Merge tag 's390-6.5-2' of git://git.kernel.org/pub/scm/linux/kernel/git/s390/linux
[platform/kernel/linux-starfive.git] / drivers / firewire / core-transaction.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Core IEEE1394 transaction logic
4  *
5  * Copyright (C) 2004-2006 Kristian Hoegsberg <krh@bitplanet.net>
6  */
7
8 #include <linux/bug.h>
9 #include <linux/completion.h>
10 #include <linux/device.h>
11 #include <linux/errno.h>
12 #include <linux/firewire.h>
13 #include <linux/firewire-constants.h>
14 #include <linux/fs.h>
15 #include <linux/init.h>
16 #include <linux/idr.h>
17 #include <linux/jiffies.h>
18 #include <linux/kernel.h>
19 #include <linux/list.h>
20 #include <linux/module.h>
21 #include <linux/rculist.h>
22 #include <linux/slab.h>
23 #include <linux/spinlock.h>
24 #include <linux/string.h>
25 #include <linux/timer.h>
26 #include <linux/types.h>
27 #include <linux/workqueue.h>
28
29 #include <asm/byteorder.h>
30
31 #include "core.h"
32
33 #define HEADER_PRI(pri)                 ((pri) << 0)
34 #define HEADER_TCODE(tcode)             ((tcode) << 4)
35 #define HEADER_RETRY(retry)             ((retry) << 8)
36 #define HEADER_TLABEL(tlabel)           ((tlabel) << 10)
37 #define HEADER_DESTINATION(destination) ((destination) << 16)
38 #define HEADER_SOURCE(source)           ((source) << 16)
39 #define HEADER_RCODE(rcode)             ((rcode) << 12)
40 #define HEADER_OFFSET_HIGH(offset_high) ((offset_high) << 0)
41 #define HEADER_DATA_LENGTH(length)      ((length) << 16)
42 #define HEADER_EXTENDED_TCODE(tcode)    ((tcode) << 0)
43
44 #define HEADER_GET_TCODE(q)             (((q) >> 4) & 0x0f)
45 #define HEADER_GET_TLABEL(q)            (((q) >> 10) & 0x3f)
46 #define HEADER_GET_RCODE(q)             (((q) >> 12) & 0x0f)
47 #define HEADER_GET_DESTINATION(q)       (((q) >> 16) & 0xffff)
48 #define HEADER_GET_SOURCE(q)            (((q) >> 16) & 0xffff)
49 #define HEADER_GET_OFFSET_HIGH(q)       (((q) >> 0) & 0xffff)
50 #define HEADER_GET_DATA_LENGTH(q)       (((q) >> 16) & 0xffff)
51 #define HEADER_GET_EXTENDED_TCODE(q)    (((q) >> 0) & 0xffff)
52
53 #define HEADER_DESTINATION_IS_BROADCAST(q) \
54         (((q) & HEADER_DESTINATION(0x3f)) == HEADER_DESTINATION(0x3f))
55
56 #define PHY_PACKET_CONFIG       0x0
57 #define PHY_PACKET_LINK_ON      0x1
58 #define PHY_PACKET_SELF_ID      0x2
59
60 #define PHY_CONFIG_GAP_COUNT(gap_count) (((gap_count) << 16) | (1 << 22))
61 #define PHY_CONFIG_ROOT_ID(node_id)     ((((node_id) & 0x3f) << 24) | (1 << 23))
62 #define PHY_IDENTIFIER(id)              ((id) << 30)
63
64 /* returns 0 if the split timeout handler is already running */
65 static int try_cancel_split_timeout(struct fw_transaction *t)
66 {
67         if (t->is_split_transaction)
68                 return del_timer(&t->split_timeout_timer);
69         else
70                 return 1;
71 }
72
73 static int close_transaction(struct fw_transaction *transaction, struct fw_card *card, int rcode,
74                              u32 response_tstamp)
75 {
76         struct fw_transaction *t = NULL, *iter;
77         unsigned long flags;
78
79         spin_lock_irqsave(&card->lock, flags);
80         list_for_each_entry(iter, &card->transaction_list, link) {
81                 if (iter == transaction) {
82                         if (!try_cancel_split_timeout(iter)) {
83                                 spin_unlock_irqrestore(&card->lock, flags);
84                                 goto timed_out;
85                         }
86                         list_del_init(&iter->link);
87                         card->tlabel_mask &= ~(1ULL << iter->tlabel);
88                         t = iter;
89                         break;
90                 }
91         }
92         spin_unlock_irqrestore(&card->lock, flags);
93
94         if (t) {
95                 if (!t->with_tstamp) {
96                         t->callback.without_tstamp(card, rcode, NULL, 0, t->callback_data);
97                 } else {
98                         t->callback.with_tstamp(card, rcode, t->packet.timestamp, response_tstamp,
99                                                 NULL, 0, t->callback_data);
100                 }
101                 return 0;
102         }
103
104  timed_out:
105         return -ENOENT;
106 }
107
108 /*
109  * Only valid for transactions that are potentially pending (ie have
110  * been sent).
111  */
112 int fw_cancel_transaction(struct fw_card *card,
113                           struct fw_transaction *transaction)
114 {
115         u32 tstamp;
116
117         /*
118          * Cancel the packet transmission if it's still queued.  That
119          * will call the packet transmission callback which cancels
120          * the transaction.
121          */
122
123         if (card->driver->cancel_packet(card, &transaction->packet) == 0)
124                 return 0;
125
126         /*
127          * If the request packet has already been sent, we need to see
128          * if the transaction is still pending and remove it in that case.
129          */
130
131         if (transaction->packet.ack == 0) {
132                 // The timestamp is reused since it was just read now.
133                 tstamp = transaction->packet.timestamp;
134         } else {
135                 u32 curr_cycle_time = 0;
136
137                 (void)fw_card_read_cycle_time(card, &curr_cycle_time);
138                 tstamp = cycle_time_to_ohci_tstamp(curr_cycle_time);
139         }
140
141         return close_transaction(transaction, card, RCODE_CANCELLED, tstamp);
142 }
143 EXPORT_SYMBOL(fw_cancel_transaction);
144
145 static void split_transaction_timeout_callback(struct timer_list *timer)
146 {
147         struct fw_transaction *t = from_timer(t, timer, split_timeout_timer);
148         struct fw_card *card = t->card;
149         unsigned long flags;
150
151         spin_lock_irqsave(&card->lock, flags);
152         if (list_empty(&t->link)) {
153                 spin_unlock_irqrestore(&card->lock, flags);
154                 return;
155         }
156         list_del(&t->link);
157         card->tlabel_mask &= ~(1ULL << t->tlabel);
158         spin_unlock_irqrestore(&card->lock, flags);
159
160         if (!t->with_tstamp) {
161                 t->callback.without_tstamp(card, RCODE_CANCELLED, NULL, 0, t->callback_data);
162         } else {
163                 t->callback.with_tstamp(card, RCODE_CANCELLED, t->packet.timestamp,
164                                         t->split_timeout_cycle, NULL, 0, t->callback_data);
165         }
166 }
167
168 static void start_split_transaction_timeout(struct fw_transaction *t,
169                                             struct fw_card *card)
170 {
171         unsigned long flags;
172
173         spin_lock_irqsave(&card->lock, flags);
174
175         if (list_empty(&t->link) || WARN_ON(t->is_split_transaction)) {
176                 spin_unlock_irqrestore(&card->lock, flags);
177                 return;
178         }
179
180         t->is_split_transaction = true;
181         mod_timer(&t->split_timeout_timer,
182                   jiffies + card->split_timeout_jiffies);
183
184         spin_unlock_irqrestore(&card->lock, flags);
185 }
186
187 static u32 compute_split_timeout_timestamp(struct fw_card *card, u32 request_timestamp);
188
189 static void transmit_complete_callback(struct fw_packet *packet,
190                                        struct fw_card *card, int status)
191 {
192         struct fw_transaction *t =
193             container_of(packet, struct fw_transaction, packet);
194
195         switch (status) {
196         case ACK_COMPLETE:
197                 close_transaction(t, card, RCODE_COMPLETE, packet->timestamp);
198                 break;
199         case ACK_PENDING:
200         {
201                 t->split_timeout_cycle =
202                         compute_split_timeout_timestamp(card, packet->timestamp) & 0xffff;
203                 start_split_transaction_timeout(t, card);
204                 break;
205         }
206         case ACK_BUSY_X:
207         case ACK_BUSY_A:
208         case ACK_BUSY_B:
209                 close_transaction(t, card, RCODE_BUSY, packet->timestamp);
210                 break;
211         case ACK_DATA_ERROR:
212                 close_transaction(t, card, RCODE_DATA_ERROR, packet->timestamp);
213                 break;
214         case ACK_TYPE_ERROR:
215                 close_transaction(t, card, RCODE_TYPE_ERROR, packet->timestamp);
216                 break;
217         default:
218                 /*
219                  * In this case the ack is really a juju specific
220                  * rcode, so just forward that to the callback.
221                  */
222                 close_transaction(t, card, status, packet->timestamp);
223                 break;
224         }
225 }
226
227 static void fw_fill_request(struct fw_packet *packet, int tcode, int tlabel,
228                 int destination_id, int source_id, int generation, int speed,
229                 unsigned long long offset, void *payload, size_t length)
230 {
231         int ext_tcode;
232
233         if (tcode == TCODE_STREAM_DATA) {
234                 packet->header[0] =
235                         HEADER_DATA_LENGTH(length) |
236                         destination_id |
237                         HEADER_TCODE(TCODE_STREAM_DATA);
238                 packet->header_length = 4;
239                 packet->payload = payload;
240                 packet->payload_length = length;
241
242                 goto common;
243         }
244
245         if (tcode > 0x10) {
246                 ext_tcode = tcode & ~0x10;
247                 tcode = TCODE_LOCK_REQUEST;
248         } else
249                 ext_tcode = 0;
250
251         packet->header[0] =
252                 HEADER_RETRY(RETRY_X) |
253                 HEADER_TLABEL(tlabel) |
254                 HEADER_TCODE(tcode) |
255                 HEADER_DESTINATION(destination_id);
256         packet->header[1] =
257                 HEADER_OFFSET_HIGH(offset >> 32) | HEADER_SOURCE(source_id);
258         packet->header[2] =
259                 offset;
260
261         switch (tcode) {
262         case TCODE_WRITE_QUADLET_REQUEST:
263                 packet->header[3] = *(u32 *)payload;
264                 packet->header_length = 16;
265                 packet->payload_length = 0;
266                 break;
267
268         case TCODE_LOCK_REQUEST:
269         case TCODE_WRITE_BLOCK_REQUEST:
270                 packet->header[3] =
271                         HEADER_DATA_LENGTH(length) |
272                         HEADER_EXTENDED_TCODE(ext_tcode);
273                 packet->header_length = 16;
274                 packet->payload = payload;
275                 packet->payload_length = length;
276                 break;
277
278         case TCODE_READ_QUADLET_REQUEST:
279                 packet->header_length = 12;
280                 packet->payload_length = 0;
281                 break;
282
283         case TCODE_READ_BLOCK_REQUEST:
284                 packet->header[3] =
285                         HEADER_DATA_LENGTH(length) |
286                         HEADER_EXTENDED_TCODE(ext_tcode);
287                 packet->header_length = 16;
288                 packet->payload_length = 0;
289                 break;
290
291         default:
292                 WARN(1, "wrong tcode %d\n", tcode);
293         }
294  common:
295         packet->speed = speed;
296         packet->generation = generation;
297         packet->ack = 0;
298         packet->payload_mapped = false;
299 }
300
301 static int allocate_tlabel(struct fw_card *card)
302 {
303         int tlabel;
304
305         tlabel = card->current_tlabel;
306         while (card->tlabel_mask & (1ULL << tlabel)) {
307                 tlabel = (tlabel + 1) & 0x3f;
308                 if (tlabel == card->current_tlabel)
309                         return -EBUSY;
310         }
311
312         card->current_tlabel = (tlabel + 1) & 0x3f;
313         card->tlabel_mask |= 1ULL << tlabel;
314
315         return tlabel;
316 }
317
318 /**
319  * __fw_send_request() - submit a request packet for transmission to generate callback for response
320  *                       subaction with or without time stamp.
321  * @card:               interface to send the request at
322  * @t:                  transaction instance to which the request belongs
323  * @tcode:              transaction code
324  * @destination_id:     destination node ID, consisting of bus_ID and phy_ID
325  * @generation:         bus generation in which request and response are valid
326  * @speed:              transmission speed
327  * @offset:             48bit wide offset into destination's address space
328  * @payload:            data payload for the request subaction
329  * @length:             length of the payload, in bytes
330  * @callback:           union of two functions whether to receive time stamp or not for response
331  *                      subaction.
332  * @with_tstamp:        Whether to receive time stamp or not for response subaction.
333  * @callback_data:      data to be passed to the transaction completion callback
334  *
335  * Submit a request packet into the asynchronous request transmission queue.
336  * Can be called from atomic context.  If you prefer a blocking API, use
337  * fw_run_transaction() in a context that can sleep.
338  *
339  * In case of lock requests, specify one of the firewire-core specific %TCODE_
340  * constants instead of %TCODE_LOCK_REQUEST in @tcode.
341  *
342  * Make sure that the value in @destination_id is not older than the one in
343  * @generation.  Otherwise the request is in danger to be sent to a wrong node.
344  *
345  * In case of asynchronous stream packets i.e. %TCODE_STREAM_DATA, the caller
346  * needs to synthesize @destination_id with fw_stream_packet_destination_id().
347  * It will contain tag, channel, and sy data instead of a node ID then.
348  *
349  * The payload buffer at @data is going to be DMA-mapped except in case of
350  * @length <= 8 or of local (loopback) requests.  Hence make sure that the
351  * buffer complies with the restrictions of the streaming DMA mapping API.
352  * @payload must not be freed before the @callback is called.
353  *
354  * In case of request types without payload, @data is NULL and @length is 0.
355  *
356  * After the transaction is completed successfully or unsuccessfully, the
357  * @callback will be called.  Among its parameters is the response code which
358  * is either one of the rcodes per IEEE 1394 or, in case of internal errors,
359  * the firewire-core specific %RCODE_SEND_ERROR.  The other firewire-core
360  * specific rcodes (%RCODE_CANCELLED, %RCODE_BUSY, %RCODE_GENERATION,
361  * %RCODE_NO_ACK) denote transaction timeout, busy responder, stale request
362  * generation, or missing ACK respectively.
363  *
364  * Note some timing corner cases:  fw_send_request() may complete much earlier
365  * than when the request packet actually hits the wire.  On the other hand,
366  * transaction completion and hence execution of @callback may happen even
367  * before fw_send_request() returns.
368  */
369 void __fw_send_request(struct fw_card *card, struct fw_transaction *t, int tcode,
370                 int destination_id, int generation, int speed, unsigned long long offset,
371                 void *payload, size_t length, union fw_transaction_callback callback,
372                 bool with_tstamp, void *callback_data)
373 {
374         unsigned long flags;
375         int tlabel;
376
377         /*
378          * Allocate tlabel from the bitmap and put the transaction on
379          * the list while holding the card spinlock.
380          */
381
382         spin_lock_irqsave(&card->lock, flags);
383
384         tlabel = allocate_tlabel(card);
385         if (tlabel < 0) {
386                 spin_unlock_irqrestore(&card->lock, flags);
387                 if (!with_tstamp) {
388                         callback.without_tstamp(card, RCODE_SEND_ERROR, NULL, 0, callback_data);
389                 } else {
390                         // Timestamping on behalf of hardware.
391                         u32 curr_cycle_time = 0;
392                         u32 tstamp;
393
394                         (void)fw_card_read_cycle_time(card, &curr_cycle_time);
395                         tstamp = cycle_time_to_ohci_tstamp(curr_cycle_time);
396
397                         callback.with_tstamp(card, RCODE_SEND_ERROR, tstamp, tstamp, NULL, 0,
398                                              callback_data);
399                 }
400                 return;
401         }
402
403         t->node_id = destination_id;
404         t->tlabel = tlabel;
405         t->card = card;
406         t->is_split_transaction = false;
407         timer_setup(&t->split_timeout_timer, split_transaction_timeout_callback, 0);
408         t->callback = callback;
409         t->with_tstamp = with_tstamp;
410         t->callback_data = callback_data;
411
412         fw_fill_request(&t->packet, tcode, t->tlabel, destination_id, card->node_id, generation,
413                         speed, offset, payload, length);
414         t->packet.callback = transmit_complete_callback;
415
416         list_add_tail(&t->link, &card->transaction_list);
417
418         spin_unlock_irqrestore(&card->lock, flags);
419
420         card->driver->send_request(card, &t->packet);
421 }
422 EXPORT_SYMBOL_GPL(__fw_send_request);
423
424 struct transaction_callback_data {
425         struct completion done;
426         void *payload;
427         int rcode;
428 };
429
430 static void transaction_callback(struct fw_card *card, int rcode,
431                                  void *payload, size_t length, void *data)
432 {
433         struct transaction_callback_data *d = data;
434
435         if (rcode == RCODE_COMPLETE)
436                 memcpy(d->payload, payload, length);
437         d->rcode = rcode;
438         complete(&d->done);
439 }
440
441 /**
442  * fw_run_transaction() - send request and sleep until transaction is completed
443  * @card:               card interface for this request
444  * @tcode:              transaction code
445  * @destination_id:     destination node ID, consisting of bus_ID and phy_ID
446  * @generation:         bus generation in which request and response are valid
447  * @speed:              transmission speed
448  * @offset:             48bit wide offset into destination's address space
449  * @payload:            data payload for the request subaction
450  * @length:             length of the payload, in bytes
451  *
452  * Returns the RCODE.  See fw_send_request() for parameter documentation.
453  * Unlike fw_send_request(), @data points to the payload of the request or/and
454  * to the payload of the response.  DMA mapping restrictions apply to outbound
455  * request payloads of >= 8 bytes but not to inbound response payloads.
456  */
457 int fw_run_transaction(struct fw_card *card, int tcode, int destination_id,
458                        int generation, int speed, unsigned long long offset,
459                        void *payload, size_t length)
460 {
461         struct transaction_callback_data d;
462         struct fw_transaction t;
463
464         timer_setup_on_stack(&t.split_timeout_timer, NULL, 0);
465         init_completion(&d.done);
466         d.payload = payload;
467         fw_send_request(card, &t, tcode, destination_id, generation, speed,
468                         offset, payload, length, transaction_callback, &d);
469         wait_for_completion(&d.done);
470         destroy_timer_on_stack(&t.split_timeout_timer);
471
472         return d.rcode;
473 }
474 EXPORT_SYMBOL(fw_run_transaction);
475
476 static DEFINE_MUTEX(phy_config_mutex);
477 static DECLARE_COMPLETION(phy_config_done);
478
479 static void transmit_phy_packet_callback(struct fw_packet *packet,
480                                          struct fw_card *card, int status)
481 {
482         complete(&phy_config_done);
483 }
484
485 static struct fw_packet phy_config_packet = {
486         .header_length  = 12,
487         .header[0]      = TCODE_LINK_INTERNAL << 4,
488         .payload_length = 0,
489         .speed          = SCODE_100,
490         .callback       = transmit_phy_packet_callback,
491 };
492
493 void fw_send_phy_config(struct fw_card *card,
494                         int node_id, int generation, int gap_count)
495 {
496         long timeout = DIV_ROUND_UP(HZ, 10);
497         u32 data = PHY_IDENTIFIER(PHY_PACKET_CONFIG);
498
499         if (node_id != FW_PHY_CONFIG_NO_NODE_ID)
500                 data |= PHY_CONFIG_ROOT_ID(node_id);
501
502         if (gap_count == FW_PHY_CONFIG_CURRENT_GAP_COUNT) {
503                 gap_count = card->driver->read_phy_reg(card, 1);
504                 if (gap_count < 0)
505                         return;
506
507                 gap_count &= 63;
508                 if (gap_count == 63)
509                         return;
510         }
511         data |= PHY_CONFIG_GAP_COUNT(gap_count);
512
513         mutex_lock(&phy_config_mutex);
514
515         phy_config_packet.header[1] = data;
516         phy_config_packet.header[2] = ~data;
517         phy_config_packet.generation = generation;
518         reinit_completion(&phy_config_done);
519
520         card->driver->send_request(card, &phy_config_packet);
521         wait_for_completion_timeout(&phy_config_done, timeout);
522
523         mutex_unlock(&phy_config_mutex);
524 }
525
526 static struct fw_address_handler *lookup_overlapping_address_handler(
527         struct list_head *list, unsigned long long offset, size_t length)
528 {
529         struct fw_address_handler *handler;
530
531         list_for_each_entry_rcu(handler, list, link) {
532                 if (handler->offset < offset + length &&
533                     offset < handler->offset + handler->length)
534                         return handler;
535         }
536
537         return NULL;
538 }
539
540 static bool is_enclosing_handler(struct fw_address_handler *handler,
541                                  unsigned long long offset, size_t length)
542 {
543         return handler->offset <= offset &&
544                 offset + length <= handler->offset + handler->length;
545 }
546
547 static struct fw_address_handler *lookup_enclosing_address_handler(
548         struct list_head *list, unsigned long long offset, size_t length)
549 {
550         struct fw_address_handler *handler;
551
552         list_for_each_entry_rcu(handler, list, link) {
553                 if (is_enclosing_handler(handler, offset, length))
554                         return handler;
555         }
556
557         return NULL;
558 }
559
560 static DEFINE_SPINLOCK(address_handler_list_lock);
561 static LIST_HEAD(address_handler_list);
562
563 const struct fw_address_region fw_high_memory_region =
564         { .start = FW_MAX_PHYSICAL_RANGE, .end = 0xffffe0000000ULL, };
565 EXPORT_SYMBOL(fw_high_memory_region);
566
567 static const struct fw_address_region low_memory_region =
568         { .start = 0x000000000000ULL, .end = FW_MAX_PHYSICAL_RANGE, };
569
570 #if 0
571 const struct fw_address_region fw_private_region =
572         { .start = 0xffffe0000000ULL, .end = 0xfffff0000000ULL,  };
573 const struct fw_address_region fw_csr_region =
574         { .start = CSR_REGISTER_BASE,
575           .end   = CSR_REGISTER_BASE | CSR_CONFIG_ROM_END,  };
576 const struct fw_address_region fw_unit_space_region =
577         { .start = 0xfffff0000900ULL, .end = 0x1000000000000ULL, };
578 #endif  /*  0  */
579
580 /**
581  * fw_core_add_address_handler() - register for incoming requests
582  * @handler:    callback
583  * @region:     region in the IEEE 1212 node space address range
584  *
585  * region->start, ->end, and handler->length have to be quadlet-aligned.
586  *
587  * When a request is received that falls within the specified address range,
588  * the specified callback is invoked.  The parameters passed to the callback
589  * give the details of the particular request.
590  *
591  * To be called in process context.
592  * Return value:  0 on success, non-zero otherwise.
593  *
594  * The start offset of the handler's address region is determined by
595  * fw_core_add_address_handler() and is returned in handler->offset.
596  *
597  * Address allocations are exclusive, except for the FCP registers.
598  */
599 int fw_core_add_address_handler(struct fw_address_handler *handler,
600                                 const struct fw_address_region *region)
601 {
602         struct fw_address_handler *other;
603         int ret = -EBUSY;
604
605         if (region->start & 0xffff000000000003ULL ||
606             region->start >= region->end ||
607             region->end   > 0x0001000000000000ULL ||
608             handler->length & 3 ||
609             handler->length == 0)
610                 return -EINVAL;
611
612         spin_lock(&address_handler_list_lock);
613
614         handler->offset = region->start;
615         while (handler->offset + handler->length <= region->end) {
616                 if (is_in_fcp_region(handler->offset, handler->length))
617                         other = NULL;
618                 else
619                         other = lookup_overlapping_address_handler
620                                         (&address_handler_list,
621                                          handler->offset, handler->length);
622                 if (other != NULL) {
623                         handler->offset += other->length;
624                 } else {
625                         list_add_tail_rcu(&handler->link, &address_handler_list);
626                         ret = 0;
627                         break;
628                 }
629         }
630
631         spin_unlock(&address_handler_list_lock);
632
633         return ret;
634 }
635 EXPORT_SYMBOL(fw_core_add_address_handler);
636
637 /**
638  * fw_core_remove_address_handler() - unregister an address handler
639  * @handler: callback
640  *
641  * To be called in process context.
642  *
643  * When fw_core_remove_address_handler() returns, @handler->callback() is
644  * guaranteed to not run on any CPU anymore.
645  */
646 void fw_core_remove_address_handler(struct fw_address_handler *handler)
647 {
648         spin_lock(&address_handler_list_lock);
649         list_del_rcu(&handler->link);
650         spin_unlock(&address_handler_list_lock);
651         synchronize_rcu();
652 }
653 EXPORT_SYMBOL(fw_core_remove_address_handler);
654
655 struct fw_request {
656         struct kref kref;
657         struct fw_packet response;
658         u32 request_header[4];
659         int ack;
660         u32 timestamp;
661         u32 length;
662         u32 data[];
663 };
664
665 void fw_request_get(struct fw_request *request)
666 {
667         kref_get(&request->kref);
668 }
669
670 static void release_request(struct kref *kref)
671 {
672         struct fw_request *request = container_of(kref, struct fw_request, kref);
673
674         kfree(request);
675 }
676
677 void fw_request_put(struct fw_request *request)
678 {
679         kref_put(&request->kref, release_request);
680 }
681
682 static void free_response_callback(struct fw_packet *packet,
683                                    struct fw_card *card, int status)
684 {
685         struct fw_request *request = container_of(packet, struct fw_request, response);
686
687         // Decrease the reference count since not at in-flight.
688         fw_request_put(request);
689
690         // Decrease the reference count to release the object.
691         fw_request_put(request);
692 }
693
694 int fw_get_response_length(struct fw_request *r)
695 {
696         int tcode, ext_tcode, data_length;
697
698         tcode = HEADER_GET_TCODE(r->request_header[0]);
699
700         switch (tcode) {
701         case TCODE_WRITE_QUADLET_REQUEST:
702         case TCODE_WRITE_BLOCK_REQUEST:
703                 return 0;
704
705         case TCODE_READ_QUADLET_REQUEST:
706                 return 4;
707
708         case TCODE_READ_BLOCK_REQUEST:
709                 data_length = HEADER_GET_DATA_LENGTH(r->request_header[3]);
710                 return data_length;
711
712         case TCODE_LOCK_REQUEST:
713                 ext_tcode = HEADER_GET_EXTENDED_TCODE(r->request_header[3]);
714                 data_length = HEADER_GET_DATA_LENGTH(r->request_header[3]);
715                 switch (ext_tcode) {
716                 case EXTCODE_FETCH_ADD:
717                 case EXTCODE_LITTLE_ADD:
718                         return data_length;
719                 default:
720                         return data_length / 2;
721                 }
722
723         default:
724                 WARN(1, "wrong tcode %d\n", tcode);
725                 return 0;
726         }
727 }
728
729 void fw_fill_response(struct fw_packet *response, u32 *request_header,
730                       int rcode, void *payload, size_t length)
731 {
732         int tcode, tlabel, extended_tcode, source, destination;
733
734         tcode          = HEADER_GET_TCODE(request_header[0]);
735         tlabel         = HEADER_GET_TLABEL(request_header[0]);
736         source         = HEADER_GET_DESTINATION(request_header[0]);
737         destination    = HEADER_GET_SOURCE(request_header[1]);
738         extended_tcode = HEADER_GET_EXTENDED_TCODE(request_header[3]);
739
740         response->header[0] =
741                 HEADER_RETRY(RETRY_1) |
742                 HEADER_TLABEL(tlabel) |
743                 HEADER_DESTINATION(destination);
744         response->header[1] =
745                 HEADER_SOURCE(source) |
746                 HEADER_RCODE(rcode);
747         response->header[2] = 0;
748
749         switch (tcode) {
750         case TCODE_WRITE_QUADLET_REQUEST:
751         case TCODE_WRITE_BLOCK_REQUEST:
752                 response->header[0] |= HEADER_TCODE(TCODE_WRITE_RESPONSE);
753                 response->header_length = 12;
754                 response->payload_length = 0;
755                 break;
756
757         case TCODE_READ_QUADLET_REQUEST:
758                 response->header[0] |=
759                         HEADER_TCODE(TCODE_READ_QUADLET_RESPONSE);
760                 if (payload != NULL)
761                         response->header[3] = *(u32 *)payload;
762                 else
763                         response->header[3] = 0;
764                 response->header_length = 16;
765                 response->payload_length = 0;
766                 break;
767
768         case TCODE_READ_BLOCK_REQUEST:
769         case TCODE_LOCK_REQUEST:
770                 response->header[0] |= HEADER_TCODE(tcode + 2);
771                 response->header[3] =
772                         HEADER_DATA_LENGTH(length) |
773                         HEADER_EXTENDED_TCODE(extended_tcode);
774                 response->header_length = 16;
775                 response->payload = payload;
776                 response->payload_length = length;
777                 break;
778
779         default:
780                 WARN(1, "wrong tcode %d\n", tcode);
781         }
782
783         response->payload_mapped = false;
784 }
785 EXPORT_SYMBOL(fw_fill_response);
786
787 static u32 compute_split_timeout_timestamp(struct fw_card *card,
788                                            u32 request_timestamp)
789 {
790         unsigned int cycles;
791         u32 timestamp;
792
793         cycles = card->split_timeout_cycles;
794         cycles += request_timestamp & 0x1fff;
795
796         timestamp = request_timestamp & ~0x1fff;
797         timestamp += (cycles / 8000) << 13;
798         timestamp |= cycles % 8000;
799
800         return timestamp;
801 }
802
803 static struct fw_request *allocate_request(struct fw_card *card,
804                                            struct fw_packet *p)
805 {
806         struct fw_request *request;
807         u32 *data, length;
808         int request_tcode;
809
810         request_tcode = HEADER_GET_TCODE(p->header[0]);
811         switch (request_tcode) {
812         case TCODE_WRITE_QUADLET_REQUEST:
813                 data = &p->header[3];
814                 length = 4;
815                 break;
816
817         case TCODE_WRITE_BLOCK_REQUEST:
818         case TCODE_LOCK_REQUEST:
819                 data = p->payload;
820                 length = HEADER_GET_DATA_LENGTH(p->header[3]);
821                 break;
822
823         case TCODE_READ_QUADLET_REQUEST:
824                 data = NULL;
825                 length = 4;
826                 break;
827
828         case TCODE_READ_BLOCK_REQUEST:
829                 data = NULL;
830                 length = HEADER_GET_DATA_LENGTH(p->header[3]);
831                 break;
832
833         default:
834                 fw_notice(card, "ERROR - corrupt request received - %08x %08x %08x\n",
835                          p->header[0], p->header[1], p->header[2]);
836                 return NULL;
837         }
838
839         request = kmalloc(sizeof(*request) + length, GFP_ATOMIC);
840         if (request == NULL)
841                 return NULL;
842         kref_init(&request->kref);
843
844         request->response.speed = p->speed;
845         request->response.timestamp =
846                         compute_split_timeout_timestamp(card, p->timestamp);
847         request->response.generation = p->generation;
848         request->response.ack = 0;
849         request->response.callback = free_response_callback;
850         request->ack = p->ack;
851         request->timestamp = p->timestamp;
852         request->length = length;
853         if (data)
854                 memcpy(request->data, data, length);
855
856         memcpy(request->request_header, p->header, sizeof(p->header));
857
858         return request;
859 }
860
861 /**
862  * fw_send_response: - send response packet for asynchronous transaction.
863  * @card:       interface to send the response at.
864  * @request:    firewire request data for the transaction.
865  * @rcode:      response code to send.
866  *
867  * Submit a response packet into the asynchronous response transmission queue. The @request
868  * is going to be released when the transmission successfully finishes later.
869  */
870 void fw_send_response(struct fw_card *card,
871                       struct fw_request *request, int rcode)
872 {
873         /* unified transaction or broadcast transaction: don't respond */
874         if (request->ack != ACK_PENDING ||
875             HEADER_DESTINATION_IS_BROADCAST(request->request_header[0])) {
876                 fw_request_put(request);
877                 return;
878         }
879
880         if (rcode == RCODE_COMPLETE)
881                 fw_fill_response(&request->response, request->request_header,
882                                  rcode, request->data,
883                                  fw_get_response_length(request));
884         else
885                 fw_fill_response(&request->response, request->request_header,
886                                  rcode, NULL, 0);
887
888         // Increase the reference count so that the object is kept during in-flight.
889         fw_request_get(request);
890
891         card->driver->send_response(card, &request->response);
892 }
893 EXPORT_SYMBOL(fw_send_response);
894
895 /**
896  * fw_get_request_speed() - returns speed at which the @request was received
897  * @request: firewire request data
898  */
899 int fw_get_request_speed(struct fw_request *request)
900 {
901         return request->response.speed;
902 }
903 EXPORT_SYMBOL(fw_get_request_speed);
904
905 /**
906  * fw_request_get_timestamp: Get timestamp of the request.
907  * @request: The opaque pointer to request structure.
908  *
909  * Get timestamp when 1394 OHCI controller receives the asynchronous request subaction. The
910  * timestamp consists of the low order 3 bits of second field and the full 13 bits of count
911  * field of isochronous cycle time register.
912  *
913  * Returns: timestamp of the request.
914  */
915 u32 fw_request_get_timestamp(const struct fw_request *request)
916 {
917         return request->timestamp;
918 }
919 EXPORT_SYMBOL_GPL(fw_request_get_timestamp);
920
921 static void handle_exclusive_region_request(struct fw_card *card,
922                                             struct fw_packet *p,
923                                             struct fw_request *request,
924                                             unsigned long long offset)
925 {
926         struct fw_address_handler *handler;
927         int tcode, destination, source;
928
929         destination = HEADER_GET_DESTINATION(p->header[0]);
930         source      = HEADER_GET_SOURCE(p->header[1]);
931         tcode       = HEADER_GET_TCODE(p->header[0]);
932         if (tcode == TCODE_LOCK_REQUEST)
933                 tcode = 0x10 + HEADER_GET_EXTENDED_TCODE(p->header[3]);
934
935         rcu_read_lock();
936         handler = lookup_enclosing_address_handler(&address_handler_list,
937                                                    offset, request->length);
938         if (handler)
939                 handler->address_callback(card, request,
940                                           tcode, destination, source,
941                                           p->generation, offset,
942                                           request->data, request->length,
943                                           handler->callback_data);
944         rcu_read_unlock();
945
946         if (!handler)
947                 fw_send_response(card, request, RCODE_ADDRESS_ERROR);
948 }
949
950 static void handle_fcp_region_request(struct fw_card *card,
951                                       struct fw_packet *p,
952                                       struct fw_request *request,
953                                       unsigned long long offset)
954 {
955         struct fw_address_handler *handler;
956         int tcode, destination, source;
957
958         if ((offset != (CSR_REGISTER_BASE | CSR_FCP_COMMAND) &&
959              offset != (CSR_REGISTER_BASE | CSR_FCP_RESPONSE)) ||
960             request->length > 0x200) {
961                 fw_send_response(card, request, RCODE_ADDRESS_ERROR);
962
963                 return;
964         }
965
966         tcode       = HEADER_GET_TCODE(p->header[0]);
967         destination = HEADER_GET_DESTINATION(p->header[0]);
968         source      = HEADER_GET_SOURCE(p->header[1]);
969
970         if (tcode != TCODE_WRITE_QUADLET_REQUEST &&
971             tcode != TCODE_WRITE_BLOCK_REQUEST) {
972                 fw_send_response(card, request, RCODE_TYPE_ERROR);
973
974                 return;
975         }
976
977         rcu_read_lock();
978         list_for_each_entry_rcu(handler, &address_handler_list, link) {
979                 if (is_enclosing_handler(handler, offset, request->length))
980                         handler->address_callback(card, request, tcode,
981                                                   destination, source,
982                                                   p->generation, offset,
983                                                   request->data,
984                                                   request->length,
985                                                   handler->callback_data);
986         }
987         rcu_read_unlock();
988
989         fw_send_response(card, request, RCODE_COMPLETE);
990 }
991
992 void fw_core_handle_request(struct fw_card *card, struct fw_packet *p)
993 {
994         struct fw_request *request;
995         unsigned long long offset;
996
997         if (p->ack != ACK_PENDING && p->ack != ACK_COMPLETE)
998                 return;
999
1000         if (TCODE_IS_LINK_INTERNAL(HEADER_GET_TCODE(p->header[0]))) {
1001                 fw_cdev_handle_phy_packet(card, p);
1002                 return;
1003         }
1004
1005         request = allocate_request(card, p);
1006         if (request == NULL) {
1007                 /* FIXME: send statically allocated busy packet. */
1008                 return;
1009         }
1010
1011         offset = ((u64)HEADER_GET_OFFSET_HIGH(p->header[1]) << 32) |
1012                 p->header[2];
1013
1014         if (!is_in_fcp_region(offset, request->length))
1015                 handle_exclusive_region_request(card, p, request, offset);
1016         else
1017                 handle_fcp_region_request(card, p, request, offset);
1018
1019 }
1020 EXPORT_SYMBOL(fw_core_handle_request);
1021
1022 void fw_core_handle_response(struct fw_card *card, struct fw_packet *p)
1023 {
1024         struct fw_transaction *t = NULL, *iter;
1025         unsigned long flags;
1026         u32 *data;
1027         size_t data_length;
1028         int tcode, tlabel, source, rcode;
1029
1030         tcode   = HEADER_GET_TCODE(p->header[0]);
1031         tlabel  = HEADER_GET_TLABEL(p->header[0]);
1032         source  = HEADER_GET_SOURCE(p->header[1]);
1033         rcode   = HEADER_GET_RCODE(p->header[1]);
1034
1035         spin_lock_irqsave(&card->lock, flags);
1036         list_for_each_entry(iter, &card->transaction_list, link) {
1037                 if (iter->node_id == source && iter->tlabel == tlabel) {
1038                         if (!try_cancel_split_timeout(iter)) {
1039                                 spin_unlock_irqrestore(&card->lock, flags);
1040                                 goto timed_out;
1041                         }
1042                         list_del_init(&iter->link);
1043                         card->tlabel_mask &= ~(1ULL << iter->tlabel);
1044                         t = iter;
1045                         break;
1046                 }
1047         }
1048         spin_unlock_irqrestore(&card->lock, flags);
1049
1050         if (!t) {
1051  timed_out:
1052                 fw_notice(card, "unsolicited response (source %x, tlabel %x)\n",
1053                           source, tlabel);
1054                 return;
1055         }
1056
1057         /*
1058          * FIXME: sanity check packet, is length correct, does tcodes
1059          * and addresses match.
1060          */
1061
1062         switch (tcode) {
1063         case TCODE_READ_QUADLET_RESPONSE:
1064                 data = (u32 *) &p->header[3];
1065                 data_length = 4;
1066                 break;
1067
1068         case TCODE_WRITE_RESPONSE:
1069                 data = NULL;
1070                 data_length = 0;
1071                 break;
1072
1073         case TCODE_READ_BLOCK_RESPONSE:
1074         case TCODE_LOCK_RESPONSE:
1075                 data = p->payload;
1076                 data_length = HEADER_GET_DATA_LENGTH(p->header[3]);
1077                 break;
1078
1079         default:
1080                 /* Should never happen, this is just to shut up gcc. */
1081                 data = NULL;
1082                 data_length = 0;
1083                 break;
1084         }
1085
1086         /*
1087          * The response handler may be executed while the request handler
1088          * is still pending.  Cancel the request handler.
1089          */
1090         card->driver->cancel_packet(card, &t->packet);
1091
1092         if (!t->with_tstamp) {
1093                 t->callback.without_tstamp(card, rcode, data, data_length, t->callback_data);
1094         } else {
1095                 t->callback.with_tstamp(card, rcode, t->packet.timestamp, p->timestamp, data,
1096                                         data_length, t->callback_data);
1097         }
1098 }
1099 EXPORT_SYMBOL(fw_core_handle_response);
1100
1101 /**
1102  * fw_rcode_string - convert a firewire result code to an error description
1103  * @rcode: the result code
1104  */
1105 const char *fw_rcode_string(int rcode)
1106 {
1107         static const char *const names[] = {
1108                 [RCODE_COMPLETE]       = "no error",
1109                 [RCODE_CONFLICT_ERROR] = "conflict error",
1110                 [RCODE_DATA_ERROR]     = "data error",
1111                 [RCODE_TYPE_ERROR]     = "type error",
1112                 [RCODE_ADDRESS_ERROR]  = "address error",
1113                 [RCODE_SEND_ERROR]     = "send error",
1114                 [RCODE_CANCELLED]      = "timeout",
1115                 [RCODE_BUSY]           = "busy",
1116                 [RCODE_GENERATION]     = "bus reset",
1117                 [RCODE_NO_ACK]         = "no ack",
1118         };
1119
1120         if ((unsigned int)rcode < ARRAY_SIZE(names) && names[rcode])
1121                 return names[rcode];
1122         else
1123                 return "unknown";
1124 }
1125 EXPORT_SYMBOL(fw_rcode_string);
1126
1127 static const struct fw_address_region topology_map_region =
1128         { .start = CSR_REGISTER_BASE | CSR_TOPOLOGY_MAP,
1129           .end   = CSR_REGISTER_BASE | CSR_TOPOLOGY_MAP_END, };
1130
1131 static void handle_topology_map(struct fw_card *card, struct fw_request *request,
1132                 int tcode, int destination, int source, int generation,
1133                 unsigned long long offset, void *payload, size_t length,
1134                 void *callback_data)
1135 {
1136         int start;
1137
1138         if (!TCODE_IS_READ_REQUEST(tcode)) {
1139                 fw_send_response(card, request, RCODE_TYPE_ERROR);
1140                 return;
1141         }
1142
1143         if ((offset & 3) > 0 || (length & 3) > 0) {
1144                 fw_send_response(card, request, RCODE_ADDRESS_ERROR);
1145                 return;
1146         }
1147
1148         start = (offset - topology_map_region.start) / 4;
1149         memcpy(payload, &card->topology_map[start], length);
1150
1151         fw_send_response(card, request, RCODE_COMPLETE);
1152 }
1153
1154 static struct fw_address_handler topology_map = {
1155         .length                 = 0x400,
1156         .address_callback       = handle_topology_map,
1157 };
1158
1159 static const struct fw_address_region registers_region =
1160         { .start = CSR_REGISTER_BASE,
1161           .end   = CSR_REGISTER_BASE | CSR_CONFIG_ROM, };
1162
1163 static void update_split_timeout(struct fw_card *card)
1164 {
1165         unsigned int cycles;
1166
1167         cycles = card->split_timeout_hi * 8000 + (card->split_timeout_lo >> 19);
1168
1169         /* minimum per IEEE 1394, maximum which doesn't overflow OHCI */
1170         cycles = clamp(cycles, 800u, 3u * 8000u);
1171
1172         card->split_timeout_cycles = cycles;
1173         card->split_timeout_jiffies = DIV_ROUND_UP(cycles * HZ, 8000);
1174 }
1175
1176 static void handle_registers(struct fw_card *card, struct fw_request *request,
1177                 int tcode, int destination, int source, int generation,
1178                 unsigned long long offset, void *payload, size_t length,
1179                 void *callback_data)
1180 {
1181         int reg = offset & ~CSR_REGISTER_BASE;
1182         __be32 *data = payload;
1183         int rcode = RCODE_COMPLETE;
1184         unsigned long flags;
1185
1186         switch (reg) {
1187         case CSR_PRIORITY_BUDGET:
1188                 if (!card->priority_budget_implemented) {
1189                         rcode = RCODE_ADDRESS_ERROR;
1190                         break;
1191                 }
1192                 fallthrough;
1193
1194         case CSR_NODE_IDS:
1195                 /*
1196                  * per IEEE 1394-2008 8.3.22.3, not IEEE 1394.1-2004 3.2.8
1197                  * and 9.6, but interoperable with IEEE 1394.1-2004 bridges
1198                  */
1199                 fallthrough;
1200
1201         case CSR_STATE_CLEAR:
1202         case CSR_STATE_SET:
1203         case CSR_CYCLE_TIME:
1204         case CSR_BUS_TIME:
1205         case CSR_BUSY_TIMEOUT:
1206                 if (tcode == TCODE_READ_QUADLET_REQUEST)
1207                         *data = cpu_to_be32(card->driver->read_csr(card, reg));
1208                 else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1209                         card->driver->write_csr(card, reg, be32_to_cpu(*data));
1210                 else
1211                         rcode = RCODE_TYPE_ERROR;
1212                 break;
1213
1214         case CSR_RESET_START:
1215                 if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1216                         card->driver->write_csr(card, CSR_STATE_CLEAR,
1217                                                 CSR_STATE_BIT_ABDICATE);
1218                 else
1219                         rcode = RCODE_TYPE_ERROR;
1220                 break;
1221
1222         case CSR_SPLIT_TIMEOUT_HI:
1223                 if (tcode == TCODE_READ_QUADLET_REQUEST) {
1224                         *data = cpu_to_be32(card->split_timeout_hi);
1225                 } else if (tcode == TCODE_WRITE_QUADLET_REQUEST) {
1226                         spin_lock_irqsave(&card->lock, flags);
1227                         card->split_timeout_hi = be32_to_cpu(*data) & 7;
1228                         update_split_timeout(card);
1229                         spin_unlock_irqrestore(&card->lock, flags);
1230                 } else {
1231                         rcode = RCODE_TYPE_ERROR;
1232                 }
1233                 break;
1234
1235         case CSR_SPLIT_TIMEOUT_LO:
1236                 if (tcode == TCODE_READ_QUADLET_REQUEST) {
1237                         *data = cpu_to_be32(card->split_timeout_lo);
1238                 } else if (tcode == TCODE_WRITE_QUADLET_REQUEST) {
1239                         spin_lock_irqsave(&card->lock, flags);
1240                         card->split_timeout_lo =
1241                                         be32_to_cpu(*data) & 0xfff80000;
1242                         update_split_timeout(card);
1243                         spin_unlock_irqrestore(&card->lock, flags);
1244                 } else {
1245                         rcode = RCODE_TYPE_ERROR;
1246                 }
1247                 break;
1248
1249         case CSR_MAINT_UTILITY:
1250                 if (tcode == TCODE_READ_QUADLET_REQUEST)
1251                         *data = card->maint_utility_register;
1252                 else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1253                         card->maint_utility_register = *data;
1254                 else
1255                         rcode = RCODE_TYPE_ERROR;
1256                 break;
1257
1258         case CSR_BROADCAST_CHANNEL:
1259                 if (tcode == TCODE_READ_QUADLET_REQUEST)
1260                         *data = cpu_to_be32(card->broadcast_channel);
1261                 else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1262                         card->broadcast_channel =
1263                             (be32_to_cpu(*data) & BROADCAST_CHANNEL_VALID) |
1264                             BROADCAST_CHANNEL_INITIAL;
1265                 else
1266                         rcode = RCODE_TYPE_ERROR;
1267                 break;
1268
1269         case CSR_BUS_MANAGER_ID:
1270         case CSR_BANDWIDTH_AVAILABLE:
1271         case CSR_CHANNELS_AVAILABLE_HI:
1272         case CSR_CHANNELS_AVAILABLE_LO:
1273                 /*
1274                  * FIXME: these are handled by the OHCI hardware and
1275                  * the stack never sees these request. If we add
1276                  * support for a new type of controller that doesn't
1277                  * handle this in hardware we need to deal with these
1278                  * transactions.
1279                  */
1280                 BUG();
1281                 break;
1282
1283         default:
1284                 rcode = RCODE_ADDRESS_ERROR;
1285                 break;
1286         }
1287
1288         fw_send_response(card, request, rcode);
1289 }
1290
1291 static struct fw_address_handler registers = {
1292         .length                 = 0x400,
1293         .address_callback       = handle_registers,
1294 };
1295
1296 static void handle_low_memory(struct fw_card *card, struct fw_request *request,
1297                 int tcode, int destination, int source, int generation,
1298                 unsigned long long offset, void *payload, size_t length,
1299                 void *callback_data)
1300 {
1301         /*
1302          * This catches requests not handled by the physical DMA unit,
1303          * i.e., wrong transaction types or unauthorized source nodes.
1304          */
1305         fw_send_response(card, request, RCODE_TYPE_ERROR);
1306 }
1307
1308 static struct fw_address_handler low_memory = {
1309         .length                 = FW_MAX_PHYSICAL_RANGE,
1310         .address_callback       = handle_low_memory,
1311 };
1312
1313 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
1314 MODULE_DESCRIPTION("Core IEEE1394 transaction logic");
1315 MODULE_LICENSE("GPL");
1316
1317 static const u32 vendor_textual_descriptor[] = {
1318         /* textual descriptor leaf () */
1319         0x00060000,
1320         0x00000000,
1321         0x00000000,
1322         0x4c696e75,             /* L i n u */
1323         0x78204669,             /* x   F i */
1324         0x72657769,             /* r e w i */
1325         0x72650000,             /* r e     */
1326 };
1327
1328 static const u32 model_textual_descriptor[] = {
1329         /* model descriptor leaf () */
1330         0x00030000,
1331         0x00000000,
1332         0x00000000,
1333         0x4a756a75,             /* J u j u */
1334 };
1335
1336 static struct fw_descriptor vendor_id_descriptor = {
1337         .length = ARRAY_SIZE(vendor_textual_descriptor),
1338         .immediate = 0x03001f11,
1339         .key = 0x81000000,
1340         .data = vendor_textual_descriptor,
1341 };
1342
1343 static struct fw_descriptor model_id_descriptor = {
1344         .length = ARRAY_SIZE(model_textual_descriptor),
1345         .immediate = 0x17023901,
1346         .key = 0x81000000,
1347         .data = model_textual_descriptor,
1348 };
1349
1350 static int __init fw_core_init(void)
1351 {
1352         int ret;
1353
1354         fw_workqueue = alloc_workqueue("firewire", WQ_MEM_RECLAIM, 0);
1355         if (!fw_workqueue)
1356                 return -ENOMEM;
1357
1358         ret = bus_register(&fw_bus_type);
1359         if (ret < 0) {
1360                 destroy_workqueue(fw_workqueue);
1361                 return ret;
1362         }
1363
1364         fw_cdev_major = register_chrdev(0, "firewire", &fw_device_ops);
1365         if (fw_cdev_major < 0) {
1366                 bus_unregister(&fw_bus_type);
1367                 destroy_workqueue(fw_workqueue);
1368                 return fw_cdev_major;
1369         }
1370
1371         fw_core_add_address_handler(&topology_map, &topology_map_region);
1372         fw_core_add_address_handler(&registers, &registers_region);
1373         fw_core_add_address_handler(&low_memory, &low_memory_region);
1374         fw_core_add_descriptor(&vendor_id_descriptor);
1375         fw_core_add_descriptor(&model_id_descriptor);
1376
1377         return 0;
1378 }
1379
1380 static void __exit fw_core_cleanup(void)
1381 {
1382         unregister_chrdev(fw_cdev_major, "firewire");
1383         bus_unregister(&fw_bus_type);
1384         destroy_workqueue(fw_workqueue);
1385         idr_destroy(&fw_device_idr);
1386 }
1387
1388 module_init(fw_core_init);
1389 module_exit(fw_core_cleanup);