi_enabled(EFI_PRESERVE_BS_REGIONS))
433                 efi_debugfs_init();
434
435 #ifdef CONFIG_EFI_COCO_SECRET
436         if (efi.coco_secret != EFI_INVALID_TABLE_ADDR)
437                 platform_device_register_simple("efi_secret", 0, NULL, 0);
438 #endif
439
440         return 0;
441
442 err_remove_group:
443         sysfs_remove_group(efi_kobj, &efi_subsys_attr_group);
444 err_unregister:
445         if (efi_rt_services_supported(EFI_RT_SUPPORTED_GET_VARIABLE |
446                                       EFI_RT_SUPPORTED_GET_NEXT_VARIABLE_NAME))
447                 generic_ops_unregister();
448 err_put:
449         kobject_put(efi_kobj);
450         efi_kobj = NULL;
451 err_destroy_wq:
452         if (efi_rts_wq)
453                 destroy_workqueue(efi_rts_wq);
454
455         return error;
456 }
457
458 subsys_initcall(efisubsys_init);
459
460 void __init efi_find_mirror(void)
461 {
462         efi_memory_desc_t *md;
463         u64 mirror_size = 0, total_size = 0;
464
465         if (!efi_enabled(EFI_MEMMAP))
466                 return;
467
468         for_each_efi_memory_desc(md) {
469                 unsigned long long start = md->phys_addr;
470                 unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
471
472                 total_size += size;
473                 if (md->attribute & EFI_MEMORY_MORE_RELIABLE) {
474                         memblock_mark_mirror(start, size);
475                         mirror_size += size;
476                 }
477         }
478         if (mirror_size)
479                 pr_info("Memory: %lldM/%lldM mirrored memory\n",
480                         mirror_size>>20, total_size>>20);
481 }
482
483 /*
484  * Find the efi memory descriptor for a given physical address.  Given a
485  * physical address, determine if it exists within an EFI Memory Map entry,
486  * and if so, populate the supplied memory descriptor with the appropriate
487  * data.
488  */
489 int __efi_mem_desc_lookup(u64 phys_addr, efi_memory_desc_t *out_md)
490 {
491         efi_memory_desc_t *md;
492
493         if (!efi_enabled(EFI_MEMMAP)) {
494                 pr_err_once("EFI_MEMMAP is not enabled.\n");
495                 return -EINVAL;
496         }
497
498         if (!out_md) {
499                 pr_err_once("out_md is null.\n");
500                 return -EINVAL;
501         }
502
503         for_each_efi_memory_desc(md) {
504                 u64 size;
505                 u64 end;
506
507                 /* skip bogus entries (including empty ones) */
508                 if ((md->phys_addr & (EFI_PAGE_SIZE - 1)) ||
509                     (md->num_pages <= 0) ||
510                     (md->num_pages > (U64_MAX - md->phys_addr) >> EFI_PAGE_SHIFT))
511                         continue;
512
513                 size = md->num_pages << EFI_PAGE_SHIFT;
514                 end = md->phys_addr + size;
515                 if (phys_addr >= md->phys_addr && phys_addr < end) {
516                         memcpy(out_md, md, sizeof(*out_md));
517                         return 0;
518                 }
519         }
520         return -ENOENT;
521 }
522
523 extern int efi_mem_desc_lookup(u64 phys_addr, efi_memory_desc_t *out_md)
524         __weak __alias(__efi_mem_desc_lookup);
525
526 /*
527  * Calculate the highest address of an efi memory descriptor.
528  */
529 u64 __init efi_mem_desc_end(efi_memory_desc_t *md)
530 {
531         u64 size = md->num_pages << EFI_PAGE_SHIFT;
532         u64 end = md->phys_addr + size;
533         return end;
534 }
535
536 void __init __weak efi_arch_mem_reserve(phys_addr_t addr, u64 size) {}
537
538 /**
539  * efi_mem_reserve - Reserve an EFI memory region
540  * @addr: Physical address to reserve
541  * @size: Size of reservation
542  *
543  * Mark a region as reserved from general kernel allocation and
544  * prevent it being released by efi_free_boot_services().
545  *
546  * This function should be called drivers once they've parsed EFI
547  * configuration tables to figure out where their data lives, e.g.
548  * efi_esrt_init().
549  */
550 void __init efi_mem_reserve(phys_addr_t addr, u64 size)
551 {
552         /* efi_mem_reserve() does not work under Xen */
553         if (WARN_ON_ONCE(efi_enabled(EFI_PARAVIRT)))
554                 return;
555
556         if (!memblock_is_region_reserved(addr, size))
557                 memblock_reserve(addr, size);
558
559         /*
560          * Some architectures (x86) reserve all boot services ranges
561          * until efi_free_boot_services() because of buggy firmware
562          * implementations. This means the above memblock_reserve() is
563          * superfluous on x86 and instead what it needs to do is
564          * ensure the @start, @size is not freed.
565          */
566         efi_arch_mem_reserve(addr, size);
567 }
568
569 static const efi_config_table_type_t common_tables[] __initconst = {
570         {ACPI_20_TABLE_GUID,                    &efi.acpi20,            "ACPI 2.0"      },
571         {ACPI_TABLE_GUID,                       &efi.acpi,              "ACPI"          },
572         {SMBIOS_TABLE_GUID,                     &efi.smbios,            "SMBIOS"        },
573         {SMBIOS3_TABLE_GUID,                    &efi.smbios3,           "SMBIOS 3.0"    },
574         {EFI_SYSTEM_RESOURCE_TABLE_GUID,        &efi.esrt,              "ESRT"          },
575         {EFI_MEMORY_ATTRIBUTES_TABLE_GUID,      &efi_mem_attr_table,    "MEMATTR"       },
576         {LINUX_EFI_RANDOM_SEED_TABLE_GUID,      &efi_rng_seed,          "RNG"           },
577         {LINUX_EFI_TPM_EVENT_LOG_GUID,          &efi.tpm_log,           "TPMEventLog"   },
578         {LINUX_EFI_TPM_FINAL_LOG_GUID,          &efi.tpm_final_log,     "TPMFinalLog"   },
579         {LINUX_EFI_MEMRESERVE_TABLE_GUID,       &mem_reserve,           "MEMRESERVE"    },
580         {LINUX_EFI_INITRD_MEDIA_GUID,           &initrd,                "INITRD"        },
581         {EFI_RT_PROPERTIES_TABLE_GUID,          &rt_prop,               "RTPROP"        },
582 #ifdef CONFIG_EFI_RCI2_TABLE
583         {DELLEMC_EFI_RCI2_TABLE_GUID,           &rci2_table_phys                        },
584 #endif
585 #ifdef CONFIG_LOAD_UEFI_KEYS
586         {LINUX_EFI_MOK_VARIABLE_TABLE_GUID,     &efi.mokvar_table,      "MOKvar"        },
587 #endif
588 #ifdef CONFIG_EFI_COCO_SECRET
589         {LINUX_EFI_COCO_SECRET_AREA_GUID,       &efi.coco_secret,       "CocoSecret"    },
590 #endif
591 #ifdef CONFIG_UNACCEPTED_MEMORY
592         {LINUX_EFI_UNACCEPTED_MEM_TABLE_GUID,   &efi.unaccepted,        "Unaccepted"    },
593 #endif
594 #ifdef CONFIG_EFI_GENERIC_STUB
595         {LINUX_EFI_SCREEN_INFO_TABLE_GUID,      &screen_info_table                      },
596 #endif
597         {},
598 };
599
600 static __init int match_config_table(const efi_guid_t *guid,
601                                      unsigned long table,
602                                      const efi_config_table_type_t *table_types)
603 {
604         int i;
605
606         for (i = 0; efi_guidcmp(table_types[i].guid, NULL_GUID); i++) {
607                 if (efi_guidcmp(*guid, table_types[i].guid))
608                         continue;
609
610                 if (!efi_config_table_is_usable(guid, table)) {
611                         if (table_types[i].name[0])
612                                 pr_cont("(%s=0x%lx unusable) ",
613                                         table_types[i].name, table);
614                         return 1;
615                 }
616
617                 *(table_types[i].ptr) = table;
618                 if (table_types[i].name[0])
619                         pr_cont("%s=0x%lx ", table_types[i].name, table);
620                 return 1;
621         }
622
623         return 0;
624 }
625
626 int __init efi_config_parse_tables(const efi_config_table_t *config_tables,
627                                    int count,
628                                    const efi_config_table_type_t *arch_tables)
629 {
630         const efi_config_table_64_t *tbl64 = (void *)config_tables;
631         const efi_config_table_32_t *tbl32 = (void *)config_tables;
632         const efi_guid_t *guid;
633         unsigned long table;
634         int i;
635
636         pr_info("");
637         for (i = 0; i < count; i++) {
638                 if (!IS_ENABLED(CONFIG_X86)) {
639                         guid = &config_tables[i].guid;
640                         table = (unsigned long)config_tables[i].table;
641                 } else if (efi_enabled(EFI_64BIT)) {
642                         guid = &tbl64[i].guid;
643                         table = tbl64[i].table;
644
645                         if (IS_ENABLED(CONFIG_X86_32) &&
646                             tbl64[i].table > U32_MAX) {
647                                 pr_cont("\n");
648                                 pr_err("Table located above 4GB, disabling EFI.\n");
649                                 return -EINVAL;
650                         }
651                 } else {
652                         guid = &tbl32[i].guid;
653                         table = tbl32[i].table;
654                 }
655
656                 if (!match_config_table(guid, table, common_tables) && arch_tables)
657                         match_config_table(guid, table, arch_tables);
658         }
659         pr_cont("\n");
660         set_bit(EFI_CONFIG_TABLES, &efi.flags);
661
662         if (efi_rng_seed != EFI_INVALID_TABLE_ADDR) {
663                 struct linux_efi_random_seed *seed;
664                 u32 size = 0;
665
666                 seed = early_memremap(efi_rng_seed, sizeof(*seed));
667                 if (seed != NULL) {
668                         size = min_t(u32, seed->size, SZ_1K); // sanity check
669                         early_memunmap(seed, sizeof(*seed));
670                 } else {
671                         pr_err("Could not map UEFI random seed!\n");
672                 }
673                 if (size > 0) {
674                         seed = early_memremap(efi_rng_seed,
675                                               sizeof(*seed) + size);
676                         if (seed != NULL) {
677                                 add_bootloader_randomness(seed->bits, size);
678                                 memzero_explicit(seed->bits, size);
679                                 early_memunmap(seed, sizeof(*seed) + size);
680                         } else {
681                                 pr_err("Could not map UEFI random seed!\n");
682                         }
683                 }
684         }
685
686         if (!IS_ENABLED(CONFIG_X86_32) && efi_enabled(EFI_MEMMAP))
687                 efi_memattr_init();
688
689         efi_tpm_eventlog_init();
690
691         if (mem_reserve != EFI_INVALID_TABLE_ADDR) {
692                 unsigned long prsv = mem_reserve;
693
694                 while (prsv) {
695                         struct linux_efi_memreserve *rsv;
696                         u8 *p;
697
698                         /*
699                          * Just map a full page: that is what we will get
700                          * anyway, and it permits us to map the entire entry
701                          * before knowing its size.
702                          */
703                         p = early_memremap(ALIGN_DOWN(prsv, PAGE_SIZE),
704                                            PAGE_SIZE);
705                         if (p == NULL) {
706                                 pr_err("Could not map UEFI memreserve entry!\n");
707                                 return -ENOMEM;
708                         }
709
710                         rsv = (void *)(p + prsv % PAGE_SIZE);
711
712                         /* reserve the entry itself */
713                         memblock_reserve(prsv,
714                                          struct_size(rsv, entry, rsv->size));
715
716                         for (i = 0; i < atomic_read(&rsv->count); i++) {
717                                 memblock_reserve(rsv->entry[i].base,
718                                                  rsv->entry[i].size);
719                         }
720
721                         prsv = rsv->next;
722                         early_memunmap(p, PAGE_SIZE);
723                 }
724         }
725
726         if (rt_prop != EFI_INVALID_TABLE_ADDR) {
727                 efi_rt_properties_table_t *tbl;
728
729                 tbl = early_memremap(rt_prop, sizeof(*tbl));
730                 if (tbl) {
731                         efi.runtime_supported_mask &= tbl->runtime_services_supported;
732                         early_memunmap(tbl, sizeof(*tbl));
733                 }
734         }
735
736         if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) &&
737             initrd != EFI_INVALID_TABLE_ADDR && phys_initrd_size == 0) {
738                 struct linux_efi_initrd *tbl;
739
740                 tbl = early_memremap(initrd, sizeof(*tbl));
741                 if (tbl) {
742                         phys_initrd_start = tbl->base;
743                         phys_initrd_size = tbl->size;
744                         early_memunmap(tbl, sizeof(*tbl));
745                 }
746         }
747
748         if (IS_ENABLED(CONFIG_UNACCEPTED_MEMORY) &&
749             efi.unaccepted != EFI_INVALID_TABLE_ADDR) {
750                 struct efi_unaccepted_memory *unaccepted;
751
752                 unaccepted = early_memremap(efi.unaccepted, sizeof(*unaccepted));
753                 if (unaccepted) {
754                         unsigned long size;
755
756                         if (unaccepted->version == 1) {
757                                 size = sizeof(*unaccepted) + unaccepted->size;
758                                 memblock_reserve(efi.unaccepted, size);
759                         } else {
760                                 efi.unaccepted = EFI_INVALID_TABLE_ADDR;
761                         }
762
763                         early_memunmap(unaccepted, sizeof(*unaccepted));
764                 }
765         }
766
767         return 0;
768 }
769
770 int __init efi_systab_check_header(const efi_table_hdr_t *systab_hdr)
771 {
772         if (systab_hdr->signature != EFI_SYSTEM_TABLE_SIGNATURE) {
773                 pr_err("System table signature incorrect!\n");
774                 return -EINVAL;
775         }
776
777         return 0;
778 }
779
780 #ifndef CONFIG_IA64
781 static const efi_char16_t *__init map_fw_vendor(unsigned long fw_vendor,
782                                                 size_t size)
783 {
784         const efi_char16_t *ret;
785
786         ret = early_memremap_ro(fw_vendor, size);
787         if (!ret)
788                 pr_err("Could not map the firmware vendor!\n");
789         return ret;
790 }
791
792 static void __init unmap_fw_vendor(const void *fw_vendor, size_t size)
793 {
794         early_memunmap((void *)fw_vendor, size);
795 }
796 #else
797 #define map_fw_vendor(p, s)     __va(p)
798 #define unmap_fw_vendor(v, s)
799 #endif
800
801 void __init efi_systab_report_header(const efi_table_hdr_t *systab_hdr,
802                                      unsigned long fw_vendor)
803 {
804         char vendor[100] = "unknown";
805         const efi_char16_t *c16;
806         size_t i;
807         u16 rev;
808
809         c16 = map_fw_vendor(fw_vendor, sizeof(vendor) * sizeof(efi_char16_t));
810         if (c16) {
811                 for (i = 0; i < sizeof(vendor) - 1 && c16[i]; ++i)
812                         vendor[i] = c16[i];
813                 vendor[i] = '\0';
814
815                 unmap_fw_vendor(c16, sizeof(vendor) * sizeof(efi_char16_t));
816         }
817
818         rev = (u16)systab_hdr->revision;
819         pr_info("EFI v%u.%u", systab_hdr->revision >> 16, rev / 10);
820
821         rev %= 10;
822         if (rev)
823                 pr_cont(".%u", rev);
824
825         pr_cont(" by %s\n", vendor);
826
827         if (IS_ENABLED(CONFIG_X86_64) &&
828             systab_hdr->revision > EFI_1_10_SYSTEM_TABLE_REVISION &&
829             !strcmp(vendor, "Apple")) {
830                 pr_info("Apple Mac detected, using EFI v1.10 runtime services only\n");
831                 efi.runtime_version = EFI_1_10_SYSTEM_TABLE_REVISION;
832         }
833 }
834
835 static __initdata char memory_type_name[][13] = {
836         "Reserved",
837         "Loader Code",
838         "Loader Data",
839         "Boot Code",
840         "Boot Data",
841         "Runtime Code",
842         "Runtime Data",
843         "Conventional",
844         "Unusable",
845         "ACPI Reclaim",
846         "ACPI Mem NVS",
847         "MMIO",
848         "MMIO Port",
849         "PAL Code",
850         "Persistent",
851         "Unaccepted",
852 };
853
854 char * __init efi_md_typeattr_format(char *buf, size_t size,
855                                      const efi_memory_desc_t *md)
856 {
857         char *pos;
858         int type_len;
859         u64 attr;
860
861         pos = buf;
862         if (md->type >= ARRAY_SIZE(memory_type_name))
863                 type_len = snprintf(pos, size, "[type=%u", md->type);
864         else
865                 type_len = snprintf(pos, size, "[%-*s",
866                                     (int)(sizeof(memory_type_name[0]) - 1),
867                                     memory_type_name[md->type]);
868         if (type_len >= size)
869                 return buf;
870
871         pos += type_len;
872         size -= type_len;
873
874         attr = md->attribute;
875         if (attr & ~(EFI_MEMORY_UC | EFI_MEMORY_WC | EFI_MEMORY_WT |
876                      EFI_MEMORY_WB | EFI_MEMORY_UCE | EFI_MEMORY_RO |
877                      EFI_MEMORY_WP | EFI_MEMORY_RP | EFI_MEMORY_XP |
878                      EFI_MEMORY_NV | EFI_MEMORY_SP | EFI_MEMORY_CPU_CRYPTO |
879                      EFI_MEMORY_RUNTIME | EFI_MEMORY_MORE_RELIABLE))
880                 snprintf(pos, size, "|attr=0x%016llx]",
881                          (unsigned long long)attr);
882         else
883                 snprintf(pos, size,
884                          "|%3s|%2s|%2s|%2s|%2s|%2s|%2s|%2s|%2s|%3s|%2s|%2s|%2s|%2s]",
885                          attr & EFI_MEMORY_RUNTIME              ? "RUN" : "",
886                          attr & EFI_MEMORY_MORE_RELIABLE        ? "MR"  : "",
887                          attr & EFI_MEMORY_CPU_CRYPTO           ? "CC"  : "",
888                          attr & EFI_MEMORY_SP                   ? "SP"  : "",
889                          attr & EFI_MEMORY_NV                   ? "NV"  : "",
890                          attr & EFI_MEMORY_XP                   ? "XP"  : "",
891                          attr & EFI_MEMORY_RP                   ? "RP"  : "",
892                          attr & EFI_MEMORY_WP                   ? "WP"  : "",
893                          attr & EFI_MEMORY_RO                   ? "RO"  : "",
894                          attr & EFI_MEMORY_UCE                  ? "UCE" : "",
895                          attr & EFI_MEMORY_WB                   ? "WB"  : "",
896                          attr & EFI_MEMORY_WT                   ? "WT"  : "",
897                          attr & EFI_MEMORY_WC                   ? "WC"  : "",
898                          attr & EFI_MEMORY_UC                   ? "UC"  : "");
899         return buf;
900 }
901
902 /*
903  * IA64 has a funky EFI memory map that doesn't work the same way as
904  * other architectures.
905  */
906 #ifndef CONFIG_IA64
907 /*
908  * efi_mem_attributes - lookup memmap attributes for physical address
909  * @phys_addr: the physical address to lookup
910  *
911  * Search in the EFI memory map for the region covering
912  * @phys_addr. Returns the EFI memory attributes if the region
913  * was found in the memory map, 0 otherwise.
914  */
915 u64 efi_mem_attributes(unsigned long phys_addr)
916 {
917         efi_memory_desc_t *md;
918
919         if (!efi_enabled(EFI_MEMMAP))
920                 return 0;
921
922         for_each_efi_memory_desc(md) {
923                 if ((md->phys_addr <= phys_addr) &&
924                     (phys_addr < (md->phys_addr +
925                     (md->num_pages << EFI_PAGE_SHIFT))))
926                         return md->attribute;
927         }
928         return 0;
929 }
930
931 /*
932  * efi_mem_type - lookup memmap type for physical address
933  * @phys_addr: the physical address to lookup
934  *
935  * Search in the EFI memory map for the region covering @phys_addr.
936  * Returns the EFI memory type if the region was found in the memory
937  * map, -EINVAL otherwise.
938  */
939 int efi_mem_type(unsigned long phys_addr)
940 {
941         const efi_memory_desc_t *md;
942
943         if (!efi_enabled(EFI_MEMMAP))
944                 return -ENOTSUPP;
945
946         for_each_efi_memory_desc(md) {
947                 if ((md->phys_addr <= phys_addr) &&
948                     (phys_addr < (md->phys_addr +
949                                   (md->num_pages << EFI_PAGE_SHIFT))))
950                         return md->type;
951         }
952         return -EINVAL;
953 }
954 #endif
955
956 int efi_status_to_err(efi_status_t status)
957 {
958         int err;
959
960         switch (status) {
961         case EFI_SUCCESS:
962                 err = 0;
963                 break;
964         case EFI_INVALID_PARAMETER:
965                 err = -EINVAL;
966                 break;
967         case EFI_OUT_OF_RESOURCES:
968                 err = -ENOSPC;
969                 break;
970         case EFI_DEVICE_ERROR:
971                 err = -EIO;
972                 break;
973         case EFI_WRITE_PROTECTED:
974                 err = -EROFS;
975                 break;
976         case EFI_SECURITY_VIOLATION:
977                 err = -EACCES;
978                 break;
979         case EFI_NOT_FOUND:
980                 err = -ENOENT;
981                 break;
982         case EFI_ABORTED:
983                 err = -EINTR;
984                 break;
985         default:
986                 err = -EINVAL;
987         }
988
989         return err;
990 }
991 EXPORT_SYMBOL_GPL(efi_status_to_err);
992
993 static DEFINE_SPINLOCK(efi_mem_reserve_persistent_lock);
994 static struct linux_efi_memreserve *efi_memreserve_root __ro_after_init;
995
996 static int __init efi_memreserve_map_root(void)
997 {
998         if (mem_reserve == EFI_INVALID_TABLE_ADDR)
999                 return -ENODEV;
1000
1001         efi_memreserve_root = memremap(mem_reserve,
1002                                        sizeof(*efi_memreserve_root),
1003                                        MEMREMAP_WB);
1004         if (WARN_ON_ONCE(!efi_memreserve_root))
1005                 return -ENOMEM;
1006         return 0;
1007 }
1008
1009 static int efi_mem_reserve_iomem(phys_addr_t addr, u64 size)
1010 {
1011         struct resource *res, *parent;
1012         int ret;
1013
1014         res = kzalloc(sizeof(struct resource), GFP_ATOMIC);
1015         if (!res)
1016                 return -ENOMEM;
1017
1018         res->name       = "reserved";
1019         res->flags      = IORESOURCE_MEM;
1020         res->start      = addr;
1021         res->end        = addr + size - 1;
1022
1023         /* we expect a conflict with a 'System RAM' region */
1024         parent = request_resource_conflict(&iomem_resource, res);
1025         ret = parent ? request_resource(parent, res) : 0;
1026
1027         /*
1028          * Given that efi_mem_reserve_iomem() can be called at any
1029          * time, only call memblock_reserve() if the architecture
1030          * keeps the infrastructure around.
1031          */
1032         if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK) && !ret)
1033                 memblock_reserve(addr, size);
1034
1035         return ret;
1036 }
1037
1038 int __ref efi_mem_reserve_persistent(phys_addr_t addr, u64 size)
1039 {
1040         struct linux_efi_memreserve *rsv;
1041         unsigned long prsv;
1042         int rc, index;
1043
1044         if (efi_memreserve_root == (void *)ULONG_MAX)
1045                 return -ENODEV;
1046
1047         if (!efi_memreserve_root) {
1048                 rc = efi_memreserve_map_root();
1049                 if (rc)
1050                         return rc;
1051         }
1052
1053         /* first try to find a slot in an existing linked list entry */
1054         for (prsv = efi_memreserve_root->next; prsv; ) {
1055                 rsv = memremap(prsv, sizeof(*rsv), MEMREMAP_WB);
1056                 if (!rsv)
1057                         return -ENOMEM;
1058                 index = atomic_fetch_add_unless(&rsv->count, 1, rsv->size);
1059                 if (index < rsv->size) {
1060                         rsv->entry[index].base = addr;
1061                         rsv->entry[index].size = size;
1062
1063                         memunmap(rsv);
1064                         return efi_mem_reserve_iomem(addr, size);
1065                 }
1066                 prsv = rsv->next;
1067                 memunmap(rsv);
1068         }
1069
1070         /* no slot found - allocate a new linked list entry */
1071         rsv = (struct linux_efi_memreserve *)__get_free_page(GFP_ATOMIC);
1072         if (!rsv)
1073                 return -ENOMEM;
1074
1075         rc = efi_mem_reserve_iomem(__pa(rsv), SZ_4K);
1076         if (rc) {
1077                 free_page((unsigned long)rsv);
1078                 return rc;
1079         }
1080
1081         /*
1082          * The memremap() call above assumes that a linux_efi_memreserve entry
1083          * never crosses a page boundary, so let's ensure that this remains true
1084          * even when kexec'ing a 4k pages kernel from a >4k pages kernel, by
1085          * using SZ_4K explicitly in the size calculation below.
1086          */
1087         rsv->size = EFI_MEMRESERVE_COUNT(SZ_4K);
1088         atomic_set(&rsv->count, 1);
1089         rsv->entry[0].base = addr;
1090         rsv->entry[0].size = size;
1091
1092         spin_lock(&efi_mem_reserve_persistent_lock);
1093         rsv->next = efi_memreserve_root->next;
1094         efi_memreserve_root->next = __pa(rsv);
1095         spin_unlock(&efi_mem_reserve_persistent_lock);
1096
1097         return efi_mem_reserve_iomem(addr, size);
1098 }
1099
1100 static int __init efi_memreserve_root_init(void)
1101 {
1102         if (efi_memreserve_root)
1103                 return 0;
1104         if (efi_memreserve_map_root())
1105                 efi_memreserve_root = (void *)ULONG_MAX;
1106         return 0;
1107 }
1108 early_initcall(efi_memreserve_root_init);
1109
1110 #ifdef CONFIG_KEXEC
1111 static int update_efi_random_seed(struct notifier_block *nb,
1112                                   unsigned long code, void *unused)
1113 {
1114         struct linux_efi_random_seed *seed;
1115         u32 size = 0;
1116
1117         if (!kexec_in_progress)
1118                 return NOTIFY_DONE;
1119
1120         seed = memremap(efi_rng_seed, sizeof(*seed), MEMREMAP_WB);
1121         if (seed != NULL) {
1122                 size = min(seed->size, EFI_RANDOM_SEED_SIZE);
1123                 memunmap(seed);
1124         } else {
1125                 pr_err("Could not map UEFI random seed!\n");
1126         }
1127         if (size > 0) {
1128                 seed = memremap(efi_rng_seed, sizeof(*seed) + size,
1129                                 MEMREMAP_WB);
1130                 if (seed != NULL) {
1131                         seed->size = size;
1132                         get_random_bytes(seed->bits, seed->size);
1133                         memunmap(seed);
1134                 } else {
1135                         pr_err("Could not map UEFI random seed!\n");
1136                 }
1137         }
1138         return NOTIFY_DONE;
1139 }
1140
1141 static struct notifier_block efi_random_seed_nb = {
1142         .notifier_call = update_efi_random_seed,
1143 };
1144
1145 static int __init register_update_efi_random_seed(void)
1146 {
1147         if (efi_rng_seed == EFI_INVALID_TABLE_ADDR)
1148                 return 0;
1149         return register_reboot_notifier(&efi_random_seed_nb);
1150 }
1151 late_initcall(register_update_efi_random_seed);
1152 #endif