1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/types.h>
3 #include <linux/string.h>
4 #include <linux/init.h>
5 #include <linux/module.h>
6 #include <linux/ctype.h>
9 #include <linux/memblock.h>
10 #include <linux/random.h>
12 #include <asm/unaligned.h>
14 #ifndef SMBIOS_ENTRY_POINT_SCAN_START
15 #define SMBIOS_ENTRY_POINT_SCAN_START 0xF0000
18 struct kobject *dmi_kobj;
19 EXPORT_SYMBOL_GPL(dmi_kobj);
22 * DMI stands for "Desktop Management Interface". It is part
23 * of and an antecedent to, SMBIOS, which stands for System
24 * Management BIOS. See further: https://www.dmtf.org/standards
26 static const char dmi_empty_string[] = "";
28 static u32 dmi_ver __initdata;
31 static u8 smbios_entry_point[32];
32 static int smbios_entry_point_size;
34 /* DMI system identification string used during boot */
35 static char dmi_ids_string[128] __initdata;
37 static struct dmi_memdev_info {
42 u8 type; /* DDR2, DDR3, DDR4 etc */
44 static int dmi_memdev_nr;
46 static const char * __init dmi_string_nosave(const struct dmi_header *dm, u8 s)
48 const u8 *bp = ((u8 *) dm) + dm->length;
52 while (--s > 0 && *bp)
55 /* Strings containing only spaces are considered empty */
63 return dmi_empty_string;
66 static const char * __init dmi_string(const struct dmi_header *dm, u8 s)
68 const char *bp = dmi_string_nosave(dm, s);
72 if (bp == dmi_empty_string)
73 return dmi_empty_string;
84 * We have to be cautious here. We have seen BIOSes with DMI pointers
85 * pointing to completely the wrong place for example
87 static void dmi_decode_table(u8 *buf,
88 void (*decode)(const struct dmi_header *, void *),
95 * Stop when we have seen all the items the table claimed to have
96 * (SMBIOS < 3.0 only) OR we reach an end-of-table marker (SMBIOS
97 * >= 3.0 only) OR we run off the end of the table (should never
98 * happen but sometimes does on bogus implementations.)
100 while ((!dmi_num || i < dmi_num) &&
101 (data - buf + sizeof(struct dmi_header)) <= dmi_len) {
102 const struct dmi_header *dm = (const struct dmi_header *)data;
105 * We want to know the total length (formatted area and
106 * strings) before decoding to make sure we won't run off the
107 * table in dmi_decode or dmi_string
110 while ((data - buf < dmi_len - 1) && (data[0] || data[1]))
112 if (data - buf < dmi_len - 1)
113 decode(dm, private_data);
119 * 7.45 End-of-Table (Type 127) [SMBIOS reference spec v3.0.0]
120 * For tables behind a 64-bit entry point, we have no item
121 * count and no exact table length, so stop on end-of-table
122 * marker. For tables behind a 32-bit entry point, we have
123 * seen OEM structures behind the end-of-table marker on
124 * some systems, so don't trust it.
126 if (!dmi_num && dm->type == DMI_ENTRY_END_OF_TABLE)
130 /* Trim DMI table length if needed */
131 if (dmi_len > data - buf)
132 dmi_len = data - buf;
135 static phys_addr_t dmi_base;
137 static int __init dmi_walk_early(void (*decode)(const struct dmi_header *,
141 u32 orig_dmi_len = dmi_len;
143 buf = dmi_early_remap(dmi_base, orig_dmi_len);
147 dmi_decode_table(buf, decode, NULL);
149 add_device_randomness(buf, dmi_len);
151 dmi_early_unmap(buf, orig_dmi_len);
155 static int __init dmi_checksum(const u8 *buf, u8 len)
160 for (a = 0; a < len; a++)
166 static const char *dmi_ident[DMI_STRING_MAX];
167 static LIST_HEAD(dmi_devices);
169 EXPORT_SYMBOL_GPL(dmi_available);
174 static void __init dmi_save_ident(const struct dmi_header *dm, int slot,
177 const char *d = (const char *) dm;
180 if (dmi_ident[slot] || dm->length <= string)
183 p = dmi_string(dm, d[string]);
190 static void __init dmi_save_release(const struct dmi_header *dm, int slot,
193 const u8 *minor, *major;
196 /* If the table doesn't have the field, let's return */
197 if (dmi_ident[slot] || dm->length < index)
200 minor = (u8 *) dm + index;
201 major = (u8 *) dm + index - 1;
203 /* As per the spec, if the system doesn't support this field,
206 if (*major == 0xFF && *minor == 0xFF)
213 sprintf(s, "%u.%u", *major, *minor);
218 static void __init dmi_save_uuid(const struct dmi_header *dm, int slot,
223 int is_ff = 1, is_00 = 1, i;
225 if (dmi_ident[slot] || dm->length < index + 16)
228 d = (u8 *) dm + index;
229 for (i = 0; i < 16 && (is_ff || is_00); i++) {
239 s = dmi_alloc(16*2+4+1);
244 * As of version 2.6 of the SMBIOS specification, the first 3 fields of
245 * the UUID are supposed to be little-endian encoded. The specification
246 * says that this is the defacto standard.
248 if (dmi_ver >= 0x020600)
249 sprintf(s, "%pUl", d);
251 sprintf(s, "%pUb", d);
256 static void __init dmi_save_type(const struct dmi_header *dm, int slot,
262 if (dmi_ident[slot] || dm->length <= index)
269 d = (u8 *) dm + index;
270 sprintf(s, "%u", *d & 0x7F);
274 static void __init dmi_save_one_device(int type, const char *name)
276 struct dmi_device *dev;
278 /* No duplicate device */
279 if (dmi_find_device(type, name, NULL))
282 dev = dmi_alloc(sizeof(*dev) + strlen(name) + 1);
287 strcpy((char *)(dev + 1), name);
288 dev->name = (char *)(dev + 1);
289 dev->device_data = NULL;
290 list_add(&dev->list, &dmi_devices);
293 static void __init dmi_save_devices(const struct dmi_header *dm)
295 int i, count = (dm->length - sizeof(struct dmi_header)) / 2;
297 for (i = 0; i < count; i++) {
298 const char *d = (char *)(dm + 1) + (i * 2);
300 /* Skip disabled device */
301 if ((*d & 0x80) == 0)
304 dmi_save_one_device(*d & 0x7f, dmi_string_nosave(dm, *(d + 1)));
308 static void __init dmi_save_oem_strings_devices(const struct dmi_header *dm)
311 struct dmi_device *dev;
313 if (dm->length < 0x05)
316 count = *(u8 *)(dm + 1);
317 for (i = 1; i <= count; i++) {
318 const char *devname = dmi_string(dm, i);
320 if (devname == dmi_empty_string)
323 dev = dmi_alloc(sizeof(*dev));
327 dev->type = DMI_DEV_TYPE_OEM_STRING;
329 dev->device_data = NULL;
331 list_add(&dev->list, &dmi_devices);
335 static void __init dmi_save_ipmi_device(const struct dmi_header *dm)
337 struct dmi_device *dev;
340 data = dmi_alloc(dm->length);
344 memcpy(data, dm, dm->length);
346 dev = dmi_alloc(sizeof(*dev));
350 dev->type = DMI_DEV_TYPE_IPMI;
351 dev->name = "IPMI controller";
352 dev->device_data = data;
354 list_add_tail(&dev->list, &dmi_devices);
357 static void __init dmi_save_dev_pciaddr(int instance, int segment, int bus,
358 int devfn, const char *name, int type)
360 struct dmi_dev_onboard *dev;
362 /* Ignore invalid values */
363 if (type == DMI_DEV_TYPE_DEV_SLOT &&
364 segment == 0xFFFF && bus == 0xFF && devfn == 0xFF)
367 dev = dmi_alloc(sizeof(*dev) + strlen(name) + 1);
371 dev->instance = instance;
372 dev->segment = segment;
376 strcpy((char *)&dev[1], name);
377 dev->dev.type = type;
378 dev->dev.name = (char *)&dev[1];
379 dev->dev.device_data = dev;
381 list_add(&dev->dev.list, &dmi_devices);
384 static void __init dmi_save_extended_devices(const struct dmi_header *dm)
387 const u8 *d = (u8 *)dm;
389 if (dm->length < 0x0B)
392 /* Skip disabled device */
393 if ((d[0x5] & 0x80) == 0)
396 name = dmi_string_nosave(dm, d[0x4]);
397 dmi_save_dev_pciaddr(d[0x6], *(u16 *)(d + 0x7), d[0x9], d[0xA], name,
398 DMI_DEV_TYPE_DEV_ONBOARD);
399 dmi_save_one_device(d[0x5] & 0x7f, name);
402 static void __init dmi_save_system_slot(const struct dmi_header *dm)
404 const u8 *d = (u8 *)dm;
406 /* Need SMBIOS 2.6+ structure */
407 if (dm->length < 0x11)
409 dmi_save_dev_pciaddr(*(u16 *)(d + 0x9), *(u16 *)(d + 0xD), d[0xF],
410 d[0x10], dmi_string_nosave(dm, d[0x4]),
411 DMI_DEV_TYPE_DEV_SLOT);
414 static void __init count_mem_devices(const struct dmi_header *dm, void *v)
416 if (dm->type != DMI_ENTRY_MEM_DEVICE)
421 static void __init save_mem_devices(const struct dmi_header *dm, void *v)
423 const char *d = (const char *)dm;
428 if (dm->type != DMI_ENTRY_MEM_DEVICE || dm->length < 0x13)
430 if (nr >= dmi_memdev_nr) {
431 pr_warn(FW_BUG "Too many DIMM entries in SMBIOS table\n");
434 dmi_memdev[nr].handle = get_unaligned(&dm->handle);
435 dmi_memdev[nr].device = dmi_string(dm, d[0x10]);
436 dmi_memdev[nr].bank = dmi_string(dm, d[0x11]);
437 dmi_memdev[nr].type = d[0x12];
439 size = get_unaligned((u16 *)&d[0xC]);
442 else if (size == 0xffff)
444 else if (size & 0x8000)
445 bytes = (u64)(size & 0x7fff) << 10;
446 else if (size != 0x7fff || dm->length < 0x20)
447 bytes = (u64)size << 20;
449 bytes = (u64)get_unaligned((u32 *)&d[0x1C]) << 20;
451 dmi_memdev[nr].size = bytes;
455 static void __init dmi_memdev_walk(void)
457 if (dmi_walk_early(count_mem_devices) == 0 && dmi_memdev_nr) {
458 dmi_memdev = dmi_alloc(sizeof(*dmi_memdev) * dmi_memdev_nr);
460 dmi_walk_early(save_mem_devices);
465 * Process a DMI table entry. Right now all we care about are the BIOS
466 * and machine entries. For 2.5 we should pull the smbus controller info
469 static void __init dmi_decode(const struct dmi_header *dm, void *dummy)
472 case 0: /* BIOS Information */
473 dmi_save_ident(dm, DMI_BIOS_VENDOR, 4);
474 dmi_save_ident(dm, DMI_BIOS_VERSION, 5);
475 dmi_save_ident(dm, DMI_BIOS_DATE, 8);
476 dmi_save_release(dm, DMI_BIOS_RELEASE, 21);
477 dmi_save_release(dm, DMI_EC_FIRMWARE_RELEASE, 23);
479 case 1: /* System Information */
480 dmi_save_ident(dm, DMI_SYS_VENDOR, 4);
481 dmi_save_ident(dm, DMI_PRODUCT_NAME, 5);
482 dmi_save_ident(dm, DMI_PRODUCT_VERSION, 6);
483 dmi_save_ident(dm, DMI_PRODUCT_SERIAL, 7);
484 dmi_save_uuid(dm, DMI_PRODUCT_UUID, 8);
485 dmi_save_ident(dm, DMI_PRODUCT_SKU, 25);
486 dmi_save_ident(dm, DMI_PRODUCT_FAMILY, 26);
488 case 2: /* Base Board Information */
489 dmi_save_ident(dm, DMI_BOARD_VENDOR, 4);
490 dmi_save_ident(dm, DMI_BOARD_NAME, 5);
491 dmi_save_ident(dm, DMI_BOARD_VERSION, 6);
492 dmi_save_ident(dm, DMI_BOARD_SERIAL, 7);
493 dmi_save_ident(dm, DMI_BOARD_ASSET_TAG, 8);
495 case 3: /* Chassis Information */
496 dmi_save_ident(dm, DMI_CHASSIS_VENDOR, 4);
497 dmi_save_type(dm, DMI_CHASSIS_TYPE, 5);
498 dmi_save_ident(dm, DMI_CHASSIS_VERSION, 6);
499 dmi_save_ident(dm, DMI_CHASSIS_SERIAL, 7);
500 dmi_save_ident(dm, DMI_CHASSIS_ASSET_TAG, 8);
502 case 9: /* System Slots */
503 dmi_save_system_slot(dm);
505 case 10: /* Onboard Devices Information */
506 dmi_save_devices(dm);
508 case 11: /* OEM Strings */
509 dmi_save_oem_strings_devices(dm);
511 case 38: /* IPMI Device Information */
512 dmi_save_ipmi_device(dm);
514 case 41: /* Onboard Devices Extended Information */
515 dmi_save_extended_devices(dm);
519 static int __init print_filtered(char *buf, size_t len, const char *info)
527 for (p = info; *p; p++)
529 c += scnprintf(buf + c, len - c, "%c", *p);
531 c += scnprintf(buf + c, len - c, "\\x%02x", *p & 0xff);
535 static void __init dmi_format_ids(char *buf, size_t len)
538 const char *board; /* Board Name is optional */
540 c += print_filtered(buf + c, len - c,
541 dmi_get_system_info(DMI_SYS_VENDOR));
542 c += scnprintf(buf + c, len - c, " ");
543 c += print_filtered(buf + c, len - c,
544 dmi_get_system_info(DMI_PRODUCT_NAME));
546 board = dmi_get_system_info(DMI_BOARD_NAME);
548 c += scnprintf(buf + c, len - c, "/");
549 c += print_filtered(buf + c, len - c, board);
551 c += scnprintf(buf + c, len - c, ", BIOS ");
552 c += print_filtered(buf + c, len - c,
553 dmi_get_system_info(DMI_BIOS_VERSION));
554 c += scnprintf(buf + c, len - c, " ");
555 c += print_filtered(buf + c, len - c,
556 dmi_get_system_info(DMI_BIOS_DATE));
560 * Check for DMI/SMBIOS headers in the system firmware image. Any
561 * SMBIOS header must start 16 bytes before the DMI header, so take a
562 * 32 byte buffer and check for DMI at offset 16 and SMBIOS at offset
563 * 0. If the DMI header is present, set dmi_ver accordingly (SMBIOS
564 * takes precedence) and return 0. Otherwise return 1.
566 static int __init dmi_present(const u8 *buf)
571 * The size of this structure is 31 bytes, but we also accept value
572 * 30 due to a mistake in SMBIOS specification version 2.1.
574 if (memcmp(buf, "_SM_", 4) == 0 &&
575 buf[5] >= 30 && buf[5] <= 32 &&
576 dmi_checksum(buf, buf[5])) {
577 smbios_ver = get_unaligned_be16(buf + 6);
578 smbios_entry_point_size = buf[5];
579 memcpy(smbios_entry_point, buf, smbios_entry_point_size);
581 /* Some BIOS report weird SMBIOS version, fix that up */
582 switch (smbios_ver) {
585 pr_debug("SMBIOS version fixup (2.%d->2.%d)\n",
586 smbios_ver & 0xFF, 3);
590 pr_debug("SMBIOS version fixup (2.%d->2.%d)\n", 51, 6);
600 if (memcmp(buf, "_DMI_", 5) == 0 && dmi_checksum(buf, 15)) {
602 dmi_ver = smbios_ver;
604 dmi_ver = (buf[14] & 0xF0) << 4 | (buf[14] & 0x0F);
606 dmi_num = get_unaligned_le16(buf + 12);
607 dmi_len = get_unaligned_le16(buf + 6);
608 dmi_base = get_unaligned_le32(buf + 8);
610 if (dmi_walk_early(dmi_decode) == 0) {
612 pr_info("SMBIOS %d.%d present.\n",
613 dmi_ver >> 16, (dmi_ver >> 8) & 0xFF);
615 smbios_entry_point_size = 15;
616 memcpy(smbios_entry_point, buf,
617 smbios_entry_point_size);
618 pr_info("Legacy DMI %d.%d present.\n",
619 dmi_ver >> 16, (dmi_ver >> 8) & 0xFF);
621 dmi_format_ids(dmi_ids_string, sizeof(dmi_ids_string));
622 pr_info("DMI: %s\n", dmi_ids_string);
631 * Check for the SMBIOS 3.0 64-bit entry point signature. Unlike the legacy
632 * 32-bit entry point, there is no embedded DMI header (_DMI_) in here.
634 static int __init dmi_smbios3_present(const u8 *buf)
636 if (memcmp(buf, "_SM3_", 5) == 0 &&
637 buf[6] >= 24 && buf[6] <= 32 &&
638 dmi_checksum(buf, buf[6])) {
639 dmi_ver = get_unaligned_be24(buf + 7);
640 dmi_num = 0; /* No longer specified */
641 dmi_len = get_unaligned_le32(buf + 12);
642 dmi_base = get_unaligned_le64(buf + 16);
643 smbios_entry_point_size = buf[6];
644 memcpy(smbios_entry_point, buf, smbios_entry_point_size);
646 if (dmi_walk_early(dmi_decode) == 0) {
647 pr_info("SMBIOS %d.%d.%d present.\n",
648 dmi_ver >> 16, (dmi_ver >> 8) & 0xFF,
650 dmi_format_ids(dmi_ids_string, sizeof(dmi_ids_string));
651 pr_info("DMI: %s\n", dmi_ids_string);
658 static void __init dmi_scan_machine(void)
663 if (efi_enabled(EFI_CONFIG_TABLES)) {
665 * According to the DMTF SMBIOS reference spec v3.0.0, it is
666 * allowed to define both the 64-bit entry point (smbios3) and
667 * the 32-bit entry point (smbios), in which case they should
668 * either both point to the same SMBIOS structure table, or the
669 * table pointed to by the 64-bit entry point should contain a
670 * superset of the table contents pointed to by the 32-bit entry
671 * point (section 5.2)
672 * This implies that the 64-bit entry point should have
673 * precedence if it is defined and supported by the OS. If we
674 * have the 64-bit entry point, but fail to decode it, fall
675 * back to the legacy one (if available)
677 if (efi.smbios3 != EFI_INVALID_TABLE_ADDR) {
678 p = dmi_early_remap(efi.smbios3, 32);
681 memcpy_fromio(buf, p, 32);
682 dmi_early_unmap(p, 32);
684 if (!dmi_smbios3_present(buf)) {
689 if (efi.smbios == EFI_INVALID_TABLE_ADDR)
692 /* This is called as a core_initcall() because it isn't
693 * needed during early boot. This also means we can
694 * iounmap the space when we're done with it.
696 p = dmi_early_remap(efi.smbios, 32);
699 memcpy_fromio(buf, p, 32);
700 dmi_early_unmap(p, 32);
702 if (!dmi_present(buf)) {
706 } else if (IS_ENABLED(CONFIG_DMI_SCAN_MACHINE_NON_EFI_FALLBACK)) {
707 p = dmi_early_remap(SMBIOS_ENTRY_POINT_SCAN_START, 0x10000);
712 * Same logic as above, look for a 64-bit entry point
713 * first, and if not found, fall back to 32-bit entry point.
715 memcpy_fromio(buf, p, 16);
716 for (q = p + 16; q < p + 0x10000; q += 16) {
717 memcpy_fromio(buf + 16, q, 16);
718 if (!dmi_smbios3_present(buf)) {
720 dmi_early_unmap(p, 0x10000);
723 memcpy(buf, buf + 16, 16);
727 * Iterate over all possible DMI header addresses q.
728 * Maintain the 32 bytes around q in buf. On the
729 * first iteration, substitute zero for the
730 * out-of-range bytes so there is no chance of falsely
731 * detecting an SMBIOS header.
734 for (q = p; q < p + 0x10000; q += 16) {
735 memcpy_fromio(buf + 16, q, 16);
736 if (!dmi_present(buf)) {
738 dmi_early_unmap(p, 0x10000);
741 memcpy(buf, buf + 16, 16);
743 dmi_early_unmap(p, 0x10000);
746 pr_info("DMI not present or invalid.\n");
749 static ssize_t raw_table_read(struct file *file, struct kobject *kobj,
750 struct bin_attribute *attr, char *buf,
751 loff_t pos, size_t count)
753 memcpy(buf, attr->private + pos, count);
757 static BIN_ATTR(smbios_entry_point, S_IRUSR, raw_table_read, NULL, 0);
758 static BIN_ATTR(DMI, S_IRUSR, raw_table_read, NULL, 0);
760 static int __init dmi_init(void)
762 struct kobject *tables_kobj;
770 * Set up dmi directory at /sys/firmware/dmi. This entry should stay
771 * even after farther error, as it can be used by other modules like
774 dmi_kobj = kobject_create_and_add("dmi", firmware_kobj);
778 tables_kobj = kobject_create_and_add("tables", dmi_kobj);
782 dmi_table = dmi_remap(dmi_base, dmi_len);
786 bin_attr_smbios_entry_point.size = smbios_entry_point_size;
787 bin_attr_smbios_entry_point.private = smbios_entry_point;
788 ret = sysfs_create_bin_file(tables_kobj, &bin_attr_smbios_entry_point);
792 bin_attr_DMI.size = dmi_len;
793 bin_attr_DMI.private = dmi_table;
794 ret = sysfs_create_bin_file(tables_kobj, &bin_attr_DMI);
798 sysfs_remove_bin_file(tables_kobj,
799 &bin_attr_smbios_entry_point);
801 dmi_unmap(dmi_table);
803 kobject_del(tables_kobj);
804 kobject_put(tables_kobj);
806 pr_err("dmi: Firmware registration failed.\n");
810 subsys_initcall(dmi_init);
813 * dmi_setup - scan and setup DMI system information
815 * Scan the DMI system information. This setups DMI identifiers
816 * (dmi_system_id) for printing it out on task dumps and prepares
817 * DIMM entry information (dmi_memdev_info) from the SMBIOS table
818 * for using this when reporting memory errors.
820 void __init dmi_setup(void)
827 dump_stack_set_arch_desc("%s", dmi_ids_string);
831 * dmi_matches - check if dmi_system_id structure matches system DMI data
832 * @dmi: pointer to the dmi_system_id structure to check
834 static bool dmi_matches(const struct dmi_system_id *dmi)
838 for (i = 0; i < ARRAY_SIZE(dmi->matches); i++) {
839 int s = dmi->matches[i].slot;
842 if (s == DMI_OEM_STRING) {
843 /* DMI_OEM_STRING must be exact match */
844 const struct dmi_device *valid;
846 valid = dmi_find_device(DMI_DEV_TYPE_OEM_STRING,
847 dmi->matches[i].substr, NULL);
850 } else if (dmi_ident[s]) {
851 if (dmi->matches[i].exact_match) {
852 if (!strcmp(dmi_ident[s],
853 dmi->matches[i].substr))
856 if (strstr(dmi_ident[s],
857 dmi->matches[i].substr))
869 * dmi_is_end_of_table - check for end-of-table marker
870 * @dmi: pointer to the dmi_system_id structure to check
872 static bool dmi_is_end_of_table(const struct dmi_system_id *dmi)
874 return dmi->matches[0].slot == DMI_NONE;
878 * dmi_check_system - check system DMI data
879 * @list: array of dmi_system_id structures to match against
880 * All non-null elements of the list must match
881 * their slot's (field index's) data (i.e., each
882 * list string must be a substring of the specified
883 * DMI slot's string data) to be considered a
886 * Walk the blacklist table running matching functions until someone
887 * returns non zero or we hit the end. Callback function is called for
888 * each successful match. Returns the number of matches.
890 * dmi_setup must be called before this function is called.
892 int dmi_check_system(const struct dmi_system_id *list)
895 const struct dmi_system_id *d;
897 for (d = list; !dmi_is_end_of_table(d); d++)
898 if (dmi_matches(d)) {
900 if (d->callback && d->callback(d))
906 EXPORT_SYMBOL(dmi_check_system);
909 * dmi_first_match - find dmi_system_id structure matching system DMI data
910 * @list: array of dmi_system_id structures to match against
911 * All non-null elements of the list must match
912 * their slot's (field index's) data (i.e., each
913 * list string must be a substring of the specified
914 * DMI slot's string data) to be considered a
917 * Walk the blacklist table until the first match is found. Return the
918 * pointer to the matching entry or NULL if there's no match.
920 * dmi_setup must be called before this function is called.
922 const struct dmi_system_id *dmi_first_match(const struct dmi_system_id *list)
924 const struct dmi_system_id *d;
926 for (d = list; !dmi_is_end_of_table(d); d++)
932 EXPORT_SYMBOL(dmi_first_match);
935 * dmi_get_system_info - return DMI data value
936 * @field: data index (see enum dmi_field)
938 * Returns one DMI data value, can be used to perform
939 * complex DMI data checks.
941 const char *dmi_get_system_info(int field)
943 return dmi_ident[field];
945 EXPORT_SYMBOL(dmi_get_system_info);
948 * dmi_name_in_serial - Check if string is in the DMI product serial information
949 * @str: string to check for
951 int dmi_name_in_serial(const char *str)
953 int f = DMI_PRODUCT_SERIAL;
954 if (dmi_ident[f] && strstr(dmi_ident[f], str))
960 * dmi_name_in_vendors - Check if string is in the DMI system or board vendor name
961 * @str: Case sensitive Name
963 int dmi_name_in_vendors(const char *str)
965 static int fields[] = { DMI_SYS_VENDOR, DMI_BOARD_VENDOR, DMI_NONE };
967 for (i = 0; fields[i] != DMI_NONE; i++) {
969 if (dmi_ident[f] && strstr(dmi_ident[f], str))
974 EXPORT_SYMBOL(dmi_name_in_vendors);
977 * dmi_find_device - find onboard device by type/name
978 * @type: device type or %DMI_DEV_TYPE_ANY to match all device types
979 * @name: device name string or %NULL to match all
980 * @from: previous device found in search, or %NULL for new search.
982 * Iterates through the list of known onboard devices. If a device is
983 * found with a matching @type and @name, a pointer to its device
984 * structure is returned. Otherwise, %NULL is returned.
985 * A new search is initiated by passing %NULL as the @from argument.
986 * If @from is not %NULL, searches continue from next device.
988 const struct dmi_device *dmi_find_device(int type, const char *name,
989 const struct dmi_device *from)
991 const struct list_head *head = from ? &from->list : &dmi_devices;
994 for (d = head->next; d != &dmi_devices; d = d->next) {
995 const struct dmi_device *dev =
996 list_entry(d, struct dmi_device, list);
998 if (((type == DMI_DEV_TYPE_ANY) || (dev->type == type)) &&
999 ((name == NULL) || (strcmp(dev->name, name) == 0)))
1005 EXPORT_SYMBOL(dmi_find_device);
1008 * dmi_get_date - parse a DMI date
1009 * @field: data index (see enum dmi_field)
1010 * @yearp: optional out parameter for the year
1011 * @monthp: optional out parameter for the month
1012 * @dayp: optional out parameter for the day
1014 * The date field is assumed to be in the form resembling
1015 * [mm[/dd]]/yy[yy] and the result is stored in the out
1016 * parameters any or all of which can be omitted.
1018 * If the field doesn't exist, all out parameters are set to zero
1019 * and false is returned. Otherwise, true is returned with any
1020 * invalid part of date set to zero.
1022 * On return, year, month and day are guaranteed to be in the
1023 * range of [0,9999], [0,12] and [0,31] respectively.
1025 bool dmi_get_date(int field, int *yearp, int *monthp, int *dayp)
1027 int year = 0, month = 0, day = 0;
1032 s = dmi_get_system_info(field);
1038 * Determine year first. We assume the date string resembles
1039 * mm/dd/yy[yy] but the original code extracted only the year
1040 * from the end. Keep the behavior in the spirit of no
1043 y = strrchr(s, '/');
1048 year = simple_strtoul(y, &e, 10);
1049 if (y != e && year < 100) { /* 2-digit year */
1051 if (year < 1996) /* no dates < spec 1.0 */
1054 if (year > 9999) /* year should fit in %04d */
1057 /* parse the mm and dd */
1058 month = simple_strtoul(s, &e, 10);
1059 if (s == e || *e != '/' || !month || month > 12) {
1065 day = simple_strtoul(s, &e, 10);
1066 if (s == y || s == e || *e != '/' || day > 31)
1077 EXPORT_SYMBOL(dmi_get_date);
1080 * dmi_get_bios_year - get a year out of DMI_BIOS_DATE field
1082 * Returns year on success, -ENXIO if DMI is not selected,
1083 * or a different negative error code if DMI field is not present
1086 int dmi_get_bios_year(void)
1091 exists = dmi_get_date(DMI_BIOS_DATE, &year, NULL, NULL);
1095 return year ? year : -ERANGE;
1097 EXPORT_SYMBOL(dmi_get_bios_year);
1100 * dmi_walk - Walk the DMI table and get called back for every record
1101 * @decode: Callback function
1102 * @private_data: Private data to be passed to the callback function
1104 * Returns 0 on success, -ENXIO if DMI is not selected or not present,
1105 * or a different negative error code if DMI walking fails.
1107 int dmi_walk(void (*decode)(const struct dmi_header *, void *),
1115 buf = dmi_remap(dmi_base, dmi_len);
1119 dmi_decode_table(buf, decode, private_data);
1124 EXPORT_SYMBOL_GPL(dmi_walk);
1127 * dmi_match - compare a string to the dmi field (if exists)
1128 * @f: DMI field identifier
1129 * @str: string to compare the DMI field to
1131 * Returns true if the requested field equals to the str (including NULL).
1133 bool dmi_match(enum dmi_field f, const char *str)
1135 const char *info = dmi_get_system_info(f);
1137 if (info == NULL || str == NULL)
1140 return !strcmp(info, str);
1142 EXPORT_SYMBOL_GPL(dmi_match);
1144 void dmi_memdev_name(u16 handle, const char **bank, const char **device)
1148 if (dmi_memdev == NULL)
1151 for (n = 0; n < dmi_memdev_nr; n++) {
1152 if (handle == dmi_memdev[n].handle) {
1153 *bank = dmi_memdev[n].bank;
1154 *device = dmi_memdev[n].device;
1159 EXPORT_SYMBOL_GPL(dmi_memdev_name);
1161 u64 dmi_memdev_size(u16 handle)
1166 for (n = 0; n < dmi_memdev_nr; n++) {
1167 if (handle == dmi_memdev[n].handle)
1168 return dmi_memdev[n].size;
1173 EXPORT_SYMBOL_GPL(dmi_memdev_size);
1176 * dmi_memdev_type - get the memory type
1177 * @handle: DMI structure handle
1179 * Return the DMI memory type of the module in the slot associated with the
1180 * given DMI handle, or 0x0 if no such DMI handle exists.
1182 u8 dmi_memdev_type(u16 handle)
1187 for (n = 0; n < dmi_memdev_nr; n++) {
1188 if (handle == dmi_memdev[n].handle)
1189 return dmi_memdev[n].type;
1192 return 0x0; /* Not a valid value */
1194 EXPORT_SYMBOL_GPL(dmi_memdev_type);
1197 * dmi_memdev_handle - get the DMI handle of a memory slot
1198 * @slot: slot number
1200 * Return the DMI handle associated with a given memory slot, or %0xFFFF
1201 * if there is no such slot.
1203 u16 dmi_memdev_handle(int slot)
1205 if (dmi_memdev && slot >= 0 && slot < dmi_memdev_nr)
1206 return dmi_memdev[slot].handle;
1208 return 0xffff; /* Not a valid value */
1210 EXPORT_SYMBOL_GPL(dmi_memdev_handle);