2 * Driver for OHCI 1394 controllers
4 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software Foundation,
18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21 #include <linux/compiler.h>
22 #include <linux/delay.h>
23 #include <linux/device.h>
24 #include <linux/dma-mapping.h>
25 #include <linux/firewire.h>
26 #include <linux/firewire-constants.h>
27 #include <linux/gfp.h>
28 #include <linux/init.h>
29 #include <linux/interrupt.h>
31 #include <linux/kernel.h>
32 #include <linux/list.h>
34 #include <linux/module.h>
35 #include <linux/moduleparam.h>
36 #include <linux/pci.h>
37 #include <linux/pci_ids.h>
38 #include <linux/spinlock.h>
39 #include <linux/string.h>
41 #include <asm/atomic.h>
42 #include <asm/byteorder.h>
44 #include <asm/system.h>
46 #ifdef CONFIG_PPC_PMAC
47 #include <asm/pmac_feature.h>
53 #define DESCRIPTOR_OUTPUT_MORE 0
54 #define DESCRIPTOR_OUTPUT_LAST (1 << 12)
55 #define DESCRIPTOR_INPUT_MORE (2 << 12)
56 #define DESCRIPTOR_INPUT_LAST (3 << 12)
57 #define DESCRIPTOR_STATUS (1 << 11)
58 #define DESCRIPTOR_KEY_IMMEDIATE (2 << 8)
59 #define DESCRIPTOR_PING (1 << 7)
60 #define DESCRIPTOR_YY (1 << 6)
61 #define DESCRIPTOR_NO_IRQ (0 << 4)
62 #define DESCRIPTOR_IRQ_ERROR (1 << 4)
63 #define DESCRIPTOR_IRQ_ALWAYS (3 << 4)
64 #define DESCRIPTOR_BRANCH_ALWAYS (3 << 2)
65 #define DESCRIPTOR_WAIT (3 << 0)
71 __le32 branch_address;
73 __le16 transfer_status;
74 } __attribute__((aligned(16)));
76 struct db_descriptor {
79 __le16 second_req_count;
80 __le16 first_req_count;
81 __le32 branch_address;
82 __le16 second_res_count;
83 __le16 first_res_count;
88 } __attribute__((aligned(16)));
90 #define CONTROL_SET(regs) (regs)
91 #define CONTROL_CLEAR(regs) ((regs) + 4)
92 #define COMMAND_PTR(regs) ((regs) + 12)
93 #define CONTEXT_MATCH(regs) ((regs) + 16)
96 struct descriptor descriptor;
97 struct ar_buffer *next;
102 struct fw_ohci *ohci;
103 struct ar_buffer *current_buffer;
104 struct ar_buffer *last_buffer;
107 struct tasklet_struct tasklet;
112 typedef int (*descriptor_callback_t)(struct context *ctx,
113 struct descriptor *d,
114 struct descriptor *last);
117 * A buffer that contains a block of DMA-able coherent memory used for
118 * storing a portion of a DMA descriptor program.
120 struct descriptor_buffer {
121 struct list_head list;
122 dma_addr_t buffer_bus;
125 struct descriptor buffer[0];
129 struct fw_ohci *ohci;
131 int total_allocation;
134 * List of page-sized buffers for storing DMA descriptors.
135 * Head of list contains buffers in use and tail of list contains
138 struct list_head buffer_list;
141 * Pointer to a buffer inside buffer_list that contains the tail
142 * end of the current DMA program.
144 struct descriptor_buffer *buffer_tail;
147 * The descriptor containing the branch address of the first
148 * descriptor that has not yet been filled by the device.
150 struct descriptor *last;
153 * The last descriptor in the DMA program. It contains the branch
154 * address that must be updated upon appending a new descriptor.
156 struct descriptor *prev;
158 descriptor_callback_t callback;
160 struct tasklet_struct tasklet;
163 #define IT_HEADER_SY(v) ((v) << 0)
164 #define IT_HEADER_TCODE(v) ((v) << 4)
165 #define IT_HEADER_CHANNEL(v) ((v) << 8)
166 #define IT_HEADER_TAG(v) ((v) << 14)
167 #define IT_HEADER_SPEED(v) ((v) << 16)
168 #define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
171 struct fw_iso_context base;
172 struct context context;
175 size_t header_length;
178 #define CONFIG_ROM_SIZE 1024
183 __iomem char *registers;
184 dma_addr_t self_id_bus;
186 struct tasklet_struct bus_reset_tasklet;
189 int request_generation; /* for timestamping incoming requests */
190 atomic_t bus_seconds;
194 bool bus_reset_packet_quirk;
197 * Spinlock for accessing fw_ohci data. Never call out of
198 * this driver with this lock held.
201 u32 self_id_buffer[512];
203 /* Config rom buffers */
205 dma_addr_t config_rom_bus;
206 __be32 *next_config_rom;
207 dma_addr_t next_config_rom_bus;
210 struct ar_context ar_request_ctx;
211 struct ar_context ar_response_ctx;
212 struct context at_request_ctx;
213 struct context at_response_ctx;
216 struct iso_context *it_context_list;
217 u64 ir_context_channels;
219 struct iso_context *ir_context_list;
222 static inline struct fw_ohci *fw_ohci(struct fw_card *card)
224 return container_of(card, struct fw_ohci, card);
227 #define IT_CONTEXT_CYCLE_MATCH_ENABLE 0x80000000
228 #define IR_CONTEXT_BUFFER_FILL 0x80000000
229 #define IR_CONTEXT_ISOCH_HEADER 0x40000000
230 #define IR_CONTEXT_CYCLE_MATCH_ENABLE 0x20000000
231 #define IR_CONTEXT_MULTI_CHANNEL_MODE 0x10000000
232 #define IR_CONTEXT_DUAL_BUFFER_MODE 0x08000000
234 #define CONTEXT_RUN 0x8000
235 #define CONTEXT_WAKE 0x1000
236 #define CONTEXT_DEAD 0x0800
237 #define CONTEXT_ACTIVE 0x0400
239 #define OHCI1394_MAX_AT_REQ_RETRIES 0xf
240 #define OHCI1394_MAX_AT_RESP_RETRIES 0x2
241 #define OHCI1394_MAX_PHYS_RESP_RETRIES 0x8
243 #define OHCI1394_REGISTER_SIZE 0x800
244 #define OHCI_LOOP_COUNT 500
245 #define OHCI1394_PCI_HCI_Control 0x40
246 #define SELF_ID_BUF_SIZE 0x800
247 #define OHCI_TCODE_PHY_PACKET 0x0e
248 #define OHCI_VERSION_1_1 0x010010
250 static char ohci_driver_name[] = KBUILD_MODNAME;
252 #ifdef CONFIG_FIREWIRE_OHCI_DEBUG
254 #define OHCI_PARAM_DEBUG_AT_AR 1
255 #define OHCI_PARAM_DEBUG_SELFIDS 2
256 #define OHCI_PARAM_DEBUG_IRQS 4
257 #define OHCI_PARAM_DEBUG_BUSRESETS 8 /* only effective before chip init */
259 static int param_debug;
260 module_param_named(debug, param_debug, int, 0644);
261 MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
262 ", AT/AR events = " __stringify(OHCI_PARAM_DEBUG_AT_AR)
263 ", self-IDs = " __stringify(OHCI_PARAM_DEBUG_SELFIDS)
264 ", IRQs = " __stringify(OHCI_PARAM_DEBUG_IRQS)
265 ", busReset events = " __stringify(OHCI_PARAM_DEBUG_BUSRESETS)
266 ", or a combination, or all = -1)");
268 static void log_irqs(u32 evt)
270 if (likely(!(param_debug &
271 (OHCI_PARAM_DEBUG_IRQS | OHCI_PARAM_DEBUG_BUSRESETS))))
274 if (!(param_debug & OHCI_PARAM_DEBUG_IRQS) &&
275 !(evt & OHCI1394_busReset))
278 fw_notify("IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt,
279 evt & OHCI1394_selfIDComplete ? " selfID" : "",
280 evt & OHCI1394_RQPkt ? " AR_req" : "",
281 evt & OHCI1394_RSPkt ? " AR_resp" : "",
282 evt & OHCI1394_reqTxComplete ? " AT_req" : "",
283 evt & OHCI1394_respTxComplete ? " AT_resp" : "",
284 evt & OHCI1394_isochRx ? " IR" : "",
285 evt & OHCI1394_isochTx ? " IT" : "",
286 evt & OHCI1394_postedWriteErr ? " postedWriteErr" : "",
287 evt & OHCI1394_cycleTooLong ? " cycleTooLong" : "",
288 evt & OHCI1394_cycle64Seconds ? " cycle64Seconds" : "",
289 evt & OHCI1394_cycleInconsistent ? " cycleInconsistent" : "",
290 evt & OHCI1394_regAccessFail ? " regAccessFail" : "",
291 evt & OHCI1394_busReset ? " busReset" : "",
292 evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
293 OHCI1394_RSPkt | OHCI1394_reqTxComplete |
294 OHCI1394_respTxComplete | OHCI1394_isochRx |
295 OHCI1394_isochTx | OHCI1394_postedWriteErr |
296 OHCI1394_cycleTooLong | OHCI1394_cycle64Seconds |
297 OHCI1394_cycleInconsistent |
298 OHCI1394_regAccessFail | OHCI1394_busReset)
302 static const char *speed[] = {
303 [0] = "S100", [1] = "S200", [2] = "S400", [3] = "beta",
305 static const char *power[] = {
306 [0] = "+0W", [1] = "+15W", [2] = "+30W", [3] = "+45W",
307 [4] = "-3W", [5] = " ?W", [6] = "-3..-6W", [7] = "-3..-10W",
309 static const char port[] = { '.', '-', 'p', 'c', };
311 static char _p(u32 *s, int shift)
313 return port[*s >> shift & 3];
316 static void log_selfids(int node_id, int generation, int self_id_count, u32 *s)
318 if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
321 fw_notify("%d selfIDs, generation %d, local node ID %04x\n",
322 self_id_count, generation, node_id);
324 for (; self_id_count--; ++s)
325 if ((*s & 1 << 23) == 0)
326 fw_notify("selfID 0: %08x, phy %d [%c%c%c] "
327 "%s gc=%d %s %s%s%s\n",
328 *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2),
329 speed[*s >> 14 & 3], *s >> 16 & 63,
330 power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
331 *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
333 fw_notify("selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
335 _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10),
336 _p(s, 8), _p(s, 6), _p(s, 4), _p(s, 2));
339 static const char *evts[] = {
340 [0x00] = "evt_no_status", [0x01] = "-reserved-",
341 [0x02] = "evt_long_packet", [0x03] = "evt_missing_ack",
342 [0x04] = "evt_underrun", [0x05] = "evt_overrun",
343 [0x06] = "evt_descriptor_read", [0x07] = "evt_data_read",
344 [0x08] = "evt_data_write", [0x09] = "evt_bus_reset",
345 [0x0a] = "evt_timeout", [0x0b] = "evt_tcode_err",
346 [0x0c] = "-reserved-", [0x0d] = "-reserved-",
347 [0x0e] = "evt_unknown", [0x0f] = "evt_flushed",
348 [0x10] = "-reserved-", [0x11] = "ack_complete",
349 [0x12] = "ack_pending ", [0x13] = "-reserved-",
350 [0x14] = "ack_busy_X", [0x15] = "ack_busy_A",
351 [0x16] = "ack_busy_B", [0x17] = "-reserved-",
352 [0x18] = "-reserved-", [0x19] = "-reserved-",
353 [0x1a] = "-reserved-", [0x1b] = "ack_tardy",
354 [0x1c] = "-reserved-", [0x1d] = "ack_data_error",
355 [0x1e] = "ack_type_error", [0x1f] = "-reserved-",
356 [0x20] = "pending/cancelled",
358 static const char *tcodes[] = {
359 [0x0] = "QW req", [0x1] = "BW req",
360 [0x2] = "W resp", [0x3] = "-reserved-",
361 [0x4] = "QR req", [0x5] = "BR req",
362 [0x6] = "QR resp", [0x7] = "BR resp",
363 [0x8] = "cycle start", [0x9] = "Lk req",
364 [0xa] = "async stream packet", [0xb] = "Lk resp",
365 [0xc] = "-reserved-", [0xd] = "-reserved-",
366 [0xe] = "link internal", [0xf] = "-reserved-",
368 static const char *phys[] = {
369 [0x0] = "phy config packet", [0x1] = "link-on packet",
370 [0x2] = "self-id packet", [0x3] = "-reserved-",
373 static void log_ar_at_event(char dir, int speed, u32 *header, int evt)
375 int tcode = header[0] >> 4 & 0xf;
378 if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
381 if (unlikely(evt >= ARRAY_SIZE(evts)))
384 if (evt == OHCI1394_evt_bus_reset) {
385 fw_notify("A%c evt_bus_reset, generation %d\n",
386 dir, (header[2] >> 16) & 0xff);
390 if (header[0] == ~header[1]) {
391 fw_notify("A%c %s, %s, %08x\n",
392 dir, evts[evt], phys[header[0] >> 30 & 0x3], header[0]);
397 case 0x0: case 0x6: case 0x8:
398 snprintf(specific, sizeof(specific), " = %08x",
399 be32_to_cpu((__force __be32)header[3]));
401 case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
402 snprintf(specific, sizeof(specific), " %x,%x",
403 header[3] >> 16, header[3] & 0xffff);
411 fw_notify("A%c %s, %s\n", dir, evts[evt], tcodes[tcode]);
413 case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
414 fw_notify("A%c spd %x tl %02x, "
417 dir, speed, header[0] >> 10 & 0x3f,
418 header[1] >> 16, header[0] >> 16, evts[evt],
419 tcodes[tcode], header[1] & 0xffff, header[2], specific);
422 fw_notify("A%c spd %x tl %02x, "
425 dir, speed, header[0] >> 10 & 0x3f,
426 header[1] >> 16, header[0] >> 16, evts[evt],
427 tcodes[tcode], specific);
433 #define log_irqs(evt)
434 #define log_selfids(node_id, generation, self_id_count, sid)
435 #define log_ar_at_event(dir, speed, header, evt)
437 #endif /* CONFIG_FIREWIRE_OHCI_DEBUG */
439 static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
441 writel(data, ohci->registers + offset);
444 static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
446 return readl(ohci->registers + offset);
449 static inline void flush_writes(const struct fw_ohci *ohci)
451 /* Do a dummy read to flush writes. */
452 reg_read(ohci, OHCI1394_Version);
455 static int ohci_update_phy_reg(struct fw_card *card, int addr,
456 int clear_bits, int set_bits)
458 struct fw_ohci *ohci = fw_ohci(card);
461 reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
464 val = reg_read(ohci, OHCI1394_PhyControl);
465 if ((val & OHCI1394_PhyControl_ReadDone) == 0) {
466 fw_error("failed to set phy reg bits.\n");
470 old = OHCI1394_PhyControl_ReadData(val);
471 old = (old & ~clear_bits) | set_bits;
472 reg_write(ohci, OHCI1394_PhyControl,
473 OHCI1394_PhyControl_Write(addr, old));
478 static int ar_context_add_page(struct ar_context *ctx)
480 struct device *dev = ctx->ohci->card.device;
481 struct ar_buffer *ab;
482 dma_addr_t uninitialized_var(ab_bus);
485 ab = dma_alloc_coherent(dev, PAGE_SIZE, &ab_bus, GFP_ATOMIC);
490 memset(&ab->descriptor, 0, sizeof(ab->descriptor));
491 ab->descriptor.control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
493 DESCRIPTOR_BRANCH_ALWAYS);
494 offset = offsetof(struct ar_buffer, data);
495 ab->descriptor.req_count = cpu_to_le16(PAGE_SIZE - offset);
496 ab->descriptor.data_address = cpu_to_le32(ab_bus + offset);
497 ab->descriptor.res_count = cpu_to_le16(PAGE_SIZE - offset);
498 ab->descriptor.branch_address = 0;
500 ctx->last_buffer->descriptor.branch_address = cpu_to_le32(ab_bus | 1);
501 ctx->last_buffer->next = ab;
502 ctx->last_buffer = ab;
504 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
505 flush_writes(ctx->ohci);
510 static void ar_context_release(struct ar_context *ctx)
512 struct ar_buffer *ab, *ab_next;
516 for (ab = ctx->current_buffer; ab; ab = ab_next) {
518 offset = offsetof(struct ar_buffer, data);
519 ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
520 dma_free_coherent(ctx->ohci->card.device, PAGE_SIZE,
525 #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
526 #define cond_le32_to_cpu(v) \
527 (ohci->old_uninorth ? (__force __u32)(v) : le32_to_cpu(v))
529 #define cond_le32_to_cpu(v) le32_to_cpu(v)
532 static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
534 struct fw_ohci *ohci = ctx->ohci;
536 u32 status, length, tcode;
539 p.header[0] = cond_le32_to_cpu(buffer[0]);
540 p.header[1] = cond_le32_to_cpu(buffer[1]);
541 p.header[2] = cond_le32_to_cpu(buffer[2]);
543 tcode = (p.header[0] >> 4) & 0x0f;
545 case TCODE_WRITE_QUADLET_REQUEST:
546 case TCODE_READ_QUADLET_RESPONSE:
547 p.header[3] = (__force __u32) buffer[3];
548 p.header_length = 16;
549 p.payload_length = 0;
552 case TCODE_READ_BLOCK_REQUEST :
553 p.header[3] = cond_le32_to_cpu(buffer[3]);
554 p.header_length = 16;
555 p.payload_length = 0;
558 case TCODE_WRITE_BLOCK_REQUEST:
559 case TCODE_READ_BLOCK_RESPONSE:
560 case TCODE_LOCK_REQUEST:
561 case TCODE_LOCK_RESPONSE:
562 p.header[3] = cond_le32_to_cpu(buffer[3]);
563 p.header_length = 16;
564 p.payload_length = p.header[3] >> 16;
567 case TCODE_WRITE_RESPONSE:
568 case TCODE_READ_QUADLET_REQUEST:
569 case OHCI_TCODE_PHY_PACKET:
570 p.header_length = 12;
571 p.payload_length = 0;
575 /* FIXME: Stop context, discard everything, and restart? */
577 p.payload_length = 0;
580 p.payload = (void *) buffer + p.header_length;
582 /* FIXME: What to do about evt_* errors? */
583 length = (p.header_length + p.payload_length + 3) / 4;
584 status = cond_le32_to_cpu(buffer[length]);
585 evt = (status >> 16) & 0x1f;
588 p.speed = (status >> 21) & 0x7;
589 p.timestamp = status & 0xffff;
590 p.generation = ohci->request_generation;
592 log_ar_at_event('R', p.speed, p.header, evt);
595 * The OHCI bus reset handler synthesizes a phy packet with
596 * the new generation number when a bus reset happens (see
597 * section 8.4.2.3). This helps us determine when a request
598 * was received and make sure we send the response in the same
599 * generation. We only need this for requests; for responses
600 * we use the unique tlabel for finding the matching
603 * Alas some chips sometimes emit bus reset packets with a
604 * wrong generation. We set the correct generation for these
605 * at a slightly incorrect time (in bus_reset_tasklet).
607 if (evt == OHCI1394_evt_bus_reset) {
608 if (!ohci->bus_reset_packet_quirk)
609 ohci->request_generation = (p.header[2] >> 16) & 0xff;
610 } else if (ctx == &ohci->ar_request_ctx) {
611 fw_core_handle_request(&ohci->card, &p);
613 fw_core_handle_response(&ohci->card, &p);
616 return buffer + length + 1;
619 static void ar_context_tasklet(unsigned long data)
621 struct ar_context *ctx = (struct ar_context *)data;
622 struct fw_ohci *ohci = ctx->ohci;
623 struct ar_buffer *ab;
624 struct descriptor *d;
627 ab = ctx->current_buffer;
630 if (d->res_count == 0) {
631 size_t size, rest, offset;
632 dma_addr_t start_bus;
636 * This descriptor is finished and we may have a
637 * packet split across this and the next buffer. We
638 * reuse the page for reassembling the split packet.
641 offset = offsetof(struct ar_buffer, data);
643 start_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
647 size = buffer + PAGE_SIZE - ctx->pointer;
648 rest = le16_to_cpu(d->req_count) - le16_to_cpu(d->res_count);
649 memmove(buffer, ctx->pointer, size);
650 memcpy(buffer + size, ab->data, rest);
651 ctx->current_buffer = ab;
652 ctx->pointer = (void *) ab->data + rest;
653 end = buffer + size + rest;
656 buffer = handle_ar_packet(ctx, buffer);
658 dma_free_coherent(ohci->card.device, PAGE_SIZE,
660 ar_context_add_page(ctx);
662 buffer = ctx->pointer;
664 (void *) ab + PAGE_SIZE - le16_to_cpu(d->res_count);
667 buffer = handle_ar_packet(ctx, buffer);
671 static int ar_context_init(struct ar_context *ctx,
672 struct fw_ohci *ohci, u32 regs)
678 ctx->last_buffer = &ab;
679 tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
681 ar_context_add_page(ctx);
682 ar_context_add_page(ctx);
683 ctx->current_buffer = ab.next;
684 ctx->pointer = ctx->current_buffer->data;
689 static void ar_context_run(struct ar_context *ctx)
691 struct ar_buffer *ab = ctx->current_buffer;
695 offset = offsetof(struct ar_buffer, data);
696 ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
698 reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ab_bus | 1);
699 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
700 flush_writes(ctx->ohci);
703 static struct descriptor *find_branch_descriptor(struct descriptor *d, int z)
707 b = (le16_to_cpu(d->control) & DESCRIPTOR_BRANCH_ALWAYS) >> 2;
708 key = (le16_to_cpu(d->control) & DESCRIPTOR_KEY_IMMEDIATE) >> 8;
710 /* figure out which descriptor the branch address goes in */
711 if (z == 2 && (b == 3 || key == 2))
717 static void context_tasklet(unsigned long data)
719 struct context *ctx = (struct context *) data;
720 struct descriptor *d, *last;
723 struct descriptor_buffer *desc;
725 desc = list_entry(ctx->buffer_list.next,
726 struct descriptor_buffer, list);
728 while (last->branch_address != 0) {
729 struct descriptor_buffer *old_desc = desc;
730 address = le32_to_cpu(last->branch_address);
734 /* If the branch address points to a buffer outside of the
735 * current buffer, advance to the next buffer. */
736 if (address < desc->buffer_bus ||
737 address >= desc->buffer_bus + desc->used)
738 desc = list_entry(desc->list.next,
739 struct descriptor_buffer, list);
740 d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
741 last = find_branch_descriptor(d, z);
743 if (!ctx->callback(ctx, d, last))
746 if (old_desc != desc) {
747 /* If we've advanced to the next buffer, move the
748 * previous buffer to the free list. */
751 spin_lock_irqsave(&ctx->ohci->lock, flags);
752 list_move_tail(&old_desc->list, &ctx->buffer_list);
753 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
760 * Allocate a new buffer and add it to the list of free buffers for this
761 * context. Must be called with ohci->lock held.
763 static int context_add_buffer(struct context *ctx)
765 struct descriptor_buffer *desc;
766 dma_addr_t uninitialized_var(bus_addr);
770 * 16MB of descriptors should be far more than enough for any DMA
771 * program. This will catch run-away userspace or DoS attacks.
773 if (ctx->total_allocation >= 16*1024*1024)
776 desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE,
777 &bus_addr, GFP_ATOMIC);
781 offset = (void *)&desc->buffer - (void *)desc;
782 desc->buffer_size = PAGE_SIZE - offset;
783 desc->buffer_bus = bus_addr + offset;
786 list_add_tail(&desc->list, &ctx->buffer_list);
787 ctx->total_allocation += PAGE_SIZE;
792 static int context_init(struct context *ctx, struct fw_ohci *ohci,
793 u32 regs, descriptor_callback_t callback)
797 ctx->total_allocation = 0;
799 INIT_LIST_HEAD(&ctx->buffer_list);
800 if (context_add_buffer(ctx) < 0)
803 ctx->buffer_tail = list_entry(ctx->buffer_list.next,
804 struct descriptor_buffer, list);
806 tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
807 ctx->callback = callback;
810 * We put a dummy descriptor in the buffer that has a NULL
811 * branch address and looks like it's been sent. That way we
812 * have a descriptor to append DMA programs to.
814 memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
815 ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
816 ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
817 ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
818 ctx->last = ctx->buffer_tail->buffer;
819 ctx->prev = ctx->buffer_tail->buffer;
824 static void context_release(struct context *ctx)
826 struct fw_card *card = &ctx->ohci->card;
827 struct descriptor_buffer *desc, *tmp;
829 list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list)
830 dma_free_coherent(card->device, PAGE_SIZE, desc,
832 ((void *)&desc->buffer - (void *)desc));
835 /* Must be called with ohci->lock held */
836 static struct descriptor *context_get_descriptors(struct context *ctx,
837 int z, dma_addr_t *d_bus)
839 struct descriptor *d = NULL;
840 struct descriptor_buffer *desc = ctx->buffer_tail;
842 if (z * sizeof(*d) > desc->buffer_size)
845 if (z * sizeof(*d) > desc->buffer_size - desc->used) {
846 /* No room for the descriptor in this buffer, so advance to the
849 if (desc->list.next == &ctx->buffer_list) {
850 /* If there is no free buffer next in the list,
852 if (context_add_buffer(ctx) < 0)
855 desc = list_entry(desc->list.next,
856 struct descriptor_buffer, list);
857 ctx->buffer_tail = desc;
860 d = desc->buffer + desc->used / sizeof(*d);
861 memset(d, 0, z * sizeof(*d));
862 *d_bus = desc->buffer_bus + desc->used;
867 static void context_run(struct context *ctx, u32 extra)
869 struct fw_ohci *ohci = ctx->ohci;
871 reg_write(ohci, COMMAND_PTR(ctx->regs),
872 le32_to_cpu(ctx->last->branch_address));
873 reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
874 reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
878 static void context_append(struct context *ctx,
879 struct descriptor *d, int z, int extra)
882 struct descriptor_buffer *desc = ctx->buffer_tail;
884 d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
886 desc->used += (z + extra) * sizeof(*d);
887 ctx->prev->branch_address = cpu_to_le32(d_bus | z);
888 ctx->prev = find_branch_descriptor(d, z);
890 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
891 flush_writes(ctx->ohci);
894 static void context_stop(struct context *ctx)
899 reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
900 flush_writes(ctx->ohci);
902 for (i = 0; i < 10; i++) {
903 reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
904 if ((reg & CONTEXT_ACTIVE) == 0)
909 fw_error("Error: DMA context still active (0x%08x)\n", reg);
913 struct fw_packet *packet;
917 * This function apppends a packet to the DMA queue for transmission.
918 * Must always be called with the ochi->lock held to ensure proper
919 * generation handling and locking around packet queue manipulation.
921 static int at_context_queue_packet(struct context *ctx,
922 struct fw_packet *packet)
924 struct fw_ohci *ohci = ctx->ohci;
925 dma_addr_t d_bus, uninitialized_var(payload_bus);
926 struct driver_data *driver_data;
927 struct descriptor *d, *last;
932 d = context_get_descriptors(ctx, 4, &d_bus);
934 packet->ack = RCODE_SEND_ERROR;
938 d[0].control = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
939 d[0].res_count = cpu_to_le16(packet->timestamp);
942 * The DMA format for asyncronous link packets is different
943 * from the IEEE1394 layout, so shift the fields around
944 * accordingly. If header_length is 8, it's a PHY packet, to
945 * which we need to prepend an extra quadlet.
948 header = (__le32 *) &d[1];
949 switch (packet->header_length) {
952 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
953 (packet->speed << 16));
954 header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
955 (packet->header[0] & 0xffff0000));
956 header[2] = cpu_to_le32(packet->header[2]);
958 tcode = (packet->header[0] >> 4) & 0x0f;
959 if (TCODE_IS_BLOCK_PACKET(tcode))
960 header[3] = cpu_to_le32(packet->header[3]);
962 header[3] = (__force __le32) packet->header[3];
964 d[0].req_count = cpu_to_le16(packet->header_length);
968 header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
969 (packet->speed << 16));
970 header[1] = cpu_to_le32(packet->header[0]);
971 header[2] = cpu_to_le32(packet->header[1]);
972 d[0].req_count = cpu_to_le16(12);
976 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
977 (packet->speed << 16));
978 header[1] = cpu_to_le32(packet->header[0] & 0xffff0000);
979 d[0].req_count = cpu_to_le16(8);
984 packet->ack = RCODE_SEND_ERROR;
988 driver_data = (struct driver_data *) &d[3];
989 driver_data->packet = packet;
990 packet->driver_data = driver_data;
992 if (packet->payload_length > 0) {
994 dma_map_single(ohci->card.device, packet->payload,
995 packet->payload_length, DMA_TO_DEVICE);
996 if (dma_mapping_error(ohci->card.device, payload_bus)) {
997 packet->ack = RCODE_SEND_ERROR;
1000 packet->payload_bus = payload_bus;
1001 packet->payload_mapped = true;
1003 d[2].req_count = cpu_to_le16(packet->payload_length);
1004 d[2].data_address = cpu_to_le32(payload_bus);
1012 last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
1013 DESCRIPTOR_IRQ_ALWAYS |
1014 DESCRIPTOR_BRANCH_ALWAYS);
1017 * If the controller and packet generations don't match, we need to
1018 * bail out and try again. If IntEvent.busReset is set, the AT context
1019 * is halted, so appending to the context and trying to run it is
1020 * futile. Most controllers do the right thing and just flush the AT
1021 * queue (per section 7.2.3.2 of the OHCI 1.1 specification), but
1022 * some controllers (like a JMicron JMB381 PCI-e) misbehave and wind
1023 * up stalling out. So we just bail out in software and try again
1024 * later, and everyone is happy.
1025 * FIXME: Document how the locking works.
1027 if (ohci->generation != packet->generation ||
1028 reg_read(ohci, OHCI1394_IntEventSet) & OHCI1394_busReset) {
1029 if (packet->payload_mapped)
1030 dma_unmap_single(ohci->card.device, payload_bus,
1031 packet->payload_length, DMA_TO_DEVICE);
1032 packet->ack = RCODE_GENERATION;
1036 context_append(ctx, d, z, 4 - z);
1038 /* If the context isn't already running, start it up. */
1039 reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
1040 if ((reg & CONTEXT_RUN) == 0)
1041 context_run(ctx, 0);
1046 static int handle_at_packet(struct context *context,
1047 struct descriptor *d,
1048 struct descriptor *last)
1050 struct driver_data *driver_data;
1051 struct fw_packet *packet;
1052 struct fw_ohci *ohci = context->ohci;
1055 if (last->transfer_status == 0)
1056 /* This descriptor isn't done yet, stop iteration. */
1059 driver_data = (struct driver_data *) &d[3];
1060 packet = driver_data->packet;
1062 /* This packet was cancelled, just continue. */
1065 if (packet->payload_mapped)
1066 dma_unmap_single(ohci->card.device, packet->payload_bus,
1067 packet->payload_length, DMA_TO_DEVICE);
1069 evt = le16_to_cpu(last->transfer_status) & 0x1f;
1070 packet->timestamp = le16_to_cpu(last->res_count);
1072 log_ar_at_event('T', packet->speed, packet->header, evt);
1075 case OHCI1394_evt_timeout:
1076 /* Async response transmit timed out. */
1077 packet->ack = RCODE_CANCELLED;
1080 case OHCI1394_evt_flushed:
1082 * The packet was flushed should give same error as
1083 * when we try to use a stale generation count.
1085 packet->ack = RCODE_GENERATION;
1088 case OHCI1394_evt_missing_ack:
1090 * Using a valid (current) generation count, but the
1091 * node is not on the bus or not sending acks.
1093 packet->ack = RCODE_NO_ACK;
1096 case ACK_COMPLETE + 0x10:
1097 case ACK_PENDING + 0x10:
1098 case ACK_BUSY_X + 0x10:
1099 case ACK_BUSY_A + 0x10:
1100 case ACK_BUSY_B + 0x10:
1101 case ACK_DATA_ERROR + 0x10:
1102 case ACK_TYPE_ERROR + 0x10:
1103 packet->ack = evt - 0x10;
1107 packet->ack = RCODE_SEND_ERROR;
1111 packet->callback(packet, &ohci->card, packet->ack);
1116 #define HEADER_GET_DESTINATION(q) (((q) >> 16) & 0xffff)
1117 #define HEADER_GET_TCODE(q) (((q) >> 4) & 0x0f)
1118 #define HEADER_GET_OFFSET_HIGH(q) (((q) >> 0) & 0xffff)
1119 #define HEADER_GET_DATA_LENGTH(q) (((q) >> 16) & 0xffff)
1120 #define HEADER_GET_EXTENDED_TCODE(q) (((q) >> 0) & 0xffff)
1122 static void handle_local_rom(struct fw_ohci *ohci,
1123 struct fw_packet *packet, u32 csr)
1125 struct fw_packet response;
1126 int tcode, length, i;
1128 tcode = HEADER_GET_TCODE(packet->header[0]);
1129 if (TCODE_IS_BLOCK_PACKET(tcode))
1130 length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1134 i = csr - CSR_CONFIG_ROM;
1135 if (i + length > CONFIG_ROM_SIZE) {
1136 fw_fill_response(&response, packet->header,
1137 RCODE_ADDRESS_ERROR, NULL, 0);
1138 } else if (!TCODE_IS_READ_REQUEST(tcode)) {
1139 fw_fill_response(&response, packet->header,
1140 RCODE_TYPE_ERROR, NULL, 0);
1142 fw_fill_response(&response, packet->header, RCODE_COMPLETE,
1143 (void *) ohci->config_rom + i, length);
1146 fw_core_handle_response(&ohci->card, &response);
1149 static void handle_local_lock(struct fw_ohci *ohci,
1150 struct fw_packet *packet, u32 csr)
1152 struct fw_packet response;
1153 int tcode, length, ext_tcode, sel;
1154 __be32 *payload, lock_old;
1155 u32 lock_arg, lock_data;
1157 tcode = HEADER_GET_TCODE(packet->header[0]);
1158 length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1159 payload = packet->payload;
1160 ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
1162 if (tcode == TCODE_LOCK_REQUEST &&
1163 ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
1164 lock_arg = be32_to_cpu(payload[0]);
1165 lock_data = be32_to_cpu(payload[1]);
1166 } else if (tcode == TCODE_READ_QUADLET_REQUEST) {
1170 fw_fill_response(&response, packet->header,
1171 RCODE_TYPE_ERROR, NULL, 0);
1175 sel = (csr - CSR_BUS_MANAGER_ID) / 4;
1176 reg_write(ohci, OHCI1394_CSRData, lock_data);
1177 reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
1178 reg_write(ohci, OHCI1394_CSRControl, sel);
1180 if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000)
1181 lock_old = cpu_to_be32(reg_read(ohci, OHCI1394_CSRData));
1183 fw_notify("swap not done yet\n");
1185 fw_fill_response(&response, packet->header,
1186 RCODE_COMPLETE, &lock_old, sizeof(lock_old));
1188 fw_core_handle_response(&ohci->card, &response);
1191 static void handle_local_request(struct context *ctx, struct fw_packet *packet)
1196 if (ctx == &ctx->ohci->at_request_ctx) {
1197 packet->ack = ACK_PENDING;
1198 packet->callback(packet, &ctx->ohci->card, packet->ack);
1202 ((unsigned long long)
1203 HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
1205 csr = offset - CSR_REGISTER_BASE;
1207 /* Handle config rom reads. */
1208 if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
1209 handle_local_rom(ctx->ohci, packet, csr);
1211 case CSR_BUS_MANAGER_ID:
1212 case CSR_BANDWIDTH_AVAILABLE:
1213 case CSR_CHANNELS_AVAILABLE_HI:
1214 case CSR_CHANNELS_AVAILABLE_LO:
1215 handle_local_lock(ctx->ohci, packet, csr);
1218 if (ctx == &ctx->ohci->at_request_ctx)
1219 fw_core_handle_request(&ctx->ohci->card, packet);
1221 fw_core_handle_response(&ctx->ohci->card, packet);
1225 if (ctx == &ctx->ohci->at_response_ctx) {
1226 packet->ack = ACK_COMPLETE;
1227 packet->callback(packet, &ctx->ohci->card, packet->ack);
1231 static void at_context_transmit(struct context *ctx, struct fw_packet *packet)
1233 unsigned long flags;
1236 spin_lock_irqsave(&ctx->ohci->lock, flags);
1238 if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
1239 ctx->ohci->generation == packet->generation) {
1240 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1241 handle_local_request(ctx, packet);
1245 ret = at_context_queue_packet(ctx, packet);
1246 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1249 packet->callback(packet, &ctx->ohci->card, packet->ack);
1253 static void bus_reset_tasklet(unsigned long data)
1255 struct fw_ohci *ohci = (struct fw_ohci *)data;
1256 int self_id_count, i, j, reg;
1257 int generation, new_generation;
1258 unsigned long flags;
1259 void *free_rom = NULL;
1260 dma_addr_t free_rom_bus = 0;
1262 reg = reg_read(ohci, OHCI1394_NodeID);
1263 if (!(reg & OHCI1394_NodeID_idValid)) {
1264 fw_notify("node ID not valid, new bus reset in progress\n");
1267 if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
1268 fw_notify("malconfigured bus\n");
1271 ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
1272 OHCI1394_NodeID_nodeNumber);
1274 reg = reg_read(ohci, OHCI1394_SelfIDCount);
1275 if (reg & OHCI1394_SelfIDCount_selfIDError) {
1276 fw_notify("inconsistent self IDs\n");
1280 * The count in the SelfIDCount register is the number of
1281 * bytes in the self ID receive buffer. Since we also receive
1282 * the inverted quadlets and a header quadlet, we shift one
1283 * bit extra to get the actual number of self IDs.
1285 self_id_count = (reg >> 3) & 0xff;
1286 if (self_id_count == 0 || self_id_count > 252) {
1287 fw_notify("inconsistent self IDs\n");
1290 generation = (cond_le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
1293 for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1294 if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1]) {
1295 fw_notify("inconsistent self IDs\n");
1298 ohci->self_id_buffer[j] =
1299 cond_le32_to_cpu(ohci->self_id_cpu[i]);
1304 * Check the consistency of the self IDs we just read. The
1305 * problem we face is that a new bus reset can start while we
1306 * read out the self IDs from the DMA buffer. If this happens,
1307 * the DMA buffer will be overwritten with new self IDs and we
1308 * will read out inconsistent data. The OHCI specification
1309 * (section 11.2) recommends a technique similar to
1310 * linux/seqlock.h, where we remember the generation of the
1311 * self IDs in the buffer before reading them out and compare
1312 * it to the current generation after reading them out. If
1313 * the two generations match we know we have a consistent set
1317 new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
1318 if (new_generation != generation) {
1319 fw_notify("recursive bus reset detected, "
1320 "discarding self ids\n");
1324 /* FIXME: Document how the locking works. */
1325 spin_lock_irqsave(&ohci->lock, flags);
1327 ohci->generation = generation;
1328 context_stop(&ohci->at_request_ctx);
1329 context_stop(&ohci->at_response_ctx);
1330 reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
1332 if (ohci->bus_reset_packet_quirk)
1333 ohci->request_generation = generation;
1336 * This next bit is unrelated to the AT context stuff but we
1337 * have to do it under the spinlock also. If a new config rom
1338 * was set up before this reset, the old one is now no longer
1339 * in use and we can free it. Update the config rom pointers
1340 * to point to the current config rom and clear the
1341 * next_config_rom pointer so a new udpate can take place.
1344 if (ohci->next_config_rom != NULL) {
1345 if (ohci->next_config_rom != ohci->config_rom) {
1346 free_rom = ohci->config_rom;
1347 free_rom_bus = ohci->config_rom_bus;
1349 ohci->config_rom = ohci->next_config_rom;
1350 ohci->config_rom_bus = ohci->next_config_rom_bus;
1351 ohci->next_config_rom = NULL;
1354 * Restore config_rom image and manually update
1355 * config_rom registers. Writing the header quadlet
1356 * will indicate that the config rom is ready, so we
1359 reg_write(ohci, OHCI1394_BusOptions,
1360 be32_to_cpu(ohci->config_rom[2]));
1361 ohci->config_rom[0] = ohci->next_header;
1362 reg_write(ohci, OHCI1394_ConfigROMhdr,
1363 be32_to_cpu(ohci->next_header));
1366 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
1367 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
1368 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
1371 spin_unlock_irqrestore(&ohci->lock, flags);
1374 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1375 free_rom, free_rom_bus);
1377 log_selfids(ohci->node_id, generation,
1378 self_id_count, ohci->self_id_buffer);
1380 fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
1381 self_id_count, ohci->self_id_buffer);
1384 static irqreturn_t irq_handler(int irq, void *data)
1386 struct fw_ohci *ohci = data;
1387 u32 event, iso_event, cycle_time;
1390 event = reg_read(ohci, OHCI1394_IntEventClear);
1392 if (!event || !~event)
1395 /* busReset must not be cleared yet, see OHCI 1.1 clause 7.2.3.2 */
1396 reg_write(ohci, OHCI1394_IntEventClear, event & ~OHCI1394_busReset);
1399 if (event & OHCI1394_selfIDComplete)
1400 tasklet_schedule(&ohci->bus_reset_tasklet);
1402 if (event & OHCI1394_RQPkt)
1403 tasklet_schedule(&ohci->ar_request_ctx.tasklet);
1405 if (event & OHCI1394_RSPkt)
1406 tasklet_schedule(&ohci->ar_response_ctx.tasklet);
1408 if (event & OHCI1394_reqTxComplete)
1409 tasklet_schedule(&ohci->at_request_ctx.tasklet);
1411 if (event & OHCI1394_respTxComplete)
1412 tasklet_schedule(&ohci->at_response_ctx.tasklet);
1414 iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
1415 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
1418 i = ffs(iso_event) - 1;
1419 tasklet_schedule(&ohci->ir_context_list[i].context.tasklet);
1420 iso_event &= ~(1 << i);
1423 iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
1424 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
1427 i = ffs(iso_event) - 1;
1428 tasklet_schedule(&ohci->it_context_list[i].context.tasklet);
1429 iso_event &= ~(1 << i);
1432 if (unlikely(event & OHCI1394_regAccessFail))
1433 fw_error("Register access failure - "
1434 "please notify linux1394-devel@lists.sf.net\n");
1436 if (unlikely(event & OHCI1394_postedWriteErr))
1437 fw_error("PCI posted write error\n");
1439 if (unlikely(event & OHCI1394_cycleTooLong)) {
1440 if (printk_ratelimit())
1441 fw_notify("isochronous cycle too long\n");
1442 reg_write(ohci, OHCI1394_LinkControlSet,
1443 OHCI1394_LinkControl_cycleMaster);
1446 if (unlikely(event & OHCI1394_cycleInconsistent)) {
1448 * We need to clear this event bit in order to make
1449 * cycleMatch isochronous I/O work. In theory we should
1450 * stop active cycleMatch iso contexts now and restart
1451 * them at least two cycles later. (FIXME?)
1453 if (printk_ratelimit())
1454 fw_notify("isochronous cycle inconsistent\n");
1457 if (event & OHCI1394_cycle64Seconds) {
1458 cycle_time = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1459 if ((cycle_time & 0x80000000) == 0)
1460 atomic_inc(&ohci->bus_seconds);
1466 static int software_reset(struct fw_ohci *ohci)
1470 reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
1472 for (i = 0; i < OHCI_LOOP_COUNT; i++) {
1473 if ((reg_read(ohci, OHCI1394_HCControlSet) &
1474 OHCI1394_HCControl_softReset) == 0)
1482 static void copy_config_rom(__be32 *dest, const __be32 *src, size_t length)
1484 size_t size = length * 4;
1486 memcpy(dest, src, size);
1487 if (size < CONFIG_ROM_SIZE)
1488 memset(&dest[length], 0, CONFIG_ROM_SIZE - size);
1491 static int ohci_enable(struct fw_card *card,
1492 const __be32 *config_rom, size_t length)
1494 struct fw_ohci *ohci = fw_ohci(card);
1495 struct pci_dev *dev = to_pci_dev(card->device);
1499 if (software_reset(ohci)) {
1500 fw_error("Failed to reset ohci card.\n");
1505 * Now enable LPS, which we need in order to start accessing
1506 * most of the registers. In fact, on some cards (ALI M5251),
1507 * accessing registers in the SClk domain without LPS enabled
1508 * will lock up the machine. Wait 50msec to make sure we have
1509 * full link enabled. However, with some cards (well, at least
1510 * a JMicron PCIe card), we have to try again sometimes.
1512 reg_write(ohci, OHCI1394_HCControlSet,
1513 OHCI1394_HCControl_LPS |
1514 OHCI1394_HCControl_postedWriteEnable);
1517 for (lps = 0, i = 0; !lps && i < 3; i++) {
1519 lps = reg_read(ohci, OHCI1394_HCControlSet) &
1520 OHCI1394_HCControl_LPS;
1524 fw_error("Failed to set Link Power Status\n");
1528 reg_write(ohci, OHCI1394_HCControlClear,
1529 OHCI1394_HCControl_noByteSwapData);
1531 reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
1532 reg_write(ohci, OHCI1394_LinkControlClear,
1533 OHCI1394_LinkControl_rcvPhyPkt);
1534 reg_write(ohci, OHCI1394_LinkControlSet,
1535 OHCI1394_LinkControl_rcvSelfID |
1536 OHCI1394_LinkControl_cycleTimerEnable |
1537 OHCI1394_LinkControl_cycleMaster);
1539 reg_write(ohci, OHCI1394_ATRetries,
1540 OHCI1394_MAX_AT_REQ_RETRIES |
1541 (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
1542 (OHCI1394_MAX_PHYS_RESP_RETRIES << 8));
1544 ar_context_run(&ohci->ar_request_ctx);
1545 ar_context_run(&ohci->ar_response_ctx);
1547 reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
1548 reg_write(ohci, OHCI1394_IntEventClear, ~0);
1549 reg_write(ohci, OHCI1394_IntMaskClear, ~0);
1550 reg_write(ohci, OHCI1394_IntMaskSet,
1551 OHCI1394_selfIDComplete |
1552 OHCI1394_RQPkt | OHCI1394_RSPkt |
1553 OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
1554 OHCI1394_isochRx | OHCI1394_isochTx |
1555 OHCI1394_postedWriteErr | OHCI1394_cycleTooLong |
1556 OHCI1394_cycleInconsistent |
1557 OHCI1394_cycle64Seconds | OHCI1394_regAccessFail |
1558 OHCI1394_masterIntEnable);
1559 if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS)
1560 reg_write(ohci, OHCI1394_IntMaskSet, OHCI1394_busReset);
1562 /* Activate link_on bit and contender bit in our self ID packets.*/
1563 if (ohci_update_phy_reg(card, 4, 0,
1564 PHY_LINK_ACTIVE | PHY_CONTENDER) < 0)
1568 * When the link is not yet enabled, the atomic config rom
1569 * update mechanism described below in ohci_set_config_rom()
1570 * is not active. We have to update ConfigRomHeader and
1571 * BusOptions manually, and the write to ConfigROMmap takes
1572 * effect immediately. We tie this to the enabling of the
1573 * link, so we have a valid config rom before enabling - the
1574 * OHCI requires that ConfigROMhdr and BusOptions have valid
1575 * values before enabling.
1577 * However, when the ConfigROMmap is written, some controllers
1578 * always read back quadlets 0 and 2 from the config rom to
1579 * the ConfigRomHeader and BusOptions registers on bus reset.
1580 * They shouldn't do that in this initial case where the link
1581 * isn't enabled. This means we have to use the same
1582 * workaround here, setting the bus header to 0 and then write
1583 * the right values in the bus reset tasklet.
1587 ohci->next_config_rom =
1588 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1589 &ohci->next_config_rom_bus,
1591 if (ohci->next_config_rom == NULL)
1594 copy_config_rom(ohci->next_config_rom, config_rom, length);
1597 * In the suspend case, config_rom is NULL, which
1598 * means that we just reuse the old config rom.
1600 ohci->next_config_rom = ohci->config_rom;
1601 ohci->next_config_rom_bus = ohci->config_rom_bus;
1604 ohci->next_header = ohci->next_config_rom[0];
1605 ohci->next_config_rom[0] = 0;
1606 reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
1607 reg_write(ohci, OHCI1394_BusOptions,
1608 be32_to_cpu(ohci->next_config_rom[2]));
1609 reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
1611 reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
1613 if (request_irq(dev->irq, irq_handler,
1614 IRQF_SHARED, ohci_driver_name, ohci)) {
1615 fw_error("Failed to allocate shared interrupt %d.\n",
1617 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1618 ohci->config_rom, ohci->config_rom_bus);
1622 reg_write(ohci, OHCI1394_HCControlSet,
1623 OHCI1394_HCControl_linkEnable |
1624 OHCI1394_HCControl_BIBimageValid);
1628 * We are ready to go, initiate bus reset to finish the
1632 fw_core_initiate_bus_reset(&ohci->card, 1);
1637 static int ohci_set_config_rom(struct fw_card *card,
1638 const __be32 *config_rom, size_t length)
1640 struct fw_ohci *ohci;
1641 unsigned long flags;
1643 __be32 *next_config_rom;
1644 dma_addr_t uninitialized_var(next_config_rom_bus);
1646 ohci = fw_ohci(card);
1649 * When the OHCI controller is enabled, the config rom update
1650 * mechanism is a bit tricky, but easy enough to use. See
1651 * section 5.5.6 in the OHCI specification.
1653 * The OHCI controller caches the new config rom address in a
1654 * shadow register (ConfigROMmapNext) and needs a bus reset
1655 * for the changes to take place. When the bus reset is
1656 * detected, the controller loads the new values for the
1657 * ConfigRomHeader and BusOptions registers from the specified
1658 * config rom and loads ConfigROMmap from the ConfigROMmapNext
1659 * shadow register. All automatically and atomically.
1661 * Now, there's a twist to this story. The automatic load of
1662 * ConfigRomHeader and BusOptions doesn't honor the
1663 * noByteSwapData bit, so with a be32 config rom, the
1664 * controller will load be32 values in to these registers
1665 * during the atomic update, even on litte endian
1666 * architectures. The workaround we use is to put a 0 in the
1667 * header quadlet; 0 is endian agnostic and means that the
1668 * config rom isn't ready yet. In the bus reset tasklet we
1669 * then set up the real values for the two registers.
1671 * We use ohci->lock to avoid racing with the code that sets
1672 * ohci->next_config_rom to NULL (see bus_reset_tasklet).
1676 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1677 &next_config_rom_bus, GFP_KERNEL);
1678 if (next_config_rom == NULL)
1681 spin_lock_irqsave(&ohci->lock, flags);
1683 if (ohci->next_config_rom == NULL) {
1684 ohci->next_config_rom = next_config_rom;
1685 ohci->next_config_rom_bus = next_config_rom_bus;
1687 copy_config_rom(ohci->next_config_rom, config_rom, length);
1689 ohci->next_header = config_rom[0];
1690 ohci->next_config_rom[0] = 0;
1692 reg_write(ohci, OHCI1394_ConfigROMmap,
1693 ohci->next_config_rom_bus);
1697 spin_unlock_irqrestore(&ohci->lock, flags);
1700 * Now initiate a bus reset to have the changes take
1701 * effect. We clean up the old config rom memory and DMA
1702 * mappings in the bus reset tasklet, since the OHCI
1703 * controller could need to access it before the bus reset
1707 fw_core_initiate_bus_reset(&ohci->card, 1);
1709 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1710 next_config_rom, next_config_rom_bus);
1715 static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
1717 struct fw_ohci *ohci = fw_ohci(card);
1719 at_context_transmit(&ohci->at_request_ctx, packet);
1722 static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
1724 struct fw_ohci *ohci = fw_ohci(card);
1726 at_context_transmit(&ohci->at_response_ctx, packet);
1729 static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
1731 struct fw_ohci *ohci = fw_ohci(card);
1732 struct context *ctx = &ohci->at_request_ctx;
1733 struct driver_data *driver_data = packet->driver_data;
1736 tasklet_disable(&ctx->tasklet);
1738 if (packet->ack != 0)
1741 if (packet->payload_mapped)
1742 dma_unmap_single(ohci->card.device, packet->payload_bus,
1743 packet->payload_length, DMA_TO_DEVICE);
1745 log_ar_at_event('T', packet->speed, packet->header, 0x20);
1746 driver_data->packet = NULL;
1747 packet->ack = RCODE_CANCELLED;
1748 packet->callback(packet, &ohci->card, packet->ack);
1751 tasklet_enable(&ctx->tasklet);
1756 static int ohci_enable_phys_dma(struct fw_card *card,
1757 int node_id, int generation)
1759 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
1762 struct fw_ohci *ohci = fw_ohci(card);
1763 unsigned long flags;
1767 * FIXME: Make sure this bitmask is cleared when we clear the busReset
1768 * interrupt bit. Clear physReqResourceAllBuses on bus reset.
1771 spin_lock_irqsave(&ohci->lock, flags);
1773 if (ohci->generation != generation) {
1779 * Note, if the node ID contains a non-local bus ID, physical DMA is
1780 * enabled for _all_ nodes on remote buses.
1783 n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
1785 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
1787 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
1791 spin_unlock_irqrestore(&ohci->lock, flags);
1794 #endif /* CONFIG_FIREWIRE_OHCI_REMOTE_DMA */
1797 static u64 ohci_get_bus_time(struct fw_card *card)
1799 struct fw_ohci *ohci = fw_ohci(card);
1803 cycle_time = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1804 bus_time = ((u64)atomic_read(&ohci->bus_seconds) << 32) | cycle_time;
1809 static void copy_iso_headers(struct iso_context *ctx, void *p)
1811 int i = ctx->header_length;
1813 if (i + ctx->base.header_size > PAGE_SIZE)
1817 * The iso header is byteswapped to little endian by
1818 * the controller, but the remaining header quadlets
1819 * are big endian. We want to present all the headers
1820 * as big endian, so we have to swap the first quadlet.
1822 if (ctx->base.header_size > 0)
1823 *(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
1824 if (ctx->base.header_size > 4)
1825 *(u32 *) (ctx->header + i + 4) = __swab32(*(u32 *) p);
1826 if (ctx->base.header_size > 8)
1827 memcpy(ctx->header + i + 8, p + 8, ctx->base.header_size - 8);
1828 ctx->header_length += ctx->base.header_size;
1831 static int handle_ir_dualbuffer_packet(struct context *context,
1832 struct descriptor *d,
1833 struct descriptor *last)
1835 struct iso_context *ctx =
1836 container_of(context, struct iso_context, context);
1837 struct db_descriptor *db = (struct db_descriptor *) d;
1839 size_t header_length;
1842 if (db->first_res_count != 0 && db->second_res_count != 0) {
1843 if (ctx->excess_bytes <= le16_to_cpu(db->second_req_count)) {
1844 /* This descriptor isn't done yet, stop iteration. */
1847 ctx->excess_bytes -= le16_to_cpu(db->second_req_count);
1850 header_length = le16_to_cpu(db->first_req_count) -
1851 le16_to_cpu(db->first_res_count);
1854 end = p + header_length;
1856 copy_iso_headers(ctx, p);
1857 ctx->excess_bytes +=
1858 (le32_to_cpu(*(__le32 *)(p + 4)) >> 16) & 0xffff;
1859 p += max(ctx->base.header_size, (size_t)8);
1862 ctx->excess_bytes -= le16_to_cpu(db->second_req_count) -
1863 le16_to_cpu(db->second_res_count);
1865 if (le16_to_cpu(db->control) & DESCRIPTOR_IRQ_ALWAYS) {
1866 ir_header = (__le32 *) (db + 1);
1867 ctx->base.callback(&ctx->base,
1868 le32_to_cpu(ir_header[0]) & 0xffff,
1869 ctx->header_length, ctx->header,
1870 ctx->base.callback_data);
1871 ctx->header_length = 0;
1877 static int handle_ir_packet_per_buffer(struct context *context,
1878 struct descriptor *d,
1879 struct descriptor *last)
1881 struct iso_context *ctx =
1882 container_of(context, struct iso_context, context);
1883 struct descriptor *pd;
1887 for (pd = d; pd <= last; pd++) {
1888 if (pd->transfer_status)
1892 /* Descriptor(s) not done yet, stop iteration */
1896 copy_iso_headers(ctx, p);
1898 if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
1899 ir_header = (__le32 *) p;
1900 ctx->base.callback(&ctx->base,
1901 le32_to_cpu(ir_header[0]) & 0xffff,
1902 ctx->header_length, ctx->header,
1903 ctx->base.callback_data);
1904 ctx->header_length = 0;
1910 static int handle_it_packet(struct context *context,
1911 struct descriptor *d,
1912 struct descriptor *last)
1914 struct iso_context *ctx =
1915 container_of(context, struct iso_context, context);
1917 struct descriptor *pd;
1919 for (pd = d; pd <= last; pd++)
1920 if (pd->transfer_status)
1923 /* Descriptor(s) not done yet, stop iteration */
1926 i = ctx->header_length;
1927 if (i + 4 < PAGE_SIZE) {
1928 /* Present this value as big-endian to match the receive code */
1929 *(__be32 *)(ctx->header + i) = cpu_to_be32(
1930 ((u32)le16_to_cpu(pd->transfer_status) << 16) |
1931 le16_to_cpu(pd->res_count));
1932 ctx->header_length += 4;
1934 if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
1935 ctx->base.callback(&ctx->base, le16_to_cpu(last->res_count),
1936 ctx->header_length, ctx->header,
1937 ctx->base.callback_data);
1938 ctx->header_length = 0;
1943 static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
1944 int type, int channel, size_t header_size)
1946 struct fw_ohci *ohci = fw_ohci(card);
1947 struct iso_context *ctx, *list;
1948 descriptor_callback_t callback;
1949 u64 *channels, dont_care = ~0ULL;
1951 unsigned long flags;
1952 int index, ret = -ENOMEM;
1954 if (type == FW_ISO_CONTEXT_TRANSMIT) {
1955 channels = &dont_care;
1956 mask = &ohci->it_context_mask;
1957 list = ohci->it_context_list;
1958 callback = handle_it_packet;
1960 channels = &ohci->ir_context_channels;
1961 mask = &ohci->ir_context_mask;
1962 list = ohci->ir_context_list;
1963 if (ohci->use_dualbuffer)
1964 callback = handle_ir_dualbuffer_packet;
1966 callback = handle_ir_packet_per_buffer;
1969 spin_lock_irqsave(&ohci->lock, flags);
1970 index = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1;
1972 *channels &= ~(1ULL << channel);
1973 *mask &= ~(1 << index);
1975 spin_unlock_irqrestore(&ohci->lock, flags);
1978 return ERR_PTR(-EBUSY);
1980 if (type == FW_ISO_CONTEXT_TRANSMIT)
1981 regs = OHCI1394_IsoXmitContextBase(index);
1983 regs = OHCI1394_IsoRcvContextBase(index);
1986 memset(ctx, 0, sizeof(*ctx));
1987 ctx->header_length = 0;
1988 ctx->header = (void *) __get_free_page(GFP_KERNEL);
1989 if (ctx->header == NULL)
1992 ret = context_init(&ctx->context, ohci, regs, callback);
1994 goto out_with_header;
1999 free_page((unsigned long)ctx->header);
2001 spin_lock_irqsave(&ohci->lock, flags);
2002 *mask |= 1 << index;
2003 spin_unlock_irqrestore(&ohci->lock, flags);
2005 return ERR_PTR(ret);
2008 static int ohci_start_iso(struct fw_iso_context *base,
2009 s32 cycle, u32 sync, u32 tags)
2011 struct iso_context *ctx = container_of(base, struct iso_context, base);
2012 struct fw_ohci *ohci = ctx->context.ohci;
2016 if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
2017 index = ctx - ohci->it_context_list;
2020 match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
2021 (cycle & 0x7fff) << 16;
2023 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
2024 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
2025 context_run(&ctx->context, match);
2027 index = ctx - ohci->ir_context_list;
2028 control = IR_CONTEXT_ISOCH_HEADER;
2029 if (ohci->use_dualbuffer)
2030 control |= IR_CONTEXT_DUAL_BUFFER_MODE;
2031 match = (tags << 28) | (sync << 8) | ctx->base.channel;
2033 match |= (cycle & 0x07fff) << 12;
2034 control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
2037 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
2038 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
2039 reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
2040 context_run(&ctx->context, control);
2046 static int ohci_stop_iso(struct fw_iso_context *base)
2048 struct fw_ohci *ohci = fw_ohci(base->card);
2049 struct iso_context *ctx = container_of(base, struct iso_context, base);
2052 if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
2053 index = ctx - ohci->it_context_list;
2054 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
2056 index = ctx - ohci->ir_context_list;
2057 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
2060 context_stop(&ctx->context);
2065 static void ohci_free_iso_context(struct fw_iso_context *base)
2067 struct fw_ohci *ohci = fw_ohci(base->card);
2068 struct iso_context *ctx = container_of(base, struct iso_context, base);
2069 unsigned long flags;
2072 ohci_stop_iso(base);
2073 context_release(&ctx->context);
2074 free_page((unsigned long)ctx->header);
2076 spin_lock_irqsave(&ohci->lock, flags);
2078 if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
2079 index = ctx - ohci->it_context_list;
2080 ohci->it_context_mask |= 1 << index;
2082 index = ctx - ohci->ir_context_list;
2083 ohci->ir_context_mask |= 1 << index;
2084 ohci->ir_context_channels |= 1ULL << base->channel;
2087 spin_unlock_irqrestore(&ohci->lock, flags);
2090 static int ohci_queue_iso_transmit(struct fw_iso_context *base,
2091 struct fw_iso_packet *packet,
2092 struct fw_iso_buffer *buffer,
2093 unsigned long payload)
2095 struct iso_context *ctx = container_of(base, struct iso_context, base);
2096 struct descriptor *d, *last, *pd;
2097 struct fw_iso_packet *p;
2099 dma_addr_t d_bus, page_bus;
2100 u32 z, header_z, payload_z, irq;
2101 u32 payload_index, payload_end_index, next_page_index;
2102 int page, end_page, i, length, offset;
2105 * FIXME: Cycle lost behavior should be configurable: lose
2106 * packet, retransmit or terminate..
2110 payload_index = payload;
2116 if (p->header_length > 0)
2119 /* Determine the first page the payload isn't contained in. */
2120 end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
2121 if (p->payload_length > 0)
2122 payload_z = end_page - (payload_index >> PAGE_SHIFT);
2128 /* Get header size in number of descriptors. */
2129 header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
2131 d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
2136 d[0].control = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
2137 d[0].req_count = cpu_to_le16(8);
2139 header = (__le32 *) &d[1];
2140 header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
2141 IT_HEADER_TAG(p->tag) |
2142 IT_HEADER_TCODE(TCODE_STREAM_DATA) |
2143 IT_HEADER_CHANNEL(ctx->base.channel) |
2144 IT_HEADER_SPEED(ctx->base.speed));
2146 cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
2147 p->payload_length));
2150 if (p->header_length > 0) {
2151 d[2].req_count = cpu_to_le16(p->header_length);
2152 d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
2153 memcpy(&d[z], p->header, p->header_length);
2156 pd = d + z - payload_z;
2157 payload_end_index = payload_index + p->payload_length;
2158 for (i = 0; i < payload_z; i++) {
2159 page = payload_index >> PAGE_SHIFT;
2160 offset = payload_index & ~PAGE_MASK;
2161 next_page_index = (page + 1) << PAGE_SHIFT;
2163 min(next_page_index, payload_end_index) - payload_index;
2164 pd[i].req_count = cpu_to_le16(length);
2166 page_bus = page_private(buffer->pages[page]);
2167 pd[i].data_address = cpu_to_le32(page_bus + offset);
2169 payload_index += length;
2173 irq = DESCRIPTOR_IRQ_ALWAYS;
2175 irq = DESCRIPTOR_NO_IRQ;
2177 last = z == 2 ? d : d + z - 1;
2178 last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
2180 DESCRIPTOR_BRANCH_ALWAYS |
2183 context_append(&ctx->context, d, z, header_z);
2188 static int ohci_queue_iso_receive_dualbuffer(struct fw_iso_context *base,
2189 struct fw_iso_packet *packet,
2190 struct fw_iso_buffer *buffer,
2191 unsigned long payload)
2193 struct iso_context *ctx = container_of(base, struct iso_context, base);
2194 struct db_descriptor *db = NULL;
2195 struct descriptor *d;
2196 struct fw_iso_packet *p;
2197 dma_addr_t d_bus, page_bus;
2198 u32 z, header_z, length, rest;
2199 int page, offset, packet_count, header_size;
2202 * FIXME: Cycle lost behavior should be configurable: lose
2203 * packet, retransmit or terminate..
2210 * The OHCI controller puts the isochronous header and trailer in the
2211 * buffer, so we need at least 8 bytes.
2213 packet_count = p->header_length / ctx->base.header_size;
2214 header_size = packet_count * max(ctx->base.header_size, (size_t)8);
2216 /* Get header size in number of descriptors. */
2217 header_z = DIV_ROUND_UP(header_size, sizeof(*d));
2218 page = payload >> PAGE_SHIFT;
2219 offset = payload & ~PAGE_MASK;
2220 rest = p->payload_length;
2222 /* FIXME: make packet-per-buffer/dual-buffer a context option */
2224 d = context_get_descriptors(&ctx->context,
2225 z + header_z, &d_bus);
2229 db = (struct db_descriptor *) d;
2230 db->control = cpu_to_le16(DESCRIPTOR_STATUS |
2231 DESCRIPTOR_BRANCH_ALWAYS);
2233 cpu_to_le16(max(ctx->base.header_size, (size_t)8));
2234 if (p->skip && rest == p->payload_length) {
2235 db->control |= cpu_to_le16(DESCRIPTOR_WAIT);
2236 db->first_req_count = db->first_size;
2238 db->first_req_count = cpu_to_le16(header_size);
2240 db->first_res_count = db->first_req_count;
2241 db->first_buffer = cpu_to_le32(d_bus + sizeof(*db));
2243 if (p->skip && rest == p->payload_length)
2245 else if (offset + rest < PAGE_SIZE)
2248 length = PAGE_SIZE - offset;
2250 db->second_req_count = cpu_to_le16(length);
2251 db->second_res_count = db->second_req_count;
2252 page_bus = page_private(buffer->pages[page]);
2253 db->second_buffer = cpu_to_le32(page_bus + offset);
2255 if (p->interrupt && length == rest)
2256 db->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
2258 context_append(&ctx->context, d, z, header_z);
2259 offset = (offset + length) & ~PAGE_MASK;
2268 static int ohci_queue_iso_receive_packet_per_buffer(struct fw_iso_context *base,
2269 struct fw_iso_packet *packet,
2270 struct fw_iso_buffer *buffer,
2271 unsigned long payload)
2273 struct iso_context *ctx = container_of(base, struct iso_context, base);
2274 struct descriptor *d = NULL, *pd = NULL;
2275 struct fw_iso_packet *p = packet;
2276 dma_addr_t d_bus, page_bus;
2277 u32 z, header_z, rest;
2279 int page, offset, packet_count, header_size, payload_per_buffer;
2282 * The OHCI controller puts the isochronous header and trailer in the
2283 * buffer, so we need at least 8 bytes.
2285 packet_count = p->header_length / ctx->base.header_size;
2286 header_size = max(ctx->base.header_size, (size_t)8);
2288 /* Get header size in number of descriptors. */
2289 header_z = DIV_ROUND_UP(header_size, sizeof(*d));
2290 page = payload >> PAGE_SHIFT;
2291 offset = payload & ~PAGE_MASK;
2292 payload_per_buffer = p->payload_length / packet_count;
2294 for (i = 0; i < packet_count; i++) {
2295 /* d points to the header descriptor */
2296 z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
2297 d = context_get_descriptors(&ctx->context,
2298 z + header_z, &d_bus);
2302 d->control = cpu_to_le16(DESCRIPTOR_STATUS |
2303 DESCRIPTOR_INPUT_MORE);
2304 if (p->skip && i == 0)
2305 d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
2306 d->req_count = cpu_to_le16(header_size);
2307 d->res_count = d->req_count;
2308 d->transfer_status = 0;
2309 d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));
2311 rest = payload_per_buffer;
2312 for (j = 1; j < z; j++) {
2314 pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
2315 DESCRIPTOR_INPUT_MORE);
2317 if (offset + rest < PAGE_SIZE)
2320 length = PAGE_SIZE - offset;
2321 pd->req_count = cpu_to_le16(length);
2322 pd->res_count = pd->req_count;
2323 pd->transfer_status = 0;
2325 page_bus = page_private(buffer->pages[page]);
2326 pd->data_address = cpu_to_le32(page_bus + offset);
2328 offset = (offset + length) & ~PAGE_MASK;
2333 pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
2334 DESCRIPTOR_INPUT_LAST |
2335 DESCRIPTOR_BRANCH_ALWAYS);
2336 if (p->interrupt && i == packet_count - 1)
2337 pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
2339 context_append(&ctx->context, d, z, header_z);
2345 static int ohci_queue_iso(struct fw_iso_context *base,
2346 struct fw_iso_packet *packet,
2347 struct fw_iso_buffer *buffer,
2348 unsigned long payload)
2350 struct iso_context *ctx = container_of(base, struct iso_context, base);
2351 unsigned long flags;
2354 spin_lock_irqsave(&ctx->context.ohci->lock, flags);
2355 if (base->type == FW_ISO_CONTEXT_TRANSMIT)
2356 ret = ohci_queue_iso_transmit(base, packet, buffer, payload);
2357 else if (ctx->context.ohci->use_dualbuffer)
2358 ret = ohci_queue_iso_receive_dualbuffer(base, packet,
2361 ret = ohci_queue_iso_receive_packet_per_buffer(base, packet,
2363 spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);
2368 static const struct fw_card_driver ohci_driver = {
2369 .enable = ohci_enable,
2370 .update_phy_reg = ohci_update_phy_reg,
2371 .set_config_rom = ohci_set_config_rom,
2372 .send_request = ohci_send_request,
2373 .send_response = ohci_send_response,
2374 .cancel_packet = ohci_cancel_packet,
2375 .enable_phys_dma = ohci_enable_phys_dma,
2376 .get_bus_time = ohci_get_bus_time,
2378 .allocate_iso_context = ohci_allocate_iso_context,
2379 .free_iso_context = ohci_free_iso_context,
2380 .queue_iso = ohci_queue_iso,
2381 .start_iso = ohci_start_iso,
2382 .stop_iso = ohci_stop_iso,
2385 #ifdef CONFIG_PPC_PMAC
2386 static void ohci_pmac_on(struct pci_dev *dev)
2388 if (machine_is(powermac)) {
2389 struct device_node *ofn = pci_device_to_OF_node(dev);
2392 pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
2393 pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
2398 static void ohci_pmac_off(struct pci_dev *dev)
2400 if (machine_is(powermac)) {
2401 struct device_node *ofn = pci_device_to_OF_node(dev);
2404 pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
2405 pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
2410 #define ohci_pmac_on(dev)
2411 #define ohci_pmac_off(dev)
2412 #endif /* CONFIG_PPC_PMAC */
2414 #define PCI_VENDOR_ID_AGERE PCI_VENDOR_ID_ATT
2415 #define PCI_DEVICE_ID_AGERE_FW643 0x5901
2417 static int __devinit pci_probe(struct pci_dev *dev,
2418 const struct pci_device_id *ent)
2420 struct fw_ohci *ohci;
2421 u32 bus_options, max_receive, link_speed, version;
2426 ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
2432 fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
2436 err = pci_enable_device(dev);
2438 fw_error("Failed to enable OHCI hardware\n");
2442 pci_set_master(dev);
2443 pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
2444 pci_set_drvdata(dev, ohci);
2446 spin_lock_init(&ohci->lock);
2448 tasklet_init(&ohci->bus_reset_tasklet,
2449 bus_reset_tasklet, (unsigned long)ohci);
2451 err = pci_request_region(dev, 0, ohci_driver_name);
2453 fw_error("MMIO resource unavailable\n");
2457 ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
2458 if (ohci->registers == NULL) {
2459 fw_error("Failed to remap registers\n");
2464 version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
2465 ohci->use_dualbuffer = version >= OHCI_VERSION_1_1;
2467 /* dual-buffer mode is broken if more than one IR context is active */
2468 if (dev->vendor == PCI_VENDOR_ID_AGERE &&
2469 dev->device == PCI_DEVICE_ID_AGERE_FW643)
2470 ohci->use_dualbuffer = false;
2472 /* dual-buffer mode is broken */
2473 if (dev->vendor == PCI_VENDOR_ID_RICOH &&
2474 dev->device == PCI_DEVICE_ID_RICOH_R5C832)
2475 ohci->use_dualbuffer = false;
2477 /* x86-32 currently doesn't use highmem for dma_alloc_coherent */
2478 #if !defined(CONFIG_X86_32)
2479 /* dual-buffer mode is broken with descriptor addresses above 2G */
2480 if (dev->vendor == PCI_VENDOR_ID_TI &&
2481 dev->device == PCI_DEVICE_ID_TI_TSB43AB22)
2482 ohci->use_dualbuffer = false;
2485 #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
2486 ohci->old_uninorth = dev->vendor == PCI_VENDOR_ID_APPLE &&
2487 dev->device == PCI_DEVICE_ID_APPLE_UNI_N_FW;
2489 ohci->bus_reset_packet_quirk = dev->vendor == PCI_VENDOR_ID_TI;
2491 ar_context_init(&ohci->ar_request_ctx, ohci,
2492 OHCI1394_AsReqRcvContextControlSet);
2494 ar_context_init(&ohci->ar_response_ctx, ohci,
2495 OHCI1394_AsRspRcvContextControlSet);
2497 context_init(&ohci->at_request_ctx, ohci,
2498 OHCI1394_AsReqTrContextControlSet, handle_at_packet);
2500 context_init(&ohci->at_response_ctx, ohci,
2501 OHCI1394_AsRspTrContextControlSet, handle_at_packet);
2503 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
2504 ohci->it_context_mask = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
2505 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
2506 size = sizeof(struct iso_context) * hweight32(ohci->it_context_mask);
2507 ohci->it_context_list = kzalloc(size, GFP_KERNEL);
2509 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
2510 ohci->ir_context_channels = ~0ULL;
2511 ohci->ir_context_mask = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
2512 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
2513 size = sizeof(struct iso_context) * hweight32(ohci->ir_context_mask);
2514 ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
2516 if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
2521 /* self-id dma buffer allocation */
2522 ohci->self_id_cpu = dma_alloc_coherent(ohci->card.device,
2526 if (ohci->self_id_cpu == NULL) {
2531 bus_options = reg_read(ohci, OHCI1394_BusOptions);
2532 max_receive = (bus_options >> 12) & 0xf;
2533 link_speed = bus_options & 0x7;
2534 guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
2535 reg_read(ohci, OHCI1394_GUIDLo);
2537 err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
2541 fw_notify("Added fw-ohci device %s, OHCI version %x.%x\n",
2542 dev_name(&dev->dev), version >> 16, version & 0xff);
2547 dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
2548 ohci->self_id_cpu, ohci->self_id_bus);
2550 kfree(ohci->ir_context_list);
2551 kfree(ohci->it_context_list);
2552 context_release(&ohci->at_response_ctx);
2553 context_release(&ohci->at_request_ctx);
2554 ar_context_release(&ohci->ar_response_ctx);
2555 ar_context_release(&ohci->ar_request_ctx);
2556 pci_iounmap(dev, ohci->registers);
2558 pci_release_region(dev, 0);
2560 pci_disable_device(dev);
2566 fw_error("Out of memory\n");
2571 static void pci_remove(struct pci_dev *dev)
2573 struct fw_ohci *ohci;
2575 ohci = pci_get_drvdata(dev);
2576 reg_write(ohci, OHCI1394_IntMaskClear, ~0);
2578 fw_core_remove_card(&ohci->card);
2581 * FIXME: Fail all pending packets here, now that the upper
2582 * layers can't queue any more.
2585 software_reset(ohci);
2586 free_irq(dev->irq, ohci);
2588 if (ohci->next_config_rom && ohci->next_config_rom != ohci->config_rom)
2589 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2590 ohci->next_config_rom, ohci->next_config_rom_bus);
2591 if (ohci->config_rom)
2592 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2593 ohci->config_rom, ohci->config_rom_bus);
2594 dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
2595 ohci->self_id_cpu, ohci->self_id_bus);
2596 ar_context_release(&ohci->ar_request_ctx);
2597 ar_context_release(&ohci->ar_response_ctx);
2598 context_release(&ohci->at_request_ctx);
2599 context_release(&ohci->at_response_ctx);
2600 kfree(ohci->it_context_list);
2601 kfree(ohci->ir_context_list);
2602 pci_iounmap(dev, ohci->registers);
2603 pci_release_region(dev, 0);
2604 pci_disable_device(dev);
2608 fw_notify("Removed fw-ohci device.\n");
2612 static int pci_suspend(struct pci_dev *dev, pm_message_t state)
2614 struct fw_ohci *ohci = pci_get_drvdata(dev);
2617 software_reset(ohci);
2618 free_irq(dev->irq, ohci);
2619 err = pci_save_state(dev);
2621 fw_error("pci_save_state failed\n");
2624 err = pci_set_power_state(dev, pci_choose_state(dev, state));
2626 fw_error("pci_set_power_state failed with %d\n", err);
2632 static int pci_resume(struct pci_dev *dev)
2634 struct fw_ohci *ohci = pci_get_drvdata(dev);
2638 pci_set_power_state(dev, PCI_D0);
2639 pci_restore_state(dev);
2640 err = pci_enable_device(dev);
2642 fw_error("pci_enable_device failed\n");
2646 return ohci_enable(&ohci->card, NULL, 0);
2650 static struct pci_device_id pci_table[] = {
2651 { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
2655 MODULE_DEVICE_TABLE(pci, pci_table);
2657 static struct pci_driver fw_ohci_pci_driver = {
2658 .name = ohci_driver_name,
2659 .id_table = pci_table,
2661 .remove = pci_remove,
2663 .resume = pci_resume,
2664 .suspend = pci_suspend,
2668 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
2669 MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
2670 MODULE_LICENSE("GPL");
2672 /* Provide a module alias so root-on-sbp2 initrds don't break. */
2673 #ifndef CONFIG_IEEE1394_OHCI1394_MODULE
2674 MODULE_ALIAS("ohci1394");
2677 static int __init fw_ohci_init(void)
2679 return pci_register_driver(&fw_ohci_pci_driver);
2682 static void __exit fw_ohci_cleanup(void)
2684 pci_unregister_driver(&fw_ohci_pci_driver);
2687 module_init(fw_ohci_init);
2688 module_exit(fw_ohci_cleanup);