mm/memory.c: fix race when faulting a device private page
[platform/kernel/linux-starfive.git] / drivers / firewire / ohci.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Driver for OHCI 1394 controllers
4  *
5  * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
6  */
7
8 #include <linux/bitops.h>
9 #include <linux/bug.h>
10 #include <linux/compiler.h>
11 #include <linux/delay.h>
12 #include <linux/device.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/firewire.h>
15 #include <linux/firewire-constants.h>
16 #include <linux/init.h>
17 #include <linux/interrupt.h>
18 #include <linux/io.h>
19 #include <linux/kernel.h>
20 #include <linux/list.h>
21 #include <linux/mm.h>
22 #include <linux/module.h>
23 #include <linux/moduleparam.h>
24 #include <linux/mutex.h>
25 #include <linux/pci.h>
26 #include <linux/pci_ids.h>
27 #include <linux/slab.h>
28 #include <linux/spinlock.h>
29 #include <linux/string.h>
30 #include <linux/time.h>
31 #include <linux/vmalloc.h>
32 #include <linux/workqueue.h>
33
34 #include <asm/byteorder.h>
35 #include <asm/page.h>
36
37 #ifdef CONFIG_PPC_PMAC
38 #include <asm/pmac_feature.h>
39 #endif
40
41 #include "core.h"
42 #include "ohci.h"
43
44 #define ohci_info(ohci, f, args...)     dev_info(ohci->card.device, f, ##args)
45 #define ohci_notice(ohci, f, args...)   dev_notice(ohci->card.device, f, ##args)
46 #define ohci_err(ohci, f, args...)      dev_err(ohci->card.device, f, ##args)
47
48 #define DESCRIPTOR_OUTPUT_MORE          0
49 #define DESCRIPTOR_OUTPUT_LAST          (1 << 12)
50 #define DESCRIPTOR_INPUT_MORE           (2 << 12)
51 #define DESCRIPTOR_INPUT_LAST           (3 << 12)
52 #define DESCRIPTOR_STATUS               (1 << 11)
53 #define DESCRIPTOR_KEY_IMMEDIATE        (2 << 8)
54 #define DESCRIPTOR_PING                 (1 << 7)
55 #define DESCRIPTOR_YY                   (1 << 6)
56 #define DESCRIPTOR_NO_IRQ               (0 << 4)
57 #define DESCRIPTOR_IRQ_ERROR            (1 << 4)
58 #define DESCRIPTOR_IRQ_ALWAYS           (3 << 4)
59 #define DESCRIPTOR_BRANCH_ALWAYS        (3 << 2)
60 #define DESCRIPTOR_WAIT                 (3 << 0)
61
62 #define DESCRIPTOR_CMD                  (0xf << 12)
63
64 struct descriptor {
65         __le16 req_count;
66         __le16 control;
67         __le32 data_address;
68         __le32 branch_address;
69         __le16 res_count;
70         __le16 transfer_status;
71 } __attribute__((aligned(16)));
72
73 #define CONTROL_SET(regs)       (regs)
74 #define CONTROL_CLEAR(regs)     ((regs) + 4)
75 #define COMMAND_PTR(regs)       ((regs) + 12)
76 #define CONTEXT_MATCH(regs)     ((regs) + 16)
77
78 #define AR_BUFFER_SIZE  (32*1024)
79 #define AR_BUFFERS_MIN  DIV_ROUND_UP(AR_BUFFER_SIZE, PAGE_SIZE)
80 /* we need at least two pages for proper list management */
81 #define AR_BUFFERS      (AR_BUFFERS_MIN >= 2 ? AR_BUFFERS_MIN : 2)
82
83 #define MAX_ASYNC_PAYLOAD       4096
84 #define MAX_AR_PACKET_SIZE      (16 + MAX_ASYNC_PAYLOAD + 4)
85 #define AR_WRAPAROUND_PAGES     DIV_ROUND_UP(MAX_AR_PACKET_SIZE, PAGE_SIZE)
86
87 struct ar_context {
88         struct fw_ohci *ohci;
89         struct page *pages[AR_BUFFERS];
90         void *buffer;
91         struct descriptor *descriptors;
92         dma_addr_t descriptors_bus;
93         void *pointer;
94         unsigned int last_buffer_index;
95         u32 regs;
96         struct tasklet_struct tasklet;
97 };
98
99 struct context;
100
101 typedef int (*descriptor_callback_t)(struct context *ctx,
102                                      struct descriptor *d,
103                                      struct descriptor *last);
104
105 /*
106  * A buffer that contains a block of DMA-able coherent memory used for
107  * storing a portion of a DMA descriptor program.
108  */
109 struct descriptor_buffer {
110         struct list_head list;
111         dma_addr_t buffer_bus;
112         size_t buffer_size;
113         size_t used;
114         struct descriptor buffer[];
115 };
116
117 struct context {
118         struct fw_ohci *ohci;
119         u32 regs;
120         int total_allocation;
121         u32 current_bus;
122         bool running;
123         bool flushing;
124
125         /*
126          * List of page-sized buffers for storing DMA descriptors.
127          * Head of list contains buffers in use and tail of list contains
128          * free buffers.
129          */
130         struct list_head buffer_list;
131
132         /*
133          * Pointer to a buffer inside buffer_list that contains the tail
134          * end of the current DMA program.
135          */
136         struct descriptor_buffer *buffer_tail;
137
138         /*
139          * The descriptor containing the branch address of the first
140          * descriptor that has not yet been filled by the device.
141          */
142         struct descriptor *last;
143
144         /*
145          * The last descriptor block in the DMA program. It contains the branch
146          * address that must be updated upon appending a new descriptor.
147          */
148         struct descriptor *prev;
149         int prev_z;
150
151         descriptor_callback_t callback;
152
153         struct tasklet_struct tasklet;
154 };
155
156 #define IT_HEADER_SY(v)          ((v) <<  0)
157 #define IT_HEADER_TCODE(v)       ((v) <<  4)
158 #define IT_HEADER_CHANNEL(v)     ((v) <<  8)
159 #define IT_HEADER_TAG(v)         ((v) << 14)
160 #define IT_HEADER_SPEED(v)       ((v) << 16)
161 #define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
162
163 struct iso_context {
164         struct fw_iso_context base;
165         struct context context;
166         void *header;
167         size_t header_length;
168         unsigned long flushing_completions;
169         u32 mc_buffer_bus;
170         u16 mc_completed;
171         u16 last_timestamp;
172         u8 sync;
173         u8 tags;
174 };
175
176 #define CONFIG_ROM_SIZE 1024
177
178 struct fw_ohci {
179         struct fw_card card;
180
181         __iomem char *registers;
182         int node_id;
183         int generation;
184         int request_generation; /* for timestamping incoming requests */
185         unsigned quirks;
186         unsigned int pri_req_max;
187         u32 bus_time;
188         bool bus_time_running;
189         bool is_root;
190         bool csr_state_setclear_abdicate;
191         int n_ir;
192         int n_it;
193         /*
194          * Spinlock for accessing fw_ohci data.  Never call out of
195          * this driver with this lock held.
196          */
197         spinlock_t lock;
198
199         struct mutex phy_reg_mutex;
200
201         void *misc_buffer;
202         dma_addr_t misc_buffer_bus;
203
204         struct ar_context ar_request_ctx;
205         struct ar_context ar_response_ctx;
206         struct context at_request_ctx;
207         struct context at_response_ctx;
208
209         u32 it_context_support;
210         u32 it_context_mask;     /* unoccupied IT contexts */
211         struct iso_context *it_context_list;
212         u64 ir_context_channels; /* unoccupied channels */
213         u32 ir_context_support;
214         u32 ir_context_mask;     /* unoccupied IR contexts */
215         struct iso_context *ir_context_list;
216         u64 mc_channels; /* channels in use by the multichannel IR context */
217         bool mc_allocated;
218
219         __be32    *config_rom;
220         dma_addr_t config_rom_bus;
221         __be32    *next_config_rom;
222         dma_addr_t next_config_rom_bus;
223         __be32     next_header;
224
225         __le32    *self_id;
226         dma_addr_t self_id_bus;
227         struct work_struct bus_reset_work;
228
229         u32 self_id_buffer[512];
230 };
231
232 static struct workqueue_struct *selfid_workqueue;
233
234 static inline struct fw_ohci *fw_ohci(struct fw_card *card)
235 {
236         return container_of(card, struct fw_ohci, card);
237 }
238
239 #define IT_CONTEXT_CYCLE_MATCH_ENABLE   0x80000000
240 #define IR_CONTEXT_BUFFER_FILL          0x80000000
241 #define IR_CONTEXT_ISOCH_HEADER         0x40000000
242 #define IR_CONTEXT_CYCLE_MATCH_ENABLE   0x20000000
243 #define IR_CONTEXT_MULTI_CHANNEL_MODE   0x10000000
244 #define IR_CONTEXT_DUAL_BUFFER_MODE     0x08000000
245
246 #define CONTEXT_RUN     0x8000
247 #define CONTEXT_WAKE    0x1000
248 #define CONTEXT_DEAD    0x0800
249 #define CONTEXT_ACTIVE  0x0400
250
251 #define OHCI1394_MAX_AT_REQ_RETRIES     0xf
252 #define OHCI1394_MAX_AT_RESP_RETRIES    0x2
253 #define OHCI1394_MAX_PHYS_RESP_RETRIES  0x8
254
255 #define OHCI1394_REGISTER_SIZE          0x800
256 #define OHCI1394_PCI_HCI_Control        0x40
257 #define SELF_ID_BUF_SIZE                0x800
258 #define OHCI_TCODE_PHY_PACKET           0x0e
259 #define OHCI_VERSION_1_1                0x010010
260
261 static char ohci_driver_name[] = KBUILD_MODNAME;
262
263 #define PCI_VENDOR_ID_PINNACLE_SYSTEMS  0x11bd
264 #define PCI_DEVICE_ID_AGERE_FW643       0x5901
265 #define PCI_DEVICE_ID_CREATIVE_SB1394   0x4001
266 #define PCI_DEVICE_ID_JMICRON_JMB38X_FW 0x2380
267 #define PCI_DEVICE_ID_TI_TSB12LV22      0x8009
268 #define PCI_DEVICE_ID_TI_TSB12LV26      0x8020
269 #define PCI_DEVICE_ID_TI_TSB82AA2       0x8025
270 #define PCI_DEVICE_ID_VIA_VT630X        0x3044
271 #define PCI_REV_ID_VIA_VT6306           0x46
272 #define PCI_DEVICE_ID_VIA_VT6315        0x3403
273
274 #define QUIRK_CYCLE_TIMER               0x1
275 #define QUIRK_RESET_PACKET              0x2
276 #define QUIRK_BE_HEADERS                0x4
277 #define QUIRK_NO_1394A                  0x8
278 #define QUIRK_NO_MSI                    0x10
279 #define QUIRK_TI_SLLZ059                0x20
280 #define QUIRK_IR_WAKE                   0x40
281
282 /* In case of multiple matches in ohci_quirks[], only the first one is used. */
283 static const struct {
284         unsigned short vendor, device, revision, flags;
285 } ohci_quirks[] = {
286         {PCI_VENDOR_ID_AL, PCI_ANY_ID, PCI_ANY_ID,
287                 QUIRK_CYCLE_TIMER},
288
289         {PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_FW, PCI_ANY_ID,
290                 QUIRK_BE_HEADERS},
291
292         {PCI_VENDOR_ID_ATT, PCI_DEVICE_ID_AGERE_FW643, 6,
293                 QUIRK_NO_MSI},
294
295         {PCI_VENDOR_ID_CREATIVE, PCI_DEVICE_ID_CREATIVE_SB1394, PCI_ANY_ID,
296                 QUIRK_RESET_PACKET},
297
298         {PCI_VENDOR_ID_JMICRON, PCI_DEVICE_ID_JMICRON_JMB38X_FW, PCI_ANY_ID,
299                 QUIRK_NO_MSI},
300
301         {PCI_VENDOR_ID_NEC, PCI_ANY_ID, PCI_ANY_ID,
302                 QUIRK_CYCLE_TIMER},
303
304         {PCI_VENDOR_ID_O2, PCI_ANY_ID, PCI_ANY_ID,
305                 QUIRK_NO_MSI},
306
307         {PCI_VENDOR_ID_RICOH, PCI_ANY_ID, PCI_ANY_ID,
308                 QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
309
310         {PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV22, PCI_ANY_ID,
311                 QUIRK_CYCLE_TIMER | QUIRK_RESET_PACKET | QUIRK_NO_1394A},
312
313         {PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV26, PCI_ANY_ID,
314                 QUIRK_RESET_PACKET | QUIRK_TI_SLLZ059},
315
316         {PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB82AA2, PCI_ANY_ID,
317                 QUIRK_RESET_PACKET | QUIRK_TI_SLLZ059},
318
319         {PCI_VENDOR_ID_TI, PCI_ANY_ID, PCI_ANY_ID,
320                 QUIRK_RESET_PACKET},
321
322         {PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_VT630X, PCI_REV_ID_VIA_VT6306,
323                 QUIRK_CYCLE_TIMER | QUIRK_IR_WAKE},
324
325         {PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_VT6315, 0,
326                 QUIRK_CYCLE_TIMER /* FIXME: necessary? */ | QUIRK_NO_MSI},
327
328         {PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_VT6315, PCI_ANY_ID,
329                 QUIRK_NO_MSI},
330
331         {PCI_VENDOR_ID_VIA, PCI_ANY_ID, PCI_ANY_ID,
332                 QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
333 };
334
335 /* This overrides anything that was found in ohci_quirks[]. */
336 static int param_quirks;
337 module_param_named(quirks, param_quirks, int, 0644);
338 MODULE_PARM_DESC(quirks, "Chip quirks (default = 0"
339         ", nonatomic cycle timer = "    __stringify(QUIRK_CYCLE_TIMER)
340         ", reset packet generation = "  __stringify(QUIRK_RESET_PACKET)
341         ", AR/selfID endianness = "     __stringify(QUIRK_BE_HEADERS)
342         ", no 1394a enhancements = "    __stringify(QUIRK_NO_1394A)
343         ", disable MSI = "              __stringify(QUIRK_NO_MSI)
344         ", TI SLLZ059 erratum = "       __stringify(QUIRK_TI_SLLZ059)
345         ", IR wake unreliable = "       __stringify(QUIRK_IR_WAKE)
346         ")");
347
348 #define OHCI_PARAM_DEBUG_AT_AR          1
349 #define OHCI_PARAM_DEBUG_SELFIDS        2
350 #define OHCI_PARAM_DEBUG_IRQS           4
351 #define OHCI_PARAM_DEBUG_BUSRESETS      8 /* only effective before chip init */
352
353 static int param_debug;
354 module_param_named(debug, param_debug, int, 0644);
355 MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
356         ", AT/AR events = "     __stringify(OHCI_PARAM_DEBUG_AT_AR)
357         ", self-IDs = "         __stringify(OHCI_PARAM_DEBUG_SELFIDS)
358         ", IRQs = "             __stringify(OHCI_PARAM_DEBUG_IRQS)
359         ", busReset events = "  __stringify(OHCI_PARAM_DEBUG_BUSRESETS)
360         ", or a combination, or all = -1)");
361
362 static bool param_remote_dma;
363 module_param_named(remote_dma, param_remote_dma, bool, 0444);
364 MODULE_PARM_DESC(remote_dma, "Enable unfiltered remote DMA (default = N)");
365
366 static void log_irqs(struct fw_ohci *ohci, u32 evt)
367 {
368         if (likely(!(param_debug &
369                         (OHCI_PARAM_DEBUG_IRQS | OHCI_PARAM_DEBUG_BUSRESETS))))
370                 return;
371
372         if (!(param_debug & OHCI_PARAM_DEBUG_IRQS) &&
373             !(evt & OHCI1394_busReset))
374                 return;
375
376         ohci_notice(ohci, "IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt,
377             evt & OHCI1394_selfIDComplete       ? " selfID"             : "",
378             evt & OHCI1394_RQPkt                ? " AR_req"             : "",
379             evt & OHCI1394_RSPkt                ? " AR_resp"            : "",
380             evt & OHCI1394_reqTxComplete        ? " AT_req"             : "",
381             evt & OHCI1394_respTxComplete       ? " AT_resp"            : "",
382             evt & OHCI1394_isochRx              ? " IR"                 : "",
383             evt & OHCI1394_isochTx              ? " IT"                 : "",
384             evt & OHCI1394_postedWriteErr       ? " postedWriteErr"     : "",
385             evt & OHCI1394_cycleTooLong         ? " cycleTooLong"       : "",
386             evt & OHCI1394_cycle64Seconds       ? " cycle64Seconds"     : "",
387             evt & OHCI1394_cycleInconsistent    ? " cycleInconsistent"  : "",
388             evt & OHCI1394_regAccessFail        ? " regAccessFail"      : "",
389             evt & OHCI1394_unrecoverableError   ? " unrecoverableError" : "",
390             evt & OHCI1394_busReset             ? " busReset"           : "",
391             evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
392                     OHCI1394_RSPkt | OHCI1394_reqTxComplete |
393                     OHCI1394_respTxComplete | OHCI1394_isochRx |
394                     OHCI1394_isochTx | OHCI1394_postedWriteErr |
395                     OHCI1394_cycleTooLong | OHCI1394_cycle64Seconds |
396                     OHCI1394_cycleInconsistent |
397                     OHCI1394_regAccessFail | OHCI1394_busReset)
398                                                 ? " ?"                  : "");
399 }
400
401 static const char *speed[] = {
402         [0] = "S100", [1] = "S200", [2] = "S400",    [3] = "beta",
403 };
404 static const char *power[] = {
405         [0] = "+0W",  [1] = "+15W", [2] = "+30W",    [3] = "+45W",
406         [4] = "-3W",  [5] = " ?W",  [6] = "-3..-6W", [7] = "-3..-10W",
407 };
408 static const char port[] = { '.', '-', 'p', 'c', };
409
410 static char _p(u32 *s, int shift)
411 {
412         return port[*s >> shift & 3];
413 }
414
415 static void log_selfids(struct fw_ohci *ohci, int generation, int self_id_count)
416 {
417         u32 *s;
418
419         if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
420                 return;
421
422         ohci_notice(ohci, "%d selfIDs, generation %d, local node ID %04x\n",
423                     self_id_count, generation, ohci->node_id);
424
425         for (s = ohci->self_id_buffer; self_id_count--; ++s)
426                 if ((*s & 1 << 23) == 0)
427                         ohci_notice(ohci,
428                             "selfID 0: %08x, phy %d [%c%c%c] %s gc=%d %s %s%s%s\n",
429                             *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2),
430                             speed[*s >> 14 & 3], *s >> 16 & 63,
431                             power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
432                             *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
433                 else
434                         ohci_notice(ohci,
435                             "selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
436                             *s, *s >> 24 & 63,
437                             _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10),
438                             _p(s,  8), _p(s,  6), _p(s,  4), _p(s,  2));
439 }
440
441 static const char *evts[] = {
442         [0x00] = "evt_no_status",       [0x01] = "-reserved-",
443         [0x02] = "evt_long_packet",     [0x03] = "evt_missing_ack",
444         [0x04] = "evt_underrun",        [0x05] = "evt_overrun",
445         [0x06] = "evt_descriptor_read", [0x07] = "evt_data_read",
446         [0x08] = "evt_data_write",      [0x09] = "evt_bus_reset",
447         [0x0a] = "evt_timeout",         [0x0b] = "evt_tcode_err",
448         [0x0c] = "-reserved-",          [0x0d] = "-reserved-",
449         [0x0e] = "evt_unknown",         [0x0f] = "evt_flushed",
450         [0x10] = "-reserved-",          [0x11] = "ack_complete",
451         [0x12] = "ack_pending ",        [0x13] = "-reserved-",
452         [0x14] = "ack_busy_X",          [0x15] = "ack_busy_A",
453         [0x16] = "ack_busy_B",          [0x17] = "-reserved-",
454         [0x18] = "-reserved-",          [0x19] = "-reserved-",
455         [0x1a] = "-reserved-",          [0x1b] = "ack_tardy",
456         [0x1c] = "-reserved-",          [0x1d] = "ack_data_error",
457         [0x1e] = "ack_type_error",      [0x1f] = "-reserved-",
458         [0x20] = "pending/cancelled",
459 };
460 static const char *tcodes[] = {
461         [0x0] = "QW req",               [0x1] = "BW req",
462         [0x2] = "W resp",               [0x3] = "-reserved-",
463         [0x4] = "QR req",               [0x5] = "BR req",
464         [0x6] = "QR resp",              [0x7] = "BR resp",
465         [0x8] = "cycle start",          [0x9] = "Lk req",
466         [0xa] = "async stream packet",  [0xb] = "Lk resp",
467         [0xc] = "-reserved-",           [0xd] = "-reserved-",
468         [0xe] = "link internal",        [0xf] = "-reserved-",
469 };
470
471 static void log_ar_at_event(struct fw_ohci *ohci,
472                             char dir, int speed, u32 *header, int evt)
473 {
474         int tcode = header[0] >> 4 & 0xf;
475         char specific[12];
476
477         if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
478                 return;
479
480         if (unlikely(evt >= ARRAY_SIZE(evts)))
481                         evt = 0x1f;
482
483         if (evt == OHCI1394_evt_bus_reset) {
484                 ohci_notice(ohci, "A%c evt_bus_reset, generation %d\n",
485                             dir, (header[2] >> 16) & 0xff);
486                 return;
487         }
488
489         switch (tcode) {
490         case 0x0: case 0x6: case 0x8:
491                 snprintf(specific, sizeof(specific), " = %08x",
492                          be32_to_cpu((__force __be32)header[3]));
493                 break;
494         case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
495                 snprintf(specific, sizeof(specific), " %x,%x",
496                          header[3] >> 16, header[3] & 0xffff);
497                 break;
498         default:
499                 specific[0] = '\0';
500         }
501
502         switch (tcode) {
503         case 0xa:
504                 ohci_notice(ohci, "A%c %s, %s\n",
505                             dir, evts[evt], tcodes[tcode]);
506                 break;
507         case 0xe:
508                 ohci_notice(ohci, "A%c %s, PHY %08x %08x\n",
509                             dir, evts[evt], header[1], header[2]);
510                 break;
511         case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
512                 ohci_notice(ohci,
513                             "A%c spd %x tl %02x, %04x -> %04x, %s, %s, %04x%08x%s\n",
514                             dir, speed, header[0] >> 10 & 0x3f,
515                             header[1] >> 16, header[0] >> 16, evts[evt],
516                             tcodes[tcode], header[1] & 0xffff, header[2], specific);
517                 break;
518         default:
519                 ohci_notice(ohci,
520                             "A%c spd %x tl %02x, %04x -> %04x, %s, %s%s\n",
521                             dir, speed, header[0] >> 10 & 0x3f,
522                             header[1] >> 16, header[0] >> 16, evts[evt],
523                             tcodes[tcode], specific);
524         }
525 }
526
527 static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
528 {
529         writel(data, ohci->registers + offset);
530 }
531
532 static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
533 {
534         return readl(ohci->registers + offset);
535 }
536
537 static inline void flush_writes(const struct fw_ohci *ohci)
538 {
539         /* Do a dummy read to flush writes. */
540         reg_read(ohci, OHCI1394_Version);
541 }
542
543 /*
544  * Beware!  read_phy_reg(), write_phy_reg(), update_phy_reg(), and
545  * read_paged_phy_reg() require the caller to hold ohci->phy_reg_mutex.
546  * In other words, only use ohci_read_phy_reg() and ohci_update_phy_reg()
547  * directly.  Exceptions are intrinsically serialized contexts like pci_probe.
548  */
549 static int read_phy_reg(struct fw_ohci *ohci, int addr)
550 {
551         u32 val;
552         int i;
553
554         reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
555         for (i = 0; i < 3 + 100; i++) {
556                 val = reg_read(ohci, OHCI1394_PhyControl);
557                 if (!~val)
558                         return -ENODEV; /* Card was ejected. */
559
560                 if (val & OHCI1394_PhyControl_ReadDone)
561                         return OHCI1394_PhyControl_ReadData(val);
562
563                 /*
564                  * Try a few times without waiting.  Sleeping is necessary
565                  * only when the link/PHY interface is busy.
566                  */
567                 if (i >= 3)
568                         msleep(1);
569         }
570         ohci_err(ohci, "failed to read phy reg %d\n", addr);
571         dump_stack();
572
573         return -EBUSY;
574 }
575
576 static int write_phy_reg(const struct fw_ohci *ohci, int addr, u32 val)
577 {
578         int i;
579
580         reg_write(ohci, OHCI1394_PhyControl,
581                   OHCI1394_PhyControl_Write(addr, val));
582         for (i = 0; i < 3 + 100; i++) {
583                 val = reg_read(ohci, OHCI1394_PhyControl);
584                 if (!~val)
585                         return -ENODEV; /* Card was ejected. */
586
587                 if (!(val & OHCI1394_PhyControl_WritePending))
588                         return 0;
589
590                 if (i >= 3)
591                         msleep(1);
592         }
593         ohci_err(ohci, "failed to write phy reg %d, val %u\n", addr, val);
594         dump_stack();
595
596         return -EBUSY;
597 }
598
599 static int update_phy_reg(struct fw_ohci *ohci, int addr,
600                           int clear_bits, int set_bits)
601 {
602         int ret = read_phy_reg(ohci, addr);
603         if (ret < 0)
604                 return ret;
605
606         /*
607          * The interrupt status bits are cleared by writing a one bit.
608          * Avoid clearing them unless explicitly requested in set_bits.
609          */
610         if (addr == 5)
611                 clear_bits |= PHY_INT_STATUS_BITS;
612
613         return write_phy_reg(ohci, addr, (ret & ~clear_bits) | set_bits);
614 }
615
616 static int read_paged_phy_reg(struct fw_ohci *ohci, int page, int addr)
617 {
618         int ret;
619
620         ret = update_phy_reg(ohci, 7, PHY_PAGE_SELECT, page << 5);
621         if (ret < 0)
622                 return ret;
623
624         return read_phy_reg(ohci, addr);
625 }
626
627 static int ohci_read_phy_reg(struct fw_card *card, int addr)
628 {
629         struct fw_ohci *ohci = fw_ohci(card);
630         int ret;
631
632         mutex_lock(&ohci->phy_reg_mutex);
633         ret = read_phy_reg(ohci, addr);
634         mutex_unlock(&ohci->phy_reg_mutex);
635
636         return ret;
637 }
638
639 static int ohci_update_phy_reg(struct fw_card *card, int addr,
640                                int clear_bits, int set_bits)
641 {
642         struct fw_ohci *ohci = fw_ohci(card);
643         int ret;
644
645         mutex_lock(&ohci->phy_reg_mutex);
646         ret = update_phy_reg(ohci, addr, clear_bits, set_bits);
647         mutex_unlock(&ohci->phy_reg_mutex);
648
649         return ret;
650 }
651
652 static inline dma_addr_t ar_buffer_bus(struct ar_context *ctx, unsigned int i)
653 {
654         return page_private(ctx->pages[i]);
655 }
656
657 static void ar_context_link_page(struct ar_context *ctx, unsigned int index)
658 {
659         struct descriptor *d;
660
661         d = &ctx->descriptors[index];
662         d->branch_address  &= cpu_to_le32(~0xf);
663         d->res_count       =  cpu_to_le16(PAGE_SIZE);
664         d->transfer_status =  0;
665
666         wmb(); /* finish init of new descriptors before branch_address update */
667         d = &ctx->descriptors[ctx->last_buffer_index];
668         d->branch_address  |= cpu_to_le32(1);
669
670         ctx->last_buffer_index = index;
671
672         reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
673 }
674
675 static void ar_context_release(struct ar_context *ctx)
676 {
677         struct device *dev = ctx->ohci->card.device;
678         unsigned int i;
679
680         vunmap(ctx->buffer);
681
682         for (i = 0; i < AR_BUFFERS; i++) {
683                 if (ctx->pages[i])
684                         dma_free_pages(dev, PAGE_SIZE, ctx->pages[i],
685                                        ar_buffer_bus(ctx, i), DMA_FROM_DEVICE);
686         }
687 }
688
689 static void ar_context_abort(struct ar_context *ctx, const char *error_msg)
690 {
691         struct fw_ohci *ohci = ctx->ohci;
692
693         if (reg_read(ohci, CONTROL_CLEAR(ctx->regs)) & CONTEXT_RUN) {
694                 reg_write(ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
695                 flush_writes(ohci);
696
697                 ohci_err(ohci, "AR error: %s; DMA stopped\n", error_msg);
698         }
699         /* FIXME: restart? */
700 }
701
702 static inline unsigned int ar_next_buffer_index(unsigned int index)
703 {
704         return (index + 1) % AR_BUFFERS;
705 }
706
707 static inline unsigned int ar_first_buffer_index(struct ar_context *ctx)
708 {
709         return ar_next_buffer_index(ctx->last_buffer_index);
710 }
711
712 /*
713  * We search for the buffer that contains the last AR packet DMA data written
714  * by the controller.
715  */
716 static unsigned int ar_search_last_active_buffer(struct ar_context *ctx,
717                                                  unsigned int *buffer_offset)
718 {
719         unsigned int i, next_i, last = ctx->last_buffer_index;
720         __le16 res_count, next_res_count;
721
722         i = ar_first_buffer_index(ctx);
723         res_count = READ_ONCE(ctx->descriptors[i].res_count);
724
725         /* A buffer that is not yet completely filled must be the last one. */
726         while (i != last && res_count == 0) {
727
728                 /* Peek at the next descriptor. */
729                 next_i = ar_next_buffer_index(i);
730                 rmb(); /* read descriptors in order */
731                 next_res_count = READ_ONCE(ctx->descriptors[next_i].res_count);
732                 /*
733                  * If the next descriptor is still empty, we must stop at this
734                  * descriptor.
735                  */
736                 if (next_res_count == cpu_to_le16(PAGE_SIZE)) {
737                         /*
738                          * The exception is when the DMA data for one packet is
739                          * split over three buffers; in this case, the middle
740                          * buffer's descriptor might be never updated by the
741                          * controller and look still empty, and we have to peek
742                          * at the third one.
743                          */
744                         if (MAX_AR_PACKET_SIZE > PAGE_SIZE && i != last) {
745                                 next_i = ar_next_buffer_index(next_i);
746                                 rmb();
747                                 next_res_count = READ_ONCE(ctx->descriptors[next_i].res_count);
748                                 if (next_res_count != cpu_to_le16(PAGE_SIZE))
749                                         goto next_buffer_is_active;
750                         }
751
752                         break;
753                 }
754
755 next_buffer_is_active:
756                 i = next_i;
757                 res_count = next_res_count;
758         }
759
760         rmb(); /* read res_count before the DMA data */
761
762         *buffer_offset = PAGE_SIZE - le16_to_cpu(res_count);
763         if (*buffer_offset > PAGE_SIZE) {
764                 *buffer_offset = 0;
765                 ar_context_abort(ctx, "corrupted descriptor");
766         }
767
768         return i;
769 }
770
771 static void ar_sync_buffers_for_cpu(struct ar_context *ctx,
772                                     unsigned int end_buffer_index,
773                                     unsigned int end_buffer_offset)
774 {
775         unsigned int i;
776
777         i = ar_first_buffer_index(ctx);
778         while (i != end_buffer_index) {
779                 dma_sync_single_for_cpu(ctx->ohci->card.device,
780                                         ar_buffer_bus(ctx, i),
781                                         PAGE_SIZE, DMA_FROM_DEVICE);
782                 i = ar_next_buffer_index(i);
783         }
784         if (end_buffer_offset > 0)
785                 dma_sync_single_for_cpu(ctx->ohci->card.device,
786                                         ar_buffer_bus(ctx, i),
787                                         end_buffer_offset, DMA_FROM_DEVICE);
788 }
789
790 #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
791 #define cond_le32_to_cpu(v) \
792         (ohci->quirks & QUIRK_BE_HEADERS ? (__force __u32)(v) : le32_to_cpu(v))
793 #else
794 #define cond_le32_to_cpu(v) le32_to_cpu(v)
795 #endif
796
797 static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
798 {
799         struct fw_ohci *ohci = ctx->ohci;
800         struct fw_packet p;
801         u32 status, length, tcode;
802         int evt;
803
804         p.header[0] = cond_le32_to_cpu(buffer[0]);
805         p.header[1] = cond_le32_to_cpu(buffer[1]);
806         p.header[2] = cond_le32_to_cpu(buffer[2]);
807
808         tcode = (p.header[0] >> 4) & 0x0f;
809         switch (tcode) {
810         case TCODE_WRITE_QUADLET_REQUEST:
811         case TCODE_READ_QUADLET_RESPONSE:
812                 p.header[3] = (__force __u32) buffer[3];
813                 p.header_length = 16;
814                 p.payload_length = 0;
815                 break;
816
817         case TCODE_READ_BLOCK_REQUEST :
818                 p.header[3] = cond_le32_to_cpu(buffer[3]);
819                 p.header_length = 16;
820                 p.payload_length = 0;
821                 break;
822
823         case TCODE_WRITE_BLOCK_REQUEST:
824         case TCODE_READ_BLOCK_RESPONSE:
825         case TCODE_LOCK_REQUEST:
826         case TCODE_LOCK_RESPONSE:
827                 p.header[3] = cond_le32_to_cpu(buffer[3]);
828                 p.header_length = 16;
829                 p.payload_length = p.header[3] >> 16;
830                 if (p.payload_length > MAX_ASYNC_PAYLOAD) {
831                         ar_context_abort(ctx, "invalid packet length");
832                         return NULL;
833                 }
834                 break;
835
836         case TCODE_WRITE_RESPONSE:
837         case TCODE_READ_QUADLET_REQUEST:
838         case OHCI_TCODE_PHY_PACKET:
839                 p.header_length = 12;
840                 p.payload_length = 0;
841                 break;
842
843         default:
844                 ar_context_abort(ctx, "invalid tcode");
845                 return NULL;
846         }
847
848         p.payload = (void *) buffer + p.header_length;
849
850         /* FIXME: What to do about evt_* errors? */
851         length = (p.header_length + p.payload_length + 3) / 4;
852         status = cond_le32_to_cpu(buffer[length]);
853         evt    = (status >> 16) & 0x1f;
854
855         p.ack        = evt - 16;
856         p.speed      = (status >> 21) & 0x7;
857         p.timestamp  = status & 0xffff;
858         p.generation = ohci->request_generation;
859
860         log_ar_at_event(ohci, 'R', p.speed, p.header, evt);
861
862         /*
863          * Several controllers, notably from NEC and VIA, forget to
864          * write ack_complete status at PHY packet reception.
865          */
866         if (evt == OHCI1394_evt_no_status &&
867             (p.header[0] & 0xff) == (OHCI1394_phy_tcode << 4))
868                 p.ack = ACK_COMPLETE;
869
870         /*
871          * The OHCI bus reset handler synthesizes a PHY packet with
872          * the new generation number when a bus reset happens (see
873          * section 8.4.2.3).  This helps us determine when a request
874          * was received and make sure we send the response in the same
875          * generation.  We only need this for requests; for responses
876          * we use the unique tlabel for finding the matching
877          * request.
878          *
879          * Alas some chips sometimes emit bus reset packets with a
880          * wrong generation.  We set the correct generation for these
881          * at a slightly incorrect time (in bus_reset_work).
882          */
883         if (evt == OHCI1394_evt_bus_reset) {
884                 if (!(ohci->quirks & QUIRK_RESET_PACKET))
885                         ohci->request_generation = (p.header[2] >> 16) & 0xff;
886         } else if (ctx == &ohci->ar_request_ctx) {
887                 fw_core_handle_request(&ohci->card, &p);
888         } else {
889                 fw_core_handle_response(&ohci->card, &p);
890         }
891
892         return buffer + length + 1;
893 }
894
895 static void *handle_ar_packets(struct ar_context *ctx, void *p, void *end)
896 {
897         void *next;
898
899         while (p < end) {
900                 next = handle_ar_packet(ctx, p);
901                 if (!next)
902                         return p;
903                 p = next;
904         }
905
906         return p;
907 }
908
909 static void ar_recycle_buffers(struct ar_context *ctx, unsigned int end_buffer)
910 {
911         unsigned int i;
912
913         i = ar_first_buffer_index(ctx);
914         while (i != end_buffer) {
915                 dma_sync_single_for_device(ctx->ohci->card.device,
916                                            ar_buffer_bus(ctx, i),
917                                            PAGE_SIZE, DMA_FROM_DEVICE);
918                 ar_context_link_page(ctx, i);
919                 i = ar_next_buffer_index(i);
920         }
921 }
922
923 static void ar_context_tasklet(unsigned long data)
924 {
925         struct ar_context *ctx = (struct ar_context *)data;
926         unsigned int end_buffer_index, end_buffer_offset;
927         void *p, *end;
928
929         p = ctx->pointer;
930         if (!p)
931                 return;
932
933         end_buffer_index = ar_search_last_active_buffer(ctx,
934                                                         &end_buffer_offset);
935         ar_sync_buffers_for_cpu(ctx, end_buffer_index, end_buffer_offset);
936         end = ctx->buffer + end_buffer_index * PAGE_SIZE + end_buffer_offset;
937
938         if (end_buffer_index < ar_first_buffer_index(ctx)) {
939                 /*
940                  * The filled part of the overall buffer wraps around; handle
941                  * all packets up to the buffer end here.  If the last packet
942                  * wraps around, its tail will be visible after the buffer end
943                  * because the buffer start pages are mapped there again.
944                  */
945                 void *buffer_end = ctx->buffer + AR_BUFFERS * PAGE_SIZE;
946                 p = handle_ar_packets(ctx, p, buffer_end);
947                 if (p < buffer_end)
948                         goto error;
949                 /* adjust p to point back into the actual buffer */
950                 p -= AR_BUFFERS * PAGE_SIZE;
951         }
952
953         p = handle_ar_packets(ctx, p, end);
954         if (p != end) {
955                 if (p > end)
956                         ar_context_abort(ctx, "inconsistent descriptor");
957                 goto error;
958         }
959
960         ctx->pointer = p;
961         ar_recycle_buffers(ctx, end_buffer_index);
962
963         return;
964
965 error:
966         ctx->pointer = NULL;
967 }
968
969 static int ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci,
970                            unsigned int descriptors_offset, u32 regs)
971 {
972         struct device *dev = ohci->card.device;
973         unsigned int i;
974         dma_addr_t dma_addr;
975         struct page *pages[AR_BUFFERS + AR_WRAPAROUND_PAGES];
976         struct descriptor *d;
977
978         ctx->regs        = regs;
979         ctx->ohci        = ohci;
980         tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
981
982         for (i = 0; i < AR_BUFFERS; i++) {
983                 ctx->pages[i] = dma_alloc_pages(dev, PAGE_SIZE, &dma_addr,
984                                                 DMA_FROM_DEVICE, GFP_KERNEL);
985                 if (!ctx->pages[i])
986                         goto out_of_memory;
987                 set_page_private(ctx->pages[i], dma_addr);
988                 dma_sync_single_for_device(dev, dma_addr, PAGE_SIZE,
989                                            DMA_FROM_DEVICE);
990         }
991
992         for (i = 0; i < AR_BUFFERS; i++)
993                 pages[i]              = ctx->pages[i];
994         for (i = 0; i < AR_WRAPAROUND_PAGES; i++)
995                 pages[AR_BUFFERS + i] = ctx->pages[i];
996         ctx->buffer = vmap(pages, ARRAY_SIZE(pages), VM_MAP, PAGE_KERNEL);
997         if (!ctx->buffer)
998                 goto out_of_memory;
999
1000         ctx->descriptors     = ohci->misc_buffer     + descriptors_offset;
1001         ctx->descriptors_bus = ohci->misc_buffer_bus + descriptors_offset;
1002
1003         for (i = 0; i < AR_BUFFERS; i++) {
1004                 d = &ctx->descriptors[i];
1005                 d->req_count      = cpu_to_le16(PAGE_SIZE);
1006                 d->control        = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
1007                                                 DESCRIPTOR_STATUS |
1008                                                 DESCRIPTOR_BRANCH_ALWAYS);
1009                 d->data_address   = cpu_to_le32(ar_buffer_bus(ctx, i));
1010                 d->branch_address = cpu_to_le32(ctx->descriptors_bus +
1011                         ar_next_buffer_index(i) * sizeof(struct descriptor));
1012         }
1013
1014         return 0;
1015
1016 out_of_memory:
1017         ar_context_release(ctx);
1018
1019         return -ENOMEM;
1020 }
1021
1022 static void ar_context_run(struct ar_context *ctx)
1023 {
1024         unsigned int i;
1025
1026         for (i = 0; i < AR_BUFFERS; i++)
1027                 ar_context_link_page(ctx, i);
1028
1029         ctx->pointer = ctx->buffer;
1030
1031         reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ctx->descriptors_bus | 1);
1032         reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
1033 }
1034
1035 static struct descriptor *find_branch_descriptor(struct descriptor *d, int z)
1036 {
1037         __le16 branch;
1038
1039         branch = d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS);
1040
1041         /* figure out which descriptor the branch address goes in */
1042         if (z == 2 && branch == cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
1043                 return d;
1044         else
1045                 return d + z - 1;
1046 }
1047
1048 static void context_tasklet(unsigned long data)
1049 {
1050         struct context *ctx = (struct context *) data;
1051         struct descriptor *d, *last;
1052         u32 address;
1053         int z;
1054         struct descriptor_buffer *desc;
1055
1056         desc = list_entry(ctx->buffer_list.next,
1057                         struct descriptor_buffer, list);
1058         last = ctx->last;
1059         while (last->branch_address != 0) {
1060                 struct descriptor_buffer *old_desc = desc;
1061                 address = le32_to_cpu(last->branch_address);
1062                 z = address & 0xf;
1063                 address &= ~0xf;
1064                 ctx->current_bus = address;
1065
1066                 /* If the branch address points to a buffer outside of the
1067                  * current buffer, advance to the next buffer. */
1068                 if (address < desc->buffer_bus ||
1069                                 address >= desc->buffer_bus + desc->used)
1070                         desc = list_entry(desc->list.next,
1071                                         struct descriptor_buffer, list);
1072                 d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
1073                 last = find_branch_descriptor(d, z);
1074
1075                 if (!ctx->callback(ctx, d, last))
1076                         break;
1077
1078                 if (old_desc != desc) {
1079                         /* If we've advanced to the next buffer, move the
1080                          * previous buffer to the free list. */
1081                         unsigned long flags;
1082                         old_desc->used = 0;
1083                         spin_lock_irqsave(&ctx->ohci->lock, flags);
1084                         list_move_tail(&old_desc->list, &ctx->buffer_list);
1085                         spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1086                 }
1087                 ctx->last = last;
1088         }
1089 }
1090
1091 /*
1092  * Allocate a new buffer and add it to the list of free buffers for this
1093  * context.  Must be called with ohci->lock held.
1094  */
1095 static int context_add_buffer(struct context *ctx)
1096 {
1097         struct descriptor_buffer *desc;
1098         dma_addr_t bus_addr;
1099         int offset;
1100
1101         /*
1102          * 16MB of descriptors should be far more than enough for any DMA
1103          * program.  This will catch run-away userspace or DoS attacks.
1104          */
1105         if (ctx->total_allocation >= 16*1024*1024)
1106                 return -ENOMEM;
1107
1108         desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE,
1109                         &bus_addr, GFP_ATOMIC);
1110         if (!desc)
1111                 return -ENOMEM;
1112
1113         offset = (void *)&desc->buffer - (void *)desc;
1114         /*
1115          * Some controllers, like JMicron ones, always issue 0x20-byte DMA reads
1116          * for descriptors, even 0x10-byte ones. This can cause page faults when
1117          * an IOMMU is in use and the oversized read crosses a page boundary.
1118          * Work around this by always leaving at least 0x10 bytes of padding.
1119          */
1120         desc->buffer_size = PAGE_SIZE - offset - 0x10;
1121         desc->buffer_bus = bus_addr + offset;
1122         desc->used = 0;
1123
1124         list_add_tail(&desc->list, &ctx->buffer_list);
1125         ctx->total_allocation += PAGE_SIZE;
1126
1127         return 0;
1128 }
1129
1130 static int context_init(struct context *ctx, struct fw_ohci *ohci,
1131                         u32 regs, descriptor_callback_t callback)
1132 {
1133         ctx->ohci = ohci;
1134         ctx->regs = regs;
1135         ctx->total_allocation = 0;
1136
1137         INIT_LIST_HEAD(&ctx->buffer_list);
1138         if (context_add_buffer(ctx) < 0)
1139                 return -ENOMEM;
1140
1141         ctx->buffer_tail = list_entry(ctx->buffer_list.next,
1142                         struct descriptor_buffer, list);
1143
1144         tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
1145         ctx->callback = callback;
1146
1147         /*
1148          * We put a dummy descriptor in the buffer that has a NULL
1149          * branch address and looks like it's been sent.  That way we
1150          * have a descriptor to append DMA programs to.
1151          */
1152         memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
1153         ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
1154         ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
1155         ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
1156         ctx->last = ctx->buffer_tail->buffer;
1157         ctx->prev = ctx->buffer_tail->buffer;
1158         ctx->prev_z = 1;
1159
1160         return 0;
1161 }
1162
1163 static void context_release(struct context *ctx)
1164 {
1165         struct fw_card *card = &ctx->ohci->card;
1166         struct descriptor_buffer *desc, *tmp;
1167
1168         list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list)
1169                 dma_free_coherent(card->device, PAGE_SIZE, desc,
1170                         desc->buffer_bus -
1171                         ((void *)&desc->buffer - (void *)desc));
1172 }
1173
1174 /* Must be called with ohci->lock held */
1175 static struct descriptor *context_get_descriptors(struct context *ctx,
1176                                                   int z, dma_addr_t *d_bus)
1177 {
1178         struct descriptor *d = NULL;
1179         struct descriptor_buffer *desc = ctx->buffer_tail;
1180
1181         if (z * sizeof(*d) > desc->buffer_size)
1182                 return NULL;
1183
1184         if (z * sizeof(*d) > desc->buffer_size - desc->used) {
1185                 /* No room for the descriptor in this buffer, so advance to the
1186                  * next one. */
1187
1188                 if (desc->list.next == &ctx->buffer_list) {
1189                         /* If there is no free buffer next in the list,
1190                          * allocate one. */
1191                         if (context_add_buffer(ctx) < 0)
1192                                 return NULL;
1193                 }
1194                 desc = list_entry(desc->list.next,
1195                                 struct descriptor_buffer, list);
1196                 ctx->buffer_tail = desc;
1197         }
1198
1199         d = desc->buffer + desc->used / sizeof(*d);
1200         memset(d, 0, z * sizeof(*d));
1201         *d_bus = desc->buffer_bus + desc->used;
1202
1203         return d;
1204 }
1205
1206 static void context_run(struct context *ctx, u32 extra)
1207 {
1208         struct fw_ohci *ohci = ctx->ohci;
1209
1210         reg_write(ohci, COMMAND_PTR(ctx->regs),
1211                   le32_to_cpu(ctx->last->branch_address));
1212         reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
1213         reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
1214         ctx->running = true;
1215         flush_writes(ohci);
1216 }
1217
1218 static void context_append(struct context *ctx,
1219                            struct descriptor *d, int z, int extra)
1220 {
1221         dma_addr_t d_bus;
1222         struct descriptor_buffer *desc = ctx->buffer_tail;
1223         struct descriptor *d_branch;
1224
1225         d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
1226
1227         desc->used += (z + extra) * sizeof(*d);
1228
1229         wmb(); /* finish init of new descriptors before branch_address update */
1230
1231         d_branch = find_branch_descriptor(ctx->prev, ctx->prev_z);
1232         d_branch->branch_address = cpu_to_le32(d_bus | z);
1233
1234         /*
1235          * VT6306 incorrectly checks only the single descriptor at the
1236          * CommandPtr when the wake bit is written, so if it's a
1237          * multi-descriptor block starting with an INPUT_MORE, put a copy of
1238          * the branch address in the first descriptor.
1239          *
1240          * Not doing this for transmit contexts since not sure how it interacts
1241          * with skip addresses.
1242          */
1243         if (unlikely(ctx->ohci->quirks & QUIRK_IR_WAKE) &&
1244             d_branch != ctx->prev &&
1245             (ctx->prev->control & cpu_to_le16(DESCRIPTOR_CMD)) ==
1246              cpu_to_le16(DESCRIPTOR_INPUT_MORE)) {
1247                 ctx->prev->branch_address = cpu_to_le32(d_bus | z);
1248         }
1249
1250         ctx->prev = d;
1251         ctx->prev_z = z;
1252 }
1253
1254 static void context_stop(struct context *ctx)
1255 {
1256         struct fw_ohci *ohci = ctx->ohci;
1257         u32 reg;
1258         int i;
1259
1260         reg_write(ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
1261         ctx->running = false;
1262
1263         for (i = 0; i < 1000; i++) {
1264                 reg = reg_read(ohci, CONTROL_SET(ctx->regs));
1265                 if ((reg & CONTEXT_ACTIVE) == 0)
1266                         return;
1267
1268                 if (i)
1269                         udelay(10);
1270         }
1271         ohci_err(ohci, "DMA context still active (0x%08x)\n", reg);
1272 }
1273
1274 struct driver_data {
1275         u8 inline_data[8];
1276         struct fw_packet *packet;
1277 };
1278
1279 /*
1280  * This function apppends a packet to the DMA queue for transmission.
1281  * Must always be called with the ochi->lock held to ensure proper
1282  * generation handling and locking around packet queue manipulation.
1283  */
1284 static int at_context_queue_packet(struct context *ctx,
1285                                    struct fw_packet *packet)
1286 {
1287         struct fw_ohci *ohci = ctx->ohci;
1288         dma_addr_t d_bus, payload_bus;
1289         struct driver_data *driver_data;
1290         struct descriptor *d, *last;
1291         __le32 *header;
1292         int z, tcode;
1293
1294         d = context_get_descriptors(ctx, 4, &d_bus);
1295         if (d == NULL) {
1296                 packet->ack = RCODE_SEND_ERROR;
1297                 return -1;
1298         }
1299
1300         d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
1301         d[0].res_count = cpu_to_le16(packet->timestamp);
1302
1303         /*
1304          * The DMA format for asynchronous link packets is different
1305          * from the IEEE1394 layout, so shift the fields around
1306          * accordingly.
1307          */
1308
1309         tcode = (packet->header[0] >> 4) & 0x0f;
1310         header = (__le32 *) &d[1];
1311         switch (tcode) {
1312         case TCODE_WRITE_QUADLET_REQUEST:
1313         case TCODE_WRITE_BLOCK_REQUEST:
1314         case TCODE_WRITE_RESPONSE:
1315         case TCODE_READ_QUADLET_REQUEST:
1316         case TCODE_READ_BLOCK_REQUEST:
1317         case TCODE_READ_QUADLET_RESPONSE:
1318         case TCODE_READ_BLOCK_RESPONSE:
1319         case TCODE_LOCK_REQUEST:
1320         case TCODE_LOCK_RESPONSE:
1321                 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1322                                         (packet->speed << 16));
1323                 header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
1324                                         (packet->header[0] & 0xffff0000));
1325                 header[2] = cpu_to_le32(packet->header[2]);
1326
1327                 if (TCODE_IS_BLOCK_PACKET(tcode))
1328                         header[3] = cpu_to_le32(packet->header[3]);
1329                 else
1330                         header[3] = (__force __le32) packet->header[3];
1331
1332                 d[0].req_count = cpu_to_le16(packet->header_length);
1333                 break;
1334
1335         case TCODE_LINK_INTERNAL:
1336                 header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
1337                                         (packet->speed << 16));
1338                 header[1] = cpu_to_le32(packet->header[1]);
1339                 header[2] = cpu_to_le32(packet->header[2]);
1340                 d[0].req_count = cpu_to_le16(12);
1341
1342                 if (is_ping_packet(&packet->header[1]))
1343                         d[0].control |= cpu_to_le16(DESCRIPTOR_PING);
1344                 break;
1345
1346         case TCODE_STREAM_DATA:
1347                 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1348                                         (packet->speed << 16));
1349                 header[1] = cpu_to_le32(packet->header[0] & 0xffff0000);
1350                 d[0].req_count = cpu_to_le16(8);
1351                 break;
1352
1353         default:
1354                 /* BUG(); */
1355                 packet->ack = RCODE_SEND_ERROR;
1356                 return -1;
1357         }
1358
1359         BUILD_BUG_ON(sizeof(struct driver_data) > sizeof(struct descriptor));
1360         driver_data = (struct driver_data *) &d[3];
1361         driver_data->packet = packet;
1362         packet->driver_data = driver_data;
1363
1364         if (packet->payload_length > 0) {
1365                 if (packet->payload_length > sizeof(driver_data->inline_data)) {
1366                         payload_bus = dma_map_single(ohci->card.device,
1367                                                      packet->payload,
1368                                                      packet->payload_length,
1369                                                      DMA_TO_DEVICE);
1370                         if (dma_mapping_error(ohci->card.device, payload_bus)) {
1371                                 packet->ack = RCODE_SEND_ERROR;
1372                                 return -1;
1373                         }
1374                         packet->payload_bus     = payload_bus;
1375                         packet->payload_mapped  = true;
1376                 } else {
1377                         memcpy(driver_data->inline_data, packet->payload,
1378                                packet->payload_length);
1379                         payload_bus = d_bus + 3 * sizeof(*d);
1380                 }
1381
1382                 d[2].req_count    = cpu_to_le16(packet->payload_length);
1383                 d[2].data_address = cpu_to_le32(payload_bus);
1384                 last = &d[2];
1385                 z = 3;
1386         } else {
1387                 last = &d[0];
1388                 z = 2;
1389         }
1390
1391         last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
1392                                      DESCRIPTOR_IRQ_ALWAYS |
1393                                      DESCRIPTOR_BRANCH_ALWAYS);
1394
1395         /* FIXME: Document how the locking works. */
1396         if (ohci->generation != packet->generation) {
1397                 if (packet->payload_mapped)
1398                         dma_unmap_single(ohci->card.device, payload_bus,
1399                                          packet->payload_length, DMA_TO_DEVICE);
1400                 packet->ack = RCODE_GENERATION;
1401                 return -1;
1402         }
1403
1404         context_append(ctx, d, z, 4 - z);
1405
1406         if (ctx->running)
1407                 reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
1408         else
1409                 context_run(ctx, 0);
1410
1411         return 0;
1412 }
1413
1414 static void at_context_flush(struct context *ctx)
1415 {
1416         tasklet_disable(&ctx->tasklet);
1417
1418         ctx->flushing = true;
1419         context_tasklet((unsigned long)ctx);
1420         ctx->flushing = false;
1421
1422         tasklet_enable(&ctx->tasklet);
1423 }
1424
1425 static int handle_at_packet(struct context *context,
1426                             struct descriptor *d,
1427                             struct descriptor *last)
1428 {
1429         struct driver_data *driver_data;
1430         struct fw_packet *packet;
1431         struct fw_ohci *ohci = context->ohci;
1432         int evt;
1433
1434         if (last->transfer_status == 0 && !context->flushing)
1435                 /* This descriptor isn't done yet, stop iteration. */
1436                 return 0;
1437
1438         driver_data = (struct driver_data *) &d[3];
1439         packet = driver_data->packet;
1440         if (packet == NULL)
1441                 /* This packet was cancelled, just continue. */
1442                 return 1;
1443
1444         if (packet->payload_mapped)
1445                 dma_unmap_single(ohci->card.device, packet->payload_bus,
1446                                  packet->payload_length, DMA_TO_DEVICE);
1447
1448         evt = le16_to_cpu(last->transfer_status) & 0x1f;
1449         packet->timestamp = le16_to_cpu(last->res_count);
1450
1451         log_ar_at_event(ohci, 'T', packet->speed, packet->header, evt);
1452
1453         switch (evt) {
1454         case OHCI1394_evt_timeout:
1455                 /* Async response transmit timed out. */
1456                 packet->ack = RCODE_CANCELLED;
1457                 break;
1458
1459         case OHCI1394_evt_flushed:
1460                 /*
1461                  * The packet was flushed should give same error as
1462                  * when we try to use a stale generation count.
1463                  */
1464                 packet->ack = RCODE_GENERATION;
1465                 break;
1466
1467         case OHCI1394_evt_missing_ack:
1468                 if (context->flushing)
1469                         packet->ack = RCODE_GENERATION;
1470                 else {
1471                         /*
1472                          * Using a valid (current) generation count, but the
1473                          * node is not on the bus or not sending acks.
1474                          */
1475                         packet->ack = RCODE_NO_ACK;
1476                 }
1477                 break;
1478
1479         case ACK_COMPLETE + 0x10:
1480         case ACK_PENDING + 0x10:
1481         case ACK_BUSY_X + 0x10:
1482         case ACK_BUSY_A + 0x10:
1483         case ACK_BUSY_B + 0x10:
1484         case ACK_DATA_ERROR + 0x10:
1485         case ACK_TYPE_ERROR + 0x10:
1486                 packet->ack = evt - 0x10;
1487                 break;
1488
1489         case OHCI1394_evt_no_status:
1490                 if (context->flushing) {
1491                         packet->ack = RCODE_GENERATION;
1492                         break;
1493                 }
1494                 fallthrough;
1495
1496         default:
1497                 packet->ack = RCODE_SEND_ERROR;
1498                 break;
1499         }
1500
1501         packet->callback(packet, &ohci->card, packet->ack);
1502
1503         return 1;
1504 }
1505
1506 #define HEADER_GET_DESTINATION(q)       (((q) >> 16) & 0xffff)
1507 #define HEADER_GET_TCODE(q)             (((q) >> 4) & 0x0f)
1508 #define HEADER_GET_OFFSET_HIGH(q)       (((q) >> 0) & 0xffff)
1509 #define HEADER_GET_DATA_LENGTH(q)       (((q) >> 16) & 0xffff)
1510 #define HEADER_GET_EXTENDED_TCODE(q)    (((q) >> 0) & 0xffff)
1511
1512 static void handle_local_rom(struct fw_ohci *ohci,
1513                              struct fw_packet *packet, u32 csr)
1514 {
1515         struct fw_packet response;
1516         int tcode, length, i;
1517
1518         tcode = HEADER_GET_TCODE(packet->header[0]);
1519         if (TCODE_IS_BLOCK_PACKET(tcode))
1520                 length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1521         else
1522                 length = 4;
1523
1524         i = csr - CSR_CONFIG_ROM;
1525         if (i + length > CONFIG_ROM_SIZE) {
1526                 fw_fill_response(&response, packet->header,
1527                                  RCODE_ADDRESS_ERROR, NULL, 0);
1528         } else if (!TCODE_IS_READ_REQUEST(tcode)) {
1529                 fw_fill_response(&response, packet->header,
1530                                  RCODE_TYPE_ERROR, NULL, 0);
1531         } else {
1532                 fw_fill_response(&response, packet->header, RCODE_COMPLETE,
1533                                  (void *) ohci->config_rom + i, length);
1534         }
1535
1536         fw_core_handle_response(&ohci->card, &response);
1537 }
1538
1539 static void handle_local_lock(struct fw_ohci *ohci,
1540                               struct fw_packet *packet, u32 csr)
1541 {
1542         struct fw_packet response;
1543         int tcode, length, ext_tcode, sel, try;
1544         __be32 *payload, lock_old;
1545         u32 lock_arg, lock_data;
1546
1547         tcode = HEADER_GET_TCODE(packet->header[0]);
1548         length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1549         payload = packet->payload;
1550         ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
1551
1552         if (tcode == TCODE_LOCK_REQUEST &&
1553             ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
1554                 lock_arg = be32_to_cpu(payload[0]);
1555                 lock_data = be32_to_cpu(payload[1]);
1556         } else if (tcode == TCODE_READ_QUADLET_REQUEST) {
1557                 lock_arg = 0;
1558                 lock_data = 0;
1559         } else {
1560                 fw_fill_response(&response, packet->header,
1561                                  RCODE_TYPE_ERROR, NULL, 0);
1562                 goto out;
1563         }
1564
1565         sel = (csr - CSR_BUS_MANAGER_ID) / 4;
1566         reg_write(ohci, OHCI1394_CSRData, lock_data);
1567         reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
1568         reg_write(ohci, OHCI1394_CSRControl, sel);
1569
1570         for (try = 0; try < 20; try++)
1571                 if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000) {
1572                         lock_old = cpu_to_be32(reg_read(ohci,
1573                                                         OHCI1394_CSRData));
1574                         fw_fill_response(&response, packet->header,
1575                                          RCODE_COMPLETE,
1576                                          &lock_old, sizeof(lock_old));
1577                         goto out;
1578                 }
1579
1580         ohci_err(ohci, "swap not done (CSR lock timeout)\n");
1581         fw_fill_response(&response, packet->header, RCODE_BUSY, NULL, 0);
1582
1583  out:
1584         fw_core_handle_response(&ohci->card, &response);
1585 }
1586
1587 static void handle_local_request(struct context *ctx, struct fw_packet *packet)
1588 {
1589         u64 offset, csr;
1590
1591         if (ctx == &ctx->ohci->at_request_ctx) {
1592                 packet->ack = ACK_PENDING;
1593                 packet->callback(packet, &ctx->ohci->card, packet->ack);
1594         }
1595
1596         offset =
1597                 ((unsigned long long)
1598                  HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
1599                 packet->header[2];
1600         csr = offset - CSR_REGISTER_BASE;
1601
1602         /* Handle config rom reads. */
1603         if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
1604                 handle_local_rom(ctx->ohci, packet, csr);
1605         else switch (csr) {
1606         case CSR_BUS_MANAGER_ID:
1607         case CSR_BANDWIDTH_AVAILABLE:
1608         case CSR_CHANNELS_AVAILABLE_HI:
1609         case CSR_CHANNELS_AVAILABLE_LO:
1610                 handle_local_lock(ctx->ohci, packet, csr);
1611                 break;
1612         default:
1613                 if (ctx == &ctx->ohci->at_request_ctx)
1614                         fw_core_handle_request(&ctx->ohci->card, packet);
1615                 else
1616                         fw_core_handle_response(&ctx->ohci->card, packet);
1617                 break;
1618         }
1619
1620         if (ctx == &ctx->ohci->at_response_ctx) {
1621                 packet->ack = ACK_COMPLETE;
1622                 packet->callback(packet, &ctx->ohci->card, packet->ack);
1623         }
1624 }
1625
1626 static void at_context_transmit(struct context *ctx, struct fw_packet *packet)
1627 {
1628         unsigned long flags;
1629         int ret;
1630
1631         spin_lock_irqsave(&ctx->ohci->lock, flags);
1632
1633         if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
1634             ctx->ohci->generation == packet->generation) {
1635                 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1636                 handle_local_request(ctx, packet);
1637                 return;
1638         }
1639
1640         ret = at_context_queue_packet(ctx, packet);
1641         spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1642
1643         if (ret < 0)
1644                 packet->callback(packet, &ctx->ohci->card, packet->ack);
1645
1646 }
1647
1648 static void detect_dead_context(struct fw_ohci *ohci,
1649                                 const char *name, unsigned int regs)
1650 {
1651         u32 ctl;
1652
1653         ctl = reg_read(ohci, CONTROL_SET(regs));
1654         if (ctl & CONTEXT_DEAD)
1655                 ohci_err(ohci, "DMA context %s has stopped, error code: %s\n",
1656                         name, evts[ctl & 0x1f]);
1657 }
1658
1659 static void handle_dead_contexts(struct fw_ohci *ohci)
1660 {
1661         unsigned int i;
1662         char name[8];
1663
1664         detect_dead_context(ohci, "ATReq", OHCI1394_AsReqTrContextBase);
1665         detect_dead_context(ohci, "ATRsp", OHCI1394_AsRspTrContextBase);
1666         detect_dead_context(ohci, "ARReq", OHCI1394_AsReqRcvContextBase);
1667         detect_dead_context(ohci, "ARRsp", OHCI1394_AsRspRcvContextBase);
1668         for (i = 0; i < 32; ++i) {
1669                 if (!(ohci->it_context_support & (1 << i)))
1670                         continue;
1671                 sprintf(name, "IT%u", i);
1672                 detect_dead_context(ohci, name, OHCI1394_IsoXmitContextBase(i));
1673         }
1674         for (i = 0; i < 32; ++i) {
1675                 if (!(ohci->ir_context_support & (1 << i)))
1676                         continue;
1677                 sprintf(name, "IR%u", i);
1678                 detect_dead_context(ohci, name, OHCI1394_IsoRcvContextBase(i));
1679         }
1680         /* TODO: maybe try to flush and restart the dead contexts */
1681 }
1682
1683 static u32 cycle_timer_ticks(u32 cycle_timer)
1684 {
1685         u32 ticks;
1686
1687         ticks = cycle_timer & 0xfff;
1688         ticks += 3072 * ((cycle_timer >> 12) & 0x1fff);
1689         ticks += (3072 * 8000) * (cycle_timer >> 25);
1690
1691         return ticks;
1692 }
1693
1694 /*
1695  * Some controllers exhibit one or more of the following bugs when updating the
1696  * iso cycle timer register:
1697  *  - When the lowest six bits are wrapping around to zero, a read that happens
1698  *    at the same time will return garbage in the lowest ten bits.
1699  *  - When the cycleOffset field wraps around to zero, the cycleCount field is
1700  *    not incremented for about 60 ns.
1701  *  - Occasionally, the entire register reads zero.
1702  *
1703  * To catch these, we read the register three times and ensure that the
1704  * difference between each two consecutive reads is approximately the same, i.e.
1705  * less than twice the other.  Furthermore, any negative difference indicates an
1706  * error.  (A PCI read should take at least 20 ticks of the 24.576 MHz timer to
1707  * execute, so we have enough precision to compute the ratio of the differences.)
1708  */
1709 static u32 get_cycle_time(struct fw_ohci *ohci)
1710 {
1711         u32 c0, c1, c2;
1712         u32 t0, t1, t2;
1713         s32 diff01, diff12;
1714         int i;
1715
1716         c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1717
1718         if (ohci->quirks & QUIRK_CYCLE_TIMER) {
1719                 i = 0;
1720                 c1 = c2;
1721                 c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1722                 do {
1723                         c0 = c1;
1724                         c1 = c2;
1725                         c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1726                         t0 = cycle_timer_ticks(c0);
1727                         t1 = cycle_timer_ticks(c1);
1728                         t2 = cycle_timer_ticks(c2);
1729                         diff01 = t1 - t0;
1730                         diff12 = t2 - t1;
1731                 } while ((diff01 <= 0 || diff12 <= 0 ||
1732                           diff01 / diff12 >= 2 || diff12 / diff01 >= 2)
1733                          && i++ < 20);
1734         }
1735
1736         return c2;
1737 }
1738
1739 /*
1740  * This function has to be called at least every 64 seconds.  The bus_time
1741  * field stores not only the upper 25 bits of the BUS_TIME register but also
1742  * the most significant bit of the cycle timer in bit 6 so that we can detect
1743  * changes in this bit.
1744  */
1745 static u32 update_bus_time(struct fw_ohci *ohci)
1746 {
1747         u32 cycle_time_seconds = get_cycle_time(ohci) >> 25;
1748
1749         if (unlikely(!ohci->bus_time_running)) {
1750                 reg_write(ohci, OHCI1394_IntMaskSet, OHCI1394_cycle64Seconds);
1751                 ohci->bus_time = (lower_32_bits(ktime_get_seconds()) & ~0x7f) |
1752                                  (cycle_time_seconds & 0x40);
1753                 ohci->bus_time_running = true;
1754         }
1755
1756         if ((ohci->bus_time & 0x40) != (cycle_time_seconds & 0x40))
1757                 ohci->bus_time += 0x40;
1758
1759         return ohci->bus_time | cycle_time_seconds;
1760 }
1761
1762 static int get_status_for_port(struct fw_ohci *ohci, int port_index)
1763 {
1764         int reg;
1765
1766         mutex_lock(&ohci->phy_reg_mutex);
1767         reg = write_phy_reg(ohci, 7, port_index);
1768         if (reg >= 0)
1769                 reg = read_phy_reg(ohci, 8);
1770         mutex_unlock(&ohci->phy_reg_mutex);
1771         if (reg < 0)
1772                 return reg;
1773
1774         switch (reg & 0x0f) {
1775         case 0x06:
1776                 return 2;       /* is child node (connected to parent node) */
1777         case 0x0e:
1778                 return 3;       /* is parent node (connected to child node) */
1779         }
1780         return 1;               /* not connected */
1781 }
1782
1783 static int get_self_id_pos(struct fw_ohci *ohci, u32 self_id,
1784         int self_id_count)
1785 {
1786         int i;
1787         u32 entry;
1788
1789         for (i = 0; i < self_id_count; i++) {
1790                 entry = ohci->self_id_buffer[i];
1791                 if ((self_id & 0xff000000) == (entry & 0xff000000))
1792                         return -1;
1793                 if ((self_id & 0xff000000) < (entry & 0xff000000))
1794                         return i;
1795         }
1796         return i;
1797 }
1798
1799 static int initiated_reset(struct fw_ohci *ohci)
1800 {
1801         int reg;
1802         int ret = 0;
1803
1804         mutex_lock(&ohci->phy_reg_mutex);
1805         reg = write_phy_reg(ohci, 7, 0xe0); /* Select page 7 */
1806         if (reg >= 0) {
1807                 reg = read_phy_reg(ohci, 8);
1808                 reg |= 0x40;
1809                 reg = write_phy_reg(ohci, 8, reg); /* set PMODE bit */
1810                 if (reg >= 0) {
1811                         reg = read_phy_reg(ohci, 12); /* read register 12 */
1812                         if (reg >= 0) {
1813                                 if ((reg & 0x08) == 0x08) {
1814                                         /* bit 3 indicates "initiated reset" */
1815                                         ret = 0x2;
1816                                 }
1817                         }
1818                 }
1819         }
1820         mutex_unlock(&ohci->phy_reg_mutex);
1821         return ret;
1822 }
1823
1824 /*
1825  * TI TSB82AA2B and TSB12LV26 do not receive the selfID of a locally
1826  * attached TSB41BA3D phy; see http://www.ti.com/litv/pdf/sllz059.
1827  * Construct the selfID from phy register contents.
1828  */
1829 static int find_and_insert_self_id(struct fw_ohci *ohci, int self_id_count)
1830 {
1831         int reg, i, pos, status;
1832         /* link active 1, speed 3, bridge 0, contender 1, more packets 0 */
1833         u32 self_id = 0x8040c800;
1834
1835         reg = reg_read(ohci, OHCI1394_NodeID);
1836         if (!(reg & OHCI1394_NodeID_idValid)) {
1837                 ohci_notice(ohci,
1838                             "node ID not valid, new bus reset in progress\n");
1839                 return -EBUSY;
1840         }
1841         self_id |= ((reg & 0x3f) << 24); /* phy ID */
1842
1843         reg = ohci_read_phy_reg(&ohci->card, 4);
1844         if (reg < 0)
1845                 return reg;
1846         self_id |= ((reg & 0x07) << 8); /* power class */
1847
1848         reg = ohci_read_phy_reg(&ohci->card, 1);
1849         if (reg < 0)
1850                 return reg;
1851         self_id |= ((reg & 0x3f) << 16); /* gap count */
1852
1853         for (i = 0; i < 3; i++) {
1854                 status = get_status_for_port(ohci, i);
1855                 if (status < 0)
1856                         return status;
1857                 self_id |= ((status & 0x3) << (6 - (i * 2)));
1858         }
1859
1860         self_id |= initiated_reset(ohci);
1861
1862         pos = get_self_id_pos(ohci, self_id, self_id_count);
1863         if (pos >= 0) {
1864                 memmove(&(ohci->self_id_buffer[pos+1]),
1865                         &(ohci->self_id_buffer[pos]),
1866                         (self_id_count - pos) * sizeof(*ohci->self_id_buffer));
1867                 ohci->self_id_buffer[pos] = self_id;
1868                 self_id_count++;
1869         }
1870         return self_id_count;
1871 }
1872
1873 static void bus_reset_work(struct work_struct *work)
1874 {
1875         struct fw_ohci *ohci =
1876                 container_of(work, struct fw_ohci, bus_reset_work);
1877         int self_id_count, generation, new_generation, i, j;
1878         u32 reg;
1879         void *free_rom = NULL;
1880         dma_addr_t free_rom_bus = 0;
1881         bool is_new_root;
1882
1883         reg = reg_read(ohci, OHCI1394_NodeID);
1884         if (!(reg & OHCI1394_NodeID_idValid)) {
1885                 ohci_notice(ohci,
1886                             "node ID not valid, new bus reset in progress\n");
1887                 return;
1888         }
1889         if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
1890                 ohci_notice(ohci, "malconfigured bus\n");
1891                 return;
1892         }
1893         ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
1894                                OHCI1394_NodeID_nodeNumber);
1895
1896         is_new_root = (reg & OHCI1394_NodeID_root) != 0;
1897         if (!(ohci->is_root && is_new_root))
1898                 reg_write(ohci, OHCI1394_LinkControlSet,
1899                           OHCI1394_LinkControl_cycleMaster);
1900         ohci->is_root = is_new_root;
1901
1902         reg = reg_read(ohci, OHCI1394_SelfIDCount);
1903         if (reg & OHCI1394_SelfIDCount_selfIDError) {
1904                 ohci_notice(ohci, "self ID receive error\n");
1905                 return;
1906         }
1907         /*
1908          * The count in the SelfIDCount register is the number of
1909          * bytes in the self ID receive buffer.  Since we also receive
1910          * the inverted quadlets and a header quadlet, we shift one
1911          * bit extra to get the actual number of self IDs.
1912          */
1913         self_id_count = (reg >> 3) & 0xff;
1914
1915         if (self_id_count > 252) {
1916                 ohci_notice(ohci, "bad selfIDSize (%08x)\n", reg);
1917                 return;
1918         }
1919
1920         generation = (cond_le32_to_cpu(ohci->self_id[0]) >> 16) & 0xff;
1921         rmb();
1922
1923         for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1924                 u32 id  = cond_le32_to_cpu(ohci->self_id[i]);
1925                 u32 id2 = cond_le32_to_cpu(ohci->self_id[i + 1]);
1926
1927                 if (id != ~id2) {
1928                         /*
1929                          * If the invalid data looks like a cycle start packet,
1930                          * it's likely to be the result of the cycle master
1931                          * having a wrong gap count.  In this case, the self IDs
1932                          * so far are valid and should be processed so that the
1933                          * bus manager can then correct the gap count.
1934                          */
1935                         if (id == 0xffff008f) {
1936                                 ohci_notice(ohci, "ignoring spurious self IDs\n");
1937                                 self_id_count = j;
1938                                 break;
1939                         }
1940
1941                         ohci_notice(ohci, "bad self ID %d/%d (%08x != ~%08x)\n",
1942                                     j, self_id_count, id, id2);
1943                         return;
1944                 }
1945                 ohci->self_id_buffer[j] = id;
1946         }
1947
1948         if (ohci->quirks & QUIRK_TI_SLLZ059) {
1949                 self_id_count = find_and_insert_self_id(ohci, self_id_count);
1950                 if (self_id_count < 0) {
1951                         ohci_notice(ohci,
1952                                     "could not construct local self ID\n");
1953                         return;
1954                 }
1955         }
1956
1957         if (self_id_count == 0) {
1958                 ohci_notice(ohci, "no self IDs\n");
1959                 return;
1960         }
1961         rmb();
1962
1963         /*
1964          * Check the consistency of the self IDs we just read.  The
1965          * problem we face is that a new bus reset can start while we
1966          * read out the self IDs from the DMA buffer. If this happens,
1967          * the DMA buffer will be overwritten with new self IDs and we
1968          * will read out inconsistent data.  The OHCI specification
1969          * (section 11.2) recommends a technique similar to
1970          * linux/seqlock.h, where we remember the generation of the
1971          * self IDs in the buffer before reading them out and compare
1972          * it to the current generation after reading them out.  If
1973          * the two generations match we know we have a consistent set
1974          * of self IDs.
1975          */
1976
1977         new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
1978         if (new_generation != generation) {
1979                 ohci_notice(ohci, "new bus reset, discarding self ids\n");
1980                 return;
1981         }
1982
1983         /* FIXME: Document how the locking works. */
1984         spin_lock_irq(&ohci->lock);
1985
1986         ohci->generation = -1; /* prevent AT packet queueing */
1987         context_stop(&ohci->at_request_ctx);
1988         context_stop(&ohci->at_response_ctx);
1989
1990         spin_unlock_irq(&ohci->lock);
1991
1992         /*
1993          * Per OHCI 1.2 draft, clause 7.2.3.3, hardware may leave unsent
1994          * packets in the AT queues and software needs to drain them.
1995          * Some OHCI 1.1 controllers (JMicron) apparently require this too.
1996          */
1997         at_context_flush(&ohci->at_request_ctx);
1998         at_context_flush(&ohci->at_response_ctx);
1999
2000         spin_lock_irq(&ohci->lock);
2001
2002         ohci->generation = generation;
2003         reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
2004
2005         if (ohci->quirks & QUIRK_RESET_PACKET)
2006                 ohci->request_generation = generation;
2007
2008         /*
2009          * This next bit is unrelated to the AT context stuff but we
2010          * have to do it under the spinlock also.  If a new config rom
2011          * was set up before this reset, the old one is now no longer
2012          * in use and we can free it. Update the config rom pointers
2013          * to point to the current config rom and clear the
2014          * next_config_rom pointer so a new update can take place.
2015          */
2016
2017         if (ohci->next_config_rom != NULL) {
2018                 if (ohci->next_config_rom != ohci->config_rom) {
2019                         free_rom      = ohci->config_rom;
2020                         free_rom_bus  = ohci->config_rom_bus;
2021                 }
2022                 ohci->config_rom      = ohci->next_config_rom;
2023                 ohci->config_rom_bus  = ohci->next_config_rom_bus;
2024                 ohci->next_config_rom = NULL;
2025
2026                 /*
2027                  * Restore config_rom image and manually update
2028                  * config_rom registers.  Writing the header quadlet
2029                  * will indicate that the config rom is ready, so we
2030                  * do that last.
2031                  */
2032                 reg_write(ohci, OHCI1394_BusOptions,
2033                           be32_to_cpu(ohci->config_rom[2]));
2034                 ohci->config_rom[0] = ohci->next_header;
2035                 reg_write(ohci, OHCI1394_ConfigROMhdr,
2036                           be32_to_cpu(ohci->next_header));
2037         }
2038
2039         if (param_remote_dma) {
2040                 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
2041                 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
2042         }
2043
2044         spin_unlock_irq(&ohci->lock);
2045
2046         if (free_rom)
2047                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2048                                   free_rom, free_rom_bus);
2049
2050         log_selfids(ohci, generation, self_id_count);
2051
2052         fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
2053                                  self_id_count, ohci->self_id_buffer,
2054                                  ohci->csr_state_setclear_abdicate);
2055         ohci->csr_state_setclear_abdicate = false;
2056 }
2057
2058 static irqreturn_t irq_handler(int irq, void *data)
2059 {
2060         struct fw_ohci *ohci = data;
2061         u32 event, iso_event;
2062         int i;
2063
2064         event = reg_read(ohci, OHCI1394_IntEventClear);
2065
2066         if (!event || !~event)
2067                 return IRQ_NONE;
2068
2069         /*
2070          * busReset and postedWriteErr must not be cleared yet
2071          * (OHCI 1.1 clauses 7.2.3.2 and 13.2.8.1)
2072          */
2073         reg_write(ohci, OHCI1394_IntEventClear,
2074                   event & ~(OHCI1394_busReset | OHCI1394_postedWriteErr));
2075         log_irqs(ohci, event);
2076
2077         if (event & OHCI1394_selfIDComplete)
2078                 queue_work(selfid_workqueue, &ohci->bus_reset_work);
2079
2080         if (event & OHCI1394_RQPkt)
2081                 tasklet_schedule(&ohci->ar_request_ctx.tasklet);
2082
2083         if (event & OHCI1394_RSPkt)
2084                 tasklet_schedule(&ohci->ar_response_ctx.tasklet);
2085
2086         if (event & OHCI1394_reqTxComplete)
2087                 tasklet_schedule(&ohci->at_request_ctx.tasklet);
2088
2089         if (event & OHCI1394_respTxComplete)
2090                 tasklet_schedule(&ohci->at_response_ctx.tasklet);
2091
2092         if (event & OHCI1394_isochRx) {
2093                 iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
2094                 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
2095
2096                 while (iso_event) {
2097                         i = ffs(iso_event) - 1;
2098                         tasklet_schedule(
2099                                 &ohci->ir_context_list[i].context.tasklet);
2100                         iso_event &= ~(1 << i);
2101                 }
2102         }
2103
2104         if (event & OHCI1394_isochTx) {
2105                 iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
2106                 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
2107
2108                 while (iso_event) {
2109                         i = ffs(iso_event) - 1;
2110                         tasklet_schedule(
2111                                 &ohci->it_context_list[i].context.tasklet);
2112                         iso_event &= ~(1 << i);
2113                 }
2114         }
2115
2116         if (unlikely(event & OHCI1394_regAccessFail))
2117                 ohci_err(ohci, "register access failure\n");
2118
2119         if (unlikely(event & OHCI1394_postedWriteErr)) {
2120                 reg_read(ohci, OHCI1394_PostedWriteAddressHi);
2121                 reg_read(ohci, OHCI1394_PostedWriteAddressLo);
2122                 reg_write(ohci, OHCI1394_IntEventClear,
2123                           OHCI1394_postedWriteErr);
2124                 if (printk_ratelimit())
2125                         ohci_err(ohci, "PCI posted write error\n");
2126         }
2127
2128         if (unlikely(event & OHCI1394_cycleTooLong)) {
2129                 if (printk_ratelimit())
2130                         ohci_notice(ohci, "isochronous cycle too long\n");
2131                 reg_write(ohci, OHCI1394_LinkControlSet,
2132                           OHCI1394_LinkControl_cycleMaster);
2133         }
2134
2135         if (unlikely(event & OHCI1394_cycleInconsistent)) {
2136                 /*
2137                  * We need to clear this event bit in order to make
2138                  * cycleMatch isochronous I/O work.  In theory we should
2139                  * stop active cycleMatch iso contexts now and restart
2140                  * them at least two cycles later.  (FIXME?)
2141                  */
2142                 if (printk_ratelimit())
2143                         ohci_notice(ohci, "isochronous cycle inconsistent\n");
2144         }
2145
2146         if (unlikely(event & OHCI1394_unrecoverableError))
2147                 handle_dead_contexts(ohci);
2148
2149         if (event & OHCI1394_cycle64Seconds) {
2150                 spin_lock(&ohci->lock);
2151                 update_bus_time(ohci);
2152                 spin_unlock(&ohci->lock);
2153         } else
2154                 flush_writes(ohci);
2155
2156         return IRQ_HANDLED;
2157 }
2158
2159 static int software_reset(struct fw_ohci *ohci)
2160 {
2161         u32 val;
2162         int i;
2163
2164         reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
2165         for (i = 0; i < 500; i++) {
2166                 val = reg_read(ohci, OHCI1394_HCControlSet);
2167                 if (!~val)
2168                         return -ENODEV; /* Card was ejected. */
2169
2170                 if (!(val & OHCI1394_HCControl_softReset))
2171                         return 0;
2172
2173                 msleep(1);
2174         }
2175
2176         return -EBUSY;
2177 }
2178
2179 static void copy_config_rom(__be32 *dest, const __be32 *src, size_t length)
2180 {
2181         size_t size = length * 4;
2182
2183         memcpy(dest, src, size);
2184         if (size < CONFIG_ROM_SIZE)
2185                 memset(&dest[length], 0, CONFIG_ROM_SIZE - size);
2186 }
2187
2188 static int configure_1394a_enhancements(struct fw_ohci *ohci)
2189 {
2190         bool enable_1394a;
2191         int ret, clear, set, offset;
2192
2193         /* Check if the driver should configure link and PHY. */
2194         if (!(reg_read(ohci, OHCI1394_HCControlSet) &
2195               OHCI1394_HCControl_programPhyEnable))
2196                 return 0;
2197
2198         /* Paranoia: check whether the PHY supports 1394a, too. */
2199         enable_1394a = false;
2200         ret = read_phy_reg(ohci, 2);
2201         if (ret < 0)
2202                 return ret;
2203         if ((ret & PHY_EXTENDED_REGISTERS) == PHY_EXTENDED_REGISTERS) {
2204                 ret = read_paged_phy_reg(ohci, 1, 8);
2205                 if (ret < 0)
2206                         return ret;
2207                 if (ret >= 1)
2208                         enable_1394a = true;
2209         }
2210
2211         if (ohci->quirks & QUIRK_NO_1394A)
2212                 enable_1394a = false;
2213
2214         /* Configure PHY and link consistently. */
2215         if (enable_1394a) {
2216                 clear = 0;
2217                 set = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
2218         } else {
2219                 clear = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
2220                 set = 0;
2221         }
2222         ret = update_phy_reg(ohci, 5, clear, set);
2223         if (ret < 0)
2224                 return ret;
2225
2226         if (enable_1394a)
2227                 offset = OHCI1394_HCControlSet;
2228         else
2229                 offset = OHCI1394_HCControlClear;
2230         reg_write(ohci, offset, OHCI1394_HCControl_aPhyEnhanceEnable);
2231
2232         /* Clean up: configuration has been taken care of. */
2233         reg_write(ohci, OHCI1394_HCControlClear,
2234                   OHCI1394_HCControl_programPhyEnable);
2235
2236         return 0;
2237 }
2238
2239 static int probe_tsb41ba3d(struct fw_ohci *ohci)
2240 {
2241         /* TI vendor ID = 0x080028, TSB41BA3D product ID = 0x833005 (sic) */
2242         static const u8 id[] = { 0x08, 0x00, 0x28, 0x83, 0x30, 0x05, };
2243         int reg, i;
2244
2245         reg = read_phy_reg(ohci, 2);
2246         if (reg < 0)
2247                 return reg;
2248         if ((reg & PHY_EXTENDED_REGISTERS) != PHY_EXTENDED_REGISTERS)
2249                 return 0;
2250
2251         for (i = ARRAY_SIZE(id) - 1; i >= 0; i--) {
2252                 reg = read_paged_phy_reg(ohci, 1, i + 10);
2253                 if (reg < 0)
2254                         return reg;
2255                 if (reg != id[i])
2256                         return 0;
2257         }
2258         return 1;
2259 }
2260
2261 static int ohci_enable(struct fw_card *card,
2262                        const __be32 *config_rom, size_t length)
2263 {
2264         struct fw_ohci *ohci = fw_ohci(card);
2265         u32 lps, version, irqs;
2266         int i, ret;
2267
2268         ret = software_reset(ohci);
2269         if (ret < 0) {
2270                 ohci_err(ohci, "failed to reset ohci card\n");
2271                 return ret;
2272         }
2273
2274         /*
2275          * Now enable LPS, which we need in order to start accessing
2276          * most of the registers.  In fact, on some cards (ALI M5251),
2277          * accessing registers in the SClk domain without LPS enabled
2278          * will lock up the machine.  Wait 50msec to make sure we have
2279          * full link enabled.  However, with some cards (well, at least
2280          * a JMicron PCIe card), we have to try again sometimes.
2281          *
2282          * TI TSB82AA2 + TSB81BA3(A) cards signal LPS enabled early but
2283          * cannot actually use the phy at that time.  These need tens of
2284          * millisecods pause between LPS write and first phy access too.
2285          */
2286
2287         reg_write(ohci, OHCI1394_HCControlSet,
2288                   OHCI1394_HCControl_LPS |
2289                   OHCI1394_HCControl_postedWriteEnable);
2290         flush_writes(ohci);
2291
2292         for (lps = 0, i = 0; !lps && i < 3; i++) {
2293                 msleep(50);
2294                 lps = reg_read(ohci, OHCI1394_HCControlSet) &
2295                       OHCI1394_HCControl_LPS;
2296         }
2297
2298         if (!lps) {
2299                 ohci_err(ohci, "failed to set Link Power Status\n");
2300                 return -EIO;
2301         }
2302
2303         if (ohci->quirks & QUIRK_TI_SLLZ059) {
2304                 ret = probe_tsb41ba3d(ohci);
2305                 if (ret < 0)
2306                         return ret;
2307                 if (ret)
2308                         ohci_notice(ohci, "local TSB41BA3D phy\n");
2309                 else
2310                         ohci->quirks &= ~QUIRK_TI_SLLZ059;
2311         }
2312
2313         reg_write(ohci, OHCI1394_HCControlClear,
2314                   OHCI1394_HCControl_noByteSwapData);
2315
2316         reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
2317         reg_write(ohci, OHCI1394_LinkControlSet,
2318                   OHCI1394_LinkControl_cycleTimerEnable |
2319                   OHCI1394_LinkControl_cycleMaster);
2320
2321         reg_write(ohci, OHCI1394_ATRetries,
2322                   OHCI1394_MAX_AT_REQ_RETRIES |
2323                   (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
2324                   (OHCI1394_MAX_PHYS_RESP_RETRIES << 8) |
2325                   (200 << 16));
2326
2327         ohci->bus_time_running = false;
2328
2329         for (i = 0; i < 32; i++)
2330                 if (ohci->ir_context_support & (1 << i))
2331                         reg_write(ohci, OHCI1394_IsoRcvContextControlClear(i),
2332                                   IR_CONTEXT_MULTI_CHANNEL_MODE);
2333
2334         version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
2335         if (version >= OHCI_VERSION_1_1) {
2336                 reg_write(ohci, OHCI1394_InitialChannelsAvailableHi,
2337                           0xfffffffe);
2338                 card->broadcast_channel_auto_allocated = true;
2339         }
2340
2341         /* Get implemented bits of the priority arbitration request counter. */
2342         reg_write(ohci, OHCI1394_FairnessControl, 0x3f);
2343         ohci->pri_req_max = reg_read(ohci, OHCI1394_FairnessControl) & 0x3f;
2344         reg_write(ohci, OHCI1394_FairnessControl, 0);
2345         card->priority_budget_implemented = ohci->pri_req_max != 0;
2346
2347         reg_write(ohci, OHCI1394_PhyUpperBound, FW_MAX_PHYSICAL_RANGE >> 16);
2348         reg_write(ohci, OHCI1394_IntEventClear, ~0);
2349         reg_write(ohci, OHCI1394_IntMaskClear, ~0);
2350
2351         ret = configure_1394a_enhancements(ohci);
2352         if (ret < 0)
2353                 return ret;
2354
2355         /* Activate link_on bit and contender bit in our self ID packets.*/
2356         ret = ohci_update_phy_reg(card, 4, 0, PHY_LINK_ACTIVE | PHY_CONTENDER);
2357         if (ret < 0)
2358                 return ret;
2359
2360         /*
2361          * When the link is not yet enabled, the atomic config rom
2362          * update mechanism described below in ohci_set_config_rom()
2363          * is not active.  We have to update ConfigRomHeader and
2364          * BusOptions manually, and the write to ConfigROMmap takes
2365          * effect immediately.  We tie this to the enabling of the
2366          * link, so we have a valid config rom before enabling - the
2367          * OHCI requires that ConfigROMhdr and BusOptions have valid
2368          * values before enabling.
2369          *
2370          * However, when the ConfigROMmap is written, some controllers
2371          * always read back quadlets 0 and 2 from the config rom to
2372          * the ConfigRomHeader and BusOptions registers on bus reset.
2373          * They shouldn't do that in this initial case where the link
2374          * isn't enabled.  This means we have to use the same
2375          * workaround here, setting the bus header to 0 and then write
2376          * the right values in the bus reset tasklet.
2377          */
2378
2379         if (config_rom) {
2380                 ohci->next_config_rom =
2381                         dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2382                                            &ohci->next_config_rom_bus,
2383                                            GFP_KERNEL);
2384                 if (ohci->next_config_rom == NULL)
2385                         return -ENOMEM;
2386
2387                 copy_config_rom(ohci->next_config_rom, config_rom, length);
2388         } else {
2389                 /*
2390                  * In the suspend case, config_rom is NULL, which
2391                  * means that we just reuse the old config rom.
2392                  */
2393                 ohci->next_config_rom = ohci->config_rom;
2394                 ohci->next_config_rom_bus = ohci->config_rom_bus;
2395         }
2396
2397         ohci->next_header = ohci->next_config_rom[0];
2398         ohci->next_config_rom[0] = 0;
2399         reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
2400         reg_write(ohci, OHCI1394_BusOptions,
2401                   be32_to_cpu(ohci->next_config_rom[2]));
2402         reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2403
2404         reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
2405
2406         irqs =  OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
2407                 OHCI1394_RQPkt | OHCI1394_RSPkt |
2408                 OHCI1394_isochTx | OHCI1394_isochRx |
2409                 OHCI1394_postedWriteErr |
2410                 OHCI1394_selfIDComplete |
2411                 OHCI1394_regAccessFail |
2412                 OHCI1394_cycleInconsistent |
2413                 OHCI1394_unrecoverableError |
2414                 OHCI1394_cycleTooLong |
2415                 OHCI1394_masterIntEnable;
2416         if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS)
2417                 irqs |= OHCI1394_busReset;
2418         reg_write(ohci, OHCI1394_IntMaskSet, irqs);
2419
2420         reg_write(ohci, OHCI1394_HCControlSet,
2421                   OHCI1394_HCControl_linkEnable |
2422                   OHCI1394_HCControl_BIBimageValid);
2423
2424         reg_write(ohci, OHCI1394_LinkControlSet,
2425                   OHCI1394_LinkControl_rcvSelfID |
2426                   OHCI1394_LinkControl_rcvPhyPkt);
2427
2428         ar_context_run(&ohci->ar_request_ctx);
2429         ar_context_run(&ohci->ar_response_ctx);
2430
2431         flush_writes(ohci);
2432
2433         /* We are ready to go, reset bus to finish initialization. */
2434         fw_schedule_bus_reset(&ohci->card, false, true);
2435
2436         return 0;
2437 }
2438
2439 static int ohci_set_config_rom(struct fw_card *card,
2440                                const __be32 *config_rom, size_t length)
2441 {
2442         struct fw_ohci *ohci;
2443         __be32 *next_config_rom;
2444         dma_addr_t next_config_rom_bus;
2445
2446         ohci = fw_ohci(card);
2447
2448         /*
2449          * When the OHCI controller is enabled, the config rom update
2450          * mechanism is a bit tricky, but easy enough to use.  See
2451          * section 5.5.6 in the OHCI specification.
2452          *
2453          * The OHCI controller caches the new config rom address in a
2454          * shadow register (ConfigROMmapNext) and needs a bus reset
2455          * for the changes to take place.  When the bus reset is
2456          * detected, the controller loads the new values for the
2457          * ConfigRomHeader and BusOptions registers from the specified
2458          * config rom and loads ConfigROMmap from the ConfigROMmapNext
2459          * shadow register. All automatically and atomically.
2460          *
2461          * Now, there's a twist to this story.  The automatic load of
2462          * ConfigRomHeader and BusOptions doesn't honor the
2463          * noByteSwapData bit, so with a be32 config rom, the
2464          * controller will load be32 values in to these registers
2465          * during the atomic update, even on litte endian
2466          * architectures.  The workaround we use is to put a 0 in the
2467          * header quadlet; 0 is endian agnostic and means that the
2468          * config rom isn't ready yet.  In the bus reset tasklet we
2469          * then set up the real values for the two registers.
2470          *
2471          * We use ohci->lock to avoid racing with the code that sets
2472          * ohci->next_config_rom to NULL (see bus_reset_work).
2473          */
2474
2475         next_config_rom =
2476                 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2477                                    &next_config_rom_bus, GFP_KERNEL);
2478         if (next_config_rom == NULL)
2479                 return -ENOMEM;
2480
2481         spin_lock_irq(&ohci->lock);
2482
2483         /*
2484          * If there is not an already pending config_rom update,
2485          * push our new allocation into the ohci->next_config_rom
2486          * and then mark the local variable as null so that we
2487          * won't deallocate the new buffer.
2488          *
2489          * OTOH, if there is a pending config_rom update, just
2490          * use that buffer with the new config_rom data, and
2491          * let this routine free the unused DMA allocation.
2492          */
2493
2494         if (ohci->next_config_rom == NULL) {
2495                 ohci->next_config_rom = next_config_rom;
2496                 ohci->next_config_rom_bus = next_config_rom_bus;
2497                 next_config_rom = NULL;
2498         }
2499
2500         copy_config_rom(ohci->next_config_rom, config_rom, length);
2501
2502         ohci->next_header = config_rom[0];
2503         ohci->next_config_rom[0] = 0;
2504
2505         reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2506
2507         spin_unlock_irq(&ohci->lock);
2508
2509         /* If we didn't use the DMA allocation, delete it. */
2510         if (next_config_rom != NULL)
2511                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2512                                   next_config_rom, next_config_rom_bus);
2513
2514         /*
2515          * Now initiate a bus reset to have the changes take
2516          * effect. We clean up the old config rom memory and DMA
2517          * mappings in the bus reset tasklet, since the OHCI
2518          * controller could need to access it before the bus reset
2519          * takes effect.
2520          */
2521
2522         fw_schedule_bus_reset(&ohci->card, true, true);
2523
2524         return 0;
2525 }
2526
2527 static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
2528 {
2529         struct fw_ohci *ohci = fw_ohci(card);
2530
2531         at_context_transmit(&ohci->at_request_ctx, packet);
2532 }
2533
2534 static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
2535 {
2536         struct fw_ohci *ohci = fw_ohci(card);
2537
2538         at_context_transmit(&ohci->at_response_ctx, packet);
2539 }
2540
2541 static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
2542 {
2543         struct fw_ohci *ohci = fw_ohci(card);
2544         struct context *ctx = &ohci->at_request_ctx;
2545         struct driver_data *driver_data = packet->driver_data;
2546         int ret = -ENOENT;
2547
2548         tasklet_disable_in_atomic(&ctx->tasklet);
2549
2550         if (packet->ack != 0)
2551                 goto out;
2552
2553         if (packet->payload_mapped)
2554                 dma_unmap_single(ohci->card.device, packet->payload_bus,
2555                                  packet->payload_length, DMA_TO_DEVICE);
2556
2557         log_ar_at_event(ohci, 'T', packet->speed, packet->header, 0x20);
2558         driver_data->packet = NULL;
2559         packet->ack = RCODE_CANCELLED;
2560         packet->callback(packet, &ohci->card, packet->ack);
2561         ret = 0;
2562  out:
2563         tasklet_enable(&ctx->tasklet);
2564
2565         return ret;
2566 }
2567
2568 static int ohci_enable_phys_dma(struct fw_card *card,
2569                                 int node_id, int generation)
2570 {
2571         struct fw_ohci *ohci = fw_ohci(card);
2572         unsigned long flags;
2573         int n, ret = 0;
2574
2575         if (param_remote_dma)
2576                 return 0;
2577
2578         /*
2579          * FIXME:  Make sure this bitmask is cleared when we clear the busReset
2580          * interrupt bit.  Clear physReqResourceAllBuses on bus reset.
2581          */
2582
2583         spin_lock_irqsave(&ohci->lock, flags);
2584
2585         if (ohci->generation != generation) {
2586                 ret = -ESTALE;
2587                 goto out;
2588         }
2589
2590         /*
2591          * Note, if the node ID contains a non-local bus ID, physical DMA is
2592          * enabled for _all_ nodes on remote buses.
2593          */
2594
2595         n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
2596         if (n < 32)
2597                 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
2598         else
2599                 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
2600
2601         flush_writes(ohci);
2602  out:
2603         spin_unlock_irqrestore(&ohci->lock, flags);
2604
2605         return ret;
2606 }
2607
2608 static u32 ohci_read_csr(struct fw_card *card, int csr_offset)
2609 {
2610         struct fw_ohci *ohci = fw_ohci(card);
2611         unsigned long flags;
2612         u32 value;
2613
2614         switch (csr_offset) {
2615         case CSR_STATE_CLEAR:
2616         case CSR_STATE_SET:
2617                 if (ohci->is_root &&
2618                     (reg_read(ohci, OHCI1394_LinkControlSet) &
2619                      OHCI1394_LinkControl_cycleMaster))
2620                         value = CSR_STATE_BIT_CMSTR;
2621                 else
2622                         value = 0;
2623                 if (ohci->csr_state_setclear_abdicate)
2624                         value |= CSR_STATE_BIT_ABDICATE;
2625
2626                 return value;
2627
2628         case CSR_NODE_IDS:
2629                 return reg_read(ohci, OHCI1394_NodeID) << 16;
2630
2631         case CSR_CYCLE_TIME:
2632                 return get_cycle_time(ohci);
2633
2634         case CSR_BUS_TIME:
2635                 /*
2636                  * We might be called just after the cycle timer has wrapped
2637                  * around but just before the cycle64Seconds handler, so we
2638                  * better check here, too, if the bus time needs to be updated.
2639                  */
2640                 spin_lock_irqsave(&ohci->lock, flags);
2641                 value = update_bus_time(ohci);
2642                 spin_unlock_irqrestore(&ohci->lock, flags);
2643                 return value;
2644
2645         case CSR_BUSY_TIMEOUT:
2646                 value = reg_read(ohci, OHCI1394_ATRetries);
2647                 return (value >> 4) & 0x0ffff00f;
2648
2649         case CSR_PRIORITY_BUDGET:
2650                 return (reg_read(ohci, OHCI1394_FairnessControl) & 0x3f) |
2651                         (ohci->pri_req_max << 8);
2652
2653         default:
2654                 WARN_ON(1);
2655                 return 0;
2656         }
2657 }
2658
2659 static void ohci_write_csr(struct fw_card *card, int csr_offset, u32 value)
2660 {
2661         struct fw_ohci *ohci = fw_ohci(card);
2662         unsigned long flags;
2663
2664         switch (csr_offset) {
2665         case CSR_STATE_CLEAR:
2666                 if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2667                         reg_write(ohci, OHCI1394_LinkControlClear,
2668                                   OHCI1394_LinkControl_cycleMaster);
2669                         flush_writes(ohci);
2670                 }
2671                 if (value & CSR_STATE_BIT_ABDICATE)
2672                         ohci->csr_state_setclear_abdicate = false;
2673                 break;
2674
2675         case CSR_STATE_SET:
2676                 if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2677                         reg_write(ohci, OHCI1394_LinkControlSet,
2678                                   OHCI1394_LinkControl_cycleMaster);
2679                         flush_writes(ohci);
2680                 }
2681                 if (value & CSR_STATE_BIT_ABDICATE)
2682                         ohci->csr_state_setclear_abdicate = true;
2683                 break;
2684
2685         case CSR_NODE_IDS:
2686                 reg_write(ohci, OHCI1394_NodeID, value >> 16);
2687                 flush_writes(ohci);
2688                 break;
2689
2690         case CSR_CYCLE_TIME:
2691                 reg_write(ohci, OHCI1394_IsochronousCycleTimer, value);
2692                 reg_write(ohci, OHCI1394_IntEventSet,
2693                           OHCI1394_cycleInconsistent);
2694                 flush_writes(ohci);
2695                 break;
2696
2697         case CSR_BUS_TIME:
2698                 spin_lock_irqsave(&ohci->lock, flags);
2699                 ohci->bus_time = (update_bus_time(ohci) & 0x40) |
2700                                  (value & ~0x7f);
2701                 spin_unlock_irqrestore(&ohci->lock, flags);
2702                 break;
2703
2704         case CSR_BUSY_TIMEOUT:
2705                 value = (value & 0xf) | ((value & 0xf) << 4) |
2706                         ((value & 0xf) << 8) | ((value & 0x0ffff000) << 4);
2707                 reg_write(ohci, OHCI1394_ATRetries, value);
2708                 flush_writes(ohci);
2709                 break;
2710
2711         case CSR_PRIORITY_BUDGET:
2712                 reg_write(ohci, OHCI1394_FairnessControl, value & 0x3f);
2713                 flush_writes(ohci);
2714                 break;
2715
2716         default:
2717                 WARN_ON(1);
2718                 break;
2719         }
2720 }
2721
2722 static void flush_iso_completions(struct iso_context *ctx)
2723 {
2724         ctx->base.callback.sc(&ctx->base, ctx->last_timestamp,
2725                               ctx->header_length, ctx->header,
2726                               ctx->base.callback_data);
2727         ctx->header_length = 0;
2728 }
2729
2730 static void copy_iso_headers(struct iso_context *ctx, const u32 *dma_hdr)
2731 {
2732         u32 *ctx_hdr;
2733
2734         if (ctx->header_length + ctx->base.header_size > PAGE_SIZE) {
2735                 if (ctx->base.drop_overflow_headers)
2736                         return;
2737                 flush_iso_completions(ctx);
2738         }
2739
2740         ctx_hdr = ctx->header + ctx->header_length;
2741         ctx->last_timestamp = (u16)le32_to_cpu((__force __le32)dma_hdr[0]);
2742
2743         /*
2744          * The two iso header quadlets are byteswapped to little
2745          * endian by the controller, but we want to present them
2746          * as big endian for consistency with the bus endianness.
2747          */
2748         if (ctx->base.header_size > 0)
2749                 ctx_hdr[0] = swab32(dma_hdr[1]); /* iso packet header */
2750         if (ctx->base.header_size > 4)
2751                 ctx_hdr[1] = swab32(dma_hdr[0]); /* timestamp */
2752         if (ctx->base.header_size > 8)
2753                 memcpy(&ctx_hdr[2], &dma_hdr[2], ctx->base.header_size - 8);
2754         ctx->header_length += ctx->base.header_size;
2755 }
2756
2757 static int handle_ir_packet_per_buffer(struct context *context,
2758                                        struct descriptor *d,
2759                                        struct descriptor *last)
2760 {
2761         struct iso_context *ctx =
2762                 container_of(context, struct iso_context, context);
2763         struct descriptor *pd;
2764         u32 buffer_dma;
2765
2766         for (pd = d; pd <= last; pd++)
2767                 if (pd->transfer_status)
2768                         break;
2769         if (pd > last)
2770                 /* Descriptor(s) not done yet, stop iteration */
2771                 return 0;
2772
2773         while (!(d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))) {
2774                 d++;
2775                 buffer_dma = le32_to_cpu(d->data_address);
2776                 dma_sync_single_range_for_cpu(context->ohci->card.device,
2777                                               buffer_dma & PAGE_MASK,
2778                                               buffer_dma & ~PAGE_MASK,
2779                                               le16_to_cpu(d->req_count),
2780                                               DMA_FROM_DEVICE);
2781         }
2782
2783         copy_iso_headers(ctx, (u32 *) (last + 1));
2784
2785         if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS))
2786                 flush_iso_completions(ctx);
2787
2788         return 1;
2789 }
2790
2791 /* d == last because each descriptor block is only a single descriptor. */
2792 static int handle_ir_buffer_fill(struct context *context,
2793                                  struct descriptor *d,
2794                                  struct descriptor *last)
2795 {
2796         struct iso_context *ctx =
2797                 container_of(context, struct iso_context, context);
2798         unsigned int req_count, res_count, completed;
2799         u32 buffer_dma;
2800
2801         req_count = le16_to_cpu(last->req_count);
2802         res_count = le16_to_cpu(READ_ONCE(last->res_count));
2803         completed = req_count - res_count;
2804         buffer_dma = le32_to_cpu(last->data_address);
2805
2806         if (completed > 0) {
2807                 ctx->mc_buffer_bus = buffer_dma;
2808                 ctx->mc_completed = completed;
2809         }
2810
2811         if (res_count != 0)
2812                 /* Descriptor(s) not done yet, stop iteration */
2813                 return 0;
2814
2815         dma_sync_single_range_for_cpu(context->ohci->card.device,
2816                                       buffer_dma & PAGE_MASK,
2817                                       buffer_dma & ~PAGE_MASK,
2818                                       completed, DMA_FROM_DEVICE);
2819
2820         if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS)) {
2821                 ctx->base.callback.mc(&ctx->base,
2822                                       buffer_dma + completed,
2823                                       ctx->base.callback_data);
2824                 ctx->mc_completed = 0;
2825         }
2826
2827         return 1;
2828 }
2829
2830 static void flush_ir_buffer_fill(struct iso_context *ctx)
2831 {
2832         dma_sync_single_range_for_cpu(ctx->context.ohci->card.device,
2833                                       ctx->mc_buffer_bus & PAGE_MASK,
2834                                       ctx->mc_buffer_bus & ~PAGE_MASK,
2835                                       ctx->mc_completed, DMA_FROM_DEVICE);
2836
2837         ctx->base.callback.mc(&ctx->base,
2838                               ctx->mc_buffer_bus + ctx->mc_completed,
2839                               ctx->base.callback_data);
2840         ctx->mc_completed = 0;
2841 }
2842
2843 static inline void sync_it_packet_for_cpu(struct context *context,
2844                                           struct descriptor *pd)
2845 {
2846         __le16 control;
2847         u32 buffer_dma;
2848
2849         /* only packets beginning with OUTPUT_MORE* have data buffers */
2850         if (pd->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
2851                 return;
2852
2853         /* skip over the OUTPUT_MORE_IMMEDIATE descriptor */
2854         pd += 2;
2855
2856         /*
2857          * If the packet has a header, the first OUTPUT_MORE/LAST descriptor's
2858          * data buffer is in the context program's coherent page and must not
2859          * be synced.
2860          */
2861         if ((le32_to_cpu(pd->data_address) & PAGE_MASK) ==
2862             (context->current_bus          & PAGE_MASK)) {
2863                 if (pd->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
2864                         return;
2865                 pd++;
2866         }
2867
2868         do {
2869                 buffer_dma = le32_to_cpu(pd->data_address);
2870                 dma_sync_single_range_for_cpu(context->ohci->card.device,
2871                                               buffer_dma & PAGE_MASK,
2872                                               buffer_dma & ~PAGE_MASK,
2873                                               le16_to_cpu(pd->req_count),
2874                                               DMA_TO_DEVICE);
2875                 control = pd->control;
2876                 pd++;
2877         } while (!(control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS)));
2878 }
2879
2880 static int handle_it_packet(struct context *context,
2881                             struct descriptor *d,
2882                             struct descriptor *last)
2883 {
2884         struct iso_context *ctx =
2885                 container_of(context, struct iso_context, context);
2886         struct descriptor *pd;
2887         __be32 *ctx_hdr;
2888
2889         for (pd = d; pd <= last; pd++)
2890                 if (pd->transfer_status)
2891                         break;
2892         if (pd > last)
2893                 /* Descriptor(s) not done yet, stop iteration */
2894                 return 0;
2895
2896         sync_it_packet_for_cpu(context, d);
2897
2898         if (ctx->header_length + 4 > PAGE_SIZE) {
2899                 if (ctx->base.drop_overflow_headers)
2900                         return 1;
2901                 flush_iso_completions(ctx);
2902         }
2903
2904         ctx_hdr = ctx->header + ctx->header_length;
2905         ctx->last_timestamp = le16_to_cpu(last->res_count);
2906         /* Present this value as big-endian to match the receive code */
2907         *ctx_hdr = cpu_to_be32((le16_to_cpu(pd->transfer_status) << 16) |
2908                                le16_to_cpu(pd->res_count));
2909         ctx->header_length += 4;
2910
2911         if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS))
2912                 flush_iso_completions(ctx);
2913
2914         return 1;
2915 }
2916
2917 static void set_multichannel_mask(struct fw_ohci *ohci, u64 channels)
2918 {
2919         u32 hi = channels >> 32, lo = channels;
2920
2921         reg_write(ohci, OHCI1394_IRMultiChanMaskHiClear, ~hi);
2922         reg_write(ohci, OHCI1394_IRMultiChanMaskLoClear, ~lo);
2923         reg_write(ohci, OHCI1394_IRMultiChanMaskHiSet, hi);
2924         reg_write(ohci, OHCI1394_IRMultiChanMaskLoSet, lo);
2925         ohci->mc_channels = channels;
2926 }
2927
2928 static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
2929                                 int type, int channel, size_t header_size)
2930 {
2931         struct fw_ohci *ohci = fw_ohci(card);
2932         struct iso_context *ctx;
2933         descriptor_callback_t callback;
2934         u64 *channels;
2935         u32 *mask, regs;
2936         int index, ret = -EBUSY;
2937
2938         spin_lock_irq(&ohci->lock);
2939
2940         switch (type) {
2941         case FW_ISO_CONTEXT_TRANSMIT:
2942                 mask     = &ohci->it_context_mask;
2943                 callback = handle_it_packet;
2944                 index    = ffs(*mask) - 1;
2945                 if (index >= 0) {
2946                         *mask &= ~(1 << index);
2947                         regs = OHCI1394_IsoXmitContextBase(index);
2948                         ctx  = &ohci->it_context_list[index];
2949                 }
2950                 break;
2951
2952         case FW_ISO_CONTEXT_RECEIVE:
2953                 channels = &ohci->ir_context_channels;
2954                 mask     = &ohci->ir_context_mask;
2955                 callback = handle_ir_packet_per_buffer;
2956                 index    = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1;
2957                 if (index >= 0) {
2958                         *channels &= ~(1ULL << channel);
2959                         *mask     &= ~(1 << index);
2960                         regs = OHCI1394_IsoRcvContextBase(index);
2961                         ctx  = &ohci->ir_context_list[index];
2962                 }
2963                 break;
2964
2965         case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2966                 mask     = &ohci->ir_context_mask;
2967                 callback = handle_ir_buffer_fill;
2968                 index    = !ohci->mc_allocated ? ffs(*mask) - 1 : -1;
2969                 if (index >= 0) {
2970                         ohci->mc_allocated = true;
2971                         *mask &= ~(1 << index);
2972                         regs = OHCI1394_IsoRcvContextBase(index);
2973                         ctx  = &ohci->ir_context_list[index];
2974                 }
2975                 break;
2976
2977         default:
2978                 index = -1;
2979                 ret = -ENOSYS;
2980         }
2981
2982         spin_unlock_irq(&ohci->lock);
2983
2984         if (index < 0)
2985                 return ERR_PTR(ret);
2986
2987         memset(ctx, 0, sizeof(*ctx));
2988         ctx->header_length = 0;
2989         ctx->header = (void *) __get_free_page(GFP_KERNEL);
2990         if (ctx->header == NULL) {
2991                 ret = -ENOMEM;
2992                 goto out;
2993         }
2994         ret = context_init(&ctx->context, ohci, regs, callback);
2995         if (ret < 0)
2996                 goto out_with_header;
2997
2998         if (type == FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL) {
2999                 set_multichannel_mask(ohci, 0);
3000                 ctx->mc_completed = 0;
3001         }
3002
3003         return &ctx->base;
3004
3005  out_with_header:
3006         free_page((unsigned long)ctx->header);
3007  out:
3008         spin_lock_irq(&ohci->lock);
3009
3010         switch (type) {
3011         case FW_ISO_CONTEXT_RECEIVE:
3012                 *channels |= 1ULL << channel;
3013                 break;
3014
3015         case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3016                 ohci->mc_allocated = false;
3017                 break;
3018         }
3019         *mask |= 1 << index;
3020
3021         spin_unlock_irq(&ohci->lock);
3022
3023         return ERR_PTR(ret);
3024 }
3025
3026 static int ohci_start_iso(struct fw_iso_context *base,
3027                           s32 cycle, u32 sync, u32 tags)
3028 {
3029         struct iso_context *ctx = container_of(base, struct iso_context, base);
3030         struct fw_ohci *ohci = ctx->context.ohci;
3031         u32 control = IR_CONTEXT_ISOCH_HEADER, match;
3032         int index;
3033
3034         /* the controller cannot start without any queued packets */
3035         if (ctx->context.last->branch_address == 0)
3036                 return -ENODATA;
3037
3038         switch (ctx->base.type) {
3039         case FW_ISO_CONTEXT_TRANSMIT:
3040                 index = ctx - ohci->it_context_list;
3041                 match = 0;
3042                 if (cycle >= 0)
3043                         match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
3044                                 (cycle & 0x7fff) << 16;
3045
3046                 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
3047                 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
3048                 context_run(&ctx->context, match);
3049                 break;
3050
3051         case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3052                 control |= IR_CONTEXT_BUFFER_FILL|IR_CONTEXT_MULTI_CHANNEL_MODE;
3053                 fallthrough;
3054         case FW_ISO_CONTEXT_RECEIVE:
3055                 index = ctx - ohci->ir_context_list;
3056                 match = (tags << 28) | (sync << 8) | ctx->base.channel;
3057                 if (cycle >= 0) {
3058                         match |= (cycle & 0x07fff) << 12;
3059                         control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
3060                 }
3061
3062                 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
3063                 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
3064                 reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
3065                 context_run(&ctx->context, control);
3066
3067                 ctx->sync = sync;
3068                 ctx->tags = tags;
3069
3070                 break;
3071         }
3072
3073         return 0;
3074 }
3075
3076 static int ohci_stop_iso(struct fw_iso_context *base)
3077 {
3078         struct fw_ohci *ohci = fw_ohci(base->card);
3079         struct iso_context *ctx = container_of(base, struct iso_context, base);
3080         int index;
3081
3082         switch (ctx->base.type) {
3083         case FW_ISO_CONTEXT_TRANSMIT:
3084                 index = ctx - ohci->it_context_list;
3085                 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
3086                 break;
3087
3088         case FW_ISO_CONTEXT_RECEIVE:
3089         case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3090                 index = ctx - ohci->ir_context_list;
3091                 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
3092                 break;
3093         }
3094         flush_writes(ohci);
3095         context_stop(&ctx->context);
3096         tasklet_kill(&ctx->context.tasklet);
3097
3098         return 0;
3099 }
3100
3101 static void ohci_free_iso_context(struct fw_iso_context *base)
3102 {
3103         struct fw_ohci *ohci = fw_ohci(base->card);
3104         struct iso_context *ctx = container_of(base, struct iso_context, base);
3105         unsigned long flags;
3106         int index;
3107
3108         ohci_stop_iso(base);
3109         context_release(&ctx->context);
3110         free_page((unsigned long)ctx->header);
3111
3112         spin_lock_irqsave(&ohci->lock, flags);
3113
3114         switch (base->type) {
3115         case FW_ISO_CONTEXT_TRANSMIT:
3116                 index = ctx - ohci->it_context_list;
3117                 ohci->it_context_mask |= 1 << index;
3118                 break;
3119
3120         case FW_ISO_CONTEXT_RECEIVE:
3121                 index = ctx - ohci->ir_context_list;
3122                 ohci->ir_context_mask |= 1 << index;
3123                 ohci->ir_context_channels |= 1ULL << base->channel;
3124                 break;
3125
3126         case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3127                 index = ctx - ohci->ir_context_list;
3128                 ohci->ir_context_mask |= 1 << index;
3129                 ohci->ir_context_channels |= ohci->mc_channels;
3130                 ohci->mc_channels = 0;
3131                 ohci->mc_allocated = false;
3132                 break;
3133         }
3134
3135         spin_unlock_irqrestore(&ohci->lock, flags);
3136 }
3137
3138 static int ohci_set_iso_channels(struct fw_iso_context *base, u64 *channels)
3139 {
3140         struct fw_ohci *ohci = fw_ohci(base->card);
3141         unsigned long flags;
3142         int ret;
3143
3144         switch (base->type) {
3145         case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3146
3147                 spin_lock_irqsave(&ohci->lock, flags);
3148
3149                 /* Don't allow multichannel to grab other contexts' channels. */
3150                 if (~ohci->ir_context_channels & ~ohci->mc_channels & *channels) {
3151                         *channels = ohci->ir_context_channels;
3152                         ret = -EBUSY;
3153                 } else {
3154                         set_multichannel_mask(ohci, *channels);
3155                         ret = 0;
3156                 }
3157
3158                 spin_unlock_irqrestore(&ohci->lock, flags);
3159
3160                 break;
3161         default:
3162                 ret = -EINVAL;
3163         }
3164
3165         return ret;
3166 }
3167
3168 #ifdef CONFIG_PM
3169 static void ohci_resume_iso_dma(struct fw_ohci *ohci)
3170 {
3171         int i;
3172         struct iso_context *ctx;
3173
3174         for (i = 0 ; i < ohci->n_ir ; i++) {
3175                 ctx = &ohci->ir_context_list[i];
3176                 if (ctx->context.running)
3177                         ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
3178         }
3179
3180         for (i = 0 ; i < ohci->n_it ; i++) {
3181                 ctx = &ohci->it_context_list[i];
3182                 if (ctx->context.running)
3183                         ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
3184         }
3185 }
3186 #endif
3187
3188 static int queue_iso_transmit(struct iso_context *ctx,
3189                               struct fw_iso_packet *packet,
3190                               struct fw_iso_buffer *buffer,
3191                               unsigned long payload)
3192 {
3193         struct descriptor *d, *last, *pd;
3194         struct fw_iso_packet *p;
3195         __le32 *header;
3196         dma_addr_t d_bus, page_bus;
3197         u32 z, header_z, payload_z, irq;
3198         u32 payload_index, payload_end_index, next_page_index;
3199         int page, end_page, i, length, offset;
3200
3201         p = packet;
3202         payload_index = payload;
3203
3204         if (p->skip)
3205                 z = 1;
3206         else
3207                 z = 2;
3208         if (p->header_length > 0)
3209                 z++;
3210
3211         /* Determine the first page the payload isn't contained in. */
3212         end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
3213         if (p->payload_length > 0)
3214                 payload_z = end_page - (payload_index >> PAGE_SHIFT);
3215         else
3216                 payload_z = 0;
3217
3218         z += payload_z;
3219
3220         /* Get header size in number of descriptors. */
3221         header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
3222
3223         d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
3224         if (d == NULL)
3225                 return -ENOMEM;
3226
3227         if (!p->skip) {
3228                 d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
3229                 d[0].req_count = cpu_to_le16(8);
3230                 /*
3231                  * Link the skip address to this descriptor itself.  This causes
3232                  * a context to skip a cycle whenever lost cycles or FIFO
3233                  * overruns occur, without dropping the data.  The application
3234                  * should then decide whether this is an error condition or not.
3235                  * FIXME:  Make the context's cycle-lost behaviour configurable?
3236                  */
3237                 d[0].branch_address = cpu_to_le32(d_bus | z);
3238
3239                 header = (__le32 *) &d[1];
3240                 header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
3241                                         IT_HEADER_TAG(p->tag) |
3242                                         IT_HEADER_TCODE(TCODE_STREAM_DATA) |
3243                                         IT_HEADER_CHANNEL(ctx->base.channel) |
3244                                         IT_HEADER_SPEED(ctx->base.speed));
3245                 header[1] =
3246                         cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
3247                                                           p->payload_length));
3248         }
3249
3250         if (p->header_length > 0) {
3251                 d[2].req_count    = cpu_to_le16(p->header_length);
3252                 d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
3253                 memcpy(&d[z], p->header, p->header_length);
3254         }
3255
3256         pd = d + z - payload_z;
3257         payload_end_index = payload_index + p->payload_length;
3258         for (i = 0; i < payload_z; i++) {
3259                 page               = payload_index >> PAGE_SHIFT;
3260                 offset             = payload_index & ~PAGE_MASK;
3261                 next_page_index    = (page + 1) << PAGE_SHIFT;
3262                 length             =
3263                         min(next_page_index, payload_end_index) - payload_index;
3264                 pd[i].req_count    = cpu_to_le16(length);
3265
3266                 page_bus = page_private(buffer->pages[page]);
3267                 pd[i].data_address = cpu_to_le32(page_bus + offset);
3268
3269                 dma_sync_single_range_for_device(ctx->context.ohci->card.device,
3270                                                  page_bus, offset, length,
3271                                                  DMA_TO_DEVICE);
3272
3273                 payload_index += length;
3274         }
3275
3276         if (p->interrupt)
3277                 irq = DESCRIPTOR_IRQ_ALWAYS;
3278         else
3279                 irq = DESCRIPTOR_NO_IRQ;
3280
3281         last = z == 2 ? d : d + z - 1;
3282         last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
3283                                      DESCRIPTOR_STATUS |
3284                                      DESCRIPTOR_BRANCH_ALWAYS |
3285                                      irq);
3286
3287         context_append(&ctx->context, d, z, header_z);
3288
3289         return 0;
3290 }
3291
3292 static int queue_iso_packet_per_buffer(struct iso_context *ctx,
3293                                        struct fw_iso_packet *packet,
3294                                        struct fw_iso_buffer *buffer,
3295                                        unsigned long payload)
3296 {
3297         struct device *device = ctx->context.ohci->card.device;
3298         struct descriptor *d, *pd;
3299         dma_addr_t d_bus, page_bus;
3300         u32 z, header_z, rest;
3301         int i, j, length;
3302         int page, offset, packet_count, header_size, payload_per_buffer;
3303
3304         /*
3305          * The OHCI controller puts the isochronous header and trailer in the
3306          * buffer, so we need at least 8 bytes.
3307          */
3308         packet_count = packet->header_length / ctx->base.header_size;
3309         header_size  = max(ctx->base.header_size, (size_t)8);
3310
3311         /* Get header size in number of descriptors. */
3312         header_z = DIV_ROUND_UP(header_size, sizeof(*d));
3313         page     = payload >> PAGE_SHIFT;
3314         offset   = payload & ~PAGE_MASK;
3315         payload_per_buffer = packet->payload_length / packet_count;
3316
3317         for (i = 0; i < packet_count; i++) {
3318                 /* d points to the header descriptor */
3319                 z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
3320                 d = context_get_descriptors(&ctx->context,
3321                                 z + header_z, &d_bus);
3322                 if (d == NULL)
3323                         return -ENOMEM;
3324
3325                 d->control      = cpu_to_le16(DESCRIPTOR_STATUS |
3326                                               DESCRIPTOR_INPUT_MORE);
3327                 if (packet->skip && i == 0)
3328                         d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3329                 d->req_count    = cpu_to_le16(header_size);
3330                 d->res_count    = d->req_count;
3331                 d->transfer_status = 0;
3332                 d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));
3333
3334                 rest = payload_per_buffer;
3335                 pd = d;
3336                 for (j = 1; j < z; j++) {
3337                         pd++;
3338                         pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
3339                                                   DESCRIPTOR_INPUT_MORE);
3340
3341                         if (offset + rest < PAGE_SIZE)
3342                                 length = rest;
3343                         else
3344                                 length = PAGE_SIZE - offset;
3345                         pd->req_count = cpu_to_le16(length);
3346                         pd->res_count = pd->req_count;
3347                         pd->transfer_status = 0;
3348
3349                         page_bus = page_private(buffer->pages[page]);
3350                         pd->data_address = cpu_to_le32(page_bus + offset);
3351
3352                         dma_sync_single_range_for_device(device, page_bus,
3353                                                          offset, length,
3354                                                          DMA_FROM_DEVICE);
3355
3356                         offset = (offset + length) & ~PAGE_MASK;
3357                         rest -= length;
3358                         if (offset == 0)
3359                                 page++;
3360                 }
3361                 pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
3362                                           DESCRIPTOR_INPUT_LAST |
3363                                           DESCRIPTOR_BRANCH_ALWAYS);
3364                 if (packet->interrupt && i == packet_count - 1)
3365                         pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
3366
3367                 context_append(&ctx->context, d, z, header_z);
3368         }
3369
3370         return 0;
3371 }
3372
3373 static int queue_iso_buffer_fill(struct iso_context *ctx,
3374                                  struct fw_iso_packet *packet,
3375                                  struct fw_iso_buffer *buffer,
3376                                  unsigned long payload)
3377 {
3378         struct descriptor *d;
3379         dma_addr_t d_bus, page_bus;
3380         int page, offset, rest, z, i, length;
3381
3382         page   = payload >> PAGE_SHIFT;
3383         offset = payload & ~PAGE_MASK;
3384         rest   = packet->payload_length;
3385
3386         /* We need one descriptor for each page in the buffer. */
3387         z = DIV_ROUND_UP(offset + rest, PAGE_SIZE);
3388
3389         if (WARN_ON(offset & 3 || rest & 3 || page + z > buffer->page_count))
3390                 return -EFAULT;
3391
3392         for (i = 0; i < z; i++) {
3393                 d = context_get_descriptors(&ctx->context, 1, &d_bus);
3394                 if (d == NULL)
3395                         return -ENOMEM;
3396
3397                 d->control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
3398                                          DESCRIPTOR_BRANCH_ALWAYS);
3399                 if (packet->skip && i == 0)
3400                         d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3401                 if (packet->interrupt && i == z - 1)
3402                         d->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
3403
3404                 if (offset + rest < PAGE_SIZE)
3405                         length = rest;
3406                 else
3407                         length = PAGE_SIZE - offset;
3408                 d->req_count = cpu_to_le16(length);
3409                 d->res_count = d->req_count;
3410                 d->transfer_status = 0;
3411
3412                 page_bus = page_private(buffer->pages[page]);
3413                 d->data_address = cpu_to_le32(page_bus + offset);
3414
3415                 dma_sync_single_range_for_device(ctx->context.ohci->card.device,
3416                                                  page_bus, offset, length,
3417                                                  DMA_FROM_DEVICE);
3418
3419                 rest -= length;
3420                 offset = 0;
3421                 page++;
3422
3423                 context_append(&ctx->context, d, 1, 0);
3424         }
3425
3426         return 0;
3427 }
3428
3429 static int ohci_queue_iso(struct fw_iso_context *base,
3430                           struct fw_iso_packet *packet,
3431                           struct fw_iso_buffer *buffer,
3432                           unsigned long payload)
3433 {
3434         struct iso_context *ctx = container_of(base, struct iso_context, base);
3435         unsigned long flags;
3436         int ret = -ENOSYS;
3437
3438         spin_lock_irqsave(&ctx->context.ohci->lock, flags);
3439         switch (base->type) {
3440         case FW_ISO_CONTEXT_TRANSMIT:
3441                 ret = queue_iso_transmit(ctx, packet, buffer, payload);
3442                 break;
3443         case FW_ISO_CONTEXT_RECEIVE:
3444                 ret = queue_iso_packet_per_buffer(ctx, packet, buffer, payload);
3445                 break;
3446         case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3447                 ret = queue_iso_buffer_fill(ctx, packet, buffer, payload);
3448                 break;
3449         }
3450         spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);
3451
3452         return ret;
3453 }
3454
3455 static void ohci_flush_queue_iso(struct fw_iso_context *base)
3456 {
3457         struct context *ctx =
3458                         &container_of(base, struct iso_context, base)->context;
3459
3460         reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
3461 }
3462
3463 static int ohci_flush_iso_completions(struct fw_iso_context *base)
3464 {
3465         struct iso_context *ctx = container_of(base, struct iso_context, base);
3466         int ret = 0;
3467
3468         tasklet_disable_in_atomic(&ctx->context.tasklet);
3469
3470         if (!test_and_set_bit_lock(0, &ctx->flushing_completions)) {
3471                 context_tasklet((unsigned long)&ctx->context);
3472
3473                 switch (base->type) {
3474                 case FW_ISO_CONTEXT_TRANSMIT:
3475                 case FW_ISO_CONTEXT_RECEIVE:
3476                         if (ctx->header_length != 0)
3477                                 flush_iso_completions(ctx);
3478                         break;
3479                 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3480                         if (ctx->mc_completed != 0)
3481                                 flush_ir_buffer_fill(ctx);
3482                         break;
3483                 default:
3484                         ret = -ENOSYS;
3485                 }
3486
3487                 clear_bit_unlock(0, &ctx->flushing_completions);
3488                 smp_mb__after_atomic();
3489         }
3490
3491         tasklet_enable(&ctx->context.tasklet);
3492
3493         return ret;
3494 }
3495
3496 static const struct fw_card_driver ohci_driver = {
3497         .enable                 = ohci_enable,
3498         .read_phy_reg           = ohci_read_phy_reg,
3499         .update_phy_reg         = ohci_update_phy_reg,
3500         .set_config_rom         = ohci_set_config_rom,
3501         .send_request           = ohci_send_request,
3502         .send_response          = ohci_send_response,
3503         .cancel_packet          = ohci_cancel_packet,
3504         .enable_phys_dma        = ohci_enable_phys_dma,
3505         .read_csr               = ohci_read_csr,
3506         .write_csr              = ohci_write_csr,
3507
3508         .allocate_iso_context   = ohci_allocate_iso_context,
3509         .free_iso_context       = ohci_free_iso_context,
3510         .set_iso_channels       = ohci_set_iso_channels,
3511         .queue_iso              = ohci_queue_iso,
3512         .flush_queue_iso        = ohci_flush_queue_iso,
3513         .flush_iso_completions  = ohci_flush_iso_completions,
3514         .start_iso              = ohci_start_iso,
3515         .stop_iso               = ohci_stop_iso,
3516 };
3517
3518 #ifdef CONFIG_PPC_PMAC
3519 static void pmac_ohci_on(struct pci_dev *dev)
3520 {
3521         if (machine_is(powermac)) {
3522                 struct device_node *ofn = pci_device_to_OF_node(dev);
3523
3524                 if (ofn) {
3525                         pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
3526                         pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
3527                 }
3528         }
3529 }
3530
3531 static void pmac_ohci_off(struct pci_dev *dev)
3532 {
3533         if (machine_is(powermac)) {
3534                 struct device_node *ofn = pci_device_to_OF_node(dev);
3535
3536                 if (ofn) {
3537                         pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
3538                         pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
3539                 }
3540         }
3541 }
3542 #else
3543 static inline void pmac_ohci_on(struct pci_dev *dev) {}
3544 static inline void pmac_ohci_off(struct pci_dev *dev) {}
3545 #endif /* CONFIG_PPC_PMAC */
3546
3547 static int pci_probe(struct pci_dev *dev,
3548                                const struct pci_device_id *ent)
3549 {
3550         struct fw_ohci *ohci;
3551         u32 bus_options, max_receive, link_speed, version;
3552         u64 guid;
3553         int i, err;
3554         size_t size;
3555
3556         if (dev->vendor == PCI_VENDOR_ID_PINNACLE_SYSTEMS) {
3557                 dev_err(&dev->dev, "Pinnacle MovieBoard is not yet supported\n");
3558                 return -ENOSYS;
3559         }
3560
3561         ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
3562         if (ohci == NULL) {
3563                 err = -ENOMEM;
3564                 goto fail;
3565         }
3566
3567         fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
3568
3569         pmac_ohci_on(dev);
3570
3571         err = pci_enable_device(dev);
3572         if (err) {
3573                 dev_err(&dev->dev, "failed to enable OHCI hardware\n");
3574                 goto fail_free;
3575         }
3576
3577         pci_set_master(dev);
3578         pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
3579         pci_set_drvdata(dev, ohci);
3580
3581         spin_lock_init(&ohci->lock);
3582         mutex_init(&ohci->phy_reg_mutex);
3583
3584         INIT_WORK(&ohci->bus_reset_work, bus_reset_work);
3585
3586         if (!(pci_resource_flags(dev, 0) & IORESOURCE_MEM) ||
3587             pci_resource_len(dev, 0) < OHCI1394_REGISTER_SIZE) {
3588                 ohci_err(ohci, "invalid MMIO resource\n");
3589                 err = -ENXIO;
3590                 goto fail_disable;
3591         }
3592
3593         err = pci_request_region(dev, 0, ohci_driver_name);
3594         if (err) {
3595                 ohci_err(ohci, "MMIO resource unavailable\n");
3596                 goto fail_disable;
3597         }
3598
3599         ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
3600         if (ohci->registers == NULL) {
3601                 ohci_err(ohci, "failed to remap registers\n");
3602                 err = -ENXIO;
3603                 goto fail_iomem;
3604         }
3605
3606         for (i = 0; i < ARRAY_SIZE(ohci_quirks); i++)
3607                 if ((ohci_quirks[i].vendor == dev->vendor) &&
3608                     (ohci_quirks[i].device == (unsigned short)PCI_ANY_ID ||
3609                      ohci_quirks[i].device == dev->device) &&
3610                     (ohci_quirks[i].revision == (unsigned short)PCI_ANY_ID ||
3611                      ohci_quirks[i].revision >= dev->revision)) {
3612                         ohci->quirks = ohci_quirks[i].flags;
3613                         break;
3614                 }
3615         if (param_quirks)
3616                 ohci->quirks = param_quirks;
3617
3618         /*
3619          * Because dma_alloc_coherent() allocates at least one page,
3620          * we save space by using a common buffer for the AR request/
3621          * response descriptors and the self IDs buffer.
3622          */
3623         BUILD_BUG_ON(AR_BUFFERS * sizeof(struct descriptor) > PAGE_SIZE/4);
3624         BUILD_BUG_ON(SELF_ID_BUF_SIZE > PAGE_SIZE/2);
3625         ohci->misc_buffer = dma_alloc_coherent(ohci->card.device,
3626                                                PAGE_SIZE,
3627                                                &ohci->misc_buffer_bus,
3628                                                GFP_KERNEL);
3629         if (!ohci->misc_buffer) {
3630                 err = -ENOMEM;
3631                 goto fail_iounmap;
3632         }
3633
3634         err = ar_context_init(&ohci->ar_request_ctx, ohci, 0,
3635                               OHCI1394_AsReqRcvContextControlSet);
3636         if (err < 0)
3637                 goto fail_misc_buf;
3638
3639         err = ar_context_init(&ohci->ar_response_ctx, ohci, PAGE_SIZE/4,
3640                               OHCI1394_AsRspRcvContextControlSet);
3641         if (err < 0)
3642                 goto fail_arreq_ctx;
3643
3644         err = context_init(&ohci->at_request_ctx, ohci,
3645                            OHCI1394_AsReqTrContextControlSet, handle_at_packet);
3646         if (err < 0)
3647                 goto fail_arrsp_ctx;
3648
3649         err = context_init(&ohci->at_response_ctx, ohci,
3650                            OHCI1394_AsRspTrContextControlSet, handle_at_packet);
3651         if (err < 0)
3652                 goto fail_atreq_ctx;
3653
3654         reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
3655         ohci->ir_context_channels = ~0ULL;
3656         ohci->ir_context_support = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
3657         reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
3658         ohci->ir_context_mask = ohci->ir_context_support;
3659         ohci->n_ir = hweight32(ohci->ir_context_mask);
3660         size = sizeof(struct iso_context) * ohci->n_ir;
3661         ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
3662
3663         reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
3664         ohci->it_context_support = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
3665         /* JMicron JMB38x often shows 0 at first read, just ignore it */
3666         if (!ohci->it_context_support) {
3667                 ohci_notice(ohci, "overriding IsoXmitIntMask\n");
3668                 ohci->it_context_support = 0xf;
3669         }
3670         reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
3671         ohci->it_context_mask = ohci->it_context_support;
3672         ohci->n_it = hweight32(ohci->it_context_mask);
3673         size = sizeof(struct iso_context) * ohci->n_it;
3674         ohci->it_context_list = kzalloc(size, GFP_KERNEL);
3675
3676         if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
3677                 err = -ENOMEM;
3678                 goto fail_contexts;
3679         }
3680
3681         ohci->self_id     = ohci->misc_buffer     + PAGE_SIZE/2;
3682         ohci->self_id_bus = ohci->misc_buffer_bus + PAGE_SIZE/2;
3683
3684         bus_options = reg_read(ohci, OHCI1394_BusOptions);
3685         max_receive = (bus_options >> 12) & 0xf;
3686         link_speed = bus_options & 0x7;
3687         guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
3688                 reg_read(ohci, OHCI1394_GUIDLo);
3689
3690         if (!(ohci->quirks & QUIRK_NO_MSI))
3691                 pci_enable_msi(dev);
3692         if (request_irq(dev->irq, irq_handler,
3693                         pci_dev_msi_enabled(dev) ? 0 : IRQF_SHARED,
3694                         ohci_driver_name, ohci)) {
3695                 ohci_err(ohci, "failed to allocate interrupt %d\n", dev->irq);
3696                 err = -EIO;
3697                 goto fail_msi;
3698         }
3699
3700         err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
3701         if (err)
3702                 goto fail_irq;
3703
3704         version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
3705         ohci_notice(ohci,
3706                     "added OHCI v%x.%x device as card %d, "
3707                     "%d IR + %d IT contexts, quirks 0x%x%s\n",
3708                     version >> 16, version & 0xff, ohci->card.index,
3709                     ohci->n_ir, ohci->n_it, ohci->quirks,
3710                     reg_read(ohci, OHCI1394_PhyUpperBound) ?
3711                         ", physUB" : "");
3712
3713         return 0;
3714
3715  fail_irq:
3716         free_irq(dev->irq, ohci);
3717  fail_msi:
3718         pci_disable_msi(dev);
3719  fail_contexts:
3720         kfree(ohci->ir_context_list);
3721         kfree(ohci->it_context_list);
3722         context_release(&ohci->at_response_ctx);
3723  fail_atreq_ctx:
3724         context_release(&ohci->at_request_ctx);
3725  fail_arrsp_ctx:
3726         ar_context_release(&ohci->ar_response_ctx);
3727  fail_arreq_ctx:
3728         ar_context_release(&ohci->ar_request_ctx);
3729  fail_misc_buf:
3730         dma_free_coherent(ohci->card.device, PAGE_SIZE,
3731                           ohci->misc_buffer, ohci->misc_buffer_bus);
3732  fail_iounmap:
3733         pci_iounmap(dev, ohci->registers);
3734  fail_iomem:
3735         pci_release_region(dev, 0);
3736  fail_disable:
3737         pci_disable_device(dev);
3738  fail_free:
3739         kfree(ohci);
3740         pmac_ohci_off(dev);
3741  fail:
3742         return err;
3743 }
3744
3745 static void pci_remove(struct pci_dev *dev)
3746 {
3747         struct fw_ohci *ohci = pci_get_drvdata(dev);
3748
3749         /*
3750          * If the removal is happening from the suspend state, LPS won't be
3751          * enabled and host registers (eg., IntMaskClear) won't be accessible.
3752          */
3753         if (reg_read(ohci, OHCI1394_HCControlSet) & OHCI1394_HCControl_LPS) {
3754                 reg_write(ohci, OHCI1394_IntMaskClear, ~0);
3755                 flush_writes(ohci);
3756         }
3757         cancel_work_sync(&ohci->bus_reset_work);
3758         fw_core_remove_card(&ohci->card);
3759
3760         /*
3761          * FIXME: Fail all pending packets here, now that the upper
3762          * layers can't queue any more.
3763          */
3764
3765         software_reset(ohci);
3766         free_irq(dev->irq, ohci);
3767
3768         if (ohci->next_config_rom && ohci->next_config_rom != ohci->config_rom)
3769                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
3770                                   ohci->next_config_rom, ohci->next_config_rom_bus);
3771         if (ohci->config_rom)
3772                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
3773                                   ohci->config_rom, ohci->config_rom_bus);
3774         ar_context_release(&ohci->ar_request_ctx);
3775         ar_context_release(&ohci->ar_response_ctx);
3776         dma_free_coherent(ohci->card.device, PAGE_SIZE,
3777                           ohci->misc_buffer, ohci->misc_buffer_bus);
3778         context_release(&ohci->at_request_ctx);
3779         context_release(&ohci->at_response_ctx);
3780         kfree(ohci->it_context_list);
3781         kfree(ohci->ir_context_list);
3782         pci_disable_msi(dev);
3783         pci_iounmap(dev, ohci->registers);
3784         pci_release_region(dev, 0);
3785         pci_disable_device(dev);
3786         kfree(ohci);
3787         pmac_ohci_off(dev);
3788
3789         dev_notice(&dev->dev, "removed fw-ohci device\n");
3790 }
3791
3792 #ifdef CONFIG_PM
3793 static int pci_suspend(struct pci_dev *dev, pm_message_t state)
3794 {
3795         struct fw_ohci *ohci = pci_get_drvdata(dev);
3796         int err;
3797
3798         software_reset(ohci);
3799         err = pci_save_state(dev);
3800         if (err) {
3801                 ohci_err(ohci, "pci_save_state failed\n");
3802                 return err;
3803         }
3804         err = pci_set_power_state(dev, pci_choose_state(dev, state));
3805         if (err)
3806                 ohci_err(ohci, "pci_set_power_state failed with %d\n", err);
3807         pmac_ohci_off(dev);
3808
3809         return 0;
3810 }
3811
3812 static int pci_resume(struct pci_dev *dev)
3813 {
3814         struct fw_ohci *ohci = pci_get_drvdata(dev);
3815         int err;
3816
3817         pmac_ohci_on(dev);
3818         pci_set_power_state(dev, PCI_D0);
3819         pci_restore_state(dev);
3820         err = pci_enable_device(dev);
3821         if (err) {
3822                 ohci_err(ohci, "pci_enable_device failed\n");
3823                 return err;
3824         }
3825
3826         /* Some systems don't setup GUID register on resume from ram  */
3827         if (!reg_read(ohci, OHCI1394_GUIDLo) &&
3828                                         !reg_read(ohci, OHCI1394_GUIDHi)) {
3829                 reg_write(ohci, OHCI1394_GUIDLo, (u32)ohci->card.guid);
3830                 reg_write(ohci, OHCI1394_GUIDHi, (u32)(ohci->card.guid >> 32));
3831         }
3832
3833         err = ohci_enable(&ohci->card, NULL, 0);
3834         if (err)
3835                 return err;
3836
3837         ohci_resume_iso_dma(ohci);
3838
3839         return 0;
3840 }
3841 #endif
3842
3843 static const struct pci_device_id pci_table[] = {
3844         { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
3845         { }
3846 };
3847
3848 MODULE_DEVICE_TABLE(pci, pci_table);
3849
3850 static struct pci_driver fw_ohci_pci_driver = {
3851         .name           = ohci_driver_name,
3852         .id_table       = pci_table,
3853         .probe          = pci_probe,
3854         .remove         = pci_remove,
3855 #ifdef CONFIG_PM
3856         .resume         = pci_resume,
3857         .suspend        = pci_suspend,
3858 #endif
3859 };
3860
3861 static int __init fw_ohci_init(void)
3862 {
3863         selfid_workqueue = alloc_workqueue(KBUILD_MODNAME, WQ_MEM_RECLAIM, 0);
3864         if (!selfid_workqueue)
3865                 return -ENOMEM;
3866
3867         return pci_register_driver(&fw_ohci_pci_driver);
3868 }
3869
3870 static void __exit fw_ohci_cleanup(void)
3871 {
3872         pci_unregister_driver(&fw_ohci_pci_driver);
3873         destroy_workqueue(selfid_workqueue);
3874 }
3875
3876 module_init(fw_ohci_init);
3877 module_exit(fw_ohci_cleanup);
3878
3879 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
3880 MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
3881 MODULE_LICENSE("GPL");
3882
3883 /* Provide a module alias so root-on-sbp2 initrds don't break. */
3884 MODULE_ALIAS("ohci1394");