a20f45b1e7e5a79509f08da27384705bbc915a19
[platform/adaptation/renesas_rcar/renesas_kernel.git] / drivers / firewire / net.c
1 /*
2  * IPv4 over IEEE 1394, per RFC 2734
3  *
4  * Copyright (C) 2009 Jay Fenlason <fenlason@redhat.com>
5  *
6  * based on eth1394 by Ben Collins et al
7  */
8
9 #include <linux/bug.h>
10 #include <linux/compiler.h>
11 #include <linux/delay.h>
12 #include <linux/device.h>
13 #include <linux/ethtool.h>
14 #include <linux/firewire.h>
15 #include <linux/firewire-constants.h>
16 #include <linux/highmem.h>
17 #include <linux/in.h>
18 #include <linux/ip.h>
19 #include <linux/jiffies.h>
20 #include <linux/mod_devicetable.h>
21 #include <linux/module.h>
22 #include <linux/moduleparam.h>
23 #include <linux/mutex.h>
24 #include <linux/netdevice.h>
25 #include <linux/skbuff.h>
26 #include <linux/slab.h>
27 #include <linux/spinlock.h>
28
29 #include <asm/unaligned.h>
30 #include <net/arp.h>
31
32 /* rx limits */
33 #define FWNET_MAX_FRAGMENTS             30 /* arbitrary, > TX queue depth */
34 #define FWNET_ISO_PAGE_COUNT            (PAGE_SIZE < 16*1024 ? 4 : 2)
35
36 /* tx limits */
37 #define FWNET_MAX_QUEUED_DATAGRAMS      20 /* < 64 = number of tlabels */
38 #define FWNET_MIN_QUEUED_DATAGRAMS      10 /* should keep AT DMA busy enough */
39 #define FWNET_TX_QUEUE_LEN              FWNET_MAX_QUEUED_DATAGRAMS /* ? */
40
41 #define IEEE1394_BROADCAST_CHANNEL      31
42 #define IEEE1394_ALL_NODES              (0xffc0 | 0x003f)
43 #define IEEE1394_MAX_PAYLOAD_S100       512
44 #define FWNET_NO_FIFO_ADDR              (~0ULL)
45
46 #define IANA_SPECIFIER_ID               0x00005eU
47 #define RFC2734_SW_VERSION              0x000001U
48
49 #define IEEE1394_GASP_HDR_SIZE  8
50
51 #define RFC2374_UNFRAG_HDR_SIZE 4
52 #define RFC2374_FRAG_HDR_SIZE   8
53 #define RFC2374_FRAG_OVERHEAD   4
54
55 #define RFC2374_HDR_UNFRAG      0       /* unfragmented         */
56 #define RFC2374_HDR_FIRSTFRAG   1       /* first fragment       */
57 #define RFC2374_HDR_LASTFRAG    2       /* last fragment        */
58 #define RFC2374_HDR_INTFRAG     3       /* interior fragment    */
59
60 #define RFC2734_HW_ADDR_LEN     16
61
62 struct rfc2734_arp {
63         __be16 hw_type;         /* 0x0018       */
64         __be16 proto_type;      /* 0x0806       */
65         u8 hw_addr_len;         /* 16           */
66         u8 ip_addr_len;         /* 4            */
67         __be16 opcode;          /* ARP Opcode   */
68         /* Above is exactly the same format as struct arphdr */
69
70         __be64 s_uniq_id;       /* Sender's 64bit EUI                   */
71         u8 max_rec;             /* Sender's max packet size             */
72         u8 sspd;                /* Sender's max speed                   */
73         __be16 fifo_hi;         /* hi 16bits of sender's FIFO addr      */
74         __be32 fifo_lo;         /* lo 32bits of sender's FIFO addr      */
75         __be32 sip;             /* Sender's IP Address                  */
76         __be32 tip;             /* IP Address of requested hw addr      */
77 } __packed;
78
79 /* This header format is specific to this driver implementation. */
80 #define FWNET_ALEN      8
81 #define FWNET_HLEN      10
82 struct fwnet_header {
83         u8 h_dest[FWNET_ALEN];  /* destination address */
84         __be16 h_proto;         /* packet type ID field */
85 } __packed;
86
87 /* IPv4 and IPv6 encapsulation header */
88 struct rfc2734_header {
89         u32 w0;
90         u32 w1;
91 };
92
93 #define fwnet_get_hdr_lf(h)             (((h)->w0 & 0xc0000000) >> 30)
94 #define fwnet_get_hdr_ether_type(h)     (((h)->w0 & 0x0000ffff))
95 #define fwnet_get_hdr_dg_size(h)        (((h)->w0 & 0x0fff0000) >> 16)
96 #define fwnet_get_hdr_fg_off(h)         (((h)->w0 & 0x00000fff))
97 #define fwnet_get_hdr_dgl(h)            (((h)->w1 & 0xffff0000) >> 16)
98
99 #define fwnet_set_hdr_lf(lf)            ((lf)  << 30)
100 #define fwnet_set_hdr_ether_type(et)    (et)
101 #define fwnet_set_hdr_dg_size(dgs)      ((dgs) << 16)
102 #define fwnet_set_hdr_fg_off(fgo)       (fgo)
103
104 #define fwnet_set_hdr_dgl(dgl)          ((dgl) << 16)
105
106 static inline void fwnet_make_uf_hdr(struct rfc2734_header *hdr,
107                 unsigned ether_type)
108 {
109         hdr->w0 = fwnet_set_hdr_lf(RFC2374_HDR_UNFRAG)
110                   | fwnet_set_hdr_ether_type(ether_type);
111 }
112
113 static inline void fwnet_make_ff_hdr(struct rfc2734_header *hdr,
114                 unsigned ether_type, unsigned dg_size, unsigned dgl)
115 {
116         hdr->w0 = fwnet_set_hdr_lf(RFC2374_HDR_FIRSTFRAG)
117                   | fwnet_set_hdr_dg_size(dg_size)
118                   | fwnet_set_hdr_ether_type(ether_type);
119         hdr->w1 = fwnet_set_hdr_dgl(dgl);
120 }
121
122 static inline void fwnet_make_sf_hdr(struct rfc2734_header *hdr,
123                 unsigned lf, unsigned dg_size, unsigned fg_off, unsigned dgl)
124 {
125         hdr->w0 = fwnet_set_hdr_lf(lf)
126                   | fwnet_set_hdr_dg_size(dg_size)
127                   | fwnet_set_hdr_fg_off(fg_off);
128         hdr->w1 = fwnet_set_hdr_dgl(dgl);
129 }
130
131 /* This list keeps track of what parts of the datagram have been filled in */
132 struct fwnet_fragment_info {
133         struct list_head fi_link;
134         u16 offset;
135         u16 len;
136 };
137
138 struct fwnet_partial_datagram {
139         struct list_head pd_link;
140         struct list_head fi_list;
141         struct sk_buff *skb;
142         /* FIXME Why not use skb->data? */
143         char *pbuf;
144         u16 datagram_label;
145         u16 ether_type;
146         u16 datagram_size;
147 };
148
149 static DEFINE_MUTEX(fwnet_device_mutex);
150 static LIST_HEAD(fwnet_device_list);
151
152 struct fwnet_device {
153         struct list_head dev_link;
154         spinlock_t lock;
155         enum {
156                 FWNET_BROADCAST_ERROR,
157                 FWNET_BROADCAST_RUNNING,
158                 FWNET_BROADCAST_STOPPED,
159         } broadcast_state;
160         struct fw_iso_context *broadcast_rcv_context;
161         struct fw_iso_buffer broadcast_rcv_buffer;
162         void **broadcast_rcv_buffer_ptrs;
163         unsigned broadcast_rcv_next_ptr;
164         unsigned num_broadcast_rcv_ptrs;
165         unsigned rcv_buffer_size;
166         /*
167          * This value is the maximum unfragmented datagram size that can be
168          * sent by the hardware.  It already has the GASP overhead and the
169          * unfragmented datagram header overhead calculated into it.
170          */
171         unsigned broadcast_xmt_max_payload;
172         u16 broadcast_xmt_datagramlabel;
173
174         /*
175          * The CSR address that remote nodes must send datagrams to for us to
176          * receive them.
177          */
178         struct fw_address_handler handler;
179         u64 local_fifo;
180
181         /* Number of tx datagrams that have been queued but not yet acked */
182         int queued_datagrams;
183
184         int peer_count;
185         struct list_head peer_list;
186         struct fw_card *card;
187         struct net_device *netdev;
188 };
189
190 struct fwnet_peer {
191         struct list_head peer_link;
192         struct fwnet_device *dev;
193         u64 guid;
194         u64 fifo;
195         __be32 ip;
196
197         /* guarded by dev->lock */
198         struct list_head pd_list; /* received partial datagrams */
199         unsigned pdg_size;        /* pd_list size */
200
201         u16 datagram_label;       /* outgoing datagram label */
202         u16 max_payload;          /* includes RFC2374_FRAG_HDR_SIZE overhead */
203         int node_id;
204         int generation;
205         unsigned speed;
206 };
207
208 /* This is our task struct. It's used for the packet complete callback.  */
209 struct fwnet_packet_task {
210         struct fw_transaction transaction;
211         struct rfc2734_header hdr;
212         struct sk_buff *skb;
213         struct fwnet_device *dev;
214
215         int outstanding_pkts;
216         u64 fifo_addr;
217         u16 dest_node;
218         u16 max_payload;
219         u8 generation;
220         u8 speed;
221         u8 enqueued;
222 };
223
224 /*
225  * saddr == NULL means use device source address.
226  * daddr == NULL means leave destination address (eg unresolved arp).
227  */
228 static int fwnet_header_create(struct sk_buff *skb, struct net_device *net,
229                         unsigned short type, const void *daddr,
230                         const void *saddr, unsigned len)
231 {
232         struct fwnet_header *h;
233
234         h = (struct fwnet_header *)skb_push(skb, sizeof(*h));
235         put_unaligned_be16(type, &h->h_proto);
236
237         if (net->flags & (IFF_LOOPBACK | IFF_NOARP)) {
238                 memset(h->h_dest, 0, net->addr_len);
239
240                 return net->hard_header_len;
241         }
242
243         if (daddr) {
244                 memcpy(h->h_dest, daddr, net->addr_len);
245
246                 return net->hard_header_len;
247         }
248
249         return -net->hard_header_len;
250 }
251
252 static int fwnet_header_rebuild(struct sk_buff *skb)
253 {
254         struct fwnet_header *h = (struct fwnet_header *)skb->data;
255
256         if (get_unaligned_be16(&h->h_proto) == ETH_P_IP)
257                 return arp_find((unsigned char *)&h->h_dest, skb);
258
259         fw_notify("%s: unable to resolve type %04x addresses\n",
260                   skb->dev->name, be16_to_cpu(h->h_proto));
261         return 0;
262 }
263
264 static int fwnet_header_cache(const struct neighbour *neigh,
265                               struct hh_cache *hh, __be16 type)
266 {
267         struct net_device *net;
268         struct fwnet_header *h;
269
270         if (type == cpu_to_be16(ETH_P_802_3))
271                 return -1;
272         net = neigh->dev;
273         h = (struct fwnet_header *)((u8 *)hh->hh_data + 16 - sizeof(*h));
274         h->h_proto = type;
275         memcpy(h->h_dest, neigh->ha, net->addr_len);
276         hh->hh_len = FWNET_HLEN;
277
278         return 0;
279 }
280
281 /* Called by Address Resolution module to notify changes in address. */
282 static void fwnet_header_cache_update(struct hh_cache *hh,
283                 const struct net_device *net, const unsigned char *haddr)
284 {
285         memcpy((u8 *)hh->hh_data + 16 - FWNET_HLEN, haddr, net->addr_len);
286 }
287
288 static int fwnet_header_parse(const struct sk_buff *skb, unsigned char *haddr)
289 {
290         memcpy(haddr, skb->dev->dev_addr, FWNET_ALEN);
291
292         return FWNET_ALEN;
293 }
294
295 static const struct header_ops fwnet_header_ops = {
296         .create         = fwnet_header_create,
297         .rebuild        = fwnet_header_rebuild,
298         .cache          = fwnet_header_cache,
299         .cache_update   = fwnet_header_cache_update,
300         .parse          = fwnet_header_parse,
301 };
302
303 /* FIXME: is this correct for all cases? */
304 static bool fwnet_frag_overlap(struct fwnet_partial_datagram *pd,
305                                unsigned offset, unsigned len)
306 {
307         struct fwnet_fragment_info *fi;
308         unsigned end = offset + len;
309
310         list_for_each_entry(fi, &pd->fi_list, fi_link)
311                 if (offset < fi->offset + fi->len && end > fi->offset)
312                         return true;
313
314         return false;
315 }
316
317 /* Assumes that new fragment does not overlap any existing fragments */
318 static struct fwnet_fragment_info *fwnet_frag_new(
319         struct fwnet_partial_datagram *pd, unsigned offset, unsigned len)
320 {
321         struct fwnet_fragment_info *fi, *fi2, *new;
322         struct list_head *list;
323
324         list = &pd->fi_list;
325         list_for_each_entry(fi, &pd->fi_list, fi_link) {
326                 if (fi->offset + fi->len == offset) {
327                         /* The new fragment can be tacked on to the end */
328                         /* Did the new fragment plug a hole? */
329                         fi2 = list_entry(fi->fi_link.next,
330                                          struct fwnet_fragment_info, fi_link);
331                         if (fi->offset + fi->len == fi2->offset) {
332                                 /* glue fragments together */
333                                 fi->len += len + fi2->len;
334                                 list_del(&fi2->fi_link);
335                                 kfree(fi2);
336                         } else {
337                                 fi->len += len;
338                         }
339
340                         return fi;
341                 }
342                 if (offset + len == fi->offset) {
343                         /* The new fragment can be tacked on to the beginning */
344                         /* Did the new fragment plug a hole? */
345                         fi2 = list_entry(fi->fi_link.prev,
346                                          struct fwnet_fragment_info, fi_link);
347                         if (fi2->offset + fi2->len == fi->offset) {
348                                 /* glue fragments together */
349                                 fi2->len += fi->len + len;
350                                 list_del(&fi->fi_link);
351                                 kfree(fi);
352
353                                 return fi2;
354                         }
355                         fi->offset = offset;
356                         fi->len += len;
357
358                         return fi;
359                 }
360                 if (offset > fi->offset + fi->len) {
361                         list = &fi->fi_link;
362                         break;
363                 }
364                 if (offset + len < fi->offset) {
365                         list = fi->fi_link.prev;
366                         break;
367                 }
368         }
369
370         new = kmalloc(sizeof(*new), GFP_ATOMIC);
371         if (!new) {
372                 fw_error("out of memory\n");
373                 return NULL;
374         }
375
376         new->offset = offset;
377         new->len = len;
378         list_add(&new->fi_link, list);
379
380         return new;
381 }
382
383 static struct fwnet_partial_datagram *fwnet_pd_new(struct net_device *net,
384                 struct fwnet_peer *peer, u16 datagram_label, unsigned dg_size,
385                 void *frag_buf, unsigned frag_off, unsigned frag_len)
386 {
387         struct fwnet_partial_datagram *new;
388         struct fwnet_fragment_info *fi;
389
390         new = kmalloc(sizeof(*new), GFP_ATOMIC);
391         if (!new)
392                 goto fail;
393
394         INIT_LIST_HEAD(&new->fi_list);
395         fi = fwnet_frag_new(new, frag_off, frag_len);
396         if (fi == NULL)
397                 goto fail_w_new;
398
399         new->datagram_label = datagram_label;
400         new->datagram_size = dg_size;
401         new->skb = dev_alloc_skb(dg_size + net->hard_header_len + 15);
402         if (new->skb == NULL)
403                 goto fail_w_fi;
404
405         skb_reserve(new->skb, (net->hard_header_len + 15) & ~15);
406         new->pbuf = skb_put(new->skb, dg_size);
407         memcpy(new->pbuf + frag_off, frag_buf, frag_len);
408         list_add_tail(&new->pd_link, &peer->pd_list);
409
410         return new;
411
412 fail_w_fi:
413         kfree(fi);
414 fail_w_new:
415         kfree(new);
416 fail:
417         fw_error("out of memory\n");
418
419         return NULL;
420 }
421
422 static struct fwnet_partial_datagram *fwnet_pd_find(struct fwnet_peer *peer,
423                                                     u16 datagram_label)
424 {
425         struct fwnet_partial_datagram *pd;
426
427         list_for_each_entry(pd, &peer->pd_list, pd_link)
428                 if (pd->datagram_label == datagram_label)
429                         return pd;
430
431         return NULL;
432 }
433
434
435 static void fwnet_pd_delete(struct fwnet_partial_datagram *old)
436 {
437         struct fwnet_fragment_info *fi, *n;
438
439         list_for_each_entry_safe(fi, n, &old->fi_list, fi_link)
440                 kfree(fi);
441
442         list_del(&old->pd_link);
443         dev_kfree_skb_any(old->skb);
444         kfree(old);
445 }
446
447 static bool fwnet_pd_update(struct fwnet_peer *peer,
448                 struct fwnet_partial_datagram *pd, void *frag_buf,
449                 unsigned frag_off, unsigned frag_len)
450 {
451         if (fwnet_frag_new(pd, frag_off, frag_len) == NULL)
452                 return false;
453
454         memcpy(pd->pbuf + frag_off, frag_buf, frag_len);
455
456         /*
457          * Move list entry to beginning of list so that oldest partial
458          * datagrams percolate to the end of the list
459          */
460         list_move_tail(&pd->pd_link, &peer->pd_list);
461
462         return true;
463 }
464
465 static bool fwnet_pd_is_complete(struct fwnet_partial_datagram *pd)
466 {
467         struct fwnet_fragment_info *fi;
468
469         fi = list_entry(pd->fi_list.next, struct fwnet_fragment_info, fi_link);
470
471         return fi->len == pd->datagram_size;
472 }
473
474 /* caller must hold dev->lock */
475 static struct fwnet_peer *fwnet_peer_find_by_guid(struct fwnet_device *dev,
476                                                   u64 guid)
477 {
478         struct fwnet_peer *peer;
479
480         list_for_each_entry(peer, &dev->peer_list, peer_link)
481                 if (peer->guid == guid)
482                         return peer;
483
484         return NULL;
485 }
486
487 /* caller must hold dev->lock */
488 static struct fwnet_peer *fwnet_peer_find_by_node_id(struct fwnet_device *dev,
489                                                 int node_id, int generation)
490 {
491         struct fwnet_peer *peer;
492
493         list_for_each_entry(peer, &dev->peer_list, peer_link)
494                 if (peer->node_id    == node_id &&
495                     peer->generation == generation)
496                         return peer;
497
498         return NULL;
499 }
500
501 /* See IEEE 1394-2008 table 6-4, table 8-8, table 16-18. */
502 static unsigned fwnet_max_payload(unsigned max_rec, unsigned speed)
503 {
504         max_rec = min(max_rec, speed + 8);
505         max_rec = clamp(max_rec, 8U, 11U); /* 512...4096 */
506
507         return (1 << (max_rec + 1)) - RFC2374_FRAG_HDR_SIZE;
508 }
509
510
511 static int fwnet_finish_incoming_packet(struct net_device *net,
512                                         struct sk_buff *skb, u16 source_node_id,
513                                         bool is_broadcast, u16 ether_type)
514 {
515         struct fwnet_device *dev;
516         static const __be64 broadcast_hw = cpu_to_be64(~0ULL);
517         int status;
518         __be64 guid;
519
520         dev = netdev_priv(net);
521         /* Write metadata, and then pass to the receive level */
522         skb->dev = net;
523         skb->ip_summed = CHECKSUM_UNNECESSARY;  /* don't check it */
524
525         /*
526          * Parse the encapsulation header. This actually does the job of
527          * converting to an ethernet frame header, as well as arp
528          * conversion if needed. ARP conversion is easier in this
529          * direction, since we are using ethernet as our backend.
530          */
531         /*
532          * If this is an ARP packet, convert it. First, we want to make
533          * use of some of the fields, since they tell us a little bit
534          * about the sending machine.
535          */
536         if (ether_type == ETH_P_ARP) {
537                 struct rfc2734_arp *arp1394;
538                 struct arphdr *arp;
539                 unsigned char *arp_ptr;
540                 u64 fifo_addr;
541                 u64 peer_guid;
542                 unsigned sspd;
543                 u16 max_payload;
544                 struct fwnet_peer *peer;
545                 unsigned long flags;
546
547                 arp1394   = (struct rfc2734_arp *)skb->data;
548                 arp       = (struct arphdr *)skb->data;
549                 arp_ptr   = (unsigned char *)(arp + 1);
550                 peer_guid = get_unaligned_be64(&arp1394->s_uniq_id);
551                 fifo_addr = (u64)get_unaligned_be16(&arp1394->fifo_hi) << 32
552                                 | get_unaligned_be32(&arp1394->fifo_lo);
553
554                 sspd = arp1394->sspd;
555                 /* Sanity check.  OS X 10.3 PPC reportedly sends 131. */
556                 if (sspd > SCODE_3200) {
557                         fw_notify("sspd %x out of range\n", sspd);
558                         sspd = SCODE_3200;
559                 }
560                 max_payload = fwnet_max_payload(arp1394->max_rec, sspd);
561
562                 spin_lock_irqsave(&dev->lock, flags);
563                 peer = fwnet_peer_find_by_guid(dev, peer_guid);
564                 if (peer) {
565                         peer->fifo = fifo_addr;
566
567                         if (peer->speed > sspd)
568                                 peer->speed = sspd;
569                         if (peer->max_payload > max_payload)
570                                 peer->max_payload = max_payload;
571
572                         peer->ip = arp1394->sip;
573                 }
574                 spin_unlock_irqrestore(&dev->lock, flags);
575
576                 if (!peer) {
577                         fw_notify("No peer for ARP packet from %016llx\n",
578                                   (unsigned long long)peer_guid);
579                         goto no_peer;
580                 }
581
582                 /*
583                  * Now that we're done with the 1394 specific stuff, we'll
584                  * need to alter some of the data.  Believe it or not, all
585                  * that needs to be done is sender_IP_address needs to be
586                  * moved, the destination hardware address get stuffed
587                  * in and the hardware address length set to 8.
588                  *
589                  * IMPORTANT: The code below overwrites 1394 specific data
590                  * needed above so keep the munging of the data for the
591                  * higher level IP stack last.
592                  */
593
594                 arp->ar_hln = 8;
595                 /* skip over sender unique id */
596                 arp_ptr += arp->ar_hln;
597                 /* move sender IP addr */
598                 put_unaligned(arp1394->sip, (u32 *)arp_ptr);
599                 /* skip over sender IP addr */
600                 arp_ptr += arp->ar_pln;
601
602                 if (arp->ar_op == htons(ARPOP_REQUEST))
603                         memset(arp_ptr, 0, sizeof(u64));
604                 else
605                         memcpy(arp_ptr, net->dev_addr, sizeof(u64));
606         }
607
608         /* Now add the ethernet header. */
609         guid = cpu_to_be64(dev->card->guid);
610         if (dev_hard_header(skb, net, ether_type,
611                            is_broadcast ? &broadcast_hw : &guid,
612                            NULL, skb->len) >= 0) {
613                 struct fwnet_header *eth;
614                 u16 *rawp;
615                 __be16 protocol;
616
617                 skb_reset_mac_header(skb);
618                 skb_pull(skb, sizeof(*eth));
619                 eth = (struct fwnet_header *)skb_mac_header(skb);
620                 if (*eth->h_dest & 1) {
621                         if (memcmp(eth->h_dest, net->broadcast,
622                                    net->addr_len) == 0)
623                                 skb->pkt_type = PACKET_BROADCAST;
624 #if 0
625                         else
626                                 skb->pkt_type = PACKET_MULTICAST;
627 #endif
628                 } else {
629                         if (memcmp(eth->h_dest, net->dev_addr, net->addr_len))
630                                 skb->pkt_type = PACKET_OTHERHOST;
631                 }
632                 if (ntohs(eth->h_proto) >= 1536) {
633                         protocol = eth->h_proto;
634                 } else {
635                         rawp = (u16 *)skb->data;
636                         if (*rawp == 0xffff)
637                                 protocol = htons(ETH_P_802_3);
638                         else
639                                 protocol = htons(ETH_P_802_2);
640                 }
641                 skb->protocol = protocol;
642         }
643         status = netif_rx(skb);
644         if (status == NET_RX_DROP) {
645                 net->stats.rx_errors++;
646                 net->stats.rx_dropped++;
647         } else {
648                 net->stats.rx_packets++;
649                 net->stats.rx_bytes += skb->len;
650         }
651
652         return 0;
653
654  no_peer:
655         net->stats.rx_errors++;
656         net->stats.rx_dropped++;
657
658         dev_kfree_skb_any(skb);
659
660         return -ENOENT;
661 }
662
663 static int fwnet_incoming_packet(struct fwnet_device *dev, __be32 *buf, int len,
664                                  int source_node_id, int generation,
665                                  bool is_broadcast)
666 {
667         struct sk_buff *skb;
668         struct net_device *net = dev->netdev;
669         struct rfc2734_header hdr;
670         unsigned lf;
671         unsigned long flags;
672         struct fwnet_peer *peer;
673         struct fwnet_partial_datagram *pd;
674         int fg_off;
675         int dg_size;
676         u16 datagram_label;
677         int retval;
678         u16 ether_type;
679
680         hdr.w0 = be32_to_cpu(buf[0]);
681         lf = fwnet_get_hdr_lf(&hdr);
682         if (lf == RFC2374_HDR_UNFRAG) {
683                 /*
684                  * An unfragmented datagram has been received by the ieee1394
685                  * bus. Build an skbuff around it so we can pass it to the
686                  * high level network layer.
687                  */
688                 ether_type = fwnet_get_hdr_ether_type(&hdr);
689                 buf++;
690                 len -= RFC2374_UNFRAG_HDR_SIZE;
691
692                 skb = dev_alloc_skb(len + net->hard_header_len + 15);
693                 if (unlikely(!skb)) {
694                         fw_error("out of memory\n");
695                         net->stats.rx_dropped++;
696
697                         return -ENOMEM;
698                 }
699                 skb_reserve(skb, (net->hard_header_len + 15) & ~15);
700                 memcpy(skb_put(skb, len), buf, len);
701
702                 return fwnet_finish_incoming_packet(net, skb, source_node_id,
703                                                     is_broadcast, ether_type);
704         }
705         /* A datagram fragment has been received, now the fun begins. */
706         hdr.w1 = ntohl(buf[1]);
707         buf += 2;
708         len -= RFC2374_FRAG_HDR_SIZE;
709         if (lf == RFC2374_HDR_FIRSTFRAG) {
710                 ether_type = fwnet_get_hdr_ether_type(&hdr);
711                 fg_off = 0;
712         } else {
713                 ether_type = 0;
714                 fg_off = fwnet_get_hdr_fg_off(&hdr);
715         }
716         datagram_label = fwnet_get_hdr_dgl(&hdr);
717         dg_size = fwnet_get_hdr_dg_size(&hdr); /* ??? + 1 */
718
719         spin_lock_irqsave(&dev->lock, flags);
720
721         peer = fwnet_peer_find_by_node_id(dev, source_node_id, generation);
722         if (!peer) {
723                 retval = -ENOENT;
724                 goto fail;
725         }
726
727         pd = fwnet_pd_find(peer, datagram_label);
728         if (pd == NULL) {
729                 while (peer->pdg_size >= FWNET_MAX_FRAGMENTS) {
730                         /* remove the oldest */
731                         fwnet_pd_delete(list_first_entry(&peer->pd_list,
732                                 struct fwnet_partial_datagram, pd_link));
733                         peer->pdg_size--;
734                 }
735                 pd = fwnet_pd_new(net, peer, datagram_label,
736                                   dg_size, buf, fg_off, len);
737                 if (pd == NULL) {
738                         retval = -ENOMEM;
739                         goto fail;
740                 }
741                 peer->pdg_size++;
742         } else {
743                 if (fwnet_frag_overlap(pd, fg_off, len) ||
744                     pd->datagram_size != dg_size) {
745                         /*
746                          * Differing datagram sizes or overlapping fragments,
747                          * discard old datagram and start a new one.
748                          */
749                         fwnet_pd_delete(pd);
750                         pd = fwnet_pd_new(net, peer, datagram_label,
751                                           dg_size, buf, fg_off, len);
752                         if (pd == NULL) {
753                                 peer->pdg_size--;
754                                 retval = -ENOMEM;
755                                 goto fail;
756                         }
757                 } else {
758                         if (!fwnet_pd_update(peer, pd, buf, fg_off, len)) {
759                                 /*
760                                  * Couldn't save off fragment anyway
761                                  * so might as well obliterate the
762                                  * datagram now.
763                                  */
764                                 fwnet_pd_delete(pd);
765                                 peer->pdg_size--;
766                                 retval = -ENOMEM;
767                                 goto fail;
768                         }
769                 }
770         } /* new datagram or add to existing one */
771
772         if (lf == RFC2374_HDR_FIRSTFRAG)
773                 pd->ether_type = ether_type;
774
775         if (fwnet_pd_is_complete(pd)) {
776                 ether_type = pd->ether_type;
777                 peer->pdg_size--;
778                 skb = skb_get(pd->skb);
779                 fwnet_pd_delete(pd);
780
781                 spin_unlock_irqrestore(&dev->lock, flags);
782
783                 return fwnet_finish_incoming_packet(net, skb, source_node_id,
784                                                     false, ether_type);
785         }
786         /*
787          * Datagram is not complete, we're done for the
788          * moment.
789          */
790         retval = 0;
791  fail:
792         spin_unlock_irqrestore(&dev->lock, flags);
793
794         return retval;
795 }
796
797 static void fwnet_receive_packet(struct fw_card *card, struct fw_request *r,
798                 int tcode, int destination, int source, int generation,
799                 unsigned long long offset, void *payload, size_t length,
800                 void *callback_data)
801 {
802         struct fwnet_device *dev = callback_data;
803         int rcode;
804
805         if (destination == IEEE1394_ALL_NODES) {
806                 kfree(r);
807
808                 return;
809         }
810
811         if (offset != dev->handler.offset)
812                 rcode = RCODE_ADDRESS_ERROR;
813         else if (tcode != TCODE_WRITE_BLOCK_REQUEST)
814                 rcode = RCODE_TYPE_ERROR;
815         else if (fwnet_incoming_packet(dev, payload, length,
816                                        source, generation, false) != 0) {
817                 fw_error("Incoming packet failure\n");
818                 rcode = RCODE_CONFLICT_ERROR;
819         } else
820                 rcode = RCODE_COMPLETE;
821
822         fw_send_response(card, r, rcode);
823 }
824
825 static void fwnet_receive_broadcast(struct fw_iso_context *context,
826                 u32 cycle, size_t header_length, void *header, void *data)
827 {
828         struct fwnet_device *dev;
829         struct fw_iso_packet packet;
830         struct fw_card *card;
831         __be16 *hdr_ptr;
832         __be32 *buf_ptr;
833         int retval;
834         u32 length;
835         u16 source_node_id;
836         u32 specifier_id;
837         u32 ver;
838         unsigned long offset;
839         unsigned long flags;
840
841         dev = data;
842         card = dev->card;
843         hdr_ptr = header;
844         length = be16_to_cpup(hdr_ptr);
845
846         spin_lock_irqsave(&dev->lock, flags);
847
848         offset = dev->rcv_buffer_size * dev->broadcast_rcv_next_ptr;
849         buf_ptr = dev->broadcast_rcv_buffer_ptrs[dev->broadcast_rcv_next_ptr++];
850         if (dev->broadcast_rcv_next_ptr == dev->num_broadcast_rcv_ptrs)
851                 dev->broadcast_rcv_next_ptr = 0;
852
853         spin_unlock_irqrestore(&dev->lock, flags);
854
855         specifier_id =    (be32_to_cpu(buf_ptr[0]) & 0xffff) << 8
856                         | (be32_to_cpu(buf_ptr[1]) & 0xff000000) >> 24;
857         ver = be32_to_cpu(buf_ptr[1]) & 0xffffff;
858         source_node_id = be32_to_cpu(buf_ptr[0]) >> 16;
859
860         if (specifier_id == IANA_SPECIFIER_ID && ver == RFC2734_SW_VERSION) {
861                 buf_ptr += 2;
862                 length -= IEEE1394_GASP_HDR_SIZE;
863                 fwnet_incoming_packet(dev, buf_ptr, length,
864                                       source_node_id, -1, true);
865         }
866
867         packet.payload_length = dev->rcv_buffer_size;
868         packet.interrupt = 1;
869         packet.skip = 0;
870         packet.tag = 3;
871         packet.sy = 0;
872         packet.header_length = IEEE1394_GASP_HDR_SIZE;
873
874         spin_lock_irqsave(&dev->lock, flags);
875
876         retval = fw_iso_context_queue(dev->broadcast_rcv_context, &packet,
877                                       &dev->broadcast_rcv_buffer, offset);
878
879         spin_unlock_irqrestore(&dev->lock, flags);
880
881         if (retval >= 0)
882                 fw_iso_context_queue_flush(dev->broadcast_rcv_context);
883         else
884                 fw_error("requeue failed\n");
885 }
886
887 static struct kmem_cache *fwnet_packet_task_cache;
888
889 static void fwnet_free_ptask(struct fwnet_packet_task *ptask)
890 {
891         dev_kfree_skb_any(ptask->skb);
892         kmem_cache_free(fwnet_packet_task_cache, ptask);
893 }
894
895 /* Caller must hold dev->lock. */
896 static void dec_queued_datagrams(struct fwnet_device *dev)
897 {
898         if (--dev->queued_datagrams == FWNET_MIN_QUEUED_DATAGRAMS)
899                 netif_wake_queue(dev->netdev);
900 }
901
902 static int fwnet_send_packet(struct fwnet_packet_task *ptask);
903
904 static void fwnet_transmit_packet_done(struct fwnet_packet_task *ptask)
905 {
906         struct fwnet_device *dev = ptask->dev;
907         struct sk_buff *skb = ptask->skb;
908         unsigned long flags;
909         bool free;
910
911         spin_lock_irqsave(&dev->lock, flags);
912
913         ptask->outstanding_pkts--;
914
915         /* Check whether we or the networking TX soft-IRQ is last user. */
916         free = (ptask->outstanding_pkts == 0 && ptask->enqueued);
917         if (free)
918                 dec_queued_datagrams(dev);
919
920         if (ptask->outstanding_pkts == 0) {
921                 dev->netdev->stats.tx_packets++;
922                 dev->netdev->stats.tx_bytes += skb->len;
923         }
924
925         spin_unlock_irqrestore(&dev->lock, flags);
926
927         if (ptask->outstanding_pkts > 0) {
928                 u16 dg_size;
929                 u16 fg_off;
930                 u16 datagram_label;
931                 u16 lf;
932
933                 /* Update the ptask to point to the next fragment and send it */
934                 lf = fwnet_get_hdr_lf(&ptask->hdr);
935                 switch (lf) {
936                 case RFC2374_HDR_LASTFRAG:
937                 case RFC2374_HDR_UNFRAG:
938                 default:
939                         fw_error("Outstanding packet %x lf %x, header %x,%x\n",
940                                  ptask->outstanding_pkts, lf, ptask->hdr.w0,
941                                  ptask->hdr.w1);
942                         BUG();
943
944                 case RFC2374_HDR_FIRSTFRAG:
945                         /* Set frag type here for future interior fragments */
946                         dg_size = fwnet_get_hdr_dg_size(&ptask->hdr);
947                         fg_off = ptask->max_payload - RFC2374_FRAG_HDR_SIZE;
948                         datagram_label = fwnet_get_hdr_dgl(&ptask->hdr);
949                         break;
950
951                 case RFC2374_HDR_INTFRAG:
952                         dg_size = fwnet_get_hdr_dg_size(&ptask->hdr);
953                         fg_off = fwnet_get_hdr_fg_off(&ptask->hdr)
954                                   + ptask->max_payload - RFC2374_FRAG_HDR_SIZE;
955                         datagram_label = fwnet_get_hdr_dgl(&ptask->hdr);
956                         break;
957                 }
958
959                 skb_pull(skb, ptask->max_payload);
960                 if (ptask->outstanding_pkts > 1) {
961                         fwnet_make_sf_hdr(&ptask->hdr, RFC2374_HDR_INTFRAG,
962                                           dg_size, fg_off, datagram_label);
963                 } else {
964                         fwnet_make_sf_hdr(&ptask->hdr, RFC2374_HDR_LASTFRAG,
965                                           dg_size, fg_off, datagram_label);
966                         ptask->max_payload = skb->len + RFC2374_FRAG_HDR_SIZE;
967                 }
968                 fwnet_send_packet(ptask);
969         }
970
971         if (free)
972                 fwnet_free_ptask(ptask);
973 }
974
975 static void fwnet_transmit_packet_failed(struct fwnet_packet_task *ptask)
976 {
977         struct fwnet_device *dev = ptask->dev;
978         unsigned long flags;
979         bool free;
980
981         spin_lock_irqsave(&dev->lock, flags);
982
983         /* One fragment failed; don't try to send remaining fragments. */
984         ptask->outstanding_pkts = 0;
985
986         /* Check whether we or the networking TX soft-IRQ is last user. */
987         free = ptask->enqueued;
988         if (free)
989                 dec_queued_datagrams(dev);
990
991         dev->netdev->stats.tx_dropped++;
992         dev->netdev->stats.tx_errors++;
993
994         spin_unlock_irqrestore(&dev->lock, flags);
995
996         if (free)
997                 fwnet_free_ptask(ptask);
998 }
999
1000 static void fwnet_write_complete(struct fw_card *card, int rcode,
1001                                  void *payload, size_t length, void *data)
1002 {
1003         struct fwnet_packet_task *ptask = data;
1004         static unsigned long j;
1005         static int last_rcode, errors_skipped;
1006
1007         if (rcode == RCODE_COMPLETE) {
1008                 fwnet_transmit_packet_done(ptask);
1009         } else {
1010                 fwnet_transmit_packet_failed(ptask);
1011
1012                 if (printk_timed_ratelimit(&j,  1000) || rcode != last_rcode) {
1013                         fw_error("fwnet_write_complete: "
1014                                 "failed: %x (skipped %d)\n", rcode, errors_skipped);
1015
1016                         errors_skipped = 0;
1017                         last_rcode = rcode;
1018                 } else
1019                         errors_skipped++;
1020         }
1021 }
1022
1023 static int fwnet_send_packet(struct fwnet_packet_task *ptask)
1024 {
1025         struct fwnet_device *dev;
1026         unsigned tx_len;
1027         struct rfc2734_header *bufhdr;
1028         unsigned long flags;
1029         bool free;
1030
1031         dev = ptask->dev;
1032         tx_len = ptask->max_payload;
1033         switch (fwnet_get_hdr_lf(&ptask->hdr)) {
1034         case RFC2374_HDR_UNFRAG:
1035                 bufhdr = (struct rfc2734_header *)
1036                                 skb_push(ptask->skb, RFC2374_UNFRAG_HDR_SIZE);
1037                 put_unaligned_be32(ptask->hdr.w0, &bufhdr->w0);
1038                 break;
1039
1040         case RFC2374_HDR_FIRSTFRAG:
1041         case RFC2374_HDR_INTFRAG:
1042         case RFC2374_HDR_LASTFRAG:
1043                 bufhdr = (struct rfc2734_header *)
1044                                 skb_push(ptask->skb, RFC2374_FRAG_HDR_SIZE);
1045                 put_unaligned_be32(ptask->hdr.w0, &bufhdr->w0);
1046                 put_unaligned_be32(ptask->hdr.w1, &bufhdr->w1);
1047                 break;
1048
1049         default:
1050                 BUG();
1051         }
1052         if (ptask->dest_node == IEEE1394_ALL_NODES) {
1053                 u8 *p;
1054                 int generation;
1055                 int node_id;
1056
1057                 /* ptask->generation may not have been set yet */
1058                 generation = dev->card->generation;
1059                 smp_rmb();
1060                 node_id = dev->card->node_id;
1061
1062                 p = skb_push(ptask->skb, 8);
1063                 put_unaligned_be32(node_id << 16 | IANA_SPECIFIER_ID >> 8, p);
1064                 put_unaligned_be32((IANA_SPECIFIER_ID & 0xff) << 24
1065                                                 | RFC2734_SW_VERSION, &p[4]);
1066
1067                 /* We should not transmit if broadcast_channel.valid == 0. */
1068                 fw_send_request(dev->card, &ptask->transaction,
1069                                 TCODE_STREAM_DATA,
1070                                 fw_stream_packet_destination_id(3,
1071                                                 IEEE1394_BROADCAST_CHANNEL, 0),
1072                                 generation, SCODE_100, 0ULL, ptask->skb->data,
1073                                 tx_len + 8, fwnet_write_complete, ptask);
1074
1075                 spin_lock_irqsave(&dev->lock, flags);
1076
1077                 /* If the AT tasklet already ran, we may be last user. */
1078                 free = (ptask->outstanding_pkts == 0 && !ptask->enqueued);
1079                 if (!free)
1080                         ptask->enqueued = true;
1081                 else
1082                         dec_queued_datagrams(dev);
1083
1084                 spin_unlock_irqrestore(&dev->lock, flags);
1085
1086                 goto out;
1087         }
1088
1089         fw_send_request(dev->card, &ptask->transaction,
1090                         TCODE_WRITE_BLOCK_REQUEST, ptask->dest_node,
1091                         ptask->generation, ptask->speed, ptask->fifo_addr,
1092                         ptask->skb->data, tx_len, fwnet_write_complete, ptask);
1093
1094         spin_lock_irqsave(&dev->lock, flags);
1095
1096         /* If the AT tasklet already ran, we may be last user. */
1097         free = (ptask->outstanding_pkts == 0 && !ptask->enqueued);
1098         if (!free)
1099                 ptask->enqueued = true;
1100         else
1101                 dec_queued_datagrams(dev);
1102
1103         spin_unlock_irqrestore(&dev->lock, flags);
1104
1105         dev->netdev->trans_start = jiffies;
1106  out:
1107         if (free)
1108                 fwnet_free_ptask(ptask);
1109
1110         return 0;
1111 }
1112
1113 static int fwnet_broadcast_start(struct fwnet_device *dev)
1114 {
1115         struct fw_iso_context *context;
1116         int retval;
1117         unsigned num_packets;
1118         unsigned max_receive;
1119         struct fw_iso_packet packet;
1120         unsigned long offset;
1121         unsigned u;
1122
1123         if (dev->local_fifo == FWNET_NO_FIFO_ADDR) {
1124                 dev->handler.length = 4096;
1125                 dev->handler.address_callback = fwnet_receive_packet;
1126                 dev->handler.callback_data = dev;
1127
1128                 retval = fw_core_add_address_handler(&dev->handler,
1129                                         &fw_high_memory_region);
1130                 if (retval < 0)
1131                         goto failed_initial;
1132
1133                 dev->local_fifo = dev->handler.offset;
1134         }
1135
1136         max_receive = 1U << (dev->card->max_receive + 1);
1137         num_packets = (FWNET_ISO_PAGE_COUNT * PAGE_SIZE) / max_receive;
1138
1139         if (!dev->broadcast_rcv_context) {
1140                 void **ptrptr;
1141
1142                 context = fw_iso_context_create(dev->card,
1143                     FW_ISO_CONTEXT_RECEIVE, IEEE1394_BROADCAST_CHANNEL,
1144                     dev->card->link_speed, 8, fwnet_receive_broadcast, dev);
1145                 if (IS_ERR(context)) {
1146                         retval = PTR_ERR(context);
1147                         goto failed_context_create;
1148                 }
1149
1150                 retval = fw_iso_buffer_init(&dev->broadcast_rcv_buffer,
1151                     dev->card, FWNET_ISO_PAGE_COUNT, DMA_FROM_DEVICE);
1152                 if (retval < 0)
1153                         goto failed_buffer_init;
1154
1155                 ptrptr = kmalloc(sizeof(void *) * num_packets, GFP_KERNEL);
1156                 if (!ptrptr) {
1157                         retval = -ENOMEM;
1158                         goto failed_ptrs_alloc;
1159                 }
1160
1161                 dev->broadcast_rcv_buffer_ptrs = ptrptr;
1162                 for (u = 0; u < FWNET_ISO_PAGE_COUNT; u++) {
1163                         void *ptr;
1164                         unsigned v;
1165
1166                         ptr = kmap(dev->broadcast_rcv_buffer.pages[u]);
1167                         for (v = 0; v < num_packets / FWNET_ISO_PAGE_COUNT; v++)
1168                                 *ptrptr++ = (void *)
1169                                                 ((char *)ptr + v * max_receive);
1170                 }
1171                 dev->broadcast_rcv_context = context;
1172         } else {
1173                 context = dev->broadcast_rcv_context;
1174         }
1175
1176         packet.payload_length = max_receive;
1177         packet.interrupt = 1;
1178         packet.skip = 0;
1179         packet.tag = 3;
1180         packet.sy = 0;
1181         packet.header_length = IEEE1394_GASP_HDR_SIZE;
1182         offset = 0;
1183
1184         for (u = 0; u < num_packets; u++) {
1185                 retval = fw_iso_context_queue(context, &packet,
1186                                 &dev->broadcast_rcv_buffer, offset);
1187                 if (retval < 0)
1188                         goto failed_rcv_queue;
1189
1190                 offset += max_receive;
1191         }
1192         dev->num_broadcast_rcv_ptrs = num_packets;
1193         dev->rcv_buffer_size = max_receive;
1194         dev->broadcast_rcv_next_ptr = 0U;
1195         retval = fw_iso_context_start(context, -1, 0,
1196                         FW_ISO_CONTEXT_MATCH_ALL_TAGS); /* ??? sync */
1197         if (retval < 0)
1198                 goto failed_rcv_queue;
1199
1200         /* FIXME: adjust it according to the min. speed of all known peers? */
1201         dev->broadcast_xmt_max_payload = IEEE1394_MAX_PAYLOAD_S100
1202                         - IEEE1394_GASP_HDR_SIZE - RFC2374_UNFRAG_HDR_SIZE;
1203         dev->broadcast_state = FWNET_BROADCAST_RUNNING;
1204
1205         return 0;
1206
1207  failed_rcv_queue:
1208         kfree(dev->broadcast_rcv_buffer_ptrs);
1209         dev->broadcast_rcv_buffer_ptrs = NULL;
1210  failed_ptrs_alloc:
1211         fw_iso_buffer_destroy(&dev->broadcast_rcv_buffer, dev->card);
1212  failed_buffer_init:
1213         fw_iso_context_destroy(context);
1214         dev->broadcast_rcv_context = NULL;
1215  failed_context_create:
1216         fw_core_remove_address_handler(&dev->handler);
1217  failed_initial:
1218         dev->local_fifo = FWNET_NO_FIFO_ADDR;
1219
1220         return retval;
1221 }
1222
1223 static void set_carrier_state(struct fwnet_device *dev)
1224 {
1225         if (dev->peer_count > 1)
1226                 netif_carrier_on(dev->netdev);
1227         else
1228                 netif_carrier_off(dev->netdev);
1229 }
1230
1231 /* ifup */
1232 static int fwnet_open(struct net_device *net)
1233 {
1234         struct fwnet_device *dev = netdev_priv(net);
1235         int ret;
1236
1237         if (dev->broadcast_state == FWNET_BROADCAST_ERROR) {
1238                 ret = fwnet_broadcast_start(dev);
1239                 if (ret)
1240                         return ret;
1241         }
1242         netif_start_queue(net);
1243
1244         spin_lock_irq(&dev->lock);
1245         set_carrier_state(dev);
1246         spin_unlock_irq(&dev->lock);
1247
1248         return 0;
1249 }
1250
1251 /* ifdown */
1252 static int fwnet_stop(struct net_device *net)
1253 {
1254         netif_stop_queue(net);
1255
1256         /* Deallocate iso context for use by other applications? */
1257
1258         return 0;
1259 }
1260
1261 static netdev_tx_t fwnet_tx(struct sk_buff *skb, struct net_device *net)
1262 {
1263         struct fwnet_header hdr_buf;
1264         struct fwnet_device *dev = netdev_priv(net);
1265         __be16 proto;
1266         u16 dest_node;
1267         unsigned max_payload;
1268         u16 dg_size;
1269         u16 *datagram_label_ptr;
1270         struct fwnet_packet_task *ptask;
1271         struct fwnet_peer *peer;
1272         unsigned long flags;
1273
1274         spin_lock_irqsave(&dev->lock, flags);
1275
1276         /* Can this happen? */
1277         if (netif_queue_stopped(dev->netdev)) {
1278                 spin_unlock_irqrestore(&dev->lock, flags);
1279
1280                 return NETDEV_TX_BUSY;
1281         }
1282
1283         ptask = kmem_cache_alloc(fwnet_packet_task_cache, GFP_ATOMIC);
1284         if (ptask == NULL)
1285                 goto fail;
1286
1287         skb = skb_share_check(skb, GFP_ATOMIC);
1288         if (!skb)
1289                 goto fail;
1290
1291         /*
1292          * Make a copy of the driver-specific header.
1293          * We might need to rebuild the header on tx failure.
1294          */
1295         memcpy(&hdr_buf, skb->data, sizeof(hdr_buf));
1296         skb_pull(skb, sizeof(hdr_buf));
1297
1298         proto = hdr_buf.h_proto;
1299         dg_size = skb->len;
1300
1301         /*
1302          * Set the transmission type for the packet.  ARP packets and IP
1303          * broadcast packets are sent via GASP.
1304          */
1305         if (memcmp(hdr_buf.h_dest, net->broadcast, FWNET_ALEN) == 0
1306             || proto == htons(ETH_P_ARP)
1307             || (proto == htons(ETH_P_IP)
1308                 && IN_MULTICAST(ntohl(ip_hdr(skb)->daddr)))) {
1309                 max_payload        = dev->broadcast_xmt_max_payload;
1310                 datagram_label_ptr = &dev->broadcast_xmt_datagramlabel;
1311
1312                 ptask->fifo_addr   = FWNET_NO_FIFO_ADDR;
1313                 ptask->generation  = 0;
1314                 ptask->dest_node   = IEEE1394_ALL_NODES;
1315                 ptask->speed       = SCODE_100;
1316         } else {
1317                 __be64 guid = get_unaligned((__be64 *)hdr_buf.h_dest);
1318                 u8 generation;
1319
1320                 peer = fwnet_peer_find_by_guid(dev, be64_to_cpu(guid));
1321                 if (!peer || peer->fifo == FWNET_NO_FIFO_ADDR)
1322                         goto fail;
1323
1324                 generation         = peer->generation;
1325                 dest_node          = peer->node_id;
1326                 max_payload        = peer->max_payload;
1327                 datagram_label_ptr = &peer->datagram_label;
1328
1329                 ptask->fifo_addr   = peer->fifo;
1330                 ptask->generation  = generation;
1331                 ptask->dest_node   = dest_node;
1332                 ptask->speed       = peer->speed;
1333         }
1334
1335         /* If this is an ARP packet, convert it */
1336         if (proto == htons(ETH_P_ARP)) {
1337                 struct arphdr *arp = (struct arphdr *)skb->data;
1338                 unsigned char *arp_ptr = (unsigned char *)(arp + 1);
1339                 struct rfc2734_arp *arp1394 = (struct rfc2734_arp *)skb->data;
1340                 __be32 ipaddr;
1341
1342                 ipaddr = get_unaligned((__be32 *)(arp_ptr + FWNET_ALEN));
1343
1344                 arp1394->hw_addr_len    = RFC2734_HW_ADDR_LEN;
1345                 arp1394->max_rec        = dev->card->max_receive;
1346                 arp1394->sspd           = dev->card->link_speed;
1347
1348                 put_unaligned_be16(dev->local_fifo >> 32,
1349                                    &arp1394->fifo_hi);
1350                 put_unaligned_be32(dev->local_fifo & 0xffffffff,
1351                                    &arp1394->fifo_lo);
1352                 put_unaligned(ipaddr, &arp1394->sip);
1353         }
1354
1355         ptask->hdr.w0 = 0;
1356         ptask->hdr.w1 = 0;
1357         ptask->skb = skb;
1358         ptask->dev = dev;
1359
1360         /* Does it all fit in one packet? */
1361         if (dg_size <= max_payload) {
1362                 fwnet_make_uf_hdr(&ptask->hdr, ntohs(proto));
1363                 ptask->outstanding_pkts = 1;
1364                 max_payload = dg_size + RFC2374_UNFRAG_HDR_SIZE;
1365         } else {
1366                 u16 datagram_label;
1367
1368                 max_payload -= RFC2374_FRAG_OVERHEAD;
1369                 datagram_label = (*datagram_label_ptr)++;
1370                 fwnet_make_ff_hdr(&ptask->hdr, ntohs(proto), dg_size,
1371                                   datagram_label);
1372                 ptask->outstanding_pkts = DIV_ROUND_UP(dg_size, max_payload);
1373                 max_payload += RFC2374_FRAG_HDR_SIZE;
1374         }
1375
1376         if (++dev->queued_datagrams == FWNET_MAX_QUEUED_DATAGRAMS)
1377                 netif_stop_queue(dev->netdev);
1378
1379         spin_unlock_irqrestore(&dev->lock, flags);
1380
1381         ptask->max_payload = max_payload;
1382         ptask->enqueued    = 0;
1383
1384         fwnet_send_packet(ptask);
1385
1386         return NETDEV_TX_OK;
1387
1388  fail:
1389         spin_unlock_irqrestore(&dev->lock, flags);
1390
1391         if (ptask)
1392                 kmem_cache_free(fwnet_packet_task_cache, ptask);
1393
1394         if (skb != NULL)
1395                 dev_kfree_skb(skb);
1396
1397         net->stats.tx_dropped++;
1398         net->stats.tx_errors++;
1399
1400         /*
1401          * FIXME: According to a patch from 2003-02-26, "returning non-zero
1402          * causes serious problems" here, allegedly.  Before that patch,
1403          * -ERRNO was returned which is not appropriate under Linux 2.6.
1404          * Perhaps more needs to be done?  Stop the queue in serious
1405          * conditions and restart it elsewhere?
1406          */
1407         return NETDEV_TX_OK;
1408 }
1409
1410 static int fwnet_change_mtu(struct net_device *net, int new_mtu)
1411 {
1412         if (new_mtu < 68)
1413                 return -EINVAL;
1414
1415         net->mtu = new_mtu;
1416         return 0;
1417 }
1418
1419 static const struct ethtool_ops fwnet_ethtool_ops = {
1420         .get_link       = ethtool_op_get_link,
1421 };
1422
1423 static const struct net_device_ops fwnet_netdev_ops = {
1424         .ndo_open       = fwnet_open,
1425         .ndo_stop       = fwnet_stop,
1426         .ndo_start_xmit = fwnet_tx,
1427         .ndo_change_mtu = fwnet_change_mtu,
1428 };
1429
1430 static void fwnet_init_dev(struct net_device *net)
1431 {
1432         net->header_ops         = &fwnet_header_ops;
1433         net->netdev_ops         = &fwnet_netdev_ops;
1434         net->watchdog_timeo     = 2 * HZ;
1435         net->flags              = IFF_BROADCAST | IFF_MULTICAST;
1436         net->features           = NETIF_F_HIGHDMA;
1437         net->addr_len           = FWNET_ALEN;
1438         net->hard_header_len    = FWNET_HLEN;
1439         net->type               = ARPHRD_IEEE1394;
1440         net->tx_queue_len       = FWNET_TX_QUEUE_LEN;
1441         net->ethtool_ops        = &fwnet_ethtool_ops;
1442 }
1443
1444 /* caller must hold fwnet_device_mutex */
1445 static struct fwnet_device *fwnet_dev_find(struct fw_card *card)
1446 {
1447         struct fwnet_device *dev;
1448
1449         list_for_each_entry(dev, &fwnet_device_list, dev_link)
1450                 if (dev->card == card)
1451                         return dev;
1452
1453         return NULL;
1454 }
1455
1456 static int fwnet_add_peer(struct fwnet_device *dev,
1457                           struct fw_unit *unit, struct fw_device *device)
1458 {
1459         struct fwnet_peer *peer;
1460
1461         peer = kmalloc(sizeof(*peer), GFP_KERNEL);
1462         if (!peer)
1463                 return -ENOMEM;
1464
1465         dev_set_drvdata(&unit->device, peer);
1466
1467         peer->dev = dev;
1468         peer->guid = (u64)device->config_rom[3] << 32 | device->config_rom[4];
1469         peer->fifo = FWNET_NO_FIFO_ADDR;
1470         peer->ip = 0;
1471         INIT_LIST_HEAD(&peer->pd_list);
1472         peer->pdg_size = 0;
1473         peer->datagram_label = 0;
1474         peer->speed = device->max_speed;
1475         peer->max_payload = fwnet_max_payload(device->max_rec, peer->speed);
1476
1477         peer->generation = device->generation;
1478         smp_rmb();
1479         peer->node_id = device->node_id;
1480
1481         spin_lock_irq(&dev->lock);
1482         list_add_tail(&peer->peer_link, &dev->peer_list);
1483         dev->peer_count++;
1484         set_carrier_state(dev);
1485         spin_unlock_irq(&dev->lock);
1486
1487         return 0;
1488 }
1489
1490 static int fwnet_probe(struct device *_dev)
1491 {
1492         struct fw_unit *unit = fw_unit(_dev);
1493         struct fw_device *device = fw_parent_device(unit);
1494         struct fw_card *card = device->card;
1495         struct net_device *net;
1496         bool allocated_netdev = false;
1497         struct fwnet_device *dev;
1498         unsigned max_mtu;
1499         int ret;
1500
1501         mutex_lock(&fwnet_device_mutex);
1502
1503         dev = fwnet_dev_find(card);
1504         if (dev) {
1505                 net = dev->netdev;
1506                 goto have_dev;
1507         }
1508
1509         net = alloc_netdev(sizeof(*dev), "firewire%d", fwnet_init_dev);
1510         if (net == NULL) {
1511                 ret = -ENOMEM;
1512                 goto out;
1513         }
1514
1515         allocated_netdev = true;
1516         SET_NETDEV_DEV(net, card->device);
1517         dev = netdev_priv(net);
1518
1519         spin_lock_init(&dev->lock);
1520         dev->broadcast_state = FWNET_BROADCAST_ERROR;
1521         dev->broadcast_rcv_context = NULL;
1522         dev->broadcast_xmt_max_payload = 0;
1523         dev->broadcast_xmt_datagramlabel = 0;
1524         dev->local_fifo = FWNET_NO_FIFO_ADDR;
1525         dev->queued_datagrams = 0;
1526         INIT_LIST_HEAD(&dev->peer_list);
1527         dev->card = card;
1528         dev->netdev = net;
1529
1530         /*
1531          * Use the RFC 2734 default 1500 octets or the maximum payload
1532          * as initial MTU
1533          */
1534         max_mtu = (1 << (card->max_receive + 1))
1535                   - sizeof(struct rfc2734_header) - IEEE1394_GASP_HDR_SIZE;
1536         net->mtu = min(1500U, max_mtu);
1537
1538         /* Set our hardware address while we're at it */
1539         put_unaligned_be64(card->guid, net->dev_addr);
1540         put_unaligned_be64(~0ULL, net->broadcast);
1541         ret = register_netdev(net);
1542         if (ret) {
1543                 fw_error("Cannot register the driver\n");
1544                 goto out;
1545         }
1546
1547         list_add_tail(&dev->dev_link, &fwnet_device_list);
1548         fw_notify("%s: IPv4 over FireWire on device %016llx\n",
1549                   net->name, (unsigned long long)card->guid);
1550  have_dev:
1551         ret = fwnet_add_peer(dev, unit, device);
1552         if (ret && allocated_netdev) {
1553                 unregister_netdev(net);
1554                 list_del(&dev->dev_link);
1555         }
1556  out:
1557         if (ret && allocated_netdev)
1558                 free_netdev(net);
1559
1560         mutex_unlock(&fwnet_device_mutex);
1561
1562         return ret;
1563 }
1564
1565 static void fwnet_remove_peer(struct fwnet_peer *peer, struct fwnet_device *dev)
1566 {
1567         struct fwnet_partial_datagram *pd, *pd_next;
1568
1569         spin_lock_irq(&dev->lock);
1570         list_del(&peer->peer_link);
1571         dev->peer_count--;
1572         set_carrier_state(dev);
1573         spin_unlock_irq(&dev->lock);
1574
1575         list_for_each_entry_safe(pd, pd_next, &peer->pd_list, pd_link)
1576                 fwnet_pd_delete(pd);
1577
1578         kfree(peer);
1579 }
1580
1581 static int fwnet_remove(struct device *_dev)
1582 {
1583         struct fwnet_peer *peer = dev_get_drvdata(_dev);
1584         struct fwnet_device *dev = peer->dev;
1585         struct net_device *net;
1586         int i;
1587
1588         mutex_lock(&fwnet_device_mutex);
1589
1590         net = dev->netdev;
1591         if (net && peer->ip)
1592                 arp_invalidate(net, peer->ip);
1593
1594         fwnet_remove_peer(peer, dev);
1595
1596         if (list_empty(&dev->peer_list)) {
1597                 unregister_netdev(net);
1598
1599                 if (dev->local_fifo != FWNET_NO_FIFO_ADDR)
1600                         fw_core_remove_address_handler(&dev->handler);
1601                 if (dev->broadcast_rcv_context) {
1602                         fw_iso_context_stop(dev->broadcast_rcv_context);
1603                         fw_iso_buffer_destroy(&dev->broadcast_rcv_buffer,
1604                                               dev->card);
1605                         fw_iso_context_destroy(dev->broadcast_rcv_context);
1606                 }
1607                 for (i = 0; dev->queued_datagrams && i < 5; i++)
1608                         ssleep(1);
1609                 WARN_ON(dev->queued_datagrams);
1610                 list_del(&dev->dev_link);
1611
1612                 free_netdev(net);
1613         }
1614
1615         mutex_unlock(&fwnet_device_mutex);
1616
1617         return 0;
1618 }
1619
1620 /*
1621  * FIXME abort partially sent fragmented datagrams,
1622  * discard partially received fragmented datagrams
1623  */
1624 static void fwnet_update(struct fw_unit *unit)
1625 {
1626         struct fw_device *device = fw_parent_device(unit);
1627         struct fwnet_peer *peer = dev_get_drvdata(&unit->device);
1628         int generation;
1629
1630         generation = device->generation;
1631
1632         spin_lock_irq(&peer->dev->lock);
1633         peer->node_id    = device->node_id;
1634         peer->generation = generation;
1635         spin_unlock_irq(&peer->dev->lock);
1636 }
1637
1638 static const struct ieee1394_device_id fwnet_id_table[] = {
1639         {
1640                 .match_flags  = IEEE1394_MATCH_SPECIFIER_ID |
1641                                 IEEE1394_MATCH_VERSION,
1642                 .specifier_id = IANA_SPECIFIER_ID,
1643                 .version      = RFC2734_SW_VERSION,
1644         },
1645         { }
1646 };
1647
1648 static struct fw_driver fwnet_driver = {
1649         .driver = {
1650                 .owner  = THIS_MODULE,
1651                 .name   = "net",
1652                 .bus    = &fw_bus_type,
1653                 .probe  = fwnet_probe,
1654                 .remove = fwnet_remove,
1655         },
1656         .update   = fwnet_update,
1657         .id_table = fwnet_id_table,
1658 };
1659
1660 static const u32 rfc2374_unit_directory_data[] = {
1661         0x00040000,     /* directory_length             */
1662         0x1200005e,     /* unit_specifier_id: IANA      */
1663         0x81000003,     /* textual descriptor offset    */
1664         0x13000001,     /* unit_sw_version: RFC 2734    */
1665         0x81000005,     /* textual descriptor offset    */
1666         0x00030000,     /* descriptor_length            */
1667         0x00000000,     /* text                         */
1668         0x00000000,     /* minimal ASCII, en            */
1669         0x49414e41,     /* I A N A                      */
1670         0x00030000,     /* descriptor_length            */
1671         0x00000000,     /* text                         */
1672         0x00000000,     /* minimal ASCII, en            */
1673         0x49507634,     /* I P v 4                      */
1674 };
1675
1676 static struct fw_descriptor rfc2374_unit_directory = {
1677         .length = ARRAY_SIZE(rfc2374_unit_directory_data),
1678         .key    = (CSR_DIRECTORY | CSR_UNIT) << 24,
1679         .data   = rfc2374_unit_directory_data
1680 };
1681
1682 static int __init fwnet_init(void)
1683 {
1684         int err;
1685
1686         err = fw_core_add_descriptor(&rfc2374_unit_directory);
1687         if (err)
1688                 return err;
1689
1690         fwnet_packet_task_cache = kmem_cache_create("packet_task",
1691                         sizeof(struct fwnet_packet_task), 0, 0, NULL);
1692         if (!fwnet_packet_task_cache) {
1693                 err = -ENOMEM;
1694                 goto out;
1695         }
1696
1697         err = driver_register(&fwnet_driver.driver);
1698         if (!err)
1699                 return 0;
1700
1701         kmem_cache_destroy(fwnet_packet_task_cache);
1702 out:
1703         fw_core_remove_descriptor(&rfc2374_unit_directory);
1704
1705         return err;
1706 }
1707 module_init(fwnet_init);
1708
1709 static void __exit fwnet_cleanup(void)
1710 {
1711         driver_unregister(&fwnet_driver.driver);
1712         kmem_cache_destroy(fwnet_packet_task_cache);
1713         fw_core_remove_descriptor(&rfc2374_unit_directory);
1714 }
1715 module_exit(fwnet_cleanup);
1716
1717 MODULE_AUTHOR("Jay Fenlason <fenlason@redhat.com>");
1718 MODULE_DESCRIPTION("IPv4 over IEEE1394 as per RFC 2734");
1719 MODULE_LICENSE("GPL");
1720 MODULE_DEVICE_TABLE(ieee1394, fwnet_id_table);