vt_ioctl: fix GIO_UNIMAP regression
[platform/kernel/linux-rpi.git] / drivers / firmware / arm_scmi / clock.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * System Control and Management Interface (SCMI) Clock Protocol
4  *
5  * Copyright (C) 2018 ARM Ltd.
6  */
7
8 #include <linux/sort.h>
9
10 #include "common.h"
11
12 enum scmi_clock_protocol_cmd {
13         CLOCK_ATTRIBUTES = 0x3,
14         CLOCK_DESCRIBE_RATES = 0x4,
15         CLOCK_RATE_SET = 0x5,
16         CLOCK_RATE_GET = 0x6,
17         CLOCK_CONFIG_SET = 0x7,
18 };
19
20 struct scmi_msg_resp_clock_protocol_attributes {
21         __le16 num_clocks;
22         u8 max_async_req;
23         u8 reserved;
24 };
25
26 struct scmi_msg_resp_clock_attributes {
27         __le32 attributes;
28 #define CLOCK_ENABLE    BIT(0)
29             u8 name[SCMI_MAX_STR_SIZE];
30 };
31
32 struct scmi_clock_set_config {
33         __le32 id;
34         __le32 attributes;
35 };
36
37 struct scmi_msg_clock_describe_rates {
38         __le32 id;
39         __le32 rate_index;
40 };
41
42 struct scmi_msg_resp_clock_describe_rates {
43         __le32 num_rates_flags;
44 #define NUM_RETURNED(x)         ((x) & 0xfff)
45 #define RATE_DISCRETE(x)        !((x) & BIT(12))
46 #define NUM_REMAINING(x)        ((x) >> 16)
47         struct {
48                 __le32 value_low;
49                 __le32 value_high;
50         } rate[0];
51 #define RATE_TO_U64(X)          \
52 ({                              \
53         typeof(X) x = (X);      \
54         le32_to_cpu((x).value_low) | (u64)le32_to_cpu((x).value_high) << 32; \
55 })
56 };
57
58 struct scmi_clock_set_rate {
59         __le32 flags;
60 #define CLOCK_SET_ASYNC         BIT(0)
61 #define CLOCK_SET_IGNORE_RESP   BIT(1)
62 #define CLOCK_SET_ROUND_UP      BIT(2)
63 #define CLOCK_SET_ROUND_AUTO    BIT(3)
64         __le32 id;
65         __le32 value_low;
66         __le32 value_high;
67 };
68
69 struct clock_info {
70         u32 version;
71         int num_clocks;
72         int max_async_req;
73         atomic_t cur_async_req;
74         struct scmi_clock_info *clk;
75 };
76
77 static int scmi_clock_protocol_attributes_get(const struct scmi_handle *handle,
78                                               struct clock_info *ci)
79 {
80         int ret;
81         struct scmi_xfer *t;
82         struct scmi_msg_resp_clock_protocol_attributes *attr;
83
84         ret = scmi_xfer_get_init(handle, PROTOCOL_ATTRIBUTES,
85                                  SCMI_PROTOCOL_CLOCK, 0, sizeof(*attr), &t);
86         if (ret)
87                 return ret;
88
89         attr = t->rx.buf;
90
91         ret = scmi_do_xfer(handle, t);
92         if (!ret) {
93                 ci->num_clocks = le16_to_cpu(attr->num_clocks);
94                 ci->max_async_req = attr->max_async_req;
95         }
96
97         scmi_xfer_put(handle, t);
98         return ret;
99 }
100
101 static int scmi_clock_attributes_get(const struct scmi_handle *handle,
102                                      u32 clk_id, struct scmi_clock_info *clk)
103 {
104         int ret;
105         struct scmi_xfer *t;
106         struct scmi_msg_resp_clock_attributes *attr;
107
108         ret = scmi_xfer_get_init(handle, CLOCK_ATTRIBUTES, SCMI_PROTOCOL_CLOCK,
109                                  sizeof(clk_id), sizeof(*attr), &t);
110         if (ret)
111                 return ret;
112
113         put_unaligned_le32(clk_id, t->tx.buf);
114         attr = t->rx.buf;
115
116         ret = scmi_do_xfer(handle, t);
117         if (!ret)
118                 strlcpy(clk->name, attr->name, SCMI_MAX_STR_SIZE);
119         else
120                 clk->name[0] = '\0';
121
122         scmi_xfer_put(handle, t);
123         return ret;
124 }
125
126 static int rate_cmp_func(const void *_r1, const void *_r2)
127 {
128         const u64 *r1 = _r1, *r2 = _r2;
129
130         if (*r1 < *r2)
131                 return -1;
132         else if (*r1 == *r2)
133                 return 0;
134         else
135                 return 1;
136 }
137
138 static int
139 scmi_clock_describe_rates_get(const struct scmi_handle *handle, u32 clk_id,
140                               struct scmi_clock_info *clk)
141 {
142         u64 *rate = NULL;
143         int ret, cnt;
144         bool rate_discrete = false;
145         u32 tot_rate_cnt = 0, rates_flag;
146         u16 num_returned, num_remaining;
147         struct scmi_xfer *t;
148         struct scmi_msg_clock_describe_rates *clk_desc;
149         struct scmi_msg_resp_clock_describe_rates *rlist;
150
151         ret = scmi_xfer_get_init(handle, CLOCK_DESCRIBE_RATES,
152                                  SCMI_PROTOCOL_CLOCK, sizeof(*clk_desc), 0, &t);
153         if (ret)
154                 return ret;
155
156         clk_desc = t->tx.buf;
157         rlist = t->rx.buf;
158
159         do {
160                 clk_desc->id = cpu_to_le32(clk_id);
161                 /* Set the number of rates to be skipped/already read */
162                 clk_desc->rate_index = cpu_to_le32(tot_rate_cnt);
163
164                 ret = scmi_do_xfer(handle, t);
165                 if (ret)
166                         goto err;
167
168                 rates_flag = le32_to_cpu(rlist->num_rates_flags);
169                 num_remaining = NUM_REMAINING(rates_flag);
170                 rate_discrete = RATE_DISCRETE(rates_flag);
171                 num_returned = NUM_RETURNED(rates_flag);
172
173                 if (tot_rate_cnt + num_returned > SCMI_MAX_NUM_RATES) {
174                         dev_err(handle->dev, "No. of rates > MAX_NUM_RATES");
175                         break;
176                 }
177
178                 if (!rate_discrete) {
179                         clk->range.min_rate = RATE_TO_U64(rlist->rate[0]);
180                         clk->range.max_rate = RATE_TO_U64(rlist->rate[1]);
181                         clk->range.step_size = RATE_TO_U64(rlist->rate[2]);
182                         dev_dbg(handle->dev, "Min %llu Max %llu Step %llu Hz\n",
183                                 clk->range.min_rate, clk->range.max_rate,
184                                 clk->range.step_size);
185                         break;
186                 }
187
188                 rate = &clk->list.rates[tot_rate_cnt];
189                 for (cnt = 0; cnt < num_returned; cnt++, rate++) {
190                         *rate = RATE_TO_U64(rlist->rate[cnt]);
191                         dev_dbg(handle->dev, "Rate %llu Hz\n", *rate);
192                 }
193
194                 tot_rate_cnt += num_returned;
195                 /*
196                  * check for both returned and remaining to avoid infinite
197                  * loop due to buggy firmware
198                  */
199         } while (num_returned && num_remaining);
200
201         if (rate_discrete && rate) {
202                 clk->list.num_rates = tot_rate_cnt;
203                 sort(rate, tot_rate_cnt, sizeof(*rate), rate_cmp_func, NULL);
204         }
205
206         clk->rate_discrete = rate_discrete;
207
208 err:
209         scmi_xfer_put(handle, t);
210         return ret;
211 }
212
213 static int
214 scmi_clock_rate_get(const struct scmi_handle *handle, u32 clk_id, u64 *value)
215 {
216         int ret;
217         struct scmi_xfer *t;
218
219         ret = scmi_xfer_get_init(handle, CLOCK_RATE_GET, SCMI_PROTOCOL_CLOCK,
220                                  sizeof(__le32), sizeof(u64), &t);
221         if (ret)
222                 return ret;
223
224         put_unaligned_le32(clk_id, t->tx.buf);
225
226         ret = scmi_do_xfer(handle, t);
227         if (!ret)
228                 *value = get_unaligned_le64(t->rx.buf);
229
230         scmi_xfer_put(handle, t);
231         return ret;
232 }
233
234 static int scmi_clock_rate_set(const struct scmi_handle *handle, u32 clk_id,
235                                u64 rate)
236 {
237         int ret;
238         u32 flags = 0;
239         struct scmi_xfer *t;
240         struct scmi_clock_set_rate *cfg;
241         struct clock_info *ci = handle->clk_priv;
242
243         ret = scmi_xfer_get_init(handle, CLOCK_RATE_SET, SCMI_PROTOCOL_CLOCK,
244                                  sizeof(*cfg), 0, &t);
245         if (ret)
246                 return ret;
247
248         if (ci->max_async_req &&
249             atomic_inc_return(&ci->cur_async_req) < ci->max_async_req)
250                 flags |= CLOCK_SET_ASYNC;
251
252         cfg = t->tx.buf;
253         cfg->flags = cpu_to_le32(flags);
254         cfg->id = cpu_to_le32(clk_id);
255         cfg->value_low = cpu_to_le32(rate & 0xffffffff);
256         cfg->value_high = cpu_to_le32(rate >> 32);
257
258         if (flags & CLOCK_SET_ASYNC)
259                 ret = scmi_do_xfer_with_response(handle, t);
260         else
261                 ret = scmi_do_xfer(handle, t);
262
263         if (ci->max_async_req)
264                 atomic_dec(&ci->cur_async_req);
265
266         scmi_xfer_put(handle, t);
267         return ret;
268 }
269
270 static int
271 scmi_clock_config_set(const struct scmi_handle *handle, u32 clk_id, u32 config)
272 {
273         int ret;
274         struct scmi_xfer *t;
275         struct scmi_clock_set_config *cfg;
276
277         ret = scmi_xfer_get_init(handle, CLOCK_CONFIG_SET, SCMI_PROTOCOL_CLOCK,
278                                  sizeof(*cfg), 0, &t);
279         if (ret)
280                 return ret;
281
282         cfg = t->tx.buf;
283         cfg->id = cpu_to_le32(clk_id);
284         cfg->attributes = cpu_to_le32(config);
285
286         ret = scmi_do_xfer(handle, t);
287
288         scmi_xfer_put(handle, t);
289         return ret;
290 }
291
292 static int scmi_clock_enable(const struct scmi_handle *handle, u32 clk_id)
293 {
294         return scmi_clock_config_set(handle, clk_id, CLOCK_ENABLE);
295 }
296
297 static int scmi_clock_disable(const struct scmi_handle *handle, u32 clk_id)
298 {
299         return scmi_clock_config_set(handle, clk_id, 0);
300 }
301
302 static int scmi_clock_count_get(const struct scmi_handle *handle)
303 {
304         struct clock_info *ci = handle->clk_priv;
305
306         return ci->num_clocks;
307 }
308
309 static const struct scmi_clock_info *
310 scmi_clock_info_get(const struct scmi_handle *handle, u32 clk_id)
311 {
312         struct clock_info *ci = handle->clk_priv;
313         struct scmi_clock_info *clk = ci->clk + clk_id;
314
315         if (!clk->name[0])
316                 return NULL;
317
318         return clk;
319 }
320
321 static const struct scmi_clk_ops clk_ops = {
322         .count_get = scmi_clock_count_get,
323         .info_get = scmi_clock_info_get,
324         .rate_get = scmi_clock_rate_get,
325         .rate_set = scmi_clock_rate_set,
326         .enable = scmi_clock_enable,
327         .disable = scmi_clock_disable,
328 };
329
330 static int scmi_clock_protocol_init(struct scmi_handle *handle)
331 {
332         u32 version;
333         int clkid, ret;
334         struct clock_info *cinfo;
335
336         scmi_version_get(handle, SCMI_PROTOCOL_CLOCK, &version);
337
338         dev_dbg(handle->dev, "Clock Version %d.%d\n",
339                 PROTOCOL_REV_MAJOR(version), PROTOCOL_REV_MINOR(version));
340
341         cinfo = devm_kzalloc(handle->dev, sizeof(*cinfo), GFP_KERNEL);
342         if (!cinfo)
343                 return -ENOMEM;
344
345         scmi_clock_protocol_attributes_get(handle, cinfo);
346
347         cinfo->clk = devm_kcalloc(handle->dev, cinfo->num_clocks,
348                                   sizeof(*cinfo->clk), GFP_KERNEL);
349         if (!cinfo->clk)
350                 return -ENOMEM;
351
352         for (clkid = 0; clkid < cinfo->num_clocks; clkid++) {
353                 struct scmi_clock_info *clk = cinfo->clk + clkid;
354
355                 ret = scmi_clock_attributes_get(handle, clkid, clk);
356                 if (!ret)
357                         scmi_clock_describe_rates_get(handle, clkid, clk);
358         }
359
360         cinfo->version = version;
361         handle->clk_ops = &clk_ops;
362         handle->clk_priv = cinfo;
363
364         return 0;
365 }
366
367 DEFINE_SCMI_PROTOCOL_REGISTER_UNREGISTER(SCMI_PROTOCOL_CLOCK, clock)