Merge tag 'scsi-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi
[platform/kernel/linux-rpi.git] / drivers / firewire / ohci.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Driver for OHCI 1394 controllers
4  *
5  * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
6  */
7
8 #include <linux/bitops.h>
9 #include <linux/bug.h>
10 #include <linux/compiler.h>
11 #include <linux/delay.h>
12 #include <linux/device.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/firewire.h>
15 #include <linux/firewire-constants.h>
16 #include <linux/init.h>
17 #include <linux/interrupt.h>
18 #include <linux/io.h>
19 #include <linux/kernel.h>
20 #include <linux/list.h>
21 #include <linux/mm.h>
22 #include <linux/module.h>
23 #include <linux/moduleparam.h>
24 #include <linux/mutex.h>
25 #include <linux/pci.h>
26 #include <linux/pci_ids.h>
27 #include <linux/slab.h>
28 #include <linux/spinlock.h>
29 #include <linux/string.h>
30 #include <linux/time.h>
31 #include <linux/vmalloc.h>
32 #include <linux/workqueue.h>
33
34 #include <asm/byteorder.h>
35 #include <asm/page.h>
36
37 #ifdef CONFIG_PPC_PMAC
38 #include <asm/pmac_feature.h>
39 #endif
40
41 #include "core.h"
42 #include "ohci.h"
43
44 #define ohci_info(ohci, f, args...)     dev_info(ohci->card.device, f, ##args)
45 #define ohci_notice(ohci, f, args...)   dev_notice(ohci->card.device, f, ##args)
46 #define ohci_err(ohci, f, args...)      dev_err(ohci->card.device, f, ##args)
47
48 #define DESCRIPTOR_OUTPUT_MORE          0
49 #define DESCRIPTOR_OUTPUT_LAST          (1 << 12)
50 #define DESCRIPTOR_INPUT_MORE           (2 << 12)
51 #define DESCRIPTOR_INPUT_LAST           (3 << 12)
52 #define DESCRIPTOR_STATUS               (1 << 11)
53 #define DESCRIPTOR_KEY_IMMEDIATE        (2 << 8)
54 #define DESCRIPTOR_PING                 (1 << 7)
55 #define DESCRIPTOR_YY                   (1 << 6)
56 #define DESCRIPTOR_NO_IRQ               (0 << 4)
57 #define DESCRIPTOR_IRQ_ERROR            (1 << 4)
58 #define DESCRIPTOR_IRQ_ALWAYS           (3 << 4)
59 #define DESCRIPTOR_BRANCH_ALWAYS        (3 << 2)
60 #define DESCRIPTOR_WAIT                 (3 << 0)
61
62 #define DESCRIPTOR_CMD                  (0xf << 12)
63
64 struct descriptor {
65         __le16 req_count;
66         __le16 control;
67         __le32 data_address;
68         __le32 branch_address;
69         __le16 res_count;
70         __le16 transfer_status;
71 } __attribute__((aligned(16)));
72
73 #define CONTROL_SET(regs)       (regs)
74 #define CONTROL_CLEAR(regs)     ((regs) + 4)
75 #define COMMAND_PTR(regs)       ((regs) + 12)
76 #define CONTEXT_MATCH(regs)     ((regs) + 16)
77
78 #define AR_BUFFER_SIZE  (32*1024)
79 #define AR_BUFFERS_MIN  DIV_ROUND_UP(AR_BUFFER_SIZE, PAGE_SIZE)
80 /* we need at least two pages for proper list management */
81 #define AR_BUFFERS      (AR_BUFFERS_MIN >= 2 ? AR_BUFFERS_MIN : 2)
82
83 #define MAX_ASYNC_PAYLOAD       4096
84 #define MAX_AR_PACKET_SIZE      (16 + MAX_ASYNC_PAYLOAD + 4)
85 #define AR_WRAPAROUND_PAGES     DIV_ROUND_UP(MAX_AR_PACKET_SIZE, PAGE_SIZE)
86
87 struct ar_context {
88         struct fw_ohci *ohci;
89         struct page *pages[AR_BUFFERS];
90         void *buffer;
91         struct descriptor *descriptors;
92         dma_addr_t descriptors_bus;
93         void *pointer;
94         unsigned int last_buffer_index;
95         u32 regs;
96         struct tasklet_struct tasklet;
97 };
98
99 struct context;
100
101 typedef int (*descriptor_callback_t)(struct context *ctx,
102                                      struct descriptor *d,
103                                      struct descriptor *last);
104
105 /*
106  * A buffer that contains a block of DMA-able coherent memory used for
107  * storing a portion of a DMA descriptor program.
108  */
109 struct descriptor_buffer {
110         struct list_head list;
111         dma_addr_t buffer_bus;
112         size_t buffer_size;
113         size_t used;
114         struct descriptor buffer[];
115 };
116
117 struct context {
118         struct fw_ohci *ohci;
119         u32 regs;
120         int total_allocation;
121         u32 current_bus;
122         bool running;
123         bool flushing;
124
125         /*
126          * List of page-sized buffers for storing DMA descriptors.
127          * Head of list contains buffers in use and tail of list contains
128          * free buffers.
129          */
130         struct list_head buffer_list;
131
132         /*
133          * Pointer to a buffer inside buffer_list that contains the tail
134          * end of the current DMA program.
135          */
136         struct descriptor_buffer *buffer_tail;
137
138         /*
139          * The descriptor containing the branch address of the first
140          * descriptor that has not yet been filled by the device.
141          */
142         struct descriptor *last;
143
144         /*
145          * The last descriptor block in the DMA program. It contains the branch
146          * address that must be updated upon appending a new descriptor.
147          */
148         struct descriptor *prev;
149         int prev_z;
150
151         descriptor_callback_t callback;
152
153         struct tasklet_struct tasklet;
154 };
155
156 #define IT_HEADER_SY(v)          ((v) <<  0)
157 #define IT_HEADER_TCODE(v)       ((v) <<  4)
158 #define IT_HEADER_CHANNEL(v)     ((v) <<  8)
159 #define IT_HEADER_TAG(v)         ((v) << 14)
160 #define IT_HEADER_SPEED(v)       ((v) << 16)
161 #define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
162
163 struct iso_context {
164         struct fw_iso_context base;
165         struct context context;
166         void *header;
167         size_t header_length;
168         unsigned long flushing_completions;
169         u32 mc_buffer_bus;
170         u16 mc_completed;
171         u16 last_timestamp;
172         u8 sync;
173         u8 tags;
174 };
175
176 #define CONFIG_ROM_SIZE 1024
177
178 struct fw_ohci {
179         struct fw_card card;
180
181         __iomem char *registers;
182         int node_id;
183         int generation;
184         int request_generation; /* for timestamping incoming requests */
185         unsigned quirks;
186         unsigned int pri_req_max;
187         u32 bus_time;
188         bool bus_time_running;
189         bool is_root;
190         bool csr_state_setclear_abdicate;
191         int n_ir;
192         int n_it;
193         /*
194          * Spinlock for accessing fw_ohci data.  Never call out of
195          * this driver with this lock held.
196          */
197         spinlock_t lock;
198
199         struct mutex phy_reg_mutex;
200
201         void *misc_buffer;
202         dma_addr_t misc_buffer_bus;
203
204         struct ar_context ar_request_ctx;
205         struct ar_context ar_response_ctx;
206         struct context at_request_ctx;
207         struct context at_response_ctx;
208
209         u32 it_context_support;
210         u32 it_context_mask;     /* unoccupied IT contexts */
211         struct iso_context *it_context_list;
212         u64 ir_context_channels; /* unoccupied channels */
213         u32 ir_context_support;
214         u32 ir_context_mask;     /* unoccupied IR contexts */
215         struct iso_context *ir_context_list;
216         u64 mc_channels; /* channels in use by the multichannel IR context */
217         bool mc_allocated;
218
219         __be32    *config_rom;
220         dma_addr_t config_rom_bus;
221         __be32    *next_config_rom;
222         dma_addr_t next_config_rom_bus;
223         __be32     next_header;
224
225         __le32    *self_id;
226         dma_addr_t self_id_bus;
227         struct work_struct bus_reset_work;
228
229         u32 self_id_buffer[512];
230 };
231
232 static struct workqueue_struct *selfid_workqueue;
233
234 static inline struct fw_ohci *fw_ohci(struct fw_card *card)
235 {
236         return container_of(card, struct fw_ohci, card);
237 }
238
239 #define IT_CONTEXT_CYCLE_MATCH_ENABLE   0x80000000
240 #define IR_CONTEXT_BUFFER_FILL          0x80000000
241 #define IR_CONTEXT_ISOCH_HEADER         0x40000000
242 #define IR_CONTEXT_CYCLE_MATCH_ENABLE   0x20000000
243 #define IR_CONTEXT_MULTI_CHANNEL_MODE   0x10000000
244 #define IR_CONTEXT_DUAL_BUFFER_MODE     0x08000000
245
246 #define CONTEXT_RUN     0x8000
247 #define CONTEXT_WAKE    0x1000
248 #define CONTEXT_DEAD    0x0800
249 #define CONTEXT_ACTIVE  0x0400
250
251 #define OHCI1394_MAX_AT_REQ_RETRIES     0xf
252 #define OHCI1394_MAX_AT_RESP_RETRIES    0x2
253 #define OHCI1394_MAX_PHYS_RESP_RETRIES  0x8
254
255 #define OHCI1394_REGISTER_SIZE          0x800
256 #define OHCI1394_PCI_HCI_Control        0x40
257 #define SELF_ID_BUF_SIZE                0x800
258 #define OHCI_TCODE_PHY_PACKET           0x0e
259 #define OHCI_VERSION_1_1                0x010010
260
261 static char ohci_driver_name[] = KBUILD_MODNAME;
262
263 #define PCI_VENDOR_ID_PINNACLE_SYSTEMS  0x11bd
264 #define PCI_DEVICE_ID_AGERE_FW643       0x5901
265 #define PCI_DEVICE_ID_CREATIVE_SB1394   0x4001
266 #define PCI_DEVICE_ID_JMICRON_JMB38X_FW 0x2380
267 #define PCI_DEVICE_ID_TI_TSB12LV22      0x8009
268 #define PCI_DEVICE_ID_TI_TSB12LV26      0x8020
269 #define PCI_DEVICE_ID_TI_TSB82AA2       0x8025
270 #define PCI_DEVICE_ID_VIA_VT630X        0x3044
271 #define PCI_REV_ID_VIA_VT6306           0x46
272 #define PCI_DEVICE_ID_VIA_VT6315        0x3403
273
274 #define QUIRK_CYCLE_TIMER               0x1
275 #define QUIRK_RESET_PACKET              0x2
276 #define QUIRK_BE_HEADERS                0x4
277 #define QUIRK_NO_1394A                  0x8
278 #define QUIRK_NO_MSI                    0x10
279 #define QUIRK_TI_SLLZ059                0x20
280 #define QUIRK_IR_WAKE                   0x40
281
282 /* In case of multiple matches in ohci_quirks[], only the first one is used. */
283 static const struct {
284         unsigned short vendor, device, revision, flags;
285 } ohci_quirks[] = {
286         {PCI_VENDOR_ID_AL, PCI_ANY_ID, PCI_ANY_ID,
287                 QUIRK_CYCLE_TIMER},
288
289         {PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_FW, PCI_ANY_ID,
290                 QUIRK_BE_HEADERS},
291
292         {PCI_VENDOR_ID_ATT, PCI_DEVICE_ID_AGERE_FW643, 6,
293                 QUIRK_NO_MSI},
294
295         {PCI_VENDOR_ID_CREATIVE, PCI_DEVICE_ID_CREATIVE_SB1394, PCI_ANY_ID,
296                 QUIRK_RESET_PACKET},
297
298         {PCI_VENDOR_ID_JMICRON, PCI_DEVICE_ID_JMICRON_JMB38X_FW, PCI_ANY_ID,
299                 QUIRK_NO_MSI},
300
301         {PCI_VENDOR_ID_NEC, PCI_ANY_ID, PCI_ANY_ID,
302                 QUIRK_CYCLE_TIMER},
303
304         {PCI_VENDOR_ID_O2, PCI_ANY_ID, PCI_ANY_ID,
305                 QUIRK_NO_MSI},
306
307         {PCI_VENDOR_ID_RICOH, PCI_ANY_ID, PCI_ANY_ID,
308                 QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
309
310         {PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV22, PCI_ANY_ID,
311                 QUIRK_CYCLE_TIMER | QUIRK_RESET_PACKET | QUIRK_NO_1394A},
312
313         {PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV26, PCI_ANY_ID,
314                 QUIRK_RESET_PACKET | QUIRK_TI_SLLZ059},
315
316         {PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB82AA2, PCI_ANY_ID,
317                 QUIRK_RESET_PACKET | QUIRK_TI_SLLZ059},
318
319         {PCI_VENDOR_ID_TI, PCI_ANY_ID, PCI_ANY_ID,
320                 QUIRK_RESET_PACKET},
321
322         {PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_VT630X, PCI_REV_ID_VIA_VT6306,
323                 QUIRK_CYCLE_TIMER | QUIRK_IR_WAKE},
324
325         {PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_VT6315, 0,
326                 QUIRK_CYCLE_TIMER /* FIXME: necessary? */ | QUIRK_NO_MSI},
327
328         {PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_VT6315, PCI_ANY_ID,
329                 QUIRK_NO_MSI},
330
331         {PCI_VENDOR_ID_VIA, PCI_ANY_ID, PCI_ANY_ID,
332                 QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
333 };
334
335 /* This overrides anything that was found in ohci_quirks[]. */
336 static int param_quirks;
337 module_param_named(quirks, param_quirks, int, 0644);
338 MODULE_PARM_DESC(quirks, "Chip quirks (default = 0"
339         ", nonatomic cycle timer = "    __stringify(QUIRK_CYCLE_TIMER)
340         ", reset packet generation = "  __stringify(QUIRK_RESET_PACKET)
341         ", AR/selfID endianness = "     __stringify(QUIRK_BE_HEADERS)
342         ", no 1394a enhancements = "    __stringify(QUIRK_NO_1394A)
343         ", disable MSI = "              __stringify(QUIRK_NO_MSI)
344         ", TI SLLZ059 erratum = "       __stringify(QUIRK_TI_SLLZ059)
345         ", IR wake unreliable = "       __stringify(QUIRK_IR_WAKE)
346         ")");
347
348 #define OHCI_PARAM_DEBUG_AT_AR          1
349 #define OHCI_PARAM_DEBUG_SELFIDS        2
350 #define OHCI_PARAM_DEBUG_IRQS           4
351 #define OHCI_PARAM_DEBUG_BUSRESETS      8 /* only effective before chip init */
352
353 static int param_debug;
354 module_param_named(debug, param_debug, int, 0644);
355 MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
356         ", AT/AR events = "     __stringify(OHCI_PARAM_DEBUG_AT_AR)
357         ", self-IDs = "         __stringify(OHCI_PARAM_DEBUG_SELFIDS)
358         ", IRQs = "             __stringify(OHCI_PARAM_DEBUG_IRQS)
359         ", busReset events = "  __stringify(OHCI_PARAM_DEBUG_BUSRESETS)
360         ", or a combination, or all = -1)");
361
362 static bool param_remote_dma;
363 module_param_named(remote_dma, param_remote_dma, bool, 0444);
364 MODULE_PARM_DESC(remote_dma, "Enable unfiltered remote DMA (default = N)");
365
366 static void log_irqs(struct fw_ohci *ohci, u32 evt)
367 {
368         if (likely(!(param_debug &
369                         (OHCI_PARAM_DEBUG_IRQS | OHCI_PARAM_DEBUG_BUSRESETS))))
370                 return;
371
372         if (!(param_debug & OHCI_PARAM_DEBUG_IRQS) &&
373             !(evt & OHCI1394_busReset))
374                 return;
375
376         ohci_notice(ohci, "IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt,
377             evt & OHCI1394_selfIDComplete       ? " selfID"             : "",
378             evt & OHCI1394_RQPkt                ? " AR_req"             : "",
379             evt & OHCI1394_RSPkt                ? " AR_resp"            : "",
380             evt & OHCI1394_reqTxComplete        ? " AT_req"             : "",
381             evt & OHCI1394_respTxComplete       ? " AT_resp"            : "",
382             evt & OHCI1394_isochRx              ? " IR"                 : "",
383             evt & OHCI1394_isochTx              ? " IT"                 : "",
384             evt & OHCI1394_postedWriteErr       ? " postedWriteErr"     : "",
385             evt & OHCI1394_cycleTooLong         ? " cycleTooLong"       : "",
386             evt & OHCI1394_cycle64Seconds       ? " cycle64Seconds"     : "",
387             evt & OHCI1394_cycleInconsistent    ? " cycleInconsistent"  : "",
388             evt & OHCI1394_regAccessFail        ? " regAccessFail"      : "",
389             evt & OHCI1394_unrecoverableError   ? " unrecoverableError" : "",
390             evt & OHCI1394_busReset             ? " busReset"           : "",
391             evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
392                     OHCI1394_RSPkt | OHCI1394_reqTxComplete |
393                     OHCI1394_respTxComplete | OHCI1394_isochRx |
394                     OHCI1394_isochTx | OHCI1394_postedWriteErr |
395                     OHCI1394_cycleTooLong | OHCI1394_cycle64Seconds |
396                     OHCI1394_cycleInconsistent |
397                     OHCI1394_regAccessFail | OHCI1394_busReset)
398                                                 ? " ?"                  : "");
399 }
400
401 static const char *speed[] = {
402         [0] = "S100", [1] = "S200", [2] = "S400",    [3] = "beta",
403 };
404 static const char *power[] = {
405         [0] = "+0W",  [1] = "+15W", [2] = "+30W",    [3] = "+45W",
406         [4] = "-3W",  [5] = " ?W",  [6] = "-3..-6W", [7] = "-3..-10W",
407 };
408 static const char port[] = { '.', '-', 'p', 'c', };
409
410 static char _p(u32 *s, int shift)
411 {
412         return port[*s >> shift & 3];
413 }
414
415 static void log_selfids(struct fw_ohci *ohci, int generation, int self_id_count)
416 {
417         u32 *s;
418
419         if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
420                 return;
421
422         ohci_notice(ohci, "%d selfIDs, generation %d, local node ID %04x\n",
423                     self_id_count, generation, ohci->node_id);
424
425         for (s = ohci->self_id_buffer; self_id_count--; ++s)
426                 if ((*s & 1 << 23) == 0)
427                         ohci_notice(ohci,
428                             "selfID 0: %08x, phy %d [%c%c%c] %s gc=%d %s %s%s%s\n",
429                             *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2),
430                             speed[*s >> 14 & 3], *s >> 16 & 63,
431                             power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
432                             *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
433                 else
434                         ohci_notice(ohci,
435                             "selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
436                             *s, *s >> 24 & 63,
437                             _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10),
438                             _p(s,  8), _p(s,  6), _p(s,  4), _p(s,  2));
439 }
440
441 static const char *evts[] = {
442         [0x00] = "evt_no_status",       [0x01] = "-reserved-",
443         [0x02] = "evt_long_packet",     [0x03] = "evt_missing_ack",
444         [0x04] = "evt_underrun",        [0x05] = "evt_overrun",
445         [0x06] = "evt_descriptor_read", [0x07] = "evt_data_read",
446         [0x08] = "evt_data_write",      [0x09] = "evt_bus_reset",
447         [0x0a] = "evt_timeout",         [0x0b] = "evt_tcode_err",
448         [0x0c] = "-reserved-",          [0x0d] = "-reserved-",
449         [0x0e] = "evt_unknown",         [0x0f] = "evt_flushed",
450         [0x10] = "-reserved-",          [0x11] = "ack_complete",
451         [0x12] = "ack_pending ",        [0x13] = "-reserved-",
452         [0x14] = "ack_busy_X",          [0x15] = "ack_busy_A",
453         [0x16] = "ack_busy_B",          [0x17] = "-reserved-",
454         [0x18] = "-reserved-",          [0x19] = "-reserved-",
455         [0x1a] = "-reserved-",          [0x1b] = "ack_tardy",
456         [0x1c] = "-reserved-",          [0x1d] = "ack_data_error",
457         [0x1e] = "ack_type_error",      [0x1f] = "-reserved-",
458         [0x20] = "pending/cancelled",
459 };
460 static const char *tcodes[] = {
461         [0x0] = "QW req",               [0x1] = "BW req",
462         [0x2] = "W resp",               [0x3] = "-reserved-",
463         [0x4] = "QR req",               [0x5] = "BR req",
464         [0x6] = "QR resp",              [0x7] = "BR resp",
465         [0x8] = "cycle start",          [0x9] = "Lk req",
466         [0xa] = "async stream packet",  [0xb] = "Lk resp",
467         [0xc] = "-reserved-",           [0xd] = "-reserved-",
468         [0xe] = "link internal",        [0xf] = "-reserved-",
469 };
470
471 static void log_ar_at_event(struct fw_ohci *ohci,
472                             char dir, int speed, u32 *header, int evt)
473 {
474         int tcode = header[0] >> 4 & 0xf;
475         char specific[12];
476
477         if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
478                 return;
479
480         if (unlikely(evt >= ARRAY_SIZE(evts)))
481                         evt = 0x1f;
482
483         if (evt == OHCI1394_evt_bus_reset) {
484                 ohci_notice(ohci, "A%c evt_bus_reset, generation %d\n",
485                             dir, (header[2] >> 16) & 0xff);
486                 return;
487         }
488
489         switch (tcode) {
490         case 0x0: case 0x6: case 0x8:
491                 snprintf(specific, sizeof(specific), " = %08x",
492                          be32_to_cpu((__force __be32)header[3]));
493                 break;
494         case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
495                 snprintf(specific, sizeof(specific), " %x,%x",
496                          header[3] >> 16, header[3] & 0xffff);
497                 break;
498         default:
499                 specific[0] = '\0';
500         }
501
502         switch (tcode) {
503         case 0xa:
504                 ohci_notice(ohci, "A%c %s, %s\n",
505                             dir, evts[evt], tcodes[tcode]);
506                 break;
507         case 0xe:
508                 ohci_notice(ohci, "A%c %s, PHY %08x %08x\n",
509                             dir, evts[evt], header[1], header[2]);
510                 break;
511         case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
512                 ohci_notice(ohci,
513                             "A%c spd %x tl %02x, %04x -> %04x, %s, %s, %04x%08x%s\n",
514                             dir, speed, header[0] >> 10 & 0x3f,
515                             header[1] >> 16, header[0] >> 16, evts[evt],
516                             tcodes[tcode], header[1] & 0xffff, header[2], specific);
517                 break;
518         default:
519                 ohci_notice(ohci,
520                             "A%c spd %x tl %02x, %04x -> %04x, %s, %s%s\n",
521                             dir, speed, header[0] >> 10 & 0x3f,
522                             header[1] >> 16, header[0] >> 16, evts[evt],
523                             tcodes[tcode], specific);
524         }
525 }
526
527 static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
528 {
529         writel(data, ohci->registers + offset);
530 }
531
532 static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
533 {
534         return readl(ohci->registers + offset);
535 }
536
537 static inline void flush_writes(const struct fw_ohci *ohci)
538 {
539         /* Do a dummy read to flush writes. */
540         reg_read(ohci, OHCI1394_Version);
541 }
542
543 /*
544  * Beware!  read_phy_reg(), write_phy_reg(), update_phy_reg(), and
545  * read_paged_phy_reg() require the caller to hold ohci->phy_reg_mutex.
546  * In other words, only use ohci_read_phy_reg() and ohci_update_phy_reg()
547  * directly.  Exceptions are intrinsically serialized contexts like pci_probe.
548  */
549 static int read_phy_reg(struct fw_ohci *ohci, int addr)
550 {
551         u32 val;
552         int i;
553
554         reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
555         for (i = 0; i < 3 + 100; i++) {
556                 val = reg_read(ohci, OHCI1394_PhyControl);
557                 if (!~val)
558                         return -ENODEV; /* Card was ejected. */
559
560                 if (val & OHCI1394_PhyControl_ReadDone)
561                         return OHCI1394_PhyControl_ReadData(val);
562
563                 /*
564                  * Try a few times without waiting.  Sleeping is necessary
565                  * only when the link/PHY interface is busy.
566                  */
567                 if (i >= 3)
568                         msleep(1);
569         }
570         ohci_err(ohci, "failed to read phy reg %d\n", addr);
571         dump_stack();
572
573         return -EBUSY;
574 }
575
576 static int write_phy_reg(const struct fw_ohci *ohci, int addr, u32 val)
577 {
578         int i;
579
580         reg_write(ohci, OHCI1394_PhyControl,
581                   OHCI1394_PhyControl_Write(addr, val));
582         for (i = 0; i < 3 + 100; i++) {
583                 val = reg_read(ohci, OHCI1394_PhyControl);
584                 if (!~val)
585                         return -ENODEV; /* Card was ejected. */
586
587                 if (!(val & OHCI1394_PhyControl_WritePending))
588                         return 0;
589
590                 if (i >= 3)
591                         msleep(1);
592         }
593         ohci_err(ohci, "failed to write phy reg %d, val %u\n", addr, val);
594         dump_stack();
595
596         return -EBUSY;
597 }
598
599 static int update_phy_reg(struct fw_ohci *ohci, int addr,
600                           int clear_bits, int set_bits)
601 {
602         int ret = read_phy_reg(ohci, addr);
603         if (ret < 0)
604                 return ret;
605
606         /*
607          * The interrupt status bits are cleared by writing a one bit.
608          * Avoid clearing them unless explicitly requested in set_bits.
609          */
610         if (addr == 5)
611                 clear_bits |= PHY_INT_STATUS_BITS;
612
613         return write_phy_reg(ohci, addr, (ret & ~clear_bits) | set_bits);
614 }
615
616 static int read_paged_phy_reg(struct fw_ohci *ohci, int page, int addr)
617 {
618         int ret;
619
620         ret = update_phy_reg(ohci, 7, PHY_PAGE_SELECT, page << 5);
621         if (ret < 0)
622                 return ret;
623
624         return read_phy_reg(ohci, addr);
625 }
626
627 static int ohci_read_phy_reg(struct fw_card *card, int addr)
628 {
629         struct fw_ohci *ohci = fw_ohci(card);
630         int ret;
631
632         mutex_lock(&ohci->phy_reg_mutex);
633         ret = read_phy_reg(ohci, addr);
634         mutex_unlock(&ohci->phy_reg_mutex);
635
636         return ret;
637 }
638
639 static int ohci_update_phy_reg(struct fw_card *card, int addr,
640                                int clear_bits, int set_bits)
641 {
642         struct fw_ohci *ohci = fw_ohci(card);
643         int ret;
644
645         mutex_lock(&ohci->phy_reg_mutex);
646         ret = update_phy_reg(ohci, addr, clear_bits, set_bits);
647         mutex_unlock(&ohci->phy_reg_mutex);
648
649         return ret;
650 }
651
652 static inline dma_addr_t ar_buffer_bus(struct ar_context *ctx, unsigned int i)
653 {
654         return page_private(ctx->pages[i]);
655 }
656
657 static void ar_context_link_page(struct ar_context *ctx, unsigned int index)
658 {
659         struct descriptor *d;
660
661         d = &ctx->descriptors[index];
662         d->branch_address  &= cpu_to_le32(~0xf);
663         d->res_count       =  cpu_to_le16(PAGE_SIZE);
664         d->transfer_status =  0;
665
666         wmb(); /* finish init of new descriptors before branch_address update */
667         d = &ctx->descriptors[ctx->last_buffer_index];
668         d->branch_address  |= cpu_to_le32(1);
669
670         ctx->last_buffer_index = index;
671
672         reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
673 }
674
675 static void ar_context_release(struct ar_context *ctx)
676 {
677         struct device *dev = ctx->ohci->card.device;
678         unsigned int i;
679
680         if (!ctx->buffer)
681                 return;
682
683         vunmap(ctx->buffer);
684
685         for (i = 0; i < AR_BUFFERS; i++) {
686                 if (ctx->pages[i])
687                         dma_free_pages(dev, PAGE_SIZE, ctx->pages[i],
688                                        ar_buffer_bus(ctx, i), DMA_FROM_DEVICE);
689         }
690 }
691
692 static void ar_context_abort(struct ar_context *ctx, const char *error_msg)
693 {
694         struct fw_ohci *ohci = ctx->ohci;
695
696         if (reg_read(ohci, CONTROL_CLEAR(ctx->regs)) & CONTEXT_RUN) {
697                 reg_write(ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
698                 flush_writes(ohci);
699
700                 ohci_err(ohci, "AR error: %s; DMA stopped\n", error_msg);
701         }
702         /* FIXME: restart? */
703 }
704
705 static inline unsigned int ar_next_buffer_index(unsigned int index)
706 {
707         return (index + 1) % AR_BUFFERS;
708 }
709
710 static inline unsigned int ar_first_buffer_index(struct ar_context *ctx)
711 {
712         return ar_next_buffer_index(ctx->last_buffer_index);
713 }
714
715 /*
716  * We search for the buffer that contains the last AR packet DMA data written
717  * by the controller.
718  */
719 static unsigned int ar_search_last_active_buffer(struct ar_context *ctx,
720                                                  unsigned int *buffer_offset)
721 {
722         unsigned int i, next_i, last = ctx->last_buffer_index;
723         __le16 res_count, next_res_count;
724
725         i = ar_first_buffer_index(ctx);
726         res_count = READ_ONCE(ctx->descriptors[i].res_count);
727
728         /* A buffer that is not yet completely filled must be the last one. */
729         while (i != last && res_count == 0) {
730
731                 /* Peek at the next descriptor. */
732                 next_i = ar_next_buffer_index(i);
733                 rmb(); /* read descriptors in order */
734                 next_res_count = READ_ONCE(ctx->descriptors[next_i].res_count);
735                 /*
736                  * If the next descriptor is still empty, we must stop at this
737                  * descriptor.
738                  */
739                 if (next_res_count == cpu_to_le16(PAGE_SIZE)) {
740                         /*
741                          * The exception is when the DMA data for one packet is
742                          * split over three buffers; in this case, the middle
743                          * buffer's descriptor might be never updated by the
744                          * controller and look still empty, and we have to peek
745                          * at the third one.
746                          */
747                         if (MAX_AR_PACKET_SIZE > PAGE_SIZE && i != last) {
748                                 next_i = ar_next_buffer_index(next_i);
749                                 rmb();
750                                 next_res_count = READ_ONCE(ctx->descriptors[next_i].res_count);
751                                 if (next_res_count != cpu_to_le16(PAGE_SIZE))
752                                         goto next_buffer_is_active;
753                         }
754
755                         break;
756                 }
757
758 next_buffer_is_active:
759                 i = next_i;
760                 res_count = next_res_count;
761         }
762
763         rmb(); /* read res_count before the DMA data */
764
765         *buffer_offset = PAGE_SIZE - le16_to_cpu(res_count);
766         if (*buffer_offset > PAGE_SIZE) {
767                 *buffer_offset = 0;
768                 ar_context_abort(ctx, "corrupted descriptor");
769         }
770
771         return i;
772 }
773
774 static void ar_sync_buffers_for_cpu(struct ar_context *ctx,
775                                     unsigned int end_buffer_index,
776                                     unsigned int end_buffer_offset)
777 {
778         unsigned int i;
779
780         i = ar_first_buffer_index(ctx);
781         while (i != end_buffer_index) {
782                 dma_sync_single_for_cpu(ctx->ohci->card.device,
783                                         ar_buffer_bus(ctx, i),
784                                         PAGE_SIZE, DMA_FROM_DEVICE);
785                 i = ar_next_buffer_index(i);
786         }
787         if (end_buffer_offset > 0)
788                 dma_sync_single_for_cpu(ctx->ohci->card.device,
789                                         ar_buffer_bus(ctx, i),
790                                         end_buffer_offset, DMA_FROM_DEVICE);
791 }
792
793 #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
794 #define cond_le32_to_cpu(v) \
795         (ohci->quirks & QUIRK_BE_HEADERS ? (__force __u32)(v) : le32_to_cpu(v))
796 #else
797 #define cond_le32_to_cpu(v) le32_to_cpu(v)
798 #endif
799
800 static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
801 {
802         struct fw_ohci *ohci = ctx->ohci;
803         struct fw_packet p;
804         u32 status, length, tcode;
805         int evt;
806
807         p.header[0] = cond_le32_to_cpu(buffer[0]);
808         p.header[1] = cond_le32_to_cpu(buffer[1]);
809         p.header[2] = cond_le32_to_cpu(buffer[2]);
810
811         tcode = (p.header[0] >> 4) & 0x0f;
812         switch (tcode) {
813         case TCODE_WRITE_QUADLET_REQUEST:
814         case TCODE_READ_QUADLET_RESPONSE:
815                 p.header[3] = (__force __u32) buffer[3];
816                 p.header_length = 16;
817                 p.payload_length = 0;
818                 break;
819
820         case TCODE_READ_BLOCK_REQUEST :
821                 p.header[3] = cond_le32_to_cpu(buffer[3]);
822                 p.header_length = 16;
823                 p.payload_length = 0;
824                 break;
825
826         case TCODE_WRITE_BLOCK_REQUEST:
827         case TCODE_READ_BLOCK_RESPONSE:
828         case TCODE_LOCK_REQUEST:
829         case TCODE_LOCK_RESPONSE:
830                 p.header[3] = cond_le32_to_cpu(buffer[3]);
831                 p.header_length = 16;
832                 p.payload_length = p.header[3] >> 16;
833                 if (p.payload_length > MAX_ASYNC_PAYLOAD) {
834                         ar_context_abort(ctx, "invalid packet length");
835                         return NULL;
836                 }
837                 break;
838
839         case TCODE_WRITE_RESPONSE:
840         case TCODE_READ_QUADLET_REQUEST:
841         case OHCI_TCODE_PHY_PACKET:
842                 p.header_length = 12;
843                 p.payload_length = 0;
844                 break;
845
846         default:
847                 ar_context_abort(ctx, "invalid tcode");
848                 return NULL;
849         }
850
851         p.payload = (void *) buffer + p.header_length;
852
853         /* FIXME: What to do about evt_* errors? */
854         length = (p.header_length + p.payload_length + 3) / 4;
855         status = cond_le32_to_cpu(buffer[length]);
856         evt    = (status >> 16) & 0x1f;
857
858         p.ack        = evt - 16;
859         p.speed      = (status >> 21) & 0x7;
860         p.timestamp  = status & 0xffff;
861         p.generation = ohci->request_generation;
862
863         log_ar_at_event(ohci, 'R', p.speed, p.header, evt);
864
865         /*
866          * Several controllers, notably from NEC and VIA, forget to
867          * write ack_complete status at PHY packet reception.
868          */
869         if (evt == OHCI1394_evt_no_status &&
870             (p.header[0] & 0xff) == (OHCI1394_phy_tcode << 4))
871                 p.ack = ACK_COMPLETE;
872
873         /*
874          * The OHCI bus reset handler synthesizes a PHY packet with
875          * the new generation number when a bus reset happens (see
876          * section 8.4.2.3).  This helps us determine when a request
877          * was received and make sure we send the response in the same
878          * generation.  We only need this for requests; for responses
879          * we use the unique tlabel for finding the matching
880          * request.
881          *
882          * Alas some chips sometimes emit bus reset packets with a
883          * wrong generation.  We set the correct generation for these
884          * at a slightly incorrect time (in bus_reset_work).
885          */
886         if (evt == OHCI1394_evt_bus_reset) {
887                 if (!(ohci->quirks & QUIRK_RESET_PACKET))
888                         ohci->request_generation = (p.header[2] >> 16) & 0xff;
889         } else if (ctx == &ohci->ar_request_ctx) {
890                 fw_core_handle_request(&ohci->card, &p);
891         } else {
892                 fw_core_handle_response(&ohci->card, &p);
893         }
894
895         return buffer + length + 1;
896 }
897
898 static void *handle_ar_packets(struct ar_context *ctx, void *p, void *end)
899 {
900         void *next;
901
902         while (p < end) {
903                 next = handle_ar_packet(ctx, p);
904                 if (!next)
905                         return p;
906                 p = next;
907         }
908
909         return p;
910 }
911
912 static void ar_recycle_buffers(struct ar_context *ctx, unsigned int end_buffer)
913 {
914         unsigned int i;
915
916         i = ar_first_buffer_index(ctx);
917         while (i != end_buffer) {
918                 dma_sync_single_for_device(ctx->ohci->card.device,
919                                            ar_buffer_bus(ctx, i),
920                                            PAGE_SIZE, DMA_FROM_DEVICE);
921                 ar_context_link_page(ctx, i);
922                 i = ar_next_buffer_index(i);
923         }
924 }
925
926 static void ar_context_tasklet(unsigned long data)
927 {
928         struct ar_context *ctx = (struct ar_context *)data;
929         unsigned int end_buffer_index, end_buffer_offset;
930         void *p, *end;
931
932         p = ctx->pointer;
933         if (!p)
934                 return;
935
936         end_buffer_index = ar_search_last_active_buffer(ctx,
937                                                         &end_buffer_offset);
938         ar_sync_buffers_for_cpu(ctx, end_buffer_index, end_buffer_offset);
939         end = ctx->buffer + end_buffer_index * PAGE_SIZE + end_buffer_offset;
940
941         if (end_buffer_index < ar_first_buffer_index(ctx)) {
942                 /*
943                  * The filled part of the overall buffer wraps around; handle
944                  * all packets up to the buffer end here.  If the last packet
945                  * wraps around, its tail will be visible after the buffer end
946                  * because the buffer start pages are mapped there again.
947                  */
948                 void *buffer_end = ctx->buffer + AR_BUFFERS * PAGE_SIZE;
949                 p = handle_ar_packets(ctx, p, buffer_end);
950                 if (p < buffer_end)
951                         goto error;
952                 /* adjust p to point back into the actual buffer */
953                 p -= AR_BUFFERS * PAGE_SIZE;
954         }
955
956         p = handle_ar_packets(ctx, p, end);
957         if (p != end) {
958                 if (p > end)
959                         ar_context_abort(ctx, "inconsistent descriptor");
960                 goto error;
961         }
962
963         ctx->pointer = p;
964         ar_recycle_buffers(ctx, end_buffer_index);
965
966         return;
967
968 error:
969         ctx->pointer = NULL;
970 }
971
972 static int ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci,
973                            unsigned int descriptors_offset, u32 regs)
974 {
975         struct device *dev = ohci->card.device;
976         unsigned int i;
977         dma_addr_t dma_addr;
978         struct page *pages[AR_BUFFERS + AR_WRAPAROUND_PAGES];
979         struct descriptor *d;
980
981         ctx->regs        = regs;
982         ctx->ohci        = ohci;
983         tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
984
985         for (i = 0; i < AR_BUFFERS; i++) {
986                 ctx->pages[i] = dma_alloc_pages(dev, PAGE_SIZE, &dma_addr,
987                                                 DMA_FROM_DEVICE, GFP_KERNEL);
988                 if (!ctx->pages[i])
989                         goto out_of_memory;
990                 set_page_private(ctx->pages[i], dma_addr);
991                 dma_sync_single_for_device(dev, dma_addr, PAGE_SIZE,
992                                            DMA_FROM_DEVICE);
993         }
994
995         for (i = 0; i < AR_BUFFERS; i++)
996                 pages[i]              = ctx->pages[i];
997         for (i = 0; i < AR_WRAPAROUND_PAGES; i++)
998                 pages[AR_BUFFERS + i] = ctx->pages[i];
999         ctx->buffer = vmap(pages, ARRAY_SIZE(pages), VM_MAP, PAGE_KERNEL);
1000         if (!ctx->buffer)
1001                 goto out_of_memory;
1002
1003         ctx->descriptors     = ohci->misc_buffer     + descriptors_offset;
1004         ctx->descriptors_bus = ohci->misc_buffer_bus + descriptors_offset;
1005
1006         for (i = 0; i < AR_BUFFERS; i++) {
1007                 d = &ctx->descriptors[i];
1008                 d->req_count      = cpu_to_le16(PAGE_SIZE);
1009                 d->control        = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
1010                                                 DESCRIPTOR_STATUS |
1011                                                 DESCRIPTOR_BRANCH_ALWAYS);
1012                 d->data_address   = cpu_to_le32(ar_buffer_bus(ctx, i));
1013                 d->branch_address = cpu_to_le32(ctx->descriptors_bus +
1014                         ar_next_buffer_index(i) * sizeof(struct descriptor));
1015         }
1016
1017         return 0;
1018
1019 out_of_memory:
1020         ar_context_release(ctx);
1021
1022         return -ENOMEM;
1023 }
1024
1025 static void ar_context_run(struct ar_context *ctx)
1026 {
1027         unsigned int i;
1028
1029         for (i = 0; i < AR_BUFFERS; i++)
1030                 ar_context_link_page(ctx, i);
1031
1032         ctx->pointer = ctx->buffer;
1033
1034         reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ctx->descriptors_bus | 1);
1035         reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
1036 }
1037
1038 static struct descriptor *find_branch_descriptor(struct descriptor *d, int z)
1039 {
1040         __le16 branch;
1041
1042         branch = d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS);
1043
1044         /* figure out which descriptor the branch address goes in */
1045         if (z == 2 && branch == cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
1046                 return d;
1047         else
1048                 return d + z - 1;
1049 }
1050
1051 static void context_tasklet(unsigned long data)
1052 {
1053         struct context *ctx = (struct context *) data;
1054         struct descriptor *d, *last;
1055         u32 address;
1056         int z;
1057         struct descriptor_buffer *desc;
1058
1059         desc = list_entry(ctx->buffer_list.next,
1060                         struct descriptor_buffer, list);
1061         last = ctx->last;
1062         while (last->branch_address != 0) {
1063                 struct descriptor_buffer *old_desc = desc;
1064                 address = le32_to_cpu(last->branch_address);
1065                 z = address & 0xf;
1066                 address &= ~0xf;
1067                 ctx->current_bus = address;
1068
1069                 /* If the branch address points to a buffer outside of the
1070                  * current buffer, advance to the next buffer. */
1071                 if (address < desc->buffer_bus ||
1072                                 address >= desc->buffer_bus + desc->used)
1073                         desc = list_entry(desc->list.next,
1074                                         struct descriptor_buffer, list);
1075                 d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
1076                 last = find_branch_descriptor(d, z);
1077
1078                 if (!ctx->callback(ctx, d, last))
1079                         break;
1080
1081                 if (old_desc != desc) {
1082                         /* If we've advanced to the next buffer, move the
1083                          * previous buffer to the free list. */
1084                         unsigned long flags;
1085                         old_desc->used = 0;
1086                         spin_lock_irqsave(&ctx->ohci->lock, flags);
1087                         list_move_tail(&old_desc->list, &ctx->buffer_list);
1088                         spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1089                 }
1090                 ctx->last = last;
1091         }
1092 }
1093
1094 /*
1095  * Allocate a new buffer and add it to the list of free buffers for this
1096  * context.  Must be called with ohci->lock held.
1097  */
1098 static int context_add_buffer(struct context *ctx)
1099 {
1100         struct descriptor_buffer *desc;
1101         dma_addr_t bus_addr;
1102         int offset;
1103
1104         /*
1105          * 16MB of descriptors should be far more than enough for any DMA
1106          * program.  This will catch run-away userspace or DoS attacks.
1107          */
1108         if (ctx->total_allocation >= 16*1024*1024)
1109                 return -ENOMEM;
1110
1111         desc = dmam_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE, &bus_addr, GFP_ATOMIC);
1112         if (!desc)
1113                 return -ENOMEM;
1114
1115         offset = (void *)&desc->buffer - (void *)desc;
1116         /*
1117          * Some controllers, like JMicron ones, always issue 0x20-byte DMA reads
1118          * for descriptors, even 0x10-byte ones. This can cause page faults when
1119          * an IOMMU is in use and the oversized read crosses a page boundary.
1120          * Work around this by always leaving at least 0x10 bytes of padding.
1121          */
1122         desc->buffer_size = PAGE_SIZE - offset - 0x10;
1123         desc->buffer_bus = bus_addr + offset;
1124         desc->used = 0;
1125
1126         list_add_tail(&desc->list, &ctx->buffer_list);
1127         ctx->total_allocation += PAGE_SIZE;
1128
1129         return 0;
1130 }
1131
1132 static int context_init(struct context *ctx, struct fw_ohci *ohci,
1133                         u32 regs, descriptor_callback_t callback)
1134 {
1135         ctx->ohci = ohci;
1136         ctx->regs = regs;
1137         ctx->total_allocation = 0;
1138
1139         INIT_LIST_HEAD(&ctx->buffer_list);
1140         if (context_add_buffer(ctx) < 0)
1141                 return -ENOMEM;
1142
1143         ctx->buffer_tail = list_entry(ctx->buffer_list.next,
1144                         struct descriptor_buffer, list);
1145
1146         tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
1147         ctx->callback = callback;
1148
1149         /*
1150          * We put a dummy descriptor in the buffer that has a NULL
1151          * branch address and looks like it's been sent.  That way we
1152          * have a descriptor to append DMA programs to.
1153          */
1154         memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
1155         ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
1156         ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
1157         ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
1158         ctx->last = ctx->buffer_tail->buffer;
1159         ctx->prev = ctx->buffer_tail->buffer;
1160         ctx->prev_z = 1;
1161
1162         return 0;
1163 }
1164
1165 static void context_release(struct context *ctx)
1166 {
1167         struct fw_card *card = &ctx->ohci->card;
1168         struct descriptor_buffer *desc, *tmp;
1169
1170         list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list) {
1171                 dmam_free_coherent(card->device, PAGE_SIZE, desc,
1172                                    desc->buffer_bus - ((void *)&desc->buffer - (void *)desc));
1173         }
1174 }
1175
1176 /* Must be called with ohci->lock held */
1177 static struct descriptor *context_get_descriptors(struct context *ctx,
1178                                                   int z, dma_addr_t *d_bus)
1179 {
1180         struct descriptor *d = NULL;
1181         struct descriptor_buffer *desc = ctx->buffer_tail;
1182
1183         if (z * sizeof(*d) > desc->buffer_size)
1184                 return NULL;
1185
1186         if (z * sizeof(*d) > desc->buffer_size - desc->used) {
1187                 /* No room for the descriptor in this buffer, so advance to the
1188                  * next one. */
1189
1190                 if (desc->list.next == &ctx->buffer_list) {
1191                         /* If there is no free buffer next in the list,
1192                          * allocate one. */
1193                         if (context_add_buffer(ctx) < 0)
1194                                 return NULL;
1195                 }
1196                 desc = list_entry(desc->list.next,
1197                                 struct descriptor_buffer, list);
1198                 ctx->buffer_tail = desc;
1199         }
1200
1201         d = desc->buffer + desc->used / sizeof(*d);
1202         memset(d, 0, z * sizeof(*d));
1203         *d_bus = desc->buffer_bus + desc->used;
1204
1205         return d;
1206 }
1207
1208 static void context_run(struct context *ctx, u32 extra)
1209 {
1210         struct fw_ohci *ohci = ctx->ohci;
1211
1212         reg_write(ohci, COMMAND_PTR(ctx->regs),
1213                   le32_to_cpu(ctx->last->branch_address));
1214         reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
1215         reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
1216         ctx->running = true;
1217         flush_writes(ohci);
1218 }
1219
1220 static void context_append(struct context *ctx,
1221                            struct descriptor *d, int z, int extra)
1222 {
1223         dma_addr_t d_bus;
1224         struct descriptor_buffer *desc = ctx->buffer_tail;
1225         struct descriptor *d_branch;
1226
1227         d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
1228
1229         desc->used += (z + extra) * sizeof(*d);
1230
1231         wmb(); /* finish init of new descriptors before branch_address update */
1232
1233         d_branch = find_branch_descriptor(ctx->prev, ctx->prev_z);
1234         d_branch->branch_address = cpu_to_le32(d_bus | z);
1235
1236         /*
1237          * VT6306 incorrectly checks only the single descriptor at the
1238          * CommandPtr when the wake bit is written, so if it's a
1239          * multi-descriptor block starting with an INPUT_MORE, put a copy of
1240          * the branch address in the first descriptor.
1241          *
1242          * Not doing this for transmit contexts since not sure how it interacts
1243          * with skip addresses.
1244          */
1245         if (unlikely(ctx->ohci->quirks & QUIRK_IR_WAKE) &&
1246             d_branch != ctx->prev &&
1247             (ctx->prev->control & cpu_to_le16(DESCRIPTOR_CMD)) ==
1248              cpu_to_le16(DESCRIPTOR_INPUT_MORE)) {
1249                 ctx->prev->branch_address = cpu_to_le32(d_bus | z);
1250         }
1251
1252         ctx->prev = d;
1253         ctx->prev_z = z;
1254 }
1255
1256 static void context_stop(struct context *ctx)
1257 {
1258         struct fw_ohci *ohci = ctx->ohci;
1259         u32 reg;
1260         int i;
1261
1262         reg_write(ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
1263         ctx->running = false;
1264
1265         for (i = 0; i < 1000; i++) {
1266                 reg = reg_read(ohci, CONTROL_SET(ctx->regs));
1267                 if ((reg & CONTEXT_ACTIVE) == 0)
1268                         return;
1269
1270                 if (i)
1271                         udelay(10);
1272         }
1273         ohci_err(ohci, "DMA context still active (0x%08x)\n", reg);
1274 }
1275
1276 struct driver_data {
1277         u8 inline_data[8];
1278         struct fw_packet *packet;
1279 };
1280
1281 /*
1282  * This function apppends a packet to the DMA queue for transmission.
1283  * Must always be called with the ochi->lock held to ensure proper
1284  * generation handling and locking around packet queue manipulation.
1285  */
1286 static int at_context_queue_packet(struct context *ctx,
1287                                    struct fw_packet *packet)
1288 {
1289         struct fw_ohci *ohci = ctx->ohci;
1290         dma_addr_t d_bus, payload_bus;
1291         struct driver_data *driver_data;
1292         struct descriptor *d, *last;
1293         __le32 *header;
1294         int z, tcode;
1295
1296         d = context_get_descriptors(ctx, 4, &d_bus);
1297         if (d == NULL) {
1298                 packet->ack = RCODE_SEND_ERROR;
1299                 return -1;
1300         }
1301
1302         d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
1303         d[0].res_count = cpu_to_le16(packet->timestamp);
1304
1305         /*
1306          * The DMA format for asynchronous link packets is different
1307          * from the IEEE1394 layout, so shift the fields around
1308          * accordingly.
1309          */
1310
1311         tcode = (packet->header[0] >> 4) & 0x0f;
1312         header = (__le32 *) &d[1];
1313         switch (tcode) {
1314         case TCODE_WRITE_QUADLET_REQUEST:
1315         case TCODE_WRITE_BLOCK_REQUEST:
1316         case TCODE_WRITE_RESPONSE:
1317         case TCODE_READ_QUADLET_REQUEST:
1318         case TCODE_READ_BLOCK_REQUEST:
1319         case TCODE_READ_QUADLET_RESPONSE:
1320         case TCODE_READ_BLOCK_RESPONSE:
1321         case TCODE_LOCK_REQUEST:
1322         case TCODE_LOCK_RESPONSE:
1323                 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1324                                         (packet->speed << 16));
1325                 header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
1326                                         (packet->header[0] & 0xffff0000));
1327                 header[2] = cpu_to_le32(packet->header[2]);
1328
1329                 if (TCODE_IS_BLOCK_PACKET(tcode))
1330                         header[3] = cpu_to_le32(packet->header[3]);
1331                 else
1332                         header[3] = (__force __le32) packet->header[3];
1333
1334                 d[0].req_count = cpu_to_le16(packet->header_length);
1335                 break;
1336
1337         case TCODE_LINK_INTERNAL:
1338                 header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
1339                                         (packet->speed << 16));
1340                 header[1] = cpu_to_le32(packet->header[1]);
1341                 header[2] = cpu_to_le32(packet->header[2]);
1342                 d[0].req_count = cpu_to_le16(12);
1343
1344                 if (is_ping_packet(&packet->header[1]))
1345                         d[0].control |= cpu_to_le16(DESCRIPTOR_PING);
1346                 break;
1347
1348         case TCODE_STREAM_DATA:
1349                 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1350                                         (packet->speed << 16));
1351                 header[1] = cpu_to_le32(packet->header[0] & 0xffff0000);
1352                 d[0].req_count = cpu_to_le16(8);
1353                 break;
1354
1355         default:
1356                 /* BUG(); */
1357                 packet->ack = RCODE_SEND_ERROR;
1358                 return -1;
1359         }
1360
1361         BUILD_BUG_ON(sizeof(struct driver_data) > sizeof(struct descriptor));
1362         driver_data = (struct driver_data *) &d[3];
1363         driver_data->packet = packet;
1364         packet->driver_data = driver_data;
1365
1366         if (packet->payload_length > 0) {
1367                 if (packet->payload_length > sizeof(driver_data->inline_data)) {
1368                         payload_bus = dma_map_single(ohci->card.device,
1369                                                      packet->payload,
1370                                                      packet->payload_length,
1371                                                      DMA_TO_DEVICE);
1372                         if (dma_mapping_error(ohci->card.device, payload_bus)) {
1373                                 packet->ack = RCODE_SEND_ERROR;
1374                                 return -1;
1375                         }
1376                         packet->payload_bus     = payload_bus;
1377                         packet->payload_mapped  = true;
1378                 } else {
1379                         memcpy(driver_data->inline_data, packet->payload,
1380                                packet->payload_length);
1381                         payload_bus = d_bus + 3 * sizeof(*d);
1382                 }
1383
1384                 d[2].req_count    = cpu_to_le16(packet->payload_length);
1385                 d[2].data_address = cpu_to_le32(payload_bus);
1386                 last = &d[2];
1387                 z = 3;
1388         } else {
1389                 last = &d[0];
1390                 z = 2;
1391         }
1392
1393         last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
1394                                      DESCRIPTOR_IRQ_ALWAYS |
1395                                      DESCRIPTOR_BRANCH_ALWAYS);
1396
1397         /* FIXME: Document how the locking works. */
1398         if (ohci->generation != packet->generation) {
1399                 if (packet->payload_mapped)
1400                         dma_unmap_single(ohci->card.device, payload_bus,
1401                                          packet->payload_length, DMA_TO_DEVICE);
1402                 packet->ack = RCODE_GENERATION;
1403                 return -1;
1404         }
1405
1406         context_append(ctx, d, z, 4 - z);
1407
1408         if (ctx->running)
1409                 reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
1410         else
1411                 context_run(ctx, 0);
1412
1413         return 0;
1414 }
1415
1416 static void at_context_flush(struct context *ctx)
1417 {
1418         tasklet_disable(&ctx->tasklet);
1419
1420         ctx->flushing = true;
1421         context_tasklet((unsigned long)ctx);
1422         ctx->flushing = false;
1423
1424         tasklet_enable(&ctx->tasklet);
1425 }
1426
1427 static int handle_at_packet(struct context *context,
1428                             struct descriptor *d,
1429                             struct descriptor *last)
1430 {
1431         struct driver_data *driver_data;
1432         struct fw_packet *packet;
1433         struct fw_ohci *ohci = context->ohci;
1434         int evt;
1435
1436         if (last->transfer_status == 0 && !context->flushing)
1437                 /* This descriptor isn't done yet, stop iteration. */
1438                 return 0;
1439
1440         driver_data = (struct driver_data *) &d[3];
1441         packet = driver_data->packet;
1442         if (packet == NULL)
1443                 /* This packet was cancelled, just continue. */
1444                 return 1;
1445
1446         if (packet->payload_mapped)
1447                 dma_unmap_single(ohci->card.device, packet->payload_bus,
1448                                  packet->payload_length, DMA_TO_DEVICE);
1449
1450         evt = le16_to_cpu(last->transfer_status) & 0x1f;
1451         packet->timestamp = le16_to_cpu(last->res_count);
1452
1453         log_ar_at_event(ohci, 'T', packet->speed, packet->header, evt);
1454
1455         switch (evt) {
1456         case OHCI1394_evt_timeout:
1457                 /* Async response transmit timed out. */
1458                 packet->ack = RCODE_CANCELLED;
1459                 break;
1460
1461         case OHCI1394_evt_flushed:
1462                 /*
1463                  * The packet was flushed should give same error as
1464                  * when we try to use a stale generation count.
1465                  */
1466                 packet->ack = RCODE_GENERATION;
1467                 break;
1468
1469         case OHCI1394_evt_missing_ack:
1470                 if (context->flushing)
1471                         packet->ack = RCODE_GENERATION;
1472                 else {
1473                         /*
1474                          * Using a valid (current) generation count, but the
1475                          * node is not on the bus or not sending acks.
1476                          */
1477                         packet->ack = RCODE_NO_ACK;
1478                 }
1479                 break;
1480
1481         case ACK_COMPLETE + 0x10:
1482         case ACK_PENDING + 0x10:
1483         case ACK_BUSY_X + 0x10:
1484         case ACK_BUSY_A + 0x10:
1485         case ACK_BUSY_B + 0x10:
1486         case ACK_DATA_ERROR + 0x10:
1487         case ACK_TYPE_ERROR + 0x10:
1488                 packet->ack = evt - 0x10;
1489                 break;
1490
1491         case OHCI1394_evt_no_status:
1492                 if (context->flushing) {
1493                         packet->ack = RCODE_GENERATION;
1494                         break;
1495                 }
1496                 fallthrough;
1497
1498         default:
1499                 packet->ack = RCODE_SEND_ERROR;
1500                 break;
1501         }
1502
1503         packet->callback(packet, &ohci->card, packet->ack);
1504
1505         return 1;
1506 }
1507
1508 #define HEADER_GET_DESTINATION(q)       (((q) >> 16) & 0xffff)
1509 #define HEADER_GET_TCODE(q)             (((q) >> 4) & 0x0f)
1510 #define HEADER_GET_OFFSET_HIGH(q)       (((q) >> 0) & 0xffff)
1511 #define HEADER_GET_DATA_LENGTH(q)       (((q) >> 16) & 0xffff)
1512 #define HEADER_GET_EXTENDED_TCODE(q)    (((q) >> 0) & 0xffff)
1513
1514 static void handle_local_rom(struct fw_ohci *ohci,
1515                              struct fw_packet *packet, u32 csr)
1516 {
1517         struct fw_packet response;
1518         int tcode, length, i;
1519
1520         tcode = HEADER_GET_TCODE(packet->header[0]);
1521         if (TCODE_IS_BLOCK_PACKET(tcode))
1522                 length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1523         else
1524                 length = 4;
1525
1526         i = csr - CSR_CONFIG_ROM;
1527         if (i + length > CONFIG_ROM_SIZE) {
1528                 fw_fill_response(&response, packet->header,
1529                                  RCODE_ADDRESS_ERROR, NULL, 0);
1530         } else if (!TCODE_IS_READ_REQUEST(tcode)) {
1531                 fw_fill_response(&response, packet->header,
1532                                  RCODE_TYPE_ERROR, NULL, 0);
1533         } else {
1534                 fw_fill_response(&response, packet->header, RCODE_COMPLETE,
1535                                  (void *) ohci->config_rom + i, length);
1536         }
1537
1538         fw_core_handle_response(&ohci->card, &response);
1539 }
1540
1541 static void handle_local_lock(struct fw_ohci *ohci,
1542                               struct fw_packet *packet, u32 csr)
1543 {
1544         struct fw_packet response;
1545         int tcode, length, ext_tcode, sel, try;
1546         __be32 *payload, lock_old;
1547         u32 lock_arg, lock_data;
1548
1549         tcode = HEADER_GET_TCODE(packet->header[0]);
1550         length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1551         payload = packet->payload;
1552         ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
1553
1554         if (tcode == TCODE_LOCK_REQUEST &&
1555             ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
1556                 lock_arg = be32_to_cpu(payload[0]);
1557                 lock_data = be32_to_cpu(payload[1]);
1558         } else if (tcode == TCODE_READ_QUADLET_REQUEST) {
1559                 lock_arg = 0;
1560                 lock_data = 0;
1561         } else {
1562                 fw_fill_response(&response, packet->header,
1563                                  RCODE_TYPE_ERROR, NULL, 0);
1564                 goto out;
1565         }
1566
1567         sel = (csr - CSR_BUS_MANAGER_ID) / 4;
1568         reg_write(ohci, OHCI1394_CSRData, lock_data);
1569         reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
1570         reg_write(ohci, OHCI1394_CSRControl, sel);
1571
1572         for (try = 0; try < 20; try++)
1573                 if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000) {
1574                         lock_old = cpu_to_be32(reg_read(ohci,
1575                                                         OHCI1394_CSRData));
1576                         fw_fill_response(&response, packet->header,
1577                                          RCODE_COMPLETE,
1578                                          &lock_old, sizeof(lock_old));
1579                         goto out;
1580                 }
1581
1582         ohci_err(ohci, "swap not done (CSR lock timeout)\n");
1583         fw_fill_response(&response, packet->header, RCODE_BUSY, NULL, 0);
1584
1585  out:
1586         fw_core_handle_response(&ohci->card, &response);
1587 }
1588
1589 static void handle_local_request(struct context *ctx, struct fw_packet *packet)
1590 {
1591         u64 offset, csr;
1592
1593         if (ctx == &ctx->ohci->at_request_ctx) {
1594                 packet->ack = ACK_PENDING;
1595                 packet->callback(packet, &ctx->ohci->card, packet->ack);
1596         }
1597
1598         offset =
1599                 ((unsigned long long)
1600                  HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
1601                 packet->header[2];
1602         csr = offset - CSR_REGISTER_BASE;
1603
1604         /* Handle config rom reads. */
1605         if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
1606                 handle_local_rom(ctx->ohci, packet, csr);
1607         else switch (csr) {
1608         case CSR_BUS_MANAGER_ID:
1609         case CSR_BANDWIDTH_AVAILABLE:
1610         case CSR_CHANNELS_AVAILABLE_HI:
1611         case CSR_CHANNELS_AVAILABLE_LO:
1612                 handle_local_lock(ctx->ohci, packet, csr);
1613                 break;
1614         default:
1615                 if (ctx == &ctx->ohci->at_request_ctx)
1616                         fw_core_handle_request(&ctx->ohci->card, packet);
1617                 else
1618                         fw_core_handle_response(&ctx->ohci->card, packet);
1619                 break;
1620         }
1621
1622         if (ctx == &ctx->ohci->at_response_ctx) {
1623                 packet->ack = ACK_COMPLETE;
1624                 packet->callback(packet, &ctx->ohci->card, packet->ack);
1625         }
1626 }
1627
1628 static u32 get_cycle_time(struct fw_ohci *ohci);
1629
1630 static void at_context_transmit(struct context *ctx, struct fw_packet *packet)
1631 {
1632         unsigned long flags;
1633         int ret;
1634
1635         spin_lock_irqsave(&ctx->ohci->lock, flags);
1636
1637         if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
1638             ctx->ohci->generation == packet->generation) {
1639                 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1640
1641                 // Timestamping on behalf of the hardware.
1642                 packet->timestamp = cycle_time_to_ohci_tstamp(get_cycle_time(ctx->ohci));
1643
1644                 handle_local_request(ctx, packet);
1645                 return;
1646         }
1647
1648         ret = at_context_queue_packet(ctx, packet);
1649         spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1650
1651         if (ret < 0) {
1652                 // Timestamping on behalf of the hardware.
1653                 packet->timestamp = cycle_time_to_ohci_tstamp(get_cycle_time(ctx->ohci));
1654
1655                 packet->callback(packet, &ctx->ohci->card, packet->ack);
1656         }
1657 }
1658
1659 static void detect_dead_context(struct fw_ohci *ohci,
1660                                 const char *name, unsigned int regs)
1661 {
1662         u32 ctl;
1663
1664         ctl = reg_read(ohci, CONTROL_SET(regs));
1665         if (ctl & CONTEXT_DEAD)
1666                 ohci_err(ohci, "DMA context %s has stopped, error code: %s\n",
1667                         name, evts[ctl & 0x1f]);
1668 }
1669
1670 static void handle_dead_contexts(struct fw_ohci *ohci)
1671 {
1672         unsigned int i;
1673         char name[8];
1674
1675         detect_dead_context(ohci, "ATReq", OHCI1394_AsReqTrContextBase);
1676         detect_dead_context(ohci, "ATRsp", OHCI1394_AsRspTrContextBase);
1677         detect_dead_context(ohci, "ARReq", OHCI1394_AsReqRcvContextBase);
1678         detect_dead_context(ohci, "ARRsp", OHCI1394_AsRspRcvContextBase);
1679         for (i = 0; i < 32; ++i) {
1680                 if (!(ohci->it_context_support & (1 << i)))
1681                         continue;
1682                 sprintf(name, "IT%u", i);
1683                 detect_dead_context(ohci, name, OHCI1394_IsoXmitContextBase(i));
1684         }
1685         for (i = 0; i < 32; ++i) {
1686                 if (!(ohci->ir_context_support & (1 << i)))
1687                         continue;
1688                 sprintf(name, "IR%u", i);
1689                 detect_dead_context(ohci, name, OHCI1394_IsoRcvContextBase(i));
1690         }
1691         /* TODO: maybe try to flush and restart the dead contexts */
1692 }
1693
1694 static u32 cycle_timer_ticks(u32 cycle_timer)
1695 {
1696         u32 ticks;
1697
1698         ticks = cycle_timer & 0xfff;
1699         ticks += 3072 * ((cycle_timer >> 12) & 0x1fff);
1700         ticks += (3072 * 8000) * (cycle_timer >> 25);
1701
1702         return ticks;
1703 }
1704
1705 /*
1706  * Some controllers exhibit one or more of the following bugs when updating the
1707  * iso cycle timer register:
1708  *  - When the lowest six bits are wrapping around to zero, a read that happens
1709  *    at the same time will return garbage in the lowest ten bits.
1710  *  - When the cycleOffset field wraps around to zero, the cycleCount field is
1711  *    not incremented for about 60 ns.
1712  *  - Occasionally, the entire register reads zero.
1713  *
1714  * To catch these, we read the register three times and ensure that the
1715  * difference between each two consecutive reads is approximately the same, i.e.
1716  * less than twice the other.  Furthermore, any negative difference indicates an
1717  * error.  (A PCI read should take at least 20 ticks of the 24.576 MHz timer to
1718  * execute, so we have enough precision to compute the ratio of the differences.)
1719  */
1720 static u32 get_cycle_time(struct fw_ohci *ohci)
1721 {
1722         u32 c0, c1, c2;
1723         u32 t0, t1, t2;
1724         s32 diff01, diff12;
1725         int i;
1726
1727         c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1728
1729         if (ohci->quirks & QUIRK_CYCLE_TIMER) {
1730                 i = 0;
1731                 c1 = c2;
1732                 c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1733                 do {
1734                         c0 = c1;
1735                         c1 = c2;
1736                         c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1737                         t0 = cycle_timer_ticks(c0);
1738                         t1 = cycle_timer_ticks(c1);
1739                         t2 = cycle_timer_ticks(c2);
1740                         diff01 = t1 - t0;
1741                         diff12 = t2 - t1;
1742                 } while ((diff01 <= 0 || diff12 <= 0 ||
1743                           diff01 / diff12 >= 2 || diff12 / diff01 >= 2)
1744                          && i++ < 20);
1745         }
1746
1747         return c2;
1748 }
1749
1750 /*
1751  * This function has to be called at least every 64 seconds.  The bus_time
1752  * field stores not only the upper 25 bits of the BUS_TIME register but also
1753  * the most significant bit of the cycle timer in bit 6 so that we can detect
1754  * changes in this bit.
1755  */
1756 static u32 update_bus_time(struct fw_ohci *ohci)
1757 {
1758         u32 cycle_time_seconds = get_cycle_time(ohci) >> 25;
1759
1760         if (unlikely(!ohci->bus_time_running)) {
1761                 reg_write(ohci, OHCI1394_IntMaskSet, OHCI1394_cycle64Seconds);
1762                 ohci->bus_time = (lower_32_bits(ktime_get_seconds()) & ~0x7f) |
1763                                  (cycle_time_seconds & 0x40);
1764                 ohci->bus_time_running = true;
1765         }
1766
1767         if ((ohci->bus_time & 0x40) != (cycle_time_seconds & 0x40))
1768                 ohci->bus_time += 0x40;
1769
1770         return ohci->bus_time | cycle_time_seconds;
1771 }
1772
1773 static int get_status_for_port(struct fw_ohci *ohci, int port_index)
1774 {
1775         int reg;
1776
1777         mutex_lock(&ohci->phy_reg_mutex);
1778         reg = write_phy_reg(ohci, 7, port_index);
1779         if (reg >= 0)
1780                 reg = read_phy_reg(ohci, 8);
1781         mutex_unlock(&ohci->phy_reg_mutex);
1782         if (reg < 0)
1783                 return reg;
1784
1785         switch (reg & 0x0f) {
1786         case 0x06:
1787                 return 2;       /* is child node (connected to parent node) */
1788         case 0x0e:
1789                 return 3;       /* is parent node (connected to child node) */
1790         }
1791         return 1;               /* not connected */
1792 }
1793
1794 static int get_self_id_pos(struct fw_ohci *ohci, u32 self_id,
1795         int self_id_count)
1796 {
1797         int i;
1798         u32 entry;
1799
1800         for (i = 0; i < self_id_count; i++) {
1801                 entry = ohci->self_id_buffer[i];
1802                 if ((self_id & 0xff000000) == (entry & 0xff000000))
1803                         return -1;
1804                 if ((self_id & 0xff000000) < (entry & 0xff000000))
1805                         return i;
1806         }
1807         return i;
1808 }
1809
1810 static int initiated_reset(struct fw_ohci *ohci)
1811 {
1812         int reg;
1813         int ret = 0;
1814
1815         mutex_lock(&ohci->phy_reg_mutex);
1816         reg = write_phy_reg(ohci, 7, 0xe0); /* Select page 7 */
1817         if (reg >= 0) {
1818                 reg = read_phy_reg(ohci, 8);
1819                 reg |= 0x40;
1820                 reg = write_phy_reg(ohci, 8, reg); /* set PMODE bit */
1821                 if (reg >= 0) {
1822                         reg = read_phy_reg(ohci, 12); /* read register 12 */
1823                         if (reg >= 0) {
1824                                 if ((reg & 0x08) == 0x08) {
1825                                         /* bit 3 indicates "initiated reset" */
1826                                         ret = 0x2;
1827                                 }
1828                         }
1829                 }
1830         }
1831         mutex_unlock(&ohci->phy_reg_mutex);
1832         return ret;
1833 }
1834
1835 /*
1836  * TI TSB82AA2B and TSB12LV26 do not receive the selfID of a locally
1837  * attached TSB41BA3D phy; see http://www.ti.com/litv/pdf/sllz059.
1838  * Construct the selfID from phy register contents.
1839  */
1840 static int find_and_insert_self_id(struct fw_ohci *ohci, int self_id_count)
1841 {
1842         int reg, i, pos, status;
1843         /* link active 1, speed 3, bridge 0, contender 1, more packets 0 */
1844         u32 self_id = 0x8040c800;
1845
1846         reg = reg_read(ohci, OHCI1394_NodeID);
1847         if (!(reg & OHCI1394_NodeID_idValid)) {
1848                 ohci_notice(ohci,
1849                             "node ID not valid, new bus reset in progress\n");
1850                 return -EBUSY;
1851         }
1852         self_id |= ((reg & 0x3f) << 24); /* phy ID */
1853
1854         reg = ohci_read_phy_reg(&ohci->card, 4);
1855         if (reg < 0)
1856                 return reg;
1857         self_id |= ((reg & 0x07) << 8); /* power class */
1858
1859         reg = ohci_read_phy_reg(&ohci->card, 1);
1860         if (reg < 0)
1861                 return reg;
1862         self_id |= ((reg & 0x3f) << 16); /* gap count */
1863
1864         for (i = 0; i < 3; i++) {
1865                 status = get_status_for_port(ohci, i);
1866                 if (status < 0)
1867                         return status;
1868                 self_id |= ((status & 0x3) << (6 - (i * 2)));
1869         }
1870
1871         self_id |= initiated_reset(ohci);
1872
1873         pos = get_self_id_pos(ohci, self_id, self_id_count);
1874         if (pos >= 0) {
1875                 memmove(&(ohci->self_id_buffer[pos+1]),
1876                         &(ohci->self_id_buffer[pos]),
1877                         (self_id_count - pos) * sizeof(*ohci->self_id_buffer));
1878                 ohci->self_id_buffer[pos] = self_id;
1879                 self_id_count++;
1880         }
1881         return self_id_count;
1882 }
1883
1884 static void bus_reset_work(struct work_struct *work)
1885 {
1886         struct fw_ohci *ohci =
1887                 container_of(work, struct fw_ohci, bus_reset_work);
1888         int self_id_count, generation, new_generation, i, j;
1889         u32 reg;
1890         void *free_rom = NULL;
1891         dma_addr_t free_rom_bus = 0;
1892         bool is_new_root;
1893
1894         reg = reg_read(ohci, OHCI1394_NodeID);
1895         if (!(reg & OHCI1394_NodeID_idValid)) {
1896                 ohci_notice(ohci,
1897                             "node ID not valid, new bus reset in progress\n");
1898                 return;
1899         }
1900         if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
1901                 ohci_notice(ohci, "malconfigured bus\n");
1902                 return;
1903         }
1904         ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
1905                                OHCI1394_NodeID_nodeNumber);
1906
1907         is_new_root = (reg & OHCI1394_NodeID_root) != 0;
1908         if (!(ohci->is_root && is_new_root))
1909                 reg_write(ohci, OHCI1394_LinkControlSet,
1910                           OHCI1394_LinkControl_cycleMaster);
1911         ohci->is_root = is_new_root;
1912
1913         reg = reg_read(ohci, OHCI1394_SelfIDCount);
1914         if (reg & OHCI1394_SelfIDCount_selfIDError) {
1915                 ohci_notice(ohci, "self ID receive error\n");
1916                 return;
1917         }
1918         /*
1919          * The count in the SelfIDCount register is the number of
1920          * bytes in the self ID receive buffer.  Since we also receive
1921          * the inverted quadlets and a header quadlet, we shift one
1922          * bit extra to get the actual number of self IDs.
1923          */
1924         self_id_count = (reg >> 3) & 0xff;
1925
1926         if (self_id_count > 252) {
1927                 ohci_notice(ohci, "bad selfIDSize (%08x)\n", reg);
1928                 return;
1929         }
1930
1931         generation = (cond_le32_to_cpu(ohci->self_id[0]) >> 16) & 0xff;
1932         rmb();
1933
1934         for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1935                 u32 id  = cond_le32_to_cpu(ohci->self_id[i]);
1936                 u32 id2 = cond_le32_to_cpu(ohci->self_id[i + 1]);
1937
1938                 if (id != ~id2) {
1939                         /*
1940                          * If the invalid data looks like a cycle start packet,
1941                          * it's likely to be the result of the cycle master
1942                          * having a wrong gap count.  In this case, the self IDs
1943                          * so far are valid and should be processed so that the
1944                          * bus manager can then correct the gap count.
1945                          */
1946                         if (id == 0xffff008f) {
1947                                 ohci_notice(ohci, "ignoring spurious self IDs\n");
1948                                 self_id_count = j;
1949                                 break;
1950                         }
1951
1952                         ohci_notice(ohci, "bad self ID %d/%d (%08x != ~%08x)\n",
1953                                     j, self_id_count, id, id2);
1954                         return;
1955                 }
1956                 ohci->self_id_buffer[j] = id;
1957         }
1958
1959         if (ohci->quirks & QUIRK_TI_SLLZ059) {
1960                 self_id_count = find_and_insert_self_id(ohci, self_id_count);
1961                 if (self_id_count < 0) {
1962                         ohci_notice(ohci,
1963                                     "could not construct local self ID\n");
1964                         return;
1965                 }
1966         }
1967
1968         if (self_id_count == 0) {
1969                 ohci_notice(ohci, "no self IDs\n");
1970                 return;
1971         }
1972         rmb();
1973
1974         /*
1975          * Check the consistency of the self IDs we just read.  The
1976          * problem we face is that a new bus reset can start while we
1977          * read out the self IDs from the DMA buffer. If this happens,
1978          * the DMA buffer will be overwritten with new self IDs and we
1979          * will read out inconsistent data.  The OHCI specification
1980          * (section 11.2) recommends a technique similar to
1981          * linux/seqlock.h, where we remember the generation of the
1982          * self IDs in the buffer before reading them out and compare
1983          * it to the current generation after reading them out.  If
1984          * the two generations match we know we have a consistent set
1985          * of self IDs.
1986          */
1987
1988         new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
1989         if (new_generation != generation) {
1990                 ohci_notice(ohci, "new bus reset, discarding self ids\n");
1991                 return;
1992         }
1993
1994         /* FIXME: Document how the locking works. */
1995         spin_lock_irq(&ohci->lock);
1996
1997         ohci->generation = -1; /* prevent AT packet queueing */
1998         context_stop(&ohci->at_request_ctx);
1999         context_stop(&ohci->at_response_ctx);
2000
2001         spin_unlock_irq(&ohci->lock);
2002
2003         /*
2004          * Per OHCI 1.2 draft, clause 7.2.3.3, hardware may leave unsent
2005          * packets in the AT queues and software needs to drain them.
2006          * Some OHCI 1.1 controllers (JMicron) apparently require this too.
2007          */
2008         at_context_flush(&ohci->at_request_ctx);
2009         at_context_flush(&ohci->at_response_ctx);
2010
2011         spin_lock_irq(&ohci->lock);
2012
2013         ohci->generation = generation;
2014         reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
2015
2016         if (ohci->quirks & QUIRK_RESET_PACKET)
2017                 ohci->request_generation = generation;
2018
2019         /*
2020          * This next bit is unrelated to the AT context stuff but we
2021          * have to do it under the spinlock also.  If a new config rom
2022          * was set up before this reset, the old one is now no longer
2023          * in use and we can free it. Update the config rom pointers
2024          * to point to the current config rom and clear the
2025          * next_config_rom pointer so a new update can take place.
2026          */
2027
2028         if (ohci->next_config_rom != NULL) {
2029                 if (ohci->next_config_rom != ohci->config_rom) {
2030                         free_rom      = ohci->config_rom;
2031                         free_rom_bus  = ohci->config_rom_bus;
2032                 }
2033                 ohci->config_rom      = ohci->next_config_rom;
2034                 ohci->config_rom_bus  = ohci->next_config_rom_bus;
2035                 ohci->next_config_rom = NULL;
2036
2037                 /*
2038                  * Restore config_rom image and manually update
2039                  * config_rom registers.  Writing the header quadlet
2040                  * will indicate that the config rom is ready, so we
2041                  * do that last.
2042                  */
2043                 reg_write(ohci, OHCI1394_BusOptions,
2044                           be32_to_cpu(ohci->config_rom[2]));
2045                 ohci->config_rom[0] = ohci->next_header;
2046                 reg_write(ohci, OHCI1394_ConfigROMhdr,
2047                           be32_to_cpu(ohci->next_header));
2048         }
2049
2050         if (param_remote_dma) {
2051                 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
2052                 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
2053         }
2054
2055         spin_unlock_irq(&ohci->lock);
2056
2057         if (free_rom)
2058                 dmam_free_coherent(ohci->card.device, CONFIG_ROM_SIZE, free_rom, free_rom_bus);
2059
2060         log_selfids(ohci, generation, self_id_count);
2061
2062         fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
2063                                  self_id_count, ohci->self_id_buffer,
2064                                  ohci->csr_state_setclear_abdicate);
2065         ohci->csr_state_setclear_abdicate = false;
2066 }
2067
2068 static irqreturn_t irq_handler(int irq, void *data)
2069 {
2070         struct fw_ohci *ohci = data;
2071         u32 event, iso_event;
2072         int i;
2073
2074         event = reg_read(ohci, OHCI1394_IntEventClear);
2075
2076         if (!event || !~event)
2077                 return IRQ_NONE;
2078
2079         /*
2080          * busReset and postedWriteErr must not be cleared yet
2081          * (OHCI 1.1 clauses 7.2.3.2 and 13.2.8.1)
2082          */
2083         reg_write(ohci, OHCI1394_IntEventClear,
2084                   event & ~(OHCI1394_busReset | OHCI1394_postedWriteErr));
2085         log_irqs(ohci, event);
2086
2087         if (event & OHCI1394_selfIDComplete)
2088                 queue_work(selfid_workqueue, &ohci->bus_reset_work);
2089
2090         if (event & OHCI1394_RQPkt)
2091                 tasklet_schedule(&ohci->ar_request_ctx.tasklet);
2092
2093         if (event & OHCI1394_RSPkt)
2094                 tasklet_schedule(&ohci->ar_response_ctx.tasklet);
2095
2096         if (event & OHCI1394_reqTxComplete)
2097                 tasklet_schedule(&ohci->at_request_ctx.tasklet);
2098
2099         if (event & OHCI1394_respTxComplete)
2100                 tasklet_schedule(&ohci->at_response_ctx.tasklet);
2101
2102         if (event & OHCI1394_isochRx) {
2103                 iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
2104                 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
2105
2106                 while (iso_event) {
2107                         i = ffs(iso_event) - 1;
2108                         tasklet_schedule(
2109                                 &ohci->ir_context_list[i].context.tasklet);
2110                         iso_event &= ~(1 << i);
2111                 }
2112         }
2113
2114         if (event & OHCI1394_isochTx) {
2115                 iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
2116                 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
2117
2118                 while (iso_event) {
2119                         i = ffs(iso_event) - 1;
2120                         tasklet_schedule(
2121                                 &ohci->it_context_list[i].context.tasklet);
2122                         iso_event &= ~(1 << i);
2123                 }
2124         }
2125
2126         if (unlikely(event & OHCI1394_regAccessFail))
2127                 ohci_err(ohci, "register access failure\n");
2128
2129         if (unlikely(event & OHCI1394_postedWriteErr)) {
2130                 reg_read(ohci, OHCI1394_PostedWriteAddressHi);
2131                 reg_read(ohci, OHCI1394_PostedWriteAddressLo);
2132                 reg_write(ohci, OHCI1394_IntEventClear,
2133                           OHCI1394_postedWriteErr);
2134                 if (printk_ratelimit())
2135                         ohci_err(ohci, "PCI posted write error\n");
2136         }
2137
2138         if (unlikely(event & OHCI1394_cycleTooLong)) {
2139                 if (printk_ratelimit())
2140                         ohci_notice(ohci, "isochronous cycle too long\n");
2141                 reg_write(ohci, OHCI1394_LinkControlSet,
2142                           OHCI1394_LinkControl_cycleMaster);
2143         }
2144
2145         if (unlikely(event & OHCI1394_cycleInconsistent)) {
2146                 /*
2147                  * We need to clear this event bit in order to make
2148                  * cycleMatch isochronous I/O work.  In theory we should
2149                  * stop active cycleMatch iso contexts now and restart
2150                  * them at least two cycles later.  (FIXME?)
2151                  */
2152                 if (printk_ratelimit())
2153                         ohci_notice(ohci, "isochronous cycle inconsistent\n");
2154         }
2155
2156         if (unlikely(event & OHCI1394_unrecoverableError))
2157                 handle_dead_contexts(ohci);
2158
2159         if (event & OHCI1394_cycle64Seconds) {
2160                 spin_lock(&ohci->lock);
2161                 update_bus_time(ohci);
2162                 spin_unlock(&ohci->lock);
2163         } else
2164                 flush_writes(ohci);
2165
2166         return IRQ_HANDLED;
2167 }
2168
2169 static int software_reset(struct fw_ohci *ohci)
2170 {
2171         u32 val;
2172         int i;
2173
2174         reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
2175         for (i = 0; i < 500; i++) {
2176                 val = reg_read(ohci, OHCI1394_HCControlSet);
2177                 if (!~val)
2178                         return -ENODEV; /* Card was ejected. */
2179
2180                 if (!(val & OHCI1394_HCControl_softReset))
2181                         return 0;
2182
2183                 msleep(1);
2184         }
2185
2186         return -EBUSY;
2187 }
2188
2189 static void copy_config_rom(__be32 *dest, const __be32 *src, size_t length)
2190 {
2191         size_t size = length * 4;
2192
2193         memcpy(dest, src, size);
2194         if (size < CONFIG_ROM_SIZE)
2195                 memset(&dest[length], 0, CONFIG_ROM_SIZE - size);
2196 }
2197
2198 static int configure_1394a_enhancements(struct fw_ohci *ohci)
2199 {
2200         bool enable_1394a;
2201         int ret, clear, set, offset;
2202
2203         /* Check if the driver should configure link and PHY. */
2204         if (!(reg_read(ohci, OHCI1394_HCControlSet) &
2205               OHCI1394_HCControl_programPhyEnable))
2206                 return 0;
2207
2208         /* Paranoia: check whether the PHY supports 1394a, too. */
2209         enable_1394a = false;
2210         ret = read_phy_reg(ohci, 2);
2211         if (ret < 0)
2212                 return ret;
2213         if ((ret & PHY_EXTENDED_REGISTERS) == PHY_EXTENDED_REGISTERS) {
2214                 ret = read_paged_phy_reg(ohci, 1, 8);
2215                 if (ret < 0)
2216                         return ret;
2217                 if (ret >= 1)
2218                         enable_1394a = true;
2219         }
2220
2221         if (ohci->quirks & QUIRK_NO_1394A)
2222                 enable_1394a = false;
2223
2224         /* Configure PHY and link consistently. */
2225         if (enable_1394a) {
2226                 clear = 0;
2227                 set = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
2228         } else {
2229                 clear = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
2230                 set = 0;
2231         }
2232         ret = update_phy_reg(ohci, 5, clear, set);
2233         if (ret < 0)
2234                 return ret;
2235
2236         if (enable_1394a)
2237                 offset = OHCI1394_HCControlSet;
2238         else
2239                 offset = OHCI1394_HCControlClear;
2240         reg_write(ohci, offset, OHCI1394_HCControl_aPhyEnhanceEnable);
2241
2242         /* Clean up: configuration has been taken care of. */
2243         reg_write(ohci, OHCI1394_HCControlClear,
2244                   OHCI1394_HCControl_programPhyEnable);
2245
2246         return 0;
2247 }
2248
2249 static int probe_tsb41ba3d(struct fw_ohci *ohci)
2250 {
2251         /* TI vendor ID = 0x080028, TSB41BA3D product ID = 0x833005 (sic) */
2252         static const u8 id[] = { 0x08, 0x00, 0x28, 0x83, 0x30, 0x05, };
2253         int reg, i;
2254
2255         reg = read_phy_reg(ohci, 2);
2256         if (reg < 0)
2257                 return reg;
2258         if ((reg & PHY_EXTENDED_REGISTERS) != PHY_EXTENDED_REGISTERS)
2259                 return 0;
2260
2261         for (i = ARRAY_SIZE(id) - 1; i >= 0; i--) {
2262                 reg = read_paged_phy_reg(ohci, 1, i + 10);
2263                 if (reg < 0)
2264                         return reg;
2265                 if (reg != id[i])
2266                         return 0;
2267         }
2268         return 1;
2269 }
2270
2271 static int ohci_enable(struct fw_card *card,
2272                        const __be32 *config_rom, size_t length)
2273 {
2274         struct fw_ohci *ohci = fw_ohci(card);
2275         u32 lps, version, irqs;
2276         int i, ret;
2277
2278         ret = software_reset(ohci);
2279         if (ret < 0) {
2280                 ohci_err(ohci, "failed to reset ohci card\n");
2281                 return ret;
2282         }
2283
2284         /*
2285          * Now enable LPS, which we need in order to start accessing
2286          * most of the registers.  In fact, on some cards (ALI M5251),
2287          * accessing registers in the SClk domain without LPS enabled
2288          * will lock up the machine.  Wait 50msec to make sure we have
2289          * full link enabled.  However, with some cards (well, at least
2290          * a JMicron PCIe card), we have to try again sometimes.
2291          *
2292          * TI TSB82AA2 + TSB81BA3(A) cards signal LPS enabled early but
2293          * cannot actually use the phy at that time.  These need tens of
2294          * millisecods pause between LPS write and first phy access too.
2295          */
2296
2297         reg_write(ohci, OHCI1394_HCControlSet,
2298                   OHCI1394_HCControl_LPS |
2299                   OHCI1394_HCControl_postedWriteEnable);
2300         flush_writes(ohci);
2301
2302         for (lps = 0, i = 0; !lps && i < 3; i++) {
2303                 msleep(50);
2304                 lps = reg_read(ohci, OHCI1394_HCControlSet) &
2305                       OHCI1394_HCControl_LPS;
2306         }
2307
2308         if (!lps) {
2309                 ohci_err(ohci, "failed to set Link Power Status\n");
2310                 return -EIO;
2311         }
2312
2313         if (ohci->quirks & QUIRK_TI_SLLZ059) {
2314                 ret = probe_tsb41ba3d(ohci);
2315                 if (ret < 0)
2316                         return ret;
2317                 if (ret)
2318                         ohci_notice(ohci, "local TSB41BA3D phy\n");
2319                 else
2320                         ohci->quirks &= ~QUIRK_TI_SLLZ059;
2321         }
2322
2323         reg_write(ohci, OHCI1394_HCControlClear,
2324                   OHCI1394_HCControl_noByteSwapData);
2325
2326         reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
2327         reg_write(ohci, OHCI1394_LinkControlSet,
2328                   OHCI1394_LinkControl_cycleTimerEnable |
2329                   OHCI1394_LinkControl_cycleMaster);
2330
2331         reg_write(ohci, OHCI1394_ATRetries,
2332                   OHCI1394_MAX_AT_REQ_RETRIES |
2333                   (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
2334                   (OHCI1394_MAX_PHYS_RESP_RETRIES << 8) |
2335                   (200 << 16));
2336
2337         ohci->bus_time_running = false;
2338
2339         for (i = 0; i < 32; i++)
2340                 if (ohci->ir_context_support & (1 << i))
2341                         reg_write(ohci, OHCI1394_IsoRcvContextControlClear(i),
2342                                   IR_CONTEXT_MULTI_CHANNEL_MODE);
2343
2344         version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
2345         if (version >= OHCI_VERSION_1_1) {
2346                 reg_write(ohci, OHCI1394_InitialChannelsAvailableHi,
2347                           0xfffffffe);
2348                 card->broadcast_channel_auto_allocated = true;
2349         }
2350
2351         /* Get implemented bits of the priority arbitration request counter. */
2352         reg_write(ohci, OHCI1394_FairnessControl, 0x3f);
2353         ohci->pri_req_max = reg_read(ohci, OHCI1394_FairnessControl) & 0x3f;
2354         reg_write(ohci, OHCI1394_FairnessControl, 0);
2355         card->priority_budget_implemented = ohci->pri_req_max != 0;
2356
2357         reg_write(ohci, OHCI1394_PhyUpperBound, FW_MAX_PHYSICAL_RANGE >> 16);
2358         reg_write(ohci, OHCI1394_IntEventClear, ~0);
2359         reg_write(ohci, OHCI1394_IntMaskClear, ~0);
2360
2361         ret = configure_1394a_enhancements(ohci);
2362         if (ret < 0)
2363                 return ret;
2364
2365         /* Activate link_on bit and contender bit in our self ID packets.*/
2366         ret = ohci_update_phy_reg(card, 4, 0, PHY_LINK_ACTIVE | PHY_CONTENDER);
2367         if (ret < 0)
2368                 return ret;
2369
2370         /*
2371          * When the link is not yet enabled, the atomic config rom
2372          * update mechanism described below in ohci_set_config_rom()
2373          * is not active.  We have to update ConfigRomHeader and
2374          * BusOptions manually, and the write to ConfigROMmap takes
2375          * effect immediately.  We tie this to the enabling of the
2376          * link, so we have a valid config rom before enabling - the
2377          * OHCI requires that ConfigROMhdr and BusOptions have valid
2378          * values before enabling.
2379          *
2380          * However, when the ConfigROMmap is written, some controllers
2381          * always read back quadlets 0 and 2 from the config rom to
2382          * the ConfigRomHeader and BusOptions registers on bus reset.
2383          * They shouldn't do that in this initial case where the link
2384          * isn't enabled.  This means we have to use the same
2385          * workaround here, setting the bus header to 0 and then write
2386          * the right values in the bus reset tasklet.
2387          */
2388
2389         if (config_rom) {
2390                 ohci->next_config_rom = dmam_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2391                                                             &ohci->next_config_rom_bus, GFP_KERNEL);
2392                 if (ohci->next_config_rom == NULL)
2393                         return -ENOMEM;
2394
2395                 copy_config_rom(ohci->next_config_rom, config_rom, length);
2396         } else {
2397                 /*
2398                  * In the suspend case, config_rom is NULL, which
2399                  * means that we just reuse the old config rom.
2400                  */
2401                 ohci->next_config_rom = ohci->config_rom;
2402                 ohci->next_config_rom_bus = ohci->config_rom_bus;
2403         }
2404
2405         ohci->next_header = ohci->next_config_rom[0];
2406         ohci->next_config_rom[0] = 0;
2407         reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
2408         reg_write(ohci, OHCI1394_BusOptions,
2409                   be32_to_cpu(ohci->next_config_rom[2]));
2410         reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2411
2412         reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
2413
2414         irqs =  OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
2415                 OHCI1394_RQPkt | OHCI1394_RSPkt |
2416                 OHCI1394_isochTx | OHCI1394_isochRx |
2417                 OHCI1394_postedWriteErr |
2418                 OHCI1394_selfIDComplete |
2419                 OHCI1394_regAccessFail |
2420                 OHCI1394_cycleInconsistent |
2421                 OHCI1394_unrecoverableError |
2422                 OHCI1394_cycleTooLong |
2423                 OHCI1394_masterIntEnable;
2424         if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS)
2425                 irqs |= OHCI1394_busReset;
2426         reg_write(ohci, OHCI1394_IntMaskSet, irqs);
2427
2428         reg_write(ohci, OHCI1394_HCControlSet,
2429                   OHCI1394_HCControl_linkEnable |
2430                   OHCI1394_HCControl_BIBimageValid);
2431
2432         reg_write(ohci, OHCI1394_LinkControlSet,
2433                   OHCI1394_LinkControl_rcvSelfID |
2434                   OHCI1394_LinkControl_rcvPhyPkt);
2435
2436         ar_context_run(&ohci->ar_request_ctx);
2437         ar_context_run(&ohci->ar_response_ctx);
2438
2439         flush_writes(ohci);
2440
2441         /* We are ready to go, reset bus to finish initialization. */
2442         fw_schedule_bus_reset(&ohci->card, false, true);
2443
2444         return 0;
2445 }
2446
2447 static int ohci_set_config_rom(struct fw_card *card,
2448                                const __be32 *config_rom, size_t length)
2449 {
2450         struct fw_ohci *ohci;
2451         __be32 *next_config_rom;
2452         dma_addr_t next_config_rom_bus;
2453
2454         ohci = fw_ohci(card);
2455
2456         /*
2457          * When the OHCI controller is enabled, the config rom update
2458          * mechanism is a bit tricky, but easy enough to use.  See
2459          * section 5.5.6 in the OHCI specification.
2460          *
2461          * The OHCI controller caches the new config rom address in a
2462          * shadow register (ConfigROMmapNext) and needs a bus reset
2463          * for the changes to take place.  When the bus reset is
2464          * detected, the controller loads the new values for the
2465          * ConfigRomHeader and BusOptions registers from the specified
2466          * config rom and loads ConfigROMmap from the ConfigROMmapNext
2467          * shadow register. All automatically and atomically.
2468          *
2469          * Now, there's a twist to this story.  The automatic load of
2470          * ConfigRomHeader and BusOptions doesn't honor the
2471          * noByteSwapData bit, so with a be32 config rom, the
2472          * controller will load be32 values in to these registers
2473          * during the atomic update, even on litte endian
2474          * architectures.  The workaround we use is to put a 0 in the
2475          * header quadlet; 0 is endian agnostic and means that the
2476          * config rom isn't ready yet.  In the bus reset tasklet we
2477          * then set up the real values for the two registers.
2478          *
2479          * We use ohci->lock to avoid racing with the code that sets
2480          * ohci->next_config_rom to NULL (see bus_reset_work).
2481          */
2482
2483         next_config_rom = dmam_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2484                                               &next_config_rom_bus, GFP_KERNEL);
2485         if (next_config_rom == NULL)
2486                 return -ENOMEM;
2487
2488         spin_lock_irq(&ohci->lock);
2489
2490         /*
2491          * If there is not an already pending config_rom update,
2492          * push our new allocation into the ohci->next_config_rom
2493          * and then mark the local variable as null so that we
2494          * won't deallocate the new buffer.
2495          *
2496          * OTOH, if there is a pending config_rom update, just
2497          * use that buffer with the new config_rom data, and
2498          * let this routine free the unused DMA allocation.
2499          */
2500
2501         if (ohci->next_config_rom == NULL) {
2502                 ohci->next_config_rom = next_config_rom;
2503                 ohci->next_config_rom_bus = next_config_rom_bus;
2504                 next_config_rom = NULL;
2505         }
2506
2507         copy_config_rom(ohci->next_config_rom, config_rom, length);
2508
2509         ohci->next_header = config_rom[0];
2510         ohci->next_config_rom[0] = 0;
2511
2512         reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2513
2514         spin_unlock_irq(&ohci->lock);
2515
2516         /* If we didn't use the DMA allocation, delete it. */
2517         if (next_config_rom != NULL) {
2518                 dmam_free_coherent(ohci->card.device, CONFIG_ROM_SIZE, next_config_rom,
2519                                    next_config_rom_bus);
2520         }
2521
2522         /*
2523          * Now initiate a bus reset to have the changes take
2524          * effect. We clean up the old config rom memory and DMA
2525          * mappings in the bus reset tasklet, since the OHCI
2526          * controller could need to access it before the bus reset
2527          * takes effect.
2528          */
2529
2530         fw_schedule_bus_reset(&ohci->card, true, true);
2531
2532         return 0;
2533 }
2534
2535 static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
2536 {
2537         struct fw_ohci *ohci = fw_ohci(card);
2538
2539         at_context_transmit(&ohci->at_request_ctx, packet);
2540 }
2541
2542 static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
2543 {
2544         struct fw_ohci *ohci = fw_ohci(card);
2545
2546         at_context_transmit(&ohci->at_response_ctx, packet);
2547 }
2548
2549 static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
2550 {
2551         struct fw_ohci *ohci = fw_ohci(card);
2552         struct context *ctx = &ohci->at_request_ctx;
2553         struct driver_data *driver_data = packet->driver_data;
2554         int ret = -ENOENT;
2555
2556         tasklet_disable_in_atomic(&ctx->tasklet);
2557
2558         if (packet->ack != 0)
2559                 goto out;
2560
2561         if (packet->payload_mapped)
2562                 dma_unmap_single(ohci->card.device, packet->payload_bus,
2563                                  packet->payload_length, DMA_TO_DEVICE);
2564
2565         log_ar_at_event(ohci, 'T', packet->speed, packet->header, 0x20);
2566         driver_data->packet = NULL;
2567         packet->ack = RCODE_CANCELLED;
2568
2569         // Timestamping on behalf of the hardware.
2570         packet->timestamp = cycle_time_to_ohci_tstamp(get_cycle_time(ohci));
2571
2572         packet->callback(packet, &ohci->card, packet->ack);
2573         ret = 0;
2574  out:
2575         tasklet_enable(&ctx->tasklet);
2576
2577         return ret;
2578 }
2579
2580 static int ohci_enable_phys_dma(struct fw_card *card,
2581                                 int node_id, int generation)
2582 {
2583         struct fw_ohci *ohci = fw_ohci(card);
2584         unsigned long flags;
2585         int n, ret = 0;
2586
2587         if (param_remote_dma)
2588                 return 0;
2589
2590         /*
2591          * FIXME:  Make sure this bitmask is cleared when we clear the busReset
2592          * interrupt bit.  Clear physReqResourceAllBuses on bus reset.
2593          */
2594
2595         spin_lock_irqsave(&ohci->lock, flags);
2596
2597         if (ohci->generation != generation) {
2598                 ret = -ESTALE;
2599                 goto out;
2600         }
2601
2602         /*
2603          * Note, if the node ID contains a non-local bus ID, physical DMA is
2604          * enabled for _all_ nodes on remote buses.
2605          */
2606
2607         n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
2608         if (n < 32)
2609                 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
2610         else
2611                 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
2612
2613         flush_writes(ohci);
2614  out:
2615         spin_unlock_irqrestore(&ohci->lock, flags);
2616
2617         return ret;
2618 }
2619
2620 static u32 ohci_read_csr(struct fw_card *card, int csr_offset)
2621 {
2622         struct fw_ohci *ohci = fw_ohci(card);
2623         unsigned long flags;
2624         u32 value;
2625
2626         switch (csr_offset) {
2627         case CSR_STATE_CLEAR:
2628         case CSR_STATE_SET:
2629                 if (ohci->is_root &&
2630                     (reg_read(ohci, OHCI1394_LinkControlSet) &
2631                      OHCI1394_LinkControl_cycleMaster))
2632                         value = CSR_STATE_BIT_CMSTR;
2633                 else
2634                         value = 0;
2635                 if (ohci->csr_state_setclear_abdicate)
2636                         value |= CSR_STATE_BIT_ABDICATE;
2637
2638                 return value;
2639
2640         case CSR_NODE_IDS:
2641                 return reg_read(ohci, OHCI1394_NodeID) << 16;
2642
2643         case CSR_CYCLE_TIME:
2644                 return get_cycle_time(ohci);
2645
2646         case CSR_BUS_TIME:
2647                 /*
2648                  * We might be called just after the cycle timer has wrapped
2649                  * around but just before the cycle64Seconds handler, so we
2650                  * better check here, too, if the bus time needs to be updated.
2651                  */
2652                 spin_lock_irqsave(&ohci->lock, flags);
2653                 value = update_bus_time(ohci);
2654                 spin_unlock_irqrestore(&ohci->lock, flags);
2655                 return value;
2656
2657         case CSR_BUSY_TIMEOUT:
2658                 value = reg_read(ohci, OHCI1394_ATRetries);
2659                 return (value >> 4) & 0x0ffff00f;
2660
2661         case CSR_PRIORITY_BUDGET:
2662                 return (reg_read(ohci, OHCI1394_FairnessControl) & 0x3f) |
2663                         (ohci->pri_req_max << 8);
2664
2665         default:
2666                 WARN_ON(1);
2667                 return 0;
2668         }
2669 }
2670
2671 static void ohci_write_csr(struct fw_card *card, int csr_offset, u32 value)
2672 {
2673         struct fw_ohci *ohci = fw_ohci(card);
2674         unsigned long flags;
2675
2676         switch (csr_offset) {
2677         case CSR_STATE_CLEAR:
2678                 if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2679                         reg_write(ohci, OHCI1394_LinkControlClear,
2680                                   OHCI1394_LinkControl_cycleMaster);
2681                         flush_writes(ohci);
2682                 }
2683                 if (value & CSR_STATE_BIT_ABDICATE)
2684                         ohci->csr_state_setclear_abdicate = false;
2685                 break;
2686
2687         case CSR_STATE_SET:
2688                 if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2689                         reg_write(ohci, OHCI1394_LinkControlSet,
2690                                   OHCI1394_LinkControl_cycleMaster);
2691                         flush_writes(ohci);
2692                 }
2693                 if (value & CSR_STATE_BIT_ABDICATE)
2694                         ohci->csr_state_setclear_abdicate = true;
2695                 break;
2696
2697         case CSR_NODE_IDS:
2698                 reg_write(ohci, OHCI1394_NodeID, value >> 16);
2699                 flush_writes(ohci);
2700                 break;
2701
2702         case CSR_CYCLE_TIME:
2703                 reg_write(ohci, OHCI1394_IsochronousCycleTimer, value);
2704                 reg_write(ohci, OHCI1394_IntEventSet,
2705                           OHCI1394_cycleInconsistent);
2706                 flush_writes(ohci);
2707                 break;
2708
2709         case CSR_BUS_TIME:
2710                 spin_lock_irqsave(&ohci->lock, flags);
2711                 ohci->bus_time = (update_bus_time(ohci) & 0x40) |
2712                                  (value & ~0x7f);
2713                 spin_unlock_irqrestore(&ohci->lock, flags);
2714                 break;
2715
2716         case CSR_BUSY_TIMEOUT:
2717                 value = (value & 0xf) | ((value & 0xf) << 4) |
2718                         ((value & 0xf) << 8) | ((value & 0x0ffff000) << 4);
2719                 reg_write(ohci, OHCI1394_ATRetries, value);
2720                 flush_writes(ohci);
2721                 break;
2722
2723         case CSR_PRIORITY_BUDGET:
2724                 reg_write(ohci, OHCI1394_FairnessControl, value & 0x3f);
2725                 flush_writes(ohci);
2726                 break;
2727
2728         default:
2729                 WARN_ON(1);
2730                 break;
2731         }
2732 }
2733
2734 static void flush_iso_completions(struct iso_context *ctx)
2735 {
2736         ctx->base.callback.sc(&ctx->base, ctx->last_timestamp,
2737                               ctx->header_length, ctx->header,
2738                               ctx->base.callback_data);
2739         ctx->header_length = 0;
2740 }
2741
2742 static void copy_iso_headers(struct iso_context *ctx, const u32 *dma_hdr)
2743 {
2744         u32 *ctx_hdr;
2745
2746         if (ctx->header_length + ctx->base.header_size > PAGE_SIZE) {
2747                 if (ctx->base.drop_overflow_headers)
2748                         return;
2749                 flush_iso_completions(ctx);
2750         }
2751
2752         ctx_hdr = ctx->header + ctx->header_length;
2753         ctx->last_timestamp = (u16)le32_to_cpu((__force __le32)dma_hdr[0]);
2754
2755         /*
2756          * The two iso header quadlets are byteswapped to little
2757          * endian by the controller, but we want to present them
2758          * as big endian for consistency with the bus endianness.
2759          */
2760         if (ctx->base.header_size > 0)
2761                 ctx_hdr[0] = swab32(dma_hdr[1]); /* iso packet header */
2762         if (ctx->base.header_size > 4)
2763                 ctx_hdr[1] = swab32(dma_hdr[0]); /* timestamp */
2764         if (ctx->base.header_size > 8)
2765                 memcpy(&ctx_hdr[2], &dma_hdr[2], ctx->base.header_size - 8);
2766         ctx->header_length += ctx->base.header_size;
2767 }
2768
2769 static int handle_ir_packet_per_buffer(struct context *context,
2770                                        struct descriptor *d,
2771                                        struct descriptor *last)
2772 {
2773         struct iso_context *ctx =
2774                 container_of(context, struct iso_context, context);
2775         struct descriptor *pd;
2776         u32 buffer_dma;
2777
2778         for (pd = d; pd <= last; pd++)
2779                 if (pd->transfer_status)
2780                         break;
2781         if (pd > last)
2782                 /* Descriptor(s) not done yet, stop iteration */
2783                 return 0;
2784
2785         while (!(d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))) {
2786                 d++;
2787                 buffer_dma = le32_to_cpu(d->data_address);
2788                 dma_sync_single_range_for_cpu(context->ohci->card.device,
2789                                               buffer_dma & PAGE_MASK,
2790                                               buffer_dma & ~PAGE_MASK,
2791                                               le16_to_cpu(d->req_count),
2792                                               DMA_FROM_DEVICE);
2793         }
2794
2795         copy_iso_headers(ctx, (u32 *) (last + 1));
2796
2797         if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS))
2798                 flush_iso_completions(ctx);
2799
2800         return 1;
2801 }
2802
2803 /* d == last because each descriptor block is only a single descriptor. */
2804 static int handle_ir_buffer_fill(struct context *context,
2805                                  struct descriptor *d,
2806                                  struct descriptor *last)
2807 {
2808         struct iso_context *ctx =
2809                 container_of(context, struct iso_context, context);
2810         unsigned int req_count, res_count, completed;
2811         u32 buffer_dma;
2812
2813         req_count = le16_to_cpu(last->req_count);
2814         res_count = le16_to_cpu(READ_ONCE(last->res_count));
2815         completed = req_count - res_count;
2816         buffer_dma = le32_to_cpu(last->data_address);
2817
2818         if (completed > 0) {
2819                 ctx->mc_buffer_bus = buffer_dma;
2820                 ctx->mc_completed = completed;
2821         }
2822
2823         if (res_count != 0)
2824                 /* Descriptor(s) not done yet, stop iteration */
2825                 return 0;
2826
2827         dma_sync_single_range_for_cpu(context->ohci->card.device,
2828                                       buffer_dma & PAGE_MASK,
2829                                       buffer_dma & ~PAGE_MASK,
2830                                       completed, DMA_FROM_DEVICE);
2831
2832         if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS)) {
2833                 ctx->base.callback.mc(&ctx->base,
2834                                       buffer_dma + completed,
2835                                       ctx->base.callback_data);
2836                 ctx->mc_completed = 0;
2837         }
2838
2839         return 1;
2840 }
2841
2842 static void flush_ir_buffer_fill(struct iso_context *ctx)
2843 {
2844         dma_sync_single_range_for_cpu(ctx->context.ohci->card.device,
2845                                       ctx->mc_buffer_bus & PAGE_MASK,
2846                                       ctx->mc_buffer_bus & ~PAGE_MASK,
2847                                       ctx->mc_completed, DMA_FROM_DEVICE);
2848
2849         ctx->base.callback.mc(&ctx->base,
2850                               ctx->mc_buffer_bus + ctx->mc_completed,
2851                               ctx->base.callback_data);
2852         ctx->mc_completed = 0;
2853 }
2854
2855 static inline void sync_it_packet_for_cpu(struct context *context,
2856                                           struct descriptor *pd)
2857 {
2858         __le16 control;
2859         u32 buffer_dma;
2860
2861         /* only packets beginning with OUTPUT_MORE* have data buffers */
2862         if (pd->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
2863                 return;
2864
2865         /* skip over the OUTPUT_MORE_IMMEDIATE descriptor */
2866         pd += 2;
2867
2868         /*
2869          * If the packet has a header, the first OUTPUT_MORE/LAST descriptor's
2870          * data buffer is in the context program's coherent page and must not
2871          * be synced.
2872          */
2873         if ((le32_to_cpu(pd->data_address) & PAGE_MASK) ==
2874             (context->current_bus          & PAGE_MASK)) {
2875                 if (pd->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
2876                         return;
2877                 pd++;
2878         }
2879
2880         do {
2881                 buffer_dma = le32_to_cpu(pd->data_address);
2882                 dma_sync_single_range_for_cpu(context->ohci->card.device,
2883                                               buffer_dma & PAGE_MASK,
2884                                               buffer_dma & ~PAGE_MASK,
2885                                               le16_to_cpu(pd->req_count),
2886                                               DMA_TO_DEVICE);
2887                 control = pd->control;
2888                 pd++;
2889         } while (!(control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS)));
2890 }
2891
2892 static int handle_it_packet(struct context *context,
2893                             struct descriptor *d,
2894                             struct descriptor *last)
2895 {
2896         struct iso_context *ctx =
2897                 container_of(context, struct iso_context, context);
2898         struct descriptor *pd;
2899         __be32 *ctx_hdr;
2900
2901         for (pd = d; pd <= last; pd++)
2902                 if (pd->transfer_status)
2903                         break;
2904         if (pd > last)
2905                 /* Descriptor(s) not done yet, stop iteration */
2906                 return 0;
2907
2908         sync_it_packet_for_cpu(context, d);
2909
2910         if (ctx->header_length + 4 > PAGE_SIZE) {
2911                 if (ctx->base.drop_overflow_headers)
2912                         return 1;
2913                 flush_iso_completions(ctx);
2914         }
2915
2916         ctx_hdr = ctx->header + ctx->header_length;
2917         ctx->last_timestamp = le16_to_cpu(last->res_count);
2918         /* Present this value as big-endian to match the receive code */
2919         *ctx_hdr = cpu_to_be32((le16_to_cpu(pd->transfer_status) << 16) |
2920                                le16_to_cpu(pd->res_count));
2921         ctx->header_length += 4;
2922
2923         if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS))
2924                 flush_iso_completions(ctx);
2925
2926         return 1;
2927 }
2928
2929 static void set_multichannel_mask(struct fw_ohci *ohci, u64 channels)
2930 {
2931         u32 hi = channels >> 32, lo = channels;
2932
2933         reg_write(ohci, OHCI1394_IRMultiChanMaskHiClear, ~hi);
2934         reg_write(ohci, OHCI1394_IRMultiChanMaskLoClear, ~lo);
2935         reg_write(ohci, OHCI1394_IRMultiChanMaskHiSet, hi);
2936         reg_write(ohci, OHCI1394_IRMultiChanMaskLoSet, lo);
2937         ohci->mc_channels = channels;
2938 }
2939
2940 static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
2941                                 int type, int channel, size_t header_size)
2942 {
2943         struct fw_ohci *ohci = fw_ohci(card);
2944         struct iso_context *ctx;
2945         descriptor_callback_t callback;
2946         u64 *channels;
2947         u32 *mask, regs;
2948         int index, ret = -EBUSY;
2949
2950         spin_lock_irq(&ohci->lock);
2951
2952         switch (type) {
2953         case FW_ISO_CONTEXT_TRANSMIT:
2954                 mask     = &ohci->it_context_mask;
2955                 callback = handle_it_packet;
2956                 index    = ffs(*mask) - 1;
2957                 if (index >= 0) {
2958                         *mask &= ~(1 << index);
2959                         regs = OHCI1394_IsoXmitContextBase(index);
2960                         ctx  = &ohci->it_context_list[index];
2961                 }
2962                 break;
2963
2964         case FW_ISO_CONTEXT_RECEIVE:
2965                 channels = &ohci->ir_context_channels;
2966                 mask     = &ohci->ir_context_mask;
2967                 callback = handle_ir_packet_per_buffer;
2968                 index    = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1;
2969                 if (index >= 0) {
2970                         *channels &= ~(1ULL << channel);
2971                         *mask     &= ~(1 << index);
2972                         regs = OHCI1394_IsoRcvContextBase(index);
2973                         ctx  = &ohci->ir_context_list[index];
2974                 }
2975                 break;
2976
2977         case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2978                 mask     = &ohci->ir_context_mask;
2979                 callback = handle_ir_buffer_fill;
2980                 index    = !ohci->mc_allocated ? ffs(*mask) - 1 : -1;
2981                 if (index >= 0) {
2982                         ohci->mc_allocated = true;
2983                         *mask &= ~(1 << index);
2984                         regs = OHCI1394_IsoRcvContextBase(index);
2985                         ctx  = &ohci->ir_context_list[index];
2986                 }
2987                 break;
2988
2989         default:
2990                 index = -1;
2991                 ret = -ENOSYS;
2992         }
2993
2994         spin_unlock_irq(&ohci->lock);
2995
2996         if (index < 0)
2997                 return ERR_PTR(ret);
2998
2999         memset(ctx, 0, sizeof(*ctx));
3000         ctx->header_length = 0;
3001         ctx->header = (void *) __get_free_page(GFP_KERNEL);
3002         if (ctx->header == NULL) {
3003                 ret = -ENOMEM;
3004                 goto out;
3005         }
3006         ret = context_init(&ctx->context, ohci, regs, callback);
3007         if (ret < 0)
3008                 goto out_with_header;
3009
3010         if (type == FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL) {
3011                 set_multichannel_mask(ohci, 0);
3012                 ctx->mc_completed = 0;
3013         }
3014
3015         return &ctx->base;
3016
3017  out_with_header:
3018         free_page((unsigned long)ctx->header);
3019  out:
3020         spin_lock_irq(&ohci->lock);
3021
3022         switch (type) {
3023         case FW_ISO_CONTEXT_RECEIVE:
3024                 *channels |= 1ULL << channel;
3025                 break;
3026
3027         case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3028                 ohci->mc_allocated = false;
3029                 break;
3030         }
3031         *mask |= 1 << index;
3032
3033         spin_unlock_irq(&ohci->lock);
3034
3035         return ERR_PTR(ret);
3036 }
3037
3038 static int ohci_start_iso(struct fw_iso_context *base,
3039                           s32 cycle, u32 sync, u32 tags)
3040 {
3041         struct iso_context *ctx = container_of(base, struct iso_context, base);
3042         struct fw_ohci *ohci = ctx->context.ohci;
3043         u32 control = IR_CONTEXT_ISOCH_HEADER, match;
3044         int index;
3045
3046         /* the controller cannot start without any queued packets */
3047         if (ctx->context.last->branch_address == 0)
3048                 return -ENODATA;
3049
3050         switch (ctx->base.type) {
3051         case FW_ISO_CONTEXT_TRANSMIT:
3052                 index = ctx - ohci->it_context_list;
3053                 match = 0;
3054                 if (cycle >= 0)
3055                         match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
3056                                 (cycle & 0x7fff) << 16;
3057
3058                 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
3059                 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
3060                 context_run(&ctx->context, match);
3061                 break;
3062
3063         case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3064                 control |= IR_CONTEXT_BUFFER_FILL|IR_CONTEXT_MULTI_CHANNEL_MODE;
3065                 fallthrough;
3066         case FW_ISO_CONTEXT_RECEIVE:
3067                 index = ctx - ohci->ir_context_list;
3068                 match = (tags << 28) | (sync << 8) | ctx->base.channel;
3069                 if (cycle >= 0) {
3070                         match |= (cycle & 0x07fff) << 12;
3071                         control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
3072                 }
3073
3074                 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
3075                 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
3076                 reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
3077                 context_run(&ctx->context, control);
3078
3079                 ctx->sync = sync;
3080                 ctx->tags = tags;
3081
3082                 break;
3083         }
3084
3085         return 0;
3086 }
3087
3088 static int ohci_stop_iso(struct fw_iso_context *base)
3089 {
3090         struct fw_ohci *ohci = fw_ohci(base->card);
3091         struct iso_context *ctx = container_of(base, struct iso_context, base);
3092         int index;
3093
3094         switch (ctx->base.type) {
3095         case FW_ISO_CONTEXT_TRANSMIT:
3096                 index = ctx - ohci->it_context_list;
3097                 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
3098                 break;
3099
3100         case FW_ISO_CONTEXT_RECEIVE:
3101         case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3102                 index = ctx - ohci->ir_context_list;
3103                 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
3104                 break;
3105         }
3106         flush_writes(ohci);
3107         context_stop(&ctx->context);
3108         tasklet_kill(&ctx->context.tasklet);
3109
3110         return 0;
3111 }
3112
3113 static void ohci_free_iso_context(struct fw_iso_context *base)
3114 {
3115         struct fw_ohci *ohci = fw_ohci(base->card);
3116         struct iso_context *ctx = container_of(base, struct iso_context, base);
3117         unsigned long flags;
3118         int index;
3119
3120         ohci_stop_iso(base);
3121         context_release(&ctx->context);
3122         free_page((unsigned long)ctx->header);
3123
3124         spin_lock_irqsave(&ohci->lock, flags);
3125
3126         switch (base->type) {
3127         case FW_ISO_CONTEXT_TRANSMIT:
3128                 index = ctx - ohci->it_context_list;
3129                 ohci->it_context_mask |= 1 << index;
3130                 break;
3131
3132         case FW_ISO_CONTEXT_RECEIVE:
3133                 index = ctx - ohci->ir_context_list;
3134                 ohci->ir_context_mask |= 1 << index;
3135                 ohci->ir_context_channels |= 1ULL << base->channel;
3136                 break;
3137
3138         case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3139                 index = ctx - ohci->ir_context_list;
3140                 ohci->ir_context_mask |= 1 << index;
3141                 ohci->ir_context_channels |= ohci->mc_channels;
3142                 ohci->mc_channels = 0;
3143                 ohci->mc_allocated = false;
3144                 break;
3145         }
3146
3147         spin_unlock_irqrestore(&ohci->lock, flags);
3148 }
3149
3150 static int ohci_set_iso_channels(struct fw_iso_context *base, u64 *channels)
3151 {
3152         struct fw_ohci *ohci = fw_ohci(base->card);
3153         unsigned long flags;
3154         int ret;
3155
3156         switch (base->type) {
3157         case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3158
3159                 spin_lock_irqsave(&ohci->lock, flags);
3160
3161                 /* Don't allow multichannel to grab other contexts' channels. */
3162                 if (~ohci->ir_context_channels & ~ohci->mc_channels & *channels) {
3163                         *channels = ohci->ir_context_channels;
3164                         ret = -EBUSY;
3165                 } else {
3166                         set_multichannel_mask(ohci, *channels);
3167                         ret = 0;
3168                 }
3169
3170                 spin_unlock_irqrestore(&ohci->lock, flags);
3171
3172                 break;
3173         default:
3174                 ret = -EINVAL;
3175         }
3176
3177         return ret;
3178 }
3179
3180 #ifdef CONFIG_PM
3181 static void ohci_resume_iso_dma(struct fw_ohci *ohci)
3182 {
3183         int i;
3184         struct iso_context *ctx;
3185
3186         for (i = 0 ; i < ohci->n_ir ; i++) {
3187                 ctx = &ohci->ir_context_list[i];
3188                 if (ctx->context.running)
3189                         ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
3190         }
3191
3192         for (i = 0 ; i < ohci->n_it ; i++) {
3193                 ctx = &ohci->it_context_list[i];
3194                 if (ctx->context.running)
3195                         ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
3196         }
3197 }
3198 #endif
3199
3200 static int queue_iso_transmit(struct iso_context *ctx,
3201                               struct fw_iso_packet *packet,
3202                               struct fw_iso_buffer *buffer,
3203                               unsigned long payload)
3204 {
3205         struct descriptor *d, *last, *pd;
3206         struct fw_iso_packet *p;
3207         __le32 *header;
3208         dma_addr_t d_bus, page_bus;
3209         u32 z, header_z, payload_z, irq;
3210         u32 payload_index, payload_end_index, next_page_index;
3211         int page, end_page, i, length, offset;
3212
3213         p = packet;
3214         payload_index = payload;
3215
3216         if (p->skip)
3217                 z = 1;
3218         else
3219                 z = 2;
3220         if (p->header_length > 0)
3221                 z++;
3222
3223         /* Determine the first page the payload isn't contained in. */
3224         end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
3225         if (p->payload_length > 0)
3226                 payload_z = end_page - (payload_index >> PAGE_SHIFT);
3227         else
3228                 payload_z = 0;
3229
3230         z += payload_z;
3231
3232         /* Get header size in number of descriptors. */
3233         header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
3234
3235         d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
3236         if (d == NULL)
3237                 return -ENOMEM;
3238
3239         if (!p->skip) {
3240                 d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
3241                 d[0].req_count = cpu_to_le16(8);
3242                 /*
3243                  * Link the skip address to this descriptor itself.  This causes
3244                  * a context to skip a cycle whenever lost cycles or FIFO
3245                  * overruns occur, without dropping the data.  The application
3246                  * should then decide whether this is an error condition or not.
3247                  * FIXME:  Make the context's cycle-lost behaviour configurable?
3248                  */
3249                 d[0].branch_address = cpu_to_le32(d_bus | z);
3250
3251                 header = (__le32 *) &d[1];
3252                 header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
3253                                         IT_HEADER_TAG(p->tag) |
3254                                         IT_HEADER_TCODE(TCODE_STREAM_DATA) |
3255                                         IT_HEADER_CHANNEL(ctx->base.channel) |
3256                                         IT_HEADER_SPEED(ctx->base.speed));
3257                 header[1] =
3258                         cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
3259                                                           p->payload_length));
3260         }
3261
3262         if (p->header_length > 0) {
3263                 d[2].req_count    = cpu_to_le16(p->header_length);
3264                 d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
3265                 memcpy(&d[z], p->header, p->header_length);
3266         }
3267
3268         pd = d + z - payload_z;
3269         payload_end_index = payload_index + p->payload_length;
3270         for (i = 0; i < payload_z; i++) {
3271                 page               = payload_index >> PAGE_SHIFT;
3272                 offset             = payload_index & ~PAGE_MASK;
3273                 next_page_index    = (page + 1) << PAGE_SHIFT;
3274                 length             =
3275                         min(next_page_index, payload_end_index) - payload_index;
3276                 pd[i].req_count    = cpu_to_le16(length);
3277
3278                 page_bus = page_private(buffer->pages[page]);
3279                 pd[i].data_address = cpu_to_le32(page_bus + offset);
3280
3281                 dma_sync_single_range_for_device(ctx->context.ohci->card.device,
3282                                                  page_bus, offset, length,
3283                                                  DMA_TO_DEVICE);
3284
3285                 payload_index += length;
3286         }
3287
3288         if (p->interrupt)
3289                 irq = DESCRIPTOR_IRQ_ALWAYS;
3290         else
3291                 irq = DESCRIPTOR_NO_IRQ;
3292
3293         last = z == 2 ? d : d + z - 1;
3294         last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
3295                                      DESCRIPTOR_STATUS |
3296                                      DESCRIPTOR_BRANCH_ALWAYS |
3297                                      irq);
3298
3299         context_append(&ctx->context, d, z, header_z);
3300
3301         return 0;
3302 }
3303
3304 static int queue_iso_packet_per_buffer(struct iso_context *ctx,
3305                                        struct fw_iso_packet *packet,
3306                                        struct fw_iso_buffer *buffer,
3307                                        unsigned long payload)
3308 {
3309         struct device *device = ctx->context.ohci->card.device;
3310         struct descriptor *d, *pd;
3311         dma_addr_t d_bus, page_bus;
3312         u32 z, header_z, rest;
3313         int i, j, length;
3314         int page, offset, packet_count, header_size, payload_per_buffer;
3315
3316         /*
3317          * The OHCI controller puts the isochronous header and trailer in the
3318          * buffer, so we need at least 8 bytes.
3319          */
3320         packet_count = packet->header_length / ctx->base.header_size;
3321         header_size  = max(ctx->base.header_size, (size_t)8);
3322
3323         /* Get header size in number of descriptors. */
3324         header_z = DIV_ROUND_UP(header_size, sizeof(*d));
3325         page     = payload >> PAGE_SHIFT;
3326         offset   = payload & ~PAGE_MASK;
3327         payload_per_buffer = packet->payload_length / packet_count;
3328
3329         for (i = 0; i < packet_count; i++) {
3330                 /* d points to the header descriptor */
3331                 z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
3332                 d = context_get_descriptors(&ctx->context,
3333                                 z + header_z, &d_bus);
3334                 if (d == NULL)
3335                         return -ENOMEM;
3336
3337                 d->control      = cpu_to_le16(DESCRIPTOR_STATUS |
3338                                               DESCRIPTOR_INPUT_MORE);
3339                 if (packet->skip && i == 0)
3340                         d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3341                 d->req_count    = cpu_to_le16(header_size);
3342                 d->res_count    = d->req_count;
3343                 d->transfer_status = 0;
3344                 d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));
3345
3346                 rest = payload_per_buffer;
3347                 pd = d;
3348                 for (j = 1; j < z; j++) {
3349                         pd++;
3350                         pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
3351                                                   DESCRIPTOR_INPUT_MORE);
3352
3353                         if (offset + rest < PAGE_SIZE)
3354                                 length = rest;
3355                         else
3356                                 length = PAGE_SIZE - offset;
3357                         pd->req_count = cpu_to_le16(length);
3358                         pd->res_count = pd->req_count;
3359                         pd->transfer_status = 0;
3360
3361                         page_bus = page_private(buffer->pages[page]);
3362                         pd->data_address = cpu_to_le32(page_bus + offset);
3363
3364                         dma_sync_single_range_for_device(device, page_bus,
3365                                                          offset, length,
3366                                                          DMA_FROM_DEVICE);
3367
3368                         offset = (offset + length) & ~PAGE_MASK;
3369                         rest -= length;
3370                         if (offset == 0)
3371                                 page++;
3372                 }
3373                 pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
3374                                           DESCRIPTOR_INPUT_LAST |
3375                                           DESCRIPTOR_BRANCH_ALWAYS);
3376                 if (packet->interrupt && i == packet_count - 1)
3377                         pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
3378
3379                 context_append(&ctx->context, d, z, header_z);
3380         }
3381
3382         return 0;
3383 }
3384
3385 static int queue_iso_buffer_fill(struct iso_context *ctx,
3386                                  struct fw_iso_packet *packet,
3387                                  struct fw_iso_buffer *buffer,
3388                                  unsigned long payload)
3389 {
3390         struct descriptor *d;
3391         dma_addr_t d_bus, page_bus;
3392         int page, offset, rest, z, i, length;
3393
3394         page   = payload >> PAGE_SHIFT;
3395         offset = payload & ~PAGE_MASK;
3396         rest   = packet->payload_length;
3397
3398         /* We need one descriptor for each page in the buffer. */
3399         z = DIV_ROUND_UP(offset + rest, PAGE_SIZE);
3400
3401         if (WARN_ON(offset & 3 || rest & 3 || page + z > buffer->page_count))
3402                 return -EFAULT;
3403
3404         for (i = 0; i < z; i++) {
3405                 d = context_get_descriptors(&ctx->context, 1, &d_bus);
3406                 if (d == NULL)
3407                         return -ENOMEM;
3408
3409                 d->control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
3410                                          DESCRIPTOR_BRANCH_ALWAYS);
3411                 if (packet->skip && i == 0)
3412                         d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3413                 if (packet->interrupt && i == z - 1)
3414                         d->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
3415
3416                 if (offset + rest < PAGE_SIZE)
3417                         length = rest;
3418                 else
3419                         length = PAGE_SIZE - offset;
3420                 d->req_count = cpu_to_le16(length);
3421                 d->res_count = d->req_count;
3422                 d->transfer_status = 0;
3423
3424                 page_bus = page_private(buffer->pages[page]);
3425                 d->data_address = cpu_to_le32(page_bus + offset);
3426
3427                 dma_sync_single_range_for_device(ctx->context.ohci->card.device,
3428                                                  page_bus, offset, length,
3429                                                  DMA_FROM_DEVICE);
3430
3431                 rest -= length;
3432                 offset = 0;
3433                 page++;
3434
3435                 context_append(&ctx->context, d, 1, 0);
3436         }
3437
3438         return 0;
3439 }
3440
3441 static int ohci_queue_iso(struct fw_iso_context *base,
3442                           struct fw_iso_packet *packet,
3443                           struct fw_iso_buffer *buffer,
3444                           unsigned long payload)
3445 {
3446         struct iso_context *ctx = container_of(base, struct iso_context, base);
3447         unsigned long flags;
3448         int ret = -ENOSYS;
3449
3450         spin_lock_irqsave(&ctx->context.ohci->lock, flags);
3451         switch (base->type) {
3452         case FW_ISO_CONTEXT_TRANSMIT:
3453                 ret = queue_iso_transmit(ctx, packet, buffer, payload);
3454                 break;
3455         case FW_ISO_CONTEXT_RECEIVE:
3456                 ret = queue_iso_packet_per_buffer(ctx, packet, buffer, payload);
3457                 break;
3458         case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3459                 ret = queue_iso_buffer_fill(ctx, packet, buffer, payload);
3460                 break;
3461         }
3462         spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);
3463
3464         return ret;
3465 }
3466
3467 static void ohci_flush_queue_iso(struct fw_iso_context *base)
3468 {
3469         struct context *ctx =
3470                         &container_of(base, struct iso_context, base)->context;
3471
3472         reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
3473 }
3474
3475 static int ohci_flush_iso_completions(struct fw_iso_context *base)
3476 {
3477         struct iso_context *ctx = container_of(base, struct iso_context, base);
3478         int ret = 0;
3479
3480         tasklet_disable_in_atomic(&ctx->context.tasklet);
3481
3482         if (!test_and_set_bit_lock(0, &ctx->flushing_completions)) {
3483                 context_tasklet((unsigned long)&ctx->context);
3484
3485                 switch (base->type) {
3486                 case FW_ISO_CONTEXT_TRANSMIT:
3487                 case FW_ISO_CONTEXT_RECEIVE:
3488                         if (ctx->header_length != 0)
3489                                 flush_iso_completions(ctx);
3490                         break;
3491                 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3492                         if (ctx->mc_completed != 0)
3493                                 flush_ir_buffer_fill(ctx);
3494                         break;
3495                 default:
3496                         ret = -ENOSYS;
3497                 }
3498
3499                 clear_bit_unlock(0, &ctx->flushing_completions);
3500                 smp_mb__after_atomic();
3501         }
3502
3503         tasklet_enable(&ctx->context.tasklet);
3504
3505         return ret;
3506 }
3507
3508 static const struct fw_card_driver ohci_driver = {
3509         .enable                 = ohci_enable,
3510         .read_phy_reg           = ohci_read_phy_reg,
3511         .update_phy_reg         = ohci_update_phy_reg,
3512         .set_config_rom         = ohci_set_config_rom,
3513         .send_request           = ohci_send_request,
3514         .send_response          = ohci_send_response,
3515         .cancel_packet          = ohci_cancel_packet,
3516         .enable_phys_dma        = ohci_enable_phys_dma,
3517         .read_csr               = ohci_read_csr,
3518         .write_csr              = ohci_write_csr,
3519
3520         .allocate_iso_context   = ohci_allocate_iso_context,
3521         .free_iso_context       = ohci_free_iso_context,
3522         .set_iso_channels       = ohci_set_iso_channels,
3523         .queue_iso              = ohci_queue_iso,
3524         .flush_queue_iso        = ohci_flush_queue_iso,
3525         .flush_iso_completions  = ohci_flush_iso_completions,
3526         .start_iso              = ohci_start_iso,
3527         .stop_iso               = ohci_stop_iso,
3528 };
3529
3530 #ifdef CONFIG_PPC_PMAC
3531 static void pmac_ohci_on(struct pci_dev *dev)
3532 {
3533         if (machine_is(powermac)) {
3534                 struct device_node *ofn = pci_device_to_OF_node(dev);
3535
3536                 if (ofn) {
3537                         pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
3538                         pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
3539                 }
3540         }
3541 }
3542
3543 static void pmac_ohci_off(struct pci_dev *dev)
3544 {
3545         if (machine_is(powermac)) {
3546                 struct device_node *ofn = pci_device_to_OF_node(dev);
3547
3548                 if (ofn) {
3549                         pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
3550                         pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
3551                 }
3552         }
3553 }
3554 #else
3555 static inline void pmac_ohci_on(struct pci_dev *dev) {}
3556 static inline void pmac_ohci_off(struct pci_dev *dev) {}
3557 #endif /* CONFIG_PPC_PMAC */
3558
3559 static void release_ohci(struct device *dev, void *data)
3560 {
3561         struct pci_dev *pdev = to_pci_dev(dev);
3562         struct fw_ohci *ohci = pci_get_drvdata(pdev);
3563
3564         pmac_ohci_off(pdev);
3565
3566         ar_context_release(&ohci->ar_response_ctx);
3567         ar_context_release(&ohci->ar_request_ctx);
3568
3569         dev_notice(dev, "removed fw-ohci device\n");
3570 }
3571
3572 static int pci_probe(struct pci_dev *dev,
3573                                const struct pci_device_id *ent)
3574 {
3575         struct fw_ohci *ohci;
3576         u32 bus_options, max_receive, link_speed, version;
3577         u64 guid;
3578         int i, err;
3579         size_t size;
3580
3581         if (dev->vendor == PCI_VENDOR_ID_PINNACLE_SYSTEMS) {
3582                 dev_err(&dev->dev, "Pinnacle MovieBoard is not yet supported\n");
3583                 return -ENOSYS;
3584         }
3585
3586         ohci = devres_alloc(release_ohci, sizeof(*ohci), GFP_KERNEL);
3587         if (ohci == NULL)
3588                 return -ENOMEM;
3589         fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
3590         pci_set_drvdata(dev, ohci);
3591         pmac_ohci_on(dev);
3592         devres_add(&dev->dev, ohci);
3593
3594         err = pcim_enable_device(dev);
3595         if (err) {
3596                 dev_err(&dev->dev, "failed to enable OHCI hardware\n");
3597                 return err;
3598         }
3599
3600         pci_set_master(dev);
3601         pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
3602
3603         spin_lock_init(&ohci->lock);
3604         mutex_init(&ohci->phy_reg_mutex);
3605
3606         INIT_WORK(&ohci->bus_reset_work, bus_reset_work);
3607
3608         if (!(pci_resource_flags(dev, 0) & IORESOURCE_MEM) ||
3609             pci_resource_len(dev, 0) < OHCI1394_REGISTER_SIZE) {
3610                 ohci_err(ohci, "invalid MMIO resource\n");
3611                 return -ENXIO;
3612         }
3613
3614         err = pcim_iomap_regions(dev, 1 << 0, ohci_driver_name);
3615         if (err) {
3616                 ohci_err(ohci, "request and map MMIO resource unavailable\n");
3617                 return -ENXIO;
3618         }
3619         ohci->registers = pcim_iomap_table(dev)[0];
3620
3621         for (i = 0; i < ARRAY_SIZE(ohci_quirks); i++)
3622                 if ((ohci_quirks[i].vendor == dev->vendor) &&
3623                     (ohci_quirks[i].device == (unsigned short)PCI_ANY_ID ||
3624                      ohci_quirks[i].device == dev->device) &&
3625                     (ohci_quirks[i].revision == (unsigned short)PCI_ANY_ID ||
3626                      ohci_quirks[i].revision >= dev->revision)) {
3627                         ohci->quirks = ohci_quirks[i].flags;
3628                         break;
3629                 }
3630         if (param_quirks)
3631                 ohci->quirks = param_quirks;
3632
3633         /*
3634          * Because dma_alloc_coherent() allocates at least one page,
3635          * we save space by using a common buffer for the AR request/
3636          * response descriptors and the self IDs buffer.
3637          */
3638         BUILD_BUG_ON(AR_BUFFERS * sizeof(struct descriptor) > PAGE_SIZE/4);
3639         BUILD_BUG_ON(SELF_ID_BUF_SIZE > PAGE_SIZE/2);
3640         ohci->misc_buffer = dmam_alloc_coherent(&dev->dev, PAGE_SIZE, &ohci->misc_buffer_bus,
3641                                                 GFP_KERNEL);
3642         if (!ohci->misc_buffer)
3643                 return -ENOMEM;
3644
3645         err = ar_context_init(&ohci->ar_request_ctx, ohci, 0,
3646                               OHCI1394_AsReqRcvContextControlSet);
3647         if (err < 0)
3648                 return err;
3649
3650         err = ar_context_init(&ohci->ar_response_ctx, ohci, PAGE_SIZE/4,
3651                               OHCI1394_AsRspRcvContextControlSet);
3652         if (err < 0)
3653                 return err;
3654
3655         err = context_init(&ohci->at_request_ctx, ohci,
3656                            OHCI1394_AsReqTrContextControlSet, handle_at_packet);
3657         if (err < 0)
3658                 return err;
3659
3660         err = context_init(&ohci->at_response_ctx, ohci,
3661                            OHCI1394_AsRspTrContextControlSet, handle_at_packet);
3662         if (err < 0)
3663                 return err;
3664
3665         reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
3666         ohci->ir_context_channels = ~0ULL;
3667         ohci->ir_context_support = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
3668         reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
3669         ohci->ir_context_mask = ohci->ir_context_support;
3670         ohci->n_ir = hweight32(ohci->ir_context_mask);
3671         size = sizeof(struct iso_context) * ohci->n_ir;
3672         ohci->ir_context_list = devm_kzalloc(&dev->dev, size, GFP_KERNEL);
3673         if (!ohci->ir_context_list)
3674                 return -ENOMEM;
3675
3676         reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
3677         ohci->it_context_support = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
3678         /* JMicron JMB38x often shows 0 at first read, just ignore it */
3679         if (!ohci->it_context_support) {
3680                 ohci_notice(ohci, "overriding IsoXmitIntMask\n");
3681                 ohci->it_context_support = 0xf;
3682         }
3683         reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
3684         ohci->it_context_mask = ohci->it_context_support;
3685         ohci->n_it = hweight32(ohci->it_context_mask);
3686         size = sizeof(struct iso_context) * ohci->n_it;
3687         ohci->it_context_list = devm_kzalloc(&dev->dev, size, GFP_KERNEL);
3688         if (!ohci->it_context_list)
3689                 return -ENOMEM;
3690
3691         ohci->self_id     = ohci->misc_buffer     + PAGE_SIZE/2;
3692         ohci->self_id_bus = ohci->misc_buffer_bus + PAGE_SIZE/2;
3693
3694         bus_options = reg_read(ohci, OHCI1394_BusOptions);
3695         max_receive = (bus_options >> 12) & 0xf;
3696         link_speed = bus_options & 0x7;
3697         guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
3698                 reg_read(ohci, OHCI1394_GUIDLo);
3699
3700         if (!(ohci->quirks & QUIRK_NO_MSI))
3701                 pci_enable_msi(dev);
3702         err = devm_request_irq(&dev->dev, dev->irq, irq_handler,
3703                                pci_dev_msi_enabled(dev) ? 0 : IRQF_SHARED, ohci_driver_name, ohci);
3704         if (err < 0) {
3705                 ohci_err(ohci, "failed to allocate interrupt %d\n", dev->irq);
3706                 goto fail_msi;
3707         }
3708
3709         err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
3710         if (err)
3711                 goto fail_msi;
3712
3713         version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
3714         ohci_notice(ohci,
3715                     "added OHCI v%x.%x device as card %d, "
3716                     "%d IR + %d IT contexts, quirks 0x%x%s\n",
3717                     version >> 16, version & 0xff, ohci->card.index,
3718                     ohci->n_ir, ohci->n_it, ohci->quirks,
3719                     reg_read(ohci, OHCI1394_PhyUpperBound) ?
3720                         ", physUB" : "");
3721
3722         return 0;
3723
3724  fail_msi:
3725         pci_disable_msi(dev);
3726
3727         return err;
3728 }
3729
3730 static void pci_remove(struct pci_dev *dev)
3731 {
3732         struct fw_ohci *ohci = pci_get_drvdata(dev);
3733
3734         /*
3735          * If the removal is happening from the suspend state, LPS won't be
3736          * enabled and host registers (eg., IntMaskClear) won't be accessible.
3737          */
3738         if (reg_read(ohci, OHCI1394_HCControlSet) & OHCI1394_HCControl_LPS) {
3739                 reg_write(ohci, OHCI1394_IntMaskClear, ~0);
3740                 flush_writes(ohci);
3741         }
3742         cancel_work_sync(&ohci->bus_reset_work);
3743         fw_core_remove_card(&ohci->card);
3744
3745         /*
3746          * FIXME: Fail all pending packets here, now that the upper
3747          * layers can't queue any more.
3748          */
3749
3750         software_reset(ohci);
3751
3752         pci_disable_msi(dev);
3753
3754         dev_notice(&dev->dev, "removing fw-ohci device\n");
3755 }
3756
3757 #ifdef CONFIG_PM
3758 static int pci_suspend(struct pci_dev *dev, pm_message_t state)
3759 {
3760         struct fw_ohci *ohci = pci_get_drvdata(dev);
3761         int err;
3762
3763         software_reset(ohci);
3764         err = pci_save_state(dev);
3765         if (err) {
3766                 ohci_err(ohci, "pci_save_state failed\n");
3767                 return err;
3768         }
3769         err = pci_set_power_state(dev, pci_choose_state(dev, state));
3770         if (err)
3771                 ohci_err(ohci, "pci_set_power_state failed with %d\n", err);
3772         pmac_ohci_off(dev);
3773
3774         return 0;
3775 }
3776
3777 static int pci_resume(struct pci_dev *dev)
3778 {
3779         struct fw_ohci *ohci = pci_get_drvdata(dev);
3780         int err;
3781
3782         pmac_ohci_on(dev);
3783         pci_set_power_state(dev, PCI_D0);
3784         pci_restore_state(dev);
3785         err = pci_enable_device(dev);
3786         if (err) {
3787                 ohci_err(ohci, "pci_enable_device failed\n");
3788                 return err;
3789         }
3790
3791         /* Some systems don't setup GUID register on resume from ram  */
3792         if (!reg_read(ohci, OHCI1394_GUIDLo) &&
3793                                         !reg_read(ohci, OHCI1394_GUIDHi)) {
3794                 reg_write(ohci, OHCI1394_GUIDLo, (u32)ohci->card.guid);
3795                 reg_write(ohci, OHCI1394_GUIDHi, (u32)(ohci->card.guid >> 32));
3796         }
3797
3798         err = ohci_enable(&ohci->card, NULL, 0);
3799         if (err)
3800                 return err;
3801
3802         ohci_resume_iso_dma(ohci);
3803
3804         return 0;
3805 }
3806 #endif
3807
3808 static const struct pci_device_id pci_table[] = {
3809         { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
3810         { }
3811 };
3812
3813 MODULE_DEVICE_TABLE(pci, pci_table);
3814
3815 static struct pci_driver fw_ohci_pci_driver = {
3816         .name           = ohci_driver_name,
3817         .id_table       = pci_table,
3818         .probe          = pci_probe,
3819         .remove         = pci_remove,
3820 #ifdef CONFIG_PM
3821         .resume         = pci_resume,
3822         .suspend        = pci_suspend,
3823 #endif
3824 };
3825
3826 static int __init fw_ohci_init(void)
3827 {
3828         selfid_workqueue = alloc_workqueue(KBUILD_MODNAME, WQ_MEM_RECLAIM, 0);
3829         if (!selfid_workqueue)
3830                 return -ENOMEM;
3831
3832         return pci_register_driver(&fw_ohci_pci_driver);
3833 }
3834
3835 static void __exit fw_ohci_cleanup(void)
3836 {
3837         pci_unregister_driver(&fw_ohci_pci_driver);
3838         destroy_workqueue(selfid_workqueue);
3839 }
3840
3841 module_init(fw_ohci_init);
3842 module_exit(fw_ohci_cleanup);
3843
3844 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
3845 MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
3846 MODULE_LICENSE("GPL");
3847
3848 /* Provide a module alias so root-on-sbp2 initrds don't break. */
3849 MODULE_ALIAS("ohci1394");