Merge remote-tracking branch 'linus/master' into testing
[platform/adaptation/renesas_rcar/renesas_kernel.git] / drivers / firewire / sbp2.c
1 /*
2  * SBP2 driver (SCSI over IEEE1394)
3  *
4  * Copyright (C) 2005-2007  Kristian Hoegsberg <krh@bitplanet.net>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software Foundation,
18  * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 /*
22  * The basic structure of this driver is based on the old storage driver,
23  * drivers/ieee1394/sbp2.c, originally written by
24  *     James Goodwin <jamesg@filanet.com>
25  * with later contributions and ongoing maintenance from
26  *     Ben Collins <bcollins@debian.org>,
27  *     Stefan Richter <stefanr@s5r6.in-berlin.de>
28  * and many others.
29  */
30
31 #include <linux/blkdev.h>
32 #include <linux/bug.h>
33 #include <linux/completion.h>
34 #include <linux/delay.h>
35 #include <linux/device.h>
36 #include <linux/dma-mapping.h>
37 #include <linux/firewire.h>
38 #include <linux/firewire-constants.h>
39 #include <linux/init.h>
40 #include <linux/jiffies.h>
41 #include <linux/kernel.h>
42 #include <linux/kref.h>
43 #include <linux/list.h>
44 #include <linux/mod_devicetable.h>
45 #include <linux/module.h>
46 #include <linux/moduleparam.h>
47 #include <linux/scatterlist.h>
48 #include <linux/slab.h>
49 #include <linux/spinlock.h>
50 #include <linux/string.h>
51 #include <linux/stringify.h>
52 #include <linux/workqueue.h>
53
54 #include <asm/byteorder.h>
55
56 #include <scsi/scsi.h>
57 #include <scsi/scsi_cmnd.h>
58 #include <scsi/scsi_device.h>
59 #include <scsi/scsi_host.h>
60
61 /*
62  * So far only bridges from Oxford Semiconductor are known to support
63  * concurrent logins. Depending on firmware, four or two concurrent logins
64  * are possible on OXFW911 and newer Oxsemi bridges.
65  *
66  * Concurrent logins are useful together with cluster filesystems.
67  */
68 static bool sbp2_param_exclusive_login = 1;
69 module_param_named(exclusive_login, sbp2_param_exclusive_login, bool, 0644);
70 MODULE_PARM_DESC(exclusive_login, "Exclusive login to sbp2 device "
71                  "(default = Y, use N for concurrent initiators)");
72
73 /*
74  * Flags for firmware oddities
75  *
76  * - 128kB max transfer
77  *   Limit transfer size. Necessary for some old bridges.
78  *
79  * - 36 byte inquiry
80  *   When scsi_mod probes the device, let the inquiry command look like that
81  *   from MS Windows.
82  *
83  * - skip mode page 8
84  *   Suppress sending of mode_sense for mode page 8 if the device pretends to
85  *   support the SCSI Primary Block commands instead of Reduced Block Commands.
86  *
87  * - fix capacity
88  *   Tell sd_mod to correct the last sector number reported by read_capacity.
89  *   Avoids access beyond actual disk limits on devices with an off-by-one bug.
90  *   Don't use this with devices which don't have this bug.
91  *
92  * - delay inquiry
93  *   Wait extra SBP2_INQUIRY_DELAY seconds after login before SCSI inquiry.
94  *
95  * - power condition
96  *   Set the power condition field in the START STOP UNIT commands sent by
97  *   sd_mod on suspend, resume, and shutdown (if manage_start_stop is on).
98  *   Some disks need this to spin down or to resume properly.
99  *
100  * - override internal blacklist
101  *   Instead of adding to the built-in blacklist, use only the workarounds
102  *   specified in the module load parameter.
103  *   Useful if a blacklist entry interfered with a non-broken device.
104  */
105 #define SBP2_WORKAROUND_128K_MAX_TRANS  0x1
106 #define SBP2_WORKAROUND_INQUIRY_36      0x2
107 #define SBP2_WORKAROUND_MODE_SENSE_8    0x4
108 #define SBP2_WORKAROUND_FIX_CAPACITY    0x8
109 #define SBP2_WORKAROUND_DELAY_INQUIRY   0x10
110 #define SBP2_INQUIRY_DELAY              12
111 #define SBP2_WORKAROUND_POWER_CONDITION 0x20
112 #define SBP2_WORKAROUND_OVERRIDE        0x100
113
114 static int sbp2_param_workarounds;
115 module_param_named(workarounds, sbp2_param_workarounds, int, 0644);
116 MODULE_PARM_DESC(workarounds, "Work around device bugs (default = 0"
117         ", 128kB max transfer = " __stringify(SBP2_WORKAROUND_128K_MAX_TRANS)
118         ", 36 byte inquiry = "    __stringify(SBP2_WORKAROUND_INQUIRY_36)
119         ", skip mode page 8 = "   __stringify(SBP2_WORKAROUND_MODE_SENSE_8)
120         ", fix capacity = "       __stringify(SBP2_WORKAROUND_FIX_CAPACITY)
121         ", delay inquiry = "      __stringify(SBP2_WORKAROUND_DELAY_INQUIRY)
122         ", set power condition in start stop unit = "
123                                   __stringify(SBP2_WORKAROUND_POWER_CONDITION)
124         ", override internal blacklist = " __stringify(SBP2_WORKAROUND_OVERRIDE)
125         ", or a combination)");
126
127 /*
128  * We create one struct sbp2_logical_unit per SBP-2 Logical Unit Number Entry
129  * and one struct scsi_device per sbp2_logical_unit.
130  */
131 struct sbp2_logical_unit {
132         struct sbp2_target *tgt;
133         struct list_head link;
134         struct fw_address_handler address_handler;
135         struct list_head orb_list;
136
137         u64 command_block_agent_address;
138         u16 lun;
139         int login_id;
140
141         /*
142          * The generation is updated once we've logged in or reconnected
143          * to the logical unit.  Thus, I/O to the device will automatically
144          * fail and get retried if it happens in a window where the device
145          * is not ready, e.g. after a bus reset but before we reconnect.
146          */
147         int generation;
148         int retries;
149         struct delayed_work work;
150         bool has_sdev;
151         bool blocked;
152 };
153
154 static void sbp2_queue_work(struct sbp2_logical_unit *lu, unsigned long delay)
155 {
156         queue_delayed_work(fw_workqueue, &lu->work, delay);
157 }
158
159 /*
160  * We create one struct sbp2_target per IEEE 1212 Unit Directory
161  * and one struct Scsi_Host per sbp2_target.
162  */
163 struct sbp2_target {
164         struct fw_unit *unit;
165         struct list_head lu_list;
166
167         u64 management_agent_address;
168         u64 guid;
169         int directory_id;
170         int node_id;
171         int address_high;
172         unsigned int workarounds;
173         unsigned int mgt_orb_timeout;
174         unsigned int max_payload;
175
176         int dont_block; /* counter for each logical unit */
177         int blocked;    /* ditto */
178 };
179
180 static struct fw_device *target_parent_device(struct sbp2_target *tgt)
181 {
182         return fw_parent_device(tgt->unit);
183 }
184
185 static const struct device *tgt_dev(const struct sbp2_target *tgt)
186 {
187         return &tgt->unit->device;
188 }
189
190 static const struct device *lu_dev(const struct sbp2_logical_unit *lu)
191 {
192         return &lu->tgt->unit->device;
193 }
194
195 /* Impossible login_id, to detect logout attempt before successful login */
196 #define INVALID_LOGIN_ID 0x10000
197
198 #define SBP2_ORB_TIMEOUT                2000U           /* Timeout in ms */
199 #define SBP2_ORB_NULL                   0x80000000
200 #define SBP2_RETRY_LIMIT                0xf             /* 15 retries */
201 #define SBP2_CYCLE_LIMIT                (0xc8 << 12)    /* 200 125us cycles */
202
203 /*
204  * There is no transport protocol limit to the CDB length,  but we implement
205  * a fixed length only.  16 bytes is enough for disks larger than 2 TB.
206  */
207 #define SBP2_MAX_CDB_SIZE               16
208
209 /*
210  * The maximum SBP-2 data buffer size is 0xffff.  We quadlet-align this
211  * for compatibility with earlier versions of this driver.
212  */
213 #define SBP2_MAX_SEG_SIZE               0xfffc
214
215 /* Unit directory keys */
216 #define SBP2_CSR_UNIT_CHARACTERISTICS   0x3a
217 #define SBP2_CSR_FIRMWARE_REVISION      0x3c
218 #define SBP2_CSR_LOGICAL_UNIT_NUMBER    0x14
219 #define SBP2_CSR_UNIT_UNIQUE_ID         0x8d
220 #define SBP2_CSR_LOGICAL_UNIT_DIRECTORY 0xd4
221
222 /* Management orb opcodes */
223 #define SBP2_LOGIN_REQUEST              0x0
224 #define SBP2_QUERY_LOGINS_REQUEST       0x1
225 #define SBP2_RECONNECT_REQUEST          0x3
226 #define SBP2_SET_PASSWORD_REQUEST       0x4
227 #define SBP2_LOGOUT_REQUEST             0x7
228 #define SBP2_ABORT_TASK_REQUEST         0xb
229 #define SBP2_ABORT_TASK_SET             0xc
230 #define SBP2_LOGICAL_UNIT_RESET         0xe
231 #define SBP2_TARGET_RESET_REQUEST       0xf
232
233 /* Offsets for command block agent registers */
234 #define SBP2_AGENT_STATE                0x00
235 #define SBP2_AGENT_RESET                0x04
236 #define SBP2_ORB_POINTER                0x08
237 #define SBP2_DOORBELL                   0x10
238 #define SBP2_UNSOLICITED_STATUS_ENABLE  0x14
239
240 /* Status write response codes */
241 #define SBP2_STATUS_REQUEST_COMPLETE    0x0
242 #define SBP2_STATUS_TRANSPORT_FAILURE   0x1
243 #define SBP2_STATUS_ILLEGAL_REQUEST     0x2
244 #define SBP2_STATUS_VENDOR_DEPENDENT    0x3
245
246 #define STATUS_GET_ORB_HIGH(v)          ((v).status & 0xffff)
247 #define STATUS_GET_SBP_STATUS(v)        (((v).status >> 16) & 0xff)
248 #define STATUS_GET_LEN(v)               (((v).status >> 24) & 0x07)
249 #define STATUS_GET_DEAD(v)              (((v).status >> 27) & 0x01)
250 #define STATUS_GET_RESPONSE(v)          (((v).status >> 28) & 0x03)
251 #define STATUS_GET_SOURCE(v)            (((v).status >> 30) & 0x03)
252 #define STATUS_GET_ORB_LOW(v)           ((v).orb_low)
253 #define STATUS_GET_DATA(v)              ((v).data)
254
255 struct sbp2_status {
256         u32 status;
257         u32 orb_low;
258         u8 data[24];
259 };
260
261 struct sbp2_pointer {
262         __be32 high;
263         __be32 low;
264 };
265
266 struct sbp2_orb {
267         struct fw_transaction t;
268         struct kref kref;
269         dma_addr_t request_bus;
270         int rcode;
271         void (*callback)(struct sbp2_orb * orb, struct sbp2_status * status);
272         struct list_head link;
273 };
274
275 #define MANAGEMENT_ORB_LUN(v)                   ((v))
276 #define MANAGEMENT_ORB_FUNCTION(v)              ((v) << 16)
277 #define MANAGEMENT_ORB_RECONNECT(v)             ((v) << 20)
278 #define MANAGEMENT_ORB_EXCLUSIVE(v)             ((v) ? 1 << 28 : 0)
279 #define MANAGEMENT_ORB_REQUEST_FORMAT(v)        ((v) << 29)
280 #define MANAGEMENT_ORB_NOTIFY                   ((1) << 31)
281
282 #define MANAGEMENT_ORB_RESPONSE_LENGTH(v)       ((v))
283 #define MANAGEMENT_ORB_PASSWORD_LENGTH(v)       ((v) << 16)
284
285 struct sbp2_management_orb {
286         struct sbp2_orb base;
287         struct {
288                 struct sbp2_pointer password;
289                 struct sbp2_pointer response;
290                 __be32 misc;
291                 __be32 length;
292                 struct sbp2_pointer status_fifo;
293         } request;
294         __be32 response[4];
295         dma_addr_t response_bus;
296         struct completion done;
297         struct sbp2_status status;
298 };
299
300 struct sbp2_login_response {
301         __be32 misc;
302         struct sbp2_pointer command_block_agent;
303         __be32 reconnect_hold;
304 };
305 #define COMMAND_ORB_DATA_SIZE(v)        ((v))
306 #define COMMAND_ORB_PAGE_SIZE(v)        ((v) << 16)
307 #define COMMAND_ORB_PAGE_TABLE_PRESENT  ((1) << 19)
308 #define COMMAND_ORB_MAX_PAYLOAD(v)      ((v) << 20)
309 #define COMMAND_ORB_SPEED(v)            ((v) << 24)
310 #define COMMAND_ORB_DIRECTION           ((1) << 27)
311 #define COMMAND_ORB_REQUEST_FORMAT(v)   ((v) << 29)
312 #define COMMAND_ORB_NOTIFY              ((1) << 31)
313
314 struct sbp2_command_orb {
315         struct sbp2_orb base;
316         struct {
317                 struct sbp2_pointer next;
318                 struct sbp2_pointer data_descriptor;
319                 __be32 misc;
320                 u8 command_block[SBP2_MAX_CDB_SIZE];
321         } request;
322         struct scsi_cmnd *cmd;
323         struct sbp2_logical_unit *lu;
324
325         struct sbp2_pointer page_table[SG_ALL] __attribute__((aligned(8)));
326         dma_addr_t page_table_bus;
327 };
328
329 #define SBP2_ROM_VALUE_WILDCARD ~0         /* match all */
330 #define SBP2_ROM_VALUE_MISSING  0xff000000 /* not present in the unit dir. */
331
332 /*
333  * List of devices with known bugs.
334  *
335  * The firmware_revision field, masked with 0xffff00, is the best
336  * indicator for the type of bridge chip of a device.  It yields a few
337  * false positives but this did not break correctly behaving devices
338  * so far.
339  */
340 static const struct {
341         u32 firmware_revision;
342         u32 model;
343         unsigned int workarounds;
344 } sbp2_workarounds_table[] = {
345         /* DViCO Momobay CX-1 with TSB42AA9 bridge */ {
346                 .firmware_revision      = 0x002800,
347                 .model                  = 0x001010,
348                 .workarounds            = SBP2_WORKAROUND_INQUIRY_36 |
349                                           SBP2_WORKAROUND_MODE_SENSE_8 |
350                                           SBP2_WORKAROUND_POWER_CONDITION,
351         },
352         /* DViCO Momobay FX-3A with TSB42AA9A bridge */ {
353                 .firmware_revision      = 0x002800,
354                 .model                  = 0x000000,
355                 .workarounds            = SBP2_WORKAROUND_POWER_CONDITION,
356         },
357         /* Initio bridges, actually only needed for some older ones */ {
358                 .firmware_revision      = 0x000200,
359                 .model                  = SBP2_ROM_VALUE_WILDCARD,
360                 .workarounds            = SBP2_WORKAROUND_INQUIRY_36,
361         },
362         /* PL-3507 bridge with Prolific firmware */ {
363                 .firmware_revision      = 0x012800,
364                 .model                  = SBP2_ROM_VALUE_WILDCARD,
365                 .workarounds            = SBP2_WORKAROUND_POWER_CONDITION,
366         },
367         /* Symbios bridge */ {
368                 .firmware_revision      = 0xa0b800,
369                 .model                  = SBP2_ROM_VALUE_WILDCARD,
370                 .workarounds            = SBP2_WORKAROUND_128K_MAX_TRANS,
371         },
372         /* Datafab MD2-FW2 with Symbios/LSILogic SYM13FW500 bridge */ {
373                 .firmware_revision      = 0x002600,
374                 .model                  = SBP2_ROM_VALUE_WILDCARD,
375                 .workarounds            = SBP2_WORKAROUND_128K_MAX_TRANS,
376         },
377         /*
378          * iPod 2nd generation: needs 128k max transfer size workaround
379          * iPod 3rd generation: needs fix capacity workaround
380          */
381         {
382                 .firmware_revision      = 0x0a2700,
383                 .model                  = 0x000000,
384                 .workarounds            = SBP2_WORKAROUND_128K_MAX_TRANS |
385                                           SBP2_WORKAROUND_FIX_CAPACITY,
386         },
387         /* iPod 4th generation */ {
388                 .firmware_revision      = 0x0a2700,
389                 .model                  = 0x000021,
390                 .workarounds            = SBP2_WORKAROUND_FIX_CAPACITY,
391         },
392         /* iPod mini */ {
393                 .firmware_revision      = 0x0a2700,
394                 .model                  = 0x000022,
395                 .workarounds            = SBP2_WORKAROUND_FIX_CAPACITY,
396         },
397         /* iPod mini */ {
398                 .firmware_revision      = 0x0a2700,
399                 .model                  = 0x000023,
400                 .workarounds            = SBP2_WORKAROUND_FIX_CAPACITY,
401         },
402         /* iPod Photo */ {
403                 .firmware_revision      = 0x0a2700,
404                 .model                  = 0x00007e,
405                 .workarounds            = SBP2_WORKAROUND_FIX_CAPACITY,
406         }
407 };
408
409 static void free_orb(struct kref *kref)
410 {
411         struct sbp2_orb *orb = container_of(kref, struct sbp2_orb, kref);
412
413         kfree(orb);
414 }
415
416 static void sbp2_status_write(struct fw_card *card, struct fw_request *request,
417                               int tcode, int destination, int source,
418                               int generation, unsigned long long offset,
419                               void *payload, size_t length, void *callback_data)
420 {
421         struct sbp2_logical_unit *lu = callback_data;
422         struct sbp2_orb *orb;
423         struct sbp2_status status;
424         unsigned long flags;
425
426         if (tcode != TCODE_WRITE_BLOCK_REQUEST ||
427             length < 8 || length > sizeof(status)) {
428                 fw_send_response(card, request, RCODE_TYPE_ERROR);
429                 return;
430         }
431
432         status.status  = be32_to_cpup(payload);
433         status.orb_low = be32_to_cpup(payload + 4);
434         memset(status.data, 0, sizeof(status.data));
435         if (length > 8)
436                 memcpy(status.data, payload + 8, length - 8);
437
438         if (STATUS_GET_SOURCE(status) == 2 || STATUS_GET_SOURCE(status) == 3) {
439                 dev_notice(lu_dev(lu),
440                            "non-ORB related status write, not handled\n");
441                 fw_send_response(card, request, RCODE_COMPLETE);
442                 return;
443         }
444
445         /* Lookup the orb corresponding to this status write. */
446         spin_lock_irqsave(&card->lock, flags);
447         list_for_each_entry(orb, &lu->orb_list, link) {
448                 if (STATUS_GET_ORB_HIGH(status) == 0 &&
449                     STATUS_GET_ORB_LOW(status) == orb->request_bus) {
450                         orb->rcode = RCODE_COMPLETE;
451                         list_del(&orb->link);
452                         break;
453                 }
454         }
455         spin_unlock_irqrestore(&card->lock, flags);
456
457         if (&orb->link != &lu->orb_list) {
458                 orb->callback(orb, &status);
459                 kref_put(&orb->kref, free_orb); /* orb callback reference */
460         } else {
461                 dev_err(lu_dev(lu), "status write for unknown ORB\n");
462         }
463
464         fw_send_response(card, request, RCODE_COMPLETE);
465 }
466
467 static void complete_transaction(struct fw_card *card, int rcode,
468                                  void *payload, size_t length, void *data)
469 {
470         struct sbp2_orb *orb = data;
471         unsigned long flags;
472
473         /*
474          * This is a little tricky.  We can get the status write for
475          * the orb before we get this callback.  The status write
476          * handler above will assume the orb pointer transaction was
477          * successful and set the rcode to RCODE_COMPLETE for the orb.
478          * So this callback only sets the rcode if it hasn't already
479          * been set and only does the cleanup if the transaction
480          * failed and we didn't already get a status write.
481          */
482         spin_lock_irqsave(&card->lock, flags);
483
484         if (orb->rcode == -1)
485                 orb->rcode = rcode;
486         if (orb->rcode != RCODE_COMPLETE) {
487                 list_del(&orb->link);
488                 spin_unlock_irqrestore(&card->lock, flags);
489
490                 orb->callback(orb, NULL);
491                 kref_put(&orb->kref, free_orb); /* orb callback reference */
492         } else {
493                 spin_unlock_irqrestore(&card->lock, flags);
494         }
495
496         kref_put(&orb->kref, free_orb); /* transaction callback reference */
497 }
498
499 static void sbp2_send_orb(struct sbp2_orb *orb, struct sbp2_logical_unit *lu,
500                           int node_id, int generation, u64 offset)
501 {
502         struct fw_device *device = target_parent_device(lu->tgt);
503         struct sbp2_pointer orb_pointer;
504         unsigned long flags;
505
506         orb_pointer.high = 0;
507         orb_pointer.low = cpu_to_be32(orb->request_bus);
508
509         spin_lock_irqsave(&device->card->lock, flags);
510         list_add_tail(&orb->link, &lu->orb_list);
511         spin_unlock_irqrestore(&device->card->lock, flags);
512
513         kref_get(&orb->kref); /* transaction callback reference */
514         kref_get(&orb->kref); /* orb callback reference */
515
516         fw_send_request(device->card, &orb->t, TCODE_WRITE_BLOCK_REQUEST,
517                         node_id, generation, device->max_speed, offset,
518                         &orb_pointer, 8, complete_transaction, orb);
519 }
520
521 static int sbp2_cancel_orbs(struct sbp2_logical_unit *lu)
522 {
523         struct fw_device *device = target_parent_device(lu->tgt);
524         struct sbp2_orb *orb, *next;
525         struct list_head list;
526         unsigned long flags;
527         int retval = -ENOENT;
528
529         INIT_LIST_HEAD(&list);
530         spin_lock_irqsave(&device->card->lock, flags);
531         list_splice_init(&lu->orb_list, &list);
532         spin_unlock_irqrestore(&device->card->lock, flags);
533
534         list_for_each_entry_safe(orb, next, &list, link) {
535                 retval = 0;
536                 if (fw_cancel_transaction(device->card, &orb->t) == 0)
537                         continue;
538
539                 orb->rcode = RCODE_CANCELLED;
540                 orb->callback(orb, NULL);
541                 kref_put(&orb->kref, free_orb); /* orb callback reference */
542         }
543
544         return retval;
545 }
546
547 static void complete_management_orb(struct sbp2_orb *base_orb,
548                                     struct sbp2_status *status)
549 {
550         struct sbp2_management_orb *orb =
551                 container_of(base_orb, struct sbp2_management_orb, base);
552
553         if (status)
554                 memcpy(&orb->status, status, sizeof(*status));
555         complete(&orb->done);
556 }
557
558 static int sbp2_send_management_orb(struct sbp2_logical_unit *lu, int node_id,
559                                     int generation, int function,
560                                     int lun_or_login_id, void *response)
561 {
562         struct fw_device *device = target_parent_device(lu->tgt);
563         struct sbp2_management_orb *orb;
564         unsigned int timeout;
565         int retval = -ENOMEM;
566
567         if (function == SBP2_LOGOUT_REQUEST && fw_device_is_shutdown(device))
568                 return 0;
569
570         orb = kzalloc(sizeof(*orb), GFP_NOIO);
571         if (orb == NULL)
572                 return -ENOMEM;
573
574         kref_init(&orb->base.kref);
575         orb->response_bus =
576                 dma_map_single(device->card->device, &orb->response,
577                                sizeof(orb->response), DMA_FROM_DEVICE);
578         if (dma_mapping_error(device->card->device, orb->response_bus))
579                 goto fail_mapping_response;
580
581         orb->request.response.high = 0;
582         orb->request.response.low  = cpu_to_be32(orb->response_bus);
583
584         orb->request.misc = cpu_to_be32(
585                 MANAGEMENT_ORB_NOTIFY |
586                 MANAGEMENT_ORB_FUNCTION(function) |
587                 MANAGEMENT_ORB_LUN(lun_or_login_id));
588         orb->request.length = cpu_to_be32(
589                 MANAGEMENT_ORB_RESPONSE_LENGTH(sizeof(orb->response)));
590
591         orb->request.status_fifo.high =
592                 cpu_to_be32(lu->address_handler.offset >> 32);
593         orb->request.status_fifo.low  =
594                 cpu_to_be32(lu->address_handler.offset);
595
596         if (function == SBP2_LOGIN_REQUEST) {
597                 /* Ask for 2^2 == 4 seconds reconnect grace period */
598                 orb->request.misc |= cpu_to_be32(
599                         MANAGEMENT_ORB_RECONNECT(2) |
600                         MANAGEMENT_ORB_EXCLUSIVE(sbp2_param_exclusive_login));
601                 timeout = lu->tgt->mgt_orb_timeout;
602         } else {
603                 timeout = SBP2_ORB_TIMEOUT;
604         }
605
606         init_completion(&orb->done);
607         orb->base.callback = complete_management_orb;
608
609         orb->base.request_bus =
610                 dma_map_single(device->card->device, &orb->request,
611                                sizeof(orb->request), DMA_TO_DEVICE);
612         if (dma_mapping_error(device->card->device, orb->base.request_bus))
613                 goto fail_mapping_request;
614
615         sbp2_send_orb(&orb->base, lu, node_id, generation,
616                       lu->tgt->management_agent_address);
617
618         wait_for_completion_timeout(&orb->done, msecs_to_jiffies(timeout));
619
620         retval = -EIO;
621         if (sbp2_cancel_orbs(lu) == 0) {
622                 dev_err(lu_dev(lu), "ORB reply timed out, rcode 0x%02x\n",
623                         orb->base.rcode);
624                 goto out;
625         }
626
627         if (orb->base.rcode != RCODE_COMPLETE) {
628                 dev_err(lu_dev(lu), "management write failed, rcode 0x%02x\n",
629                         orb->base.rcode);
630                 goto out;
631         }
632
633         if (STATUS_GET_RESPONSE(orb->status) != 0 ||
634             STATUS_GET_SBP_STATUS(orb->status) != 0) {
635                 dev_err(lu_dev(lu), "error status: %d:%d\n",
636                          STATUS_GET_RESPONSE(orb->status),
637                          STATUS_GET_SBP_STATUS(orb->status));
638                 goto out;
639         }
640
641         retval = 0;
642  out:
643         dma_unmap_single(device->card->device, orb->base.request_bus,
644                          sizeof(orb->request), DMA_TO_DEVICE);
645  fail_mapping_request:
646         dma_unmap_single(device->card->device, orb->response_bus,
647                          sizeof(orb->response), DMA_FROM_DEVICE);
648  fail_mapping_response:
649         if (response)
650                 memcpy(response, orb->response, sizeof(orb->response));
651         kref_put(&orb->base.kref, free_orb);
652
653         return retval;
654 }
655
656 static void sbp2_agent_reset(struct sbp2_logical_unit *lu)
657 {
658         struct fw_device *device = target_parent_device(lu->tgt);
659         __be32 d = 0;
660
661         fw_run_transaction(device->card, TCODE_WRITE_QUADLET_REQUEST,
662                            lu->tgt->node_id, lu->generation, device->max_speed,
663                            lu->command_block_agent_address + SBP2_AGENT_RESET,
664                            &d, 4);
665 }
666
667 static void complete_agent_reset_write_no_wait(struct fw_card *card,
668                 int rcode, void *payload, size_t length, void *data)
669 {
670         kfree(data);
671 }
672
673 static void sbp2_agent_reset_no_wait(struct sbp2_logical_unit *lu)
674 {
675         struct fw_device *device = target_parent_device(lu->tgt);
676         struct fw_transaction *t;
677         static __be32 d;
678
679         t = kmalloc(sizeof(*t), GFP_ATOMIC);
680         if (t == NULL)
681                 return;
682
683         fw_send_request(device->card, t, TCODE_WRITE_QUADLET_REQUEST,
684                         lu->tgt->node_id, lu->generation, device->max_speed,
685                         lu->command_block_agent_address + SBP2_AGENT_RESET,
686                         &d, 4, complete_agent_reset_write_no_wait, t);
687 }
688
689 static inline void sbp2_allow_block(struct sbp2_logical_unit *lu)
690 {
691         /*
692          * We may access dont_block without taking card->lock here:
693          * All callers of sbp2_allow_block() and all callers of sbp2_unblock()
694          * are currently serialized against each other.
695          * And a wrong result in sbp2_conditionally_block()'s access of
696          * dont_block is rather harmless, it simply misses its first chance.
697          */
698         --lu->tgt->dont_block;
699 }
700
701 /*
702  * Blocks lu->tgt if all of the following conditions are met:
703  *   - Login, INQUIRY, and high-level SCSI setup of all of the target's
704  *     logical units have been finished (indicated by dont_block == 0).
705  *   - lu->generation is stale.
706  *
707  * Note, scsi_block_requests() must be called while holding card->lock,
708  * otherwise it might foil sbp2_[conditionally_]unblock()'s attempt to
709  * unblock the target.
710  */
711 static void sbp2_conditionally_block(struct sbp2_logical_unit *lu)
712 {
713         struct sbp2_target *tgt = lu->tgt;
714         struct fw_card *card = target_parent_device(tgt)->card;
715         struct Scsi_Host *shost =
716                 container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
717         unsigned long flags;
718
719         spin_lock_irqsave(&card->lock, flags);
720         if (!tgt->dont_block && !lu->blocked &&
721             lu->generation != card->generation) {
722                 lu->blocked = true;
723                 if (++tgt->blocked == 1)
724                         scsi_block_requests(shost);
725         }
726         spin_unlock_irqrestore(&card->lock, flags);
727 }
728
729 /*
730  * Unblocks lu->tgt as soon as all its logical units can be unblocked.
731  * Note, it is harmless to run scsi_unblock_requests() outside the
732  * card->lock protected section.  On the other hand, running it inside
733  * the section might clash with shost->host_lock.
734  */
735 static void sbp2_conditionally_unblock(struct sbp2_logical_unit *lu)
736 {
737         struct sbp2_target *tgt = lu->tgt;
738         struct fw_card *card = target_parent_device(tgt)->card;
739         struct Scsi_Host *shost =
740                 container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
741         unsigned long flags;
742         bool unblock = false;
743
744         spin_lock_irqsave(&card->lock, flags);
745         if (lu->blocked && lu->generation == card->generation) {
746                 lu->blocked = false;
747                 unblock = --tgt->blocked == 0;
748         }
749         spin_unlock_irqrestore(&card->lock, flags);
750
751         if (unblock)
752                 scsi_unblock_requests(shost);
753 }
754
755 /*
756  * Prevents future blocking of tgt and unblocks it.
757  * Note, it is harmless to run scsi_unblock_requests() outside the
758  * card->lock protected section.  On the other hand, running it inside
759  * the section might clash with shost->host_lock.
760  */
761 static void sbp2_unblock(struct sbp2_target *tgt)
762 {
763         struct fw_card *card = target_parent_device(tgt)->card;
764         struct Scsi_Host *shost =
765                 container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
766         unsigned long flags;
767
768         spin_lock_irqsave(&card->lock, flags);
769         ++tgt->dont_block;
770         spin_unlock_irqrestore(&card->lock, flags);
771
772         scsi_unblock_requests(shost);
773 }
774
775 static int sbp2_lun2int(u16 lun)
776 {
777         struct scsi_lun eight_bytes_lun;
778
779         memset(&eight_bytes_lun, 0, sizeof(eight_bytes_lun));
780         eight_bytes_lun.scsi_lun[0] = (lun >> 8) & 0xff;
781         eight_bytes_lun.scsi_lun[1] = lun & 0xff;
782
783         return scsilun_to_int(&eight_bytes_lun);
784 }
785
786 /*
787  * Write retransmit retry values into the BUSY_TIMEOUT register.
788  * - The single-phase retry protocol is supported by all SBP-2 devices, but the
789  *   default retry_limit value is 0 (i.e. never retry transmission). We write a
790  *   saner value after logging into the device.
791  * - The dual-phase retry protocol is optional to implement, and if not
792  *   supported, writes to the dual-phase portion of the register will be
793  *   ignored. We try to write the original 1394-1995 default here.
794  * - In the case of devices that are also SBP-3-compliant, all writes are
795  *   ignored, as the register is read-only, but contains single-phase retry of
796  *   15, which is what we're trying to set for all SBP-2 device anyway, so this
797  *   write attempt is safe and yields more consistent behavior for all devices.
798  *
799  * See section 8.3.2.3.5 of the 1394-1995 spec, section 6.2 of the SBP-2 spec,
800  * and section 6.4 of the SBP-3 spec for further details.
801  */
802 static void sbp2_set_busy_timeout(struct sbp2_logical_unit *lu)
803 {
804         struct fw_device *device = target_parent_device(lu->tgt);
805         __be32 d = cpu_to_be32(SBP2_CYCLE_LIMIT | SBP2_RETRY_LIMIT);
806
807         fw_run_transaction(device->card, TCODE_WRITE_QUADLET_REQUEST,
808                            lu->tgt->node_id, lu->generation, device->max_speed,
809                            CSR_REGISTER_BASE + CSR_BUSY_TIMEOUT, &d, 4);
810 }
811
812 static void sbp2_reconnect(struct work_struct *work);
813
814 static void sbp2_login(struct work_struct *work)
815 {
816         struct sbp2_logical_unit *lu =
817                 container_of(work, struct sbp2_logical_unit, work.work);
818         struct sbp2_target *tgt = lu->tgt;
819         struct fw_device *device = target_parent_device(tgt);
820         struct Scsi_Host *shost;
821         struct scsi_device *sdev;
822         struct sbp2_login_response response;
823         int generation, node_id, local_node_id;
824
825         if (fw_device_is_shutdown(device))
826                 return;
827
828         generation    = device->generation;
829         smp_rmb();    /* node IDs must not be older than generation */
830         node_id       = device->node_id;
831         local_node_id = device->card->node_id;
832
833         /* If this is a re-login attempt, log out, or we might be rejected. */
834         if (lu->has_sdev)
835                 sbp2_send_management_orb(lu, device->node_id, generation,
836                                 SBP2_LOGOUT_REQUEST, lu->login_id, NULL);
837
838         if (sbp2_send_management_orb(lu, node_id, generation,
839                                 SBP2_LOGIN_REQUEST, lu->lun, &response) < 0) {
840                 if (lu->retries++ < 5) {
841                         sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
842                 } else {
843                         dev_err(tgt_dev(tgt), "failed to login to LUN %04x\n",
844                                 lu->lun);
845                         /* Let any waiting I/O fail from now on. */
846                         sbp2_unblock(lu->tgt);
847                 }
848                 return;
849         }
850
851         tgt->node_id      = node_id;
852         tgt->address_high = local_node_id << 16;
853         smp_wmb();        /* node IDs must not be older than generation */
854         lu->generation    = generation;
855
856         lu->command_block_agent_address =
857                 ((u64)(be32_to_cpu(response.command_block_agent.high) & 0xffff)
858                       << 32) | be32_to_cpu(response.command_block_agent.low);
859         lu->login_id = be32_to_cpu(response.misc) & 0xffff;
860
861         dev_notice(tgt_dev(tgt), "logged in to LUN %04x (%d retries)\n",
862                    lu->lun, lu->retries);
863
864         /* set appropriate retry limit(s) in BUSY_TIMEOUT register */
865         sbp2_set_busy_timeout(lu);
866
867         PREPARE_DELAYED_WORK(&lu->work, sbp2_reconnect);
868         sbp2_agent_reset(lu);
869
870         /* This was a re-login. */
871         if (lu->has_sdev) {
872                 sbp2_cancel_orbs(lu);
873                 sbp2_conditionally_unblock(lu);
874
875                 return;
876         }
877
878         if (lu->tgt->workarounds & SBP2_WORKAROUND_DELAY_INQUIRY)
879                 ssleep(SBP2_INQUIRY_DELAY);
880
881         shost = container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
882         sdev = __scsi_add_device(shost, 0, 0, sbp2_lun2int(lu->lun), lu);
883         /*
884          * FIXME:  We are unable to perform reconnects while in sbp2_login().
885          * Therefore __scsi_add_device() will get into trouble if a bus reset
886          * happens in parallel.  It will either fail or leave us with an
887          * unusable sdev.  As a workaround we check for this and retry the
888          * whole login and SCSI probing.
889          */
890
891         /* Reported error during __scsi_add_device() */
892         if (IS_ERR(sdev))
893                 goto out_logout_login;
894
895         /* Unreported error during __scsi_add_device() */
896         smp_rmb(); /* get current card generation */
897         if (generation != device->card->generation) {
898                 scsi_remove_device(sdev);
899                 scsi_device_put(sdev);
900                 goto out_logout_login;
901         }
902
903         /* No error during __scsi_add_device() */
904         lu->has_sdev = true;
905         scsi_device_put(sdev);
906         sbp2_allow_block(lu);
907
908         return;
909
910  out_logout_login:
911         smp_rmb(); /* generation may have changed */
912         generation = device->generation;
913         smp_rmb(); /* node_id must not be older than generation */
914
915         sbp2_send_management_orb(lu, device->node_id, generation,
916                                  SBP2_LOGOUT_REQUEST, lu->login_id, NULL);
917         /*
918          * If a bus reset happened, sbp2_update will have requeued
919          * lu->work already.  Reset the work from reconnect to login.
920          */
921         PREPARE_DELAYED_WORK(&lu->work, sbp2_login);
922 }
923
924 static void sbp2_reconnect(struct work_struct *work)
925 {
926         struct sbp2_logical_unit *lu =
927                 container_of(work, struct sbp2_logical_unit, work.work);
928         struct sbp2_target *tgt = lu->tgt;
929         struct fw_device *device = target_parent_device(tgt);
930         int generation, node_id, local_node_id;
931
932         if (fw_device_is_shutdown(device))
933                 return;
934
935         generation    = device->generation;
936         smp_rmb();    /* node IDs must not be older than generation */
937         node_id       = device->node_id;
938         local_node_id = device->card->node_id;
939
940         if (sbp2_send_management_orb(lu, node_id, generation,
941                                      SBP2_RECONNECT_REQUEST,
942                                      lu->login_id, NULL) < 0) {
943                 /*
944                  * If reconnect was impossible even though we are in the
945                  * current generation, fall back and try to log in again.
946                  *
947                  * We could check for "Function rejected" status, but
948                  * looking at the bus generation as simpler and more general.
949                  */
950                 smp_rmb(); /* get current card generation */
951                 if (generation == device->card->generation ||
952                     lu->retries++ >= 5) {
953                         dev_err(tgt_dev(tgt), "failed to reconnect\n");
954                         lu->retries = 0;
955                         PREPARE_DELAYED_WORK(&lu->work, sbp2_login);
956                 }
957                 sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
958
959                 return;
960         }
961
962         tgt->node_id      = node_id;
963         tgt->address_high = local_node_id << 16;
964         smp_wmb();        /* node IDs must not be older than generation */
965         lu->generation    = generation;
966
967         dev_notice(tgt_dev(tgt), "reconnected to LUN %04x (%d retries)\n",
968                    lu->lun, lu->retries);
969
970         sbp2_agent_reset(lu);
971         sbp2_cancel_orbs(lu);
972         sbp2_conditionally_unblock(lu);
973 }
974
975 static int sbp2_add_logical_unit(struct sbp2_target *tgt, int lun_entry)
976 {
977         struct sbp2_logical_unit *lu;
978
979         lu = kmalloc(sizeof(*lu), GFP_KERNEL);
980         if (!lu)
981                 return -ENOMEM;
982
983         lu->address_handler.length           = 0x100;
984         lu->address_handler.address_callback = sbp2_status_write;
985         lu->address_handler.callback_data    = lu;
986
987         if (fw_core_add_address_handler(&lu->address_handler,
988                                         &fw_high_memory_region) < 0) {
989                 kfree(lu);
990                 return -ENOMEM;
991         }
992
993         lu->tgt      = tgt;
994         lu->lun      = lun_entry & 0xffff;
995         lu->login_id = INVALID_LOGIN_ID;
996         lu->retries  = 0;
997         lu->has_sdev = false;
998         lu->blocked  = false;
999         ++tgt->dont_block;
1000         INIT_LIST_HEAD(&lu->orb_list);
1001         INIT_DELAYED_WORK(&lu->work, sbp2_login);
1002
1003         list_add_tail(&lu->link, &tgt->lu_list);
1004         return 0;
1005 }
1006
1007 static void sbp2_get_unit_unique_id(struct sbp2_target *tgt,
1008                                     const u32 *leaf)
1009 {
1010         if ((leaf[0] & 0xffff0000) == 0x00020000)
1011                 tgt->guid = (u64)leaf[1] << 32 | leaf[2];
1012 }
1013
1014 static int sbp2_scan_logical_unit_dir(struct sbp2_target *tgt,
1015                                       const u32 *directory)
1016 {
1017         struct fw_csr_iterator ci;
1018         int key, value;
1019
1020         fw_csr_iterator_init(&ci, directory);
1021         while (fw_csr_iterator_next(&ci, &key, &value))
1022                 if (key == SBP2_CSR_LOGICAL_UNIT_NUMBER &&
1023                     sbp2_add_logical_unit(tgt, value) < 0)
1024                         return -ENOMEM;
1025         return 0;
1026 }
1027
1028 static int sbp2_scan_unit_dir(struct sbp2_target *tgt, const u32 *directory,
1029                               u32 *model, u32 *firmware_revision)
1030 {
1031         struct fw_csr_iterator ci;
1032         int key, value;
1033
1034         fw_csr_iterator_init(&ci, directory);
1035         while (fw_csr_iterator_next(&ci, &key, &value)) {
1036                 switch (key) {
1037
1038                 case CSR_DEPENDENT_INFO | CSR_OFFSET:
1039                         tgt->management_agent_address =
1040                                         CSR_REGISTER_BASE + 4 * value;
1041                         break;
1042
1043                 case CSR_DIRECTORY_ID:
1044                         tgt->directory_id = value;
1045                         break;
1046
1047                 case CSR_MODEL:
1048                         *model = value;
1049                         break;
1050
1051                 case SBP2_CSR_FIRMWARE_REVISION:
1052                         *firmware_revision = value;
1053                         break;
1054
1055                 case SBP2_CSR_UNIT_CHARACTERISTICS:
1056                         /* the timeout value is stored in 500ms units */
1057                         tgt->mgt_orb_timeout = (value >> 8 & 0xff) * 500;
1058                         break;
1059
1060                 case SBP2_CSR_LOGICAL_UNIT_NUMBER:
1061                         if (sbp2_add_logical_unit(tgt, value) < 0)
1062                                 return -ENOMEM;
1063                         break;
1064
1065                 case SBP2_CSR_UNIT_UNIQUE_ID:
1066                         sbp2_get_unit_unique_id(tgt, ci.p - 1 + value);
1067                         break;
1068
1069                 case SBP2_CSR_LOGICAL_UNIT_DIRECTORY:
1070                         /* Adjust for the increment in the iterator */
1071                         if (sbp2_scan_logical_unit_dir(tgt, ci.p - 1 + value) < 0)
1072                                 return -ENOMEM;
1073                         break;
1074                 }
1075         }
1076         return 0;
1077 }
1078
1079 /*
1080  * Per section 7.4.8 of the SBP-2 spec, a mgt_ORB_timeout value can be
1081  * provided in the config rom. Most devices do provide a value, which
1082  * we'll use for login management orbs, but with some sane limits.
1083  */
1084 static void sbp2_clamp_management_orb_timeout(struct sbp2_target *tgt)
1085 {
1086         unsigned int timeout = tgt->mgt_orb_timeout;
1087
1088         if (timeout > 40000)
1089                 dev_notice(tgt_dev(tgt), "%ds mgt_ORB_timeout limited to 40s\n",
1090                            timeout / 1000);
1091
1092         tgt->mgt_orb_timeout = clamp_val(timeout, 5000, 40000);
1093 }
1094
1095 static void sbp2_init_workarounds(struct sbp2_target *tgt, u32 model,
1096                                   u32 firmware_revision)
1097 {
1098         int i;
1099         unsigned int w = sbp2_param_workarounds;
1100
1101         if (w)
1102                 dev_notice(tgt_dev(tgt),
1103                            "Please notify linux1394-devel@lists.sf.net "
1104                            "if you need the workarounds parameter\n");
1105
1106         if (w & SBP2_WORKAROUND_OVERRIDE)
1107                 goto out;
1108
1109         for (i = 0; i < ARRAY_SIZE(sbp2_workarounds_table); i++) {
1110
1111                 if (sbp2_workarounds_table[i].firmware_revision !=
1112                     (firmware_revision & 0xffffff00))
1113                         continue;
1114
1115                 if (sbp2_workarounds_table[i].model != model &&
1116                     sbp2_workarounds_table[i].model != SBP2_ROM_VALUE_WILDCARD)
1117                         continue;
1118
1119                 w |= sbp2_workarounds_table[i].workarounds;
1120                 break;
1121         }
1122  out:
1123         if (w)
1124                 dev_notice(tgt_dev(tgt), "workarounds 0x%x "
1125                            "(firmware_revision 0x%06x, model_id 0x%06x)\n",
1126                            w, firmware_revision, model);
1127         tgt->workarounds = w;
1128 }
1129
1130 static struct scsi_host_template scsi_driver_template;
1131 static void sbp2_remove(struct fw_unit *unit);
1132
1133 static int sbp2_probe(struct fw_unit *unit, const struct ieee1394_device_id *id)
1134 {
1135         struct fw_device *device = fw_parent_device(unit);
1136         struct sbp2_target *tgt;
1137         struct sbp2_logical_unit *lu;
1138         struct Scsi_Host *shost;
1139         u32 model, firmware_revision;
1140
1141         /* cannot (or should not) handle targets on the local node */
1142         if (device->is_local)
1143                 return -ENODEV;
1144
1145         if (dma_get_max_seg_size(device->card->device) > SBP2_MAX_SEG_SIZE)
1146                 WARN_ON(dma_set_max_seg_size(device->card->device,
1147                                              SBP2_MAX_SEG_SIZE));
1148
1149         shost = scsi_host_alloc(&scsi_driver_template, sizeof(*tgt));
1150         if (shost == NULL)
1151                 return -ENOMEM;
1152
1153         tgt = (struct sbp2_target *)shost->hostdata;
1154         dev_set_drvdata(&unit->device, tgt);
1155         tgt->unit = unit;
1156         INIT_LIST_HEAD(&tgt->lu_list);
1157         tgt->guid = (u64)device->config_rom[3] << 32 | device->config_rom[4];
1158
1159         if (fw_device_enable_phys_dma(device) < 0)
1160                 goto fail_shost_put;
1161
1162         shost->max_cmd_len = SBP2_MAX_CDB_SIZE;
1163
1164         if (scsi_add_host_with_dma(shost, &unit->device,
1165                                    device->card->device) < 0)
1166                 goto fail_shost_put;
1167
1168         /* implicit directory ID */
1169         tgt->directory_id = ((unit->directory - device->config_rom) * 4
1170                              + CSR_CONFIG_ROM) & 0xffffff;
1171
1172         firmware_revision = SBP2_ROM_VALUE_MISSING;
1173         model             = SBP2_ROM_VALUE_MISSING;
1174
1175         if (sbp2_scan_unit_dir(tgt, unit->directory, &model,
1176                                &firmware_revision) < 0)
1177                 goto fail_remove;
1178
1179         sbp2_clamp_management_orb_timeout(tgt);
1180         sbp2_init_workarounds(tgt, model, firmware_revision);
1181
1182         /*
1183          * At S100 we can do 512 bytes per packet, at S200 1024 bytes,
1184          * and so on up to 4096 bytes.  The SBP-2 max_payload field
1185          * specifies the max payload size as 2 ^ (max_payload + 2), so
1186          * if we set this to max_speed + 7, we get the right value.
1187          */
1188         tgt->max_payload = min3(device->max_speed + 7, 10U,
1189                                 device->card->max_receive - 1);
1190
1191         /* Do the login in a workqueue so we can easily reschedule retries. */
1192         list_for_each_entry(lu, &tgt->lu_list, link)
1193                 sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
1194
1195         return 0;
1196
1197  fail_remove:
1198         sbp2_remove(unit);
1199         return -ENOMEM;
1200
1201  fail_shost_put:
1202         scsi_host_put(shost);
1203         return -ENOMEM;
1204 }
1205
1206 static void sbp2_update(struct fw_unit *unit)
1207 {
1208         struct sbp2_target *tgt = dev_get_drvdata(&unit->device);
1209         struct sbp2_logical_unit *lu;
1210
1211         fw_device_enable_phys_dma(fw_parent_device(unit));
1212
1213         /*
1214          * Fw-core serializes sbp2_update() against sbp2_remove().
1215          * Iteration over tgt->lu_list is therefore safe here.
1216          */
1217         list_for_each_entry(lu, &tgt->lu_list, link) {
1218                 sbp2_conditionally_block(lu);
1219                 lu->retries = 0;
1220                 sbp2_queue_work(lu, 0);
1221         }
1222 }
1223
1224 static void sbp2_remove(struct fw_unit *unit)
1225 {
1226         struct fw_device *device = fw_parent_device(unit);
1227         struct sbp2_target *tgt = dev_get_drvdata(&unit->device);
1228         struct sbp2_logical_unit *lu, *next;
1229         struct Scsi_Host *shost =
1230                 container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
1231         struct scsi_device *sdev;
1232
1233         /* prevent deadlocks */
1234         sbp2_unblock(tgt);
1235
1236         list_for_each_entry_safe(lu, next, &tgt->lu_list, link) {
1237                 cancel_delayed_work_sync(&lu->work);
1238                 sdev = scsi_device_lookup(shost, 0, 0, sbp2_lun2int(lu->lun));
1239                 if (sdev) {
1240                         scsi_remove_device(sdev);
1241                         scsi_device_put(sdev);
1242                 }
1243                 if (lu->login_id != INVALID_LOGIN_ID) {
1244                         int generation, node_id;
1245                         /*
1246                          * tgt->node_id may be obsolete here if we failed
1247                          * during initial login or after a bus reset where
1248                          * the topology changed.
1249                          */
1250                         generation = device->generation;
1251                         smp_rmb(); /* node_id vs. generation */
1252                         node_id    = device->node_id;
1253                         sbp2_send_management_orb(lu, node_id, generation,
1254                                                  SBP2_LOGOUT_REQUEST,
1255                                                  lu->login_id, NULL);
1256                 }
1257                 fw_core_remove_address_handler(&lu->address_handler);
1258                 list_del(&lu->link);
1259                 kfree(lu);
1260         }
1261         scsi_remove_host(shost);
1262         dev_notice(&unit->device, "released target %d:0:0\n", shost->host_no);
1263
1264         scsi_host_put(shost);
1265 }
1266
1267 #define SBP2_UNIT_SPEC_ID_ENTRY 0x0000609e
1268 #define SBP2_SW_VERSION_ENTRY   0x00010483
1269
1270 static const struct ieee1394_device_id sbp2_id_table[] = {
1271         {
1272                 .match_flags  = IEEE1394_MATCH_SPECIFIER_ID |
1273                                 IEEE1394_MATCH_VERSION,
1274                 .specifier_id = SBP2_UNIT_SPEC_ID_ENTRY,
1275                 .version      = SBP2_SW_VERSION_ENTRY,
1276         },
1277         { }
1278 };
1279
1280 static struct fw_driver sbp2_driver = {
1281         .driver   = {
1282                 .owner  = THIS_MODULE,
1283                 .name   = KBUILD_MODNAME,
1284                 .bus    = &fw_bus_type,
1285         },
1286         .probe    = sbp2_probe,
1287         .update   = sbp2_update,
1288         .remove   = sbp2_remove,
1289         .id_table = sbp2_id_table,
1290 };
1291
1292 static void sbp2_unmap_scatterlist(struct device *card_device,
1293                                    struct sbp2_command_orb *orb)
1294 {
1295         scsi_dma_unmap(orb->cmd);
1296
1297         if (orb->request.misc & cpu_to_be32(COMMAND_ORB_PAGE_TABLE_PRESENT))
1298                 dma_unmap_single(card_device, orb->page_table_bus,
1299                                  sizeof(orb->page_table), DMA_TO_DEVICE);
1300 }
1301
1302 static unsigned int sbp2_status_to_sense_data(u8 *sbp2_status, u8 *sense_data)
1303 {
1304         int sam_status;
1305         int sfmt = (sbp2_status[0] >> 6) & 0x03;
1306
1307         if (sfmt == 2 || sfmt == 3) {
1308                 /*
1309                  * Reserved for future standardization (2) or
1310                  * Status block format vendor-dependent (3)
1311                  */
1312                 return DID_ERROR << 16;
1313         }
1314
1315         sense_data[0] = 0x70 | sfmt | (sbp2_status[1] & 0x80);
1316         sense_data[1] = 0x0;
1317         sense_data[2] = ((sbp2_status[1] << 1) & 0xe0) | (sbp2_status[1] & 0x0f);
1318         sense_data[3] = sbp2_status[4];
1319         sense_data[4] = sbp2_status[5];
1320         sense_data[5] = sbp2_status[6];
1321         sense_data[6] = sbp2_status[7];
1322         sense_data[7] = 10;
1323         sense_data[8] = sbp2_status[8];
1324         sense_data[9] = sbp2_status[9];
1325         sense_data[10] = sbp2_status[10];
1326         sense_data[11] = sbp2_status[11];
1327         sense_data[12] = sbp2_status[2];
1328         sense_data[13] = sbp2_status[3];
1329         sense_data[14] = sbp2_status[12];
1330         sense_data[15] = sbp2_status[13];
1331
1332         sam_status = sbp2_status[0] & 0x3f;
1333
1334         switch (sam_status) {
1335         case SAM_STAT_GOOD:
1336         case SAM_STAT_CHECK_CONDITION:
1337         case SAM_STAT_CONDITION_MET:
1338         case SAM_STAT_BUSY:
1339         case SAM_STAT_RESERVATION_CONFLICT:
1340         case SAM_STAT_COMMAND_TERMINATED:
1341                 return DID_OK << 16 | sam_status;
1342
1343         default:
1344                 return DID_ERROR << 16;
1345         }
1346 }
1347
1348 static void complete_command_orb(struct sbp2_orb *base_orb,
1349                                  struct sbp2_status *status)
1350 {
1351         struct sbp2_command_orb *orb =
1352                 container_of(base_orb, struct sbp2_command_orb, base);
1353         struct fw_device *device = target_parent_device(orb->lu->tgt);
1354         int result;
1355
1356         if (status != NULL) {
1357                 if (STATUS_GET_DEAD(*status))
1358                         sbp2_agent_reset_no_wait(orb->lu);
1359
1360                 switch (STATUS_GET_RESPONSE(*status)) {
1361                 case SBP2_STATUS_REQUEST_COMPLETE:
1362                         result = DID_OK << 16;
1363                         break;
1364                 case SBP2_STATUS_TRANSPORT_FAILURE:
1365                         result = DID_BUS_BUSY << 16;
1366                         break;
1367                 case SBP2_STATUS_ILLEGAL_REQUEST:
1368                 case SBP2_STATUS_VENDOR_DEPENDENT:
1369                 default:
1370                         result = DID_ERROR << 16;
1371                         break;
1372                 }
1373
1374                 if (result == DID_OK << 16 && STATUS_GET_LEN(*status) > 1)
1375                         result = sbp2_status_to_sense_data(STATUS_GET_DATA(*status),
1376                                                            orb->cmd->sense_buffer);
1377         } else {
1378                 /*
1379                  * If the orb completes with status == NULL, something
1380                  * went wrong, typically a bus reset happened mid-orb
1381                  * or when sending the write (less likely).
1382                  */
1383                 result = DID_BUS_BUSY << 16;
1384                 sbp2_conditionally_block(orb->lu);
1385         }
1386
1387         dma_unmap_single(device->card->device, orb->base.request_bus,
1388                          sizeof(orb->request), DMA_TO_DEVICE);
1389         sbp2_unmap_scatterlist(device->card->device, orb);
1390
1391         orb->cmd->result = result;
1392         orb->cmd->scsi_done(orb->cmd);
1393 }
1394
1395 static int sbp2_map_scatterlist(struct sbp2_command_orb *orb,
1396                 struct fw_device *device, struct sbp2_logical_unit *lu)
1397 {
1398         struct scatterlist *sg = scsi_sglist(orb->cmd);
1399         int i, n;
1400
1401         n = scsi_dma_map(orb->cmd);
1402         if (n <= 0)
1403                 goto fail;
1404
1405         /*
1406          * Handle the special case where there is only one element in
1407          * the scatter list by converting it to an immediate block
1408          * request. This is also a workaround for broken devices such
1409          * as the second generation iPod which doesn't support page
1410          * tables.
1411          */
1412         if (n == 1) {
1413                 orb->request.data_descriptor.high =
1414                         cpu_to_be32(lu->tgt->address_high);
1415                 orb->request.data_descriptor.low  =
1416                         cpu_to_be32(sg_dma_address(sg));
1417                 orb->request.misc |=
1418                         cpu_to_be32(COMMAND_ORB_DATA_SIZE(sg_dma_len(sg)));
1419                 return 0;
1420         }
1421
1422         for_each_sg(sg, sg, n, i) {
1423                 orb->page_table[i].high = cpu_to_be32(sg_dma_len(sg) << 16);
1424                 orb->page_table[i].low = cpu_to_be32(sg_dma_address(sg));
1425         }
1426
1427         orb->page_table_bus =
1428                 dma_map_single(device->card->device, orb->page_table,
1429                                sizeof(orb->page_table), DMA_TO_DEVICE);
1430         if (dma_mapping_error(device->card->device, orb->page_table_bus))
1431                 goto fail_page_table;
1432
1433         /*
1434          * The data_descriptor pointer is the one case where we need
1435          * to fill in the node ID part of the address.  All other
1436          * pointers assume that the data referenced reside on the
1437          * initiator (i.e. us), but data_descriptor can refer to data
1438          * on other nodes so we need to put our ID in descriptor.high.
1439          */
1440         orb->request.data_descriptor.high = cpu_to_be32(lu->tgt->address_high);
1441         orb->request.data_descriptor.low  = cpu_to_be32(orb->page_table_bus);
1442         orb->request.misc |= cpu_to_be32(COMMAND_ORB_PAGE_TABLE_PRESENT |
1443                                          COMMAND_ORB_DATA_SIZE(n));
1444
1445         return 0;
1446
1447  fail_page_table:
1448         scsi_dma_unmap(orb->cmd);
1449  fail:
1450         return -ENOMEM;
1451 }
1452
1453 /* SCSI stack integration */
1454
1455 static int sbp2_scsi_queuecommand(struct Scsi_Host *shost,
1456                                   struct scsi_cmnd *cmd)
1457 {
1458         struct sbp2_logical_unit *lu = cmd->device->hostdata;
1459         struct fw_device *device = target_parent_device(lu->tgt);
1460         struct sbp2_command_orb *orb;
1461         int generation, retval = SCSI_MLQUEUE_HOST_BUSY;
1462
1463         /*
1464          * Bidirectional commands are not yet implemented, and unknown
1465          * transfer direction not handled.
1466          */
1467         if (cmd->sc_data_direction == DMA_BIDIRECTIONAL) {
1468                 dev_err(lu_dev(lu), "cannot handle bidirectional command\n");
1469                 cmd->result = DID_ERROR << 16;
1470                 cmd->scsi_done(cmd);
1471                 return 0;
1472         }
1473
1474         orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
1475         if (orb == NULL)
1476                 return SCSI_MLQUEUE_HOST_BUSY;
1477
1478         /* Initialize rcode to something not RCODE_COMPLETE. */
1479         orb->base.rcode = -1;
1480         kref_init(&orb->base.kref);
1481         orb->lu = lu;
1482         orb->cmd = cmd;
1483         orb->request.next.high = cpu_to_be32(SBP2_ORB_NULL);
1484         orb->request.misc = cpu_to_be32(
1485                 COMMAND_ORB_MAX_PAYLOAD(lu->tgt->max_payload) |
1486                 COMMAND_ORB_SPEED(device->max_speed) |
1487                 COMMAND_ORB_NOTIFY);
1488
1489         if (cmd->sc_data_direction == DMA_FROM_DEVICE)
1490                 orb->request.misc |= cpu_to_be32(COMMAND_ORB_DIRECTION);
1491
1492         generation = device->generation;
1493         smp_rmb();    /* sbp2_map_scatterlist looks at tgt->address_high */
1494
1495         if (scsi_sg_count(cmd) && sbp2_map_scatterlist(orb, device, lu) < 0)
1496                 goto out;
1497
1498         memcpy(orb->request.command_block, cmd->cmnd, cmd->cmd_len);
1499
1500         orb->base.callback = complete_command_orb;
1501         orb->base.request_bus =
1502                 dma_map_single(device->card->device, &orb->request,
1503                                sizeof(orb->request), DMA_TO_DEVICE);
1504         if (dma_mapping_error(device->card->device, orb->base.request_bus)) {
1505                 sbp2_unmap_scatterlist(device->card->device, orb);
1506                 goto out;
1507         }
1508
1509         sbp2_send_orb(&orb->base, lu, lu->tgt->node_id, generation,
1510                       lu->command_block_agent_address + SBP2_ORB_POINTER);
1511         retval = 0;
1512  out:
1513         kref_put(&orb->base.kref, free_orb);
1514         return retval;
1515 }
1516
1517 static int sbp2_scsi_slave_alloc(struct scsi_device *sdev)
1518 {
1519         struct sbp2_logical_unit *lu = sdev->hostdata;
1520
1521         /* (Re-)Adding logical units via the SCSI stack is not supported. */
1522         if (!lu)
1523                 return -ENOSYS;
1524
1525         sdev->allow_restart = 1;
1526
1527         /*
1528          * SBP-2 does not require any alignment, but we set it anyway
1529          * for compatibility with earlier versions of this driver.
1530          */
1531         blk_queue_update_dma_alignment(sdev->request_queue, 4 - 1);
1532
1533         if (lu->tgt->workarounds & SBP2_WORKAROUND_INQUIRY_36)
1534                 sdev->inquiry_len = 36;
1535
1536         return 0;
1537 }
1538
1539 static int sbp2_scsi_slave_configure(struct scsi_device *sdev)
1540 {
1541         struct sbp2_logical_unit *lu = sdev->hostdata;
1542
1543         sdev->use_10_for_rw = 1;
1544
1545         if (sbp2_param_exclusive_login)
1546                 sdev->manage_start_stop = 1;
1547
1548         if (sdev->type == TYPE_ROM)
1549                 sdev->use_10_for_ms = 1;
1550
1551         if (sdev->type == TYPE_DISK &&
1552             lu->tgt->workarounds & SBP2_WORKAROUND_MODE_SENSE_8)
1553                 sdev->skip_ms_page_8 = 1;
1554
1555         if (lu->tgt->workarounds & SBP2_WORKAROUND_FIX_CAPACITY)
1556                 sdev->fix_capacity = 1;
1557
1558         if (lu->tgt->workarounds & SBP2_WORKAROUND_POWER_CONDITION)
1559                 sdev->start_stop_pwr_cond = 1;
1560
1561         if (lu->tgt->workarounds & SBP2_WORKAROUND_128K_MAX_TRANS)
1562                 blk_queue_max_hw_sectors(sdev->request_queue, 128 * 1024 / 512);
1563
1564         return 0;
1565 }
1566
1567 /*
1568  * Called by scsi stack when something has really gone wrong.  Usually
1569  * called when a command has timed-out for some reason.
1570  */
1571 static int sbp2_scsi_abort(struct scsi_cmnd *cmd)
1572 {
1573         struct sbp2_logical_unit *lu = cmd->device->hostdata;
1574
1575         dev_notice(lu_dev(lu), "sbp2_scsi_abort\n");
1576         sbp2_agent_reset(lu);
1577         sbp2_cancel_orbs(lu);
1578
1579         return SUCCESS;
1580 }
1581
1582 /*
1583  * Format of /sys/bus/scsi/devices/.../ieee1394_id:
1584  * u64 EUI-64 : u24 directory_ID : u16 LUN  (all printed in hexadecimal)
1585  *
1586  * This is the concatenation of target port identifier and logical unit
1587  * identifier as per SAM-2...SAM-4 annex A.
1588  */
1589 static ssize_t sbp2_sysfs_ieee1394_id_show(struct device *dev,
1590                         struct device_attribute *attr, char *buf)
1591 {
1592         struct scsi_device *sdev = to_scsi_device(dev);
1593         struct sbp2_logical_unit *lu;
1594
1595         if (!sdev)
1596                 return 0;
1597
1598         lu = sdev->hostdata;
1599
1600         return sprintf(buf, "%016llx:%06x:%04x\n",
1601                         (unsigned long long)lu->tgt->guid,
1602                         lu->tgt->directory_id, lu->lun);
1603 }
1604
1605 static DEVICE_ATTR(ieee1394_id, S_IRUGO, sbp2_sysfs_ieee1394_id_show, NULL);
1606
1607 static struct device_attribute *sbp2_scsi_sysfs_attrs[] = {
1608         &dev_attr_ieee1394_id,
1609         NULL
1610 };
1611
1612 static struct scsi_host_template scsi_driver_template = {
1613         .module                 = THIS_MODULE,
1614         .name                   = "SBP-2 IEEE-1394",
1615         .proc_name              = "sbp2",
1616         .queuecommand           = sbp2_scsi_queuecommand,
1617         .slave_alloc            = sbp2_scsi_slave_alloc,
1618         .slave_configure        = sbp2_scsi_slave_configure,
1619         .eh_abort_handler       = sbp2_scsi_abort,
1620         .this_id                = -1,
1621         .sg_tablesize           = SG_ALL,
1622         .use_clustering         = ENABLE_CLUSTERING,
1623         .cmd_per_lun            = 1,
1624         .can_queue              = 1,
1625         .sdev_attrs             = sbp2_scsi_sysfs_attrs,
1626 };
1627
1628 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
1629 MODULE_DESCRIPTION("SCSI over IEEE1394");
1630 MODULE_LICENSE("GPL");
1631 MODULE_DEVICE_TABLE(ieee1394, sbp2_id_table);
1632
1633 /* Provide a module alias so root-on-sbp2 initrds don't break. */
1634 MODULE_ALIAS("sbp2");
1635
1636 static int __init sbp2_init(void)
1637 {
1638         return driver_register(&sbp2_driver.driver);
1639 }
1640
1641 static void __exit sbp2_cleanup(void)
1642 {
1643         driver_unregister(&sbp2_driver.driver);
1644 }
1645
1646 module_init(sbp2_init);
1647 module_exit(sbp2_cleanup);