ARM: tizen_odroid_defconfig: Change the default cpufreq governor
[platform/kernel/linux-exynos.git] / drivers / edac / sb_edac.c
1 /* Intel Sandy Bridge -EN/-EP/-EX Memory Controller kernel module
2  *
3  * This driver supports the memory controllers found on the Intel
4  * processor family Sandy Bridge.
5  *
6  * This file may be distributed under the terms of the
7  * GNU General Public License version 2 only.
8  *
9  * Copyright (c) 2011 by:
10  *       Mauro Carvalho Chehab
11  */
12
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/pci.h>
16 #include <linux/pci_ids.h>
17 #include <linux/slab.h>
18 #include <linux/delay.h>
19 #include <linux/edac.h>
20 #include <linux/mmzone.h>
21 #include <linux/smp.h>
22 #include <linux/bitmap.h>
23 #include <linux/math64.h>
24 #include <asm/processor.h>
25 #include <asm/mce.h>
26
27 #include "edac_core.h"
28
29 /* Static vars */
30 static LIST_HEAD(sbridge_edac_list);
31 static DEFINE_MUTEX(sbridge_edac_lock);
32 static int probed;
33
34 /*
35  * Alter this version for the module when modifications are made
36  */
37 #define SBRIDGE_REVISION    " Ver: 1.1.0 "
38 #define EDAC_MOD_STR      "sbridge_edac"
39
40 /*
41  * Debug macros
42  */
43 #define sbridge_printk(level, fmt, arg...)                      \
44         edac_printk(level, "sbridge", fmt, ##arg)
45
46 #define sbridge_mc_printk(mci, level, fmt, arg...)              \
47         edac_mc_chipset_printk(mci, level, "sbridge", fmt, ##arg)
48
49 /*
50  * Get a bit field at register value <v>, from bit <lo> to bit <hi>
51  */
52 #define GET_BITFIELD(v, lo, hi) \
53         (((v) & GENMASK_ULL(hi, lo)) >> (lo))
54
55 /* Devices 12 Function 6, Offsets 0x80 to 0xcc */
56 static const u32 sbridge_dram_rule[] = {
57         0x80, 0x88, 0x90, 0x98, 0xa0,
58         0xa8, 0xb0, 0xb8, 0xc0, 0xc8,
59 };
60
61 static const u32 ibridge_dram_rule[] = {
62         0x60, 0x68, 0x70, 0x78, 0x80,
63         0x88, 0x90, 0x98, 0xa0, 0xa8,
64         0xb0, 0xb8, 0xc0, 0xc8, 0xd0,
65         0xd8, 0xe0, 0xe8, 0xf0, 0xf8,
66 };
67
68 #define SAD_LIMIT(reg)          ((GET_BITFIELD(reg, 6, 25) << 26) | 0x3ffffff)
69 #define DRAM_ATTR(reg)          GET_BITFIELD(reg, 2,  3)
70 #define INTERLEAVE_MODE(reg)    GET_BITFIELD(reg, 1,  1)
71 #define DRAM_RULE_ENABLE(reg)   GET_BITFIELD(reg, 0,  0)
72 #define A7MODE(reg)             GET_BITFIELD(reg, 26, 26)
73
74 static char *get_dram_attr(u32 reg)
75 {
76         switch(DRAM_ATTR(reg)) {
77                 case 0:
78                         return "DRAM";
79                 case 1:
80                         return "MMCFG";
81                 case 2:
82                         return "NXM";
83                 default:
84                         return "unknown";
85         }
86 }
87
88 static const u32 sbridge_interleave_list[] = {
89         0x84, 0x8c, 0x94, 0x9c, 0xa4,
90         0xac, 0xb4, 0xbc, 0xc4, 0xcc,
91 };
92
93 static const u32 ibridge_interleave_list[] = {
94         0x64, 0x6c, 0x74, 0x7c, 0x84,
95         0x8c, 0x94, 0x9c, 0xa4, 0xac,
96         0xb4, 0xbc, 0xc4, 0xcc, 0xd4,
97         0xdc, 0xe4, 0xec, 0xf4, 0xfc,
98 };
99
100 struct interleave_pkg {
101         unsigned char start;
102         unsigned char end;
103 };
104
105 static const struct interleave_pkg sbridge_interleave_pkg[] = {
106         { 0, 2 },
107         { 3, 5 },
108         { 8, 10 },
109         { 11, 13 },
110         { 16, 18 },
111         { 19, 21 },
112         { 24, 26 },
113         { 27, 29 },
114 };
115
116 static const struct interleave_pkg ibridge_interleave_pkg[] = {
117         { 0, 3 },
118         { 4, 7 },
119         { 8, 11 },
120         { 12, 15 },
121         { 16, 19 },
122         { 20, 23 },
123         { 24, 27 },
124         { 28, 31 },
125 };
126
127 static inline int sad_pkg(const struct interleave_pkg *table, u32 reg,
128                           int interleave)
129 {
130         return GET_BITFIELD(reg, table[interleave].start,
131                             table[interleave].end);
132 }
133
134 /* Devices 12 Function 7 */
135
136 #define TOLM            0x80
137 #define TOHM            0x84
138 #define HASWELL_TOLM    0xd0
139 #define HASWELL_TOHM_0  0xd4
140 #define HASWELL_TOHM_1  0xd8
141
142 #define GET_TOLM(reg)           ((GET_BITFIELD(reg, 0,  3) << 28) | 0x3ffffff)
143 #define GET_TOHM(reg)           ((GET_BITFIELD(reg, 0, 20) << 25) | 0x3ffffff)
144
145 /* Device 13 Function 6 */
146
147 #define SAD_TARGET      0xf0
148
149 #define SOURCE_ID(reg)          GET_BITFIELD(reg, 9, 11)
150
151 #define SAD_CONTROL     0xf4
152
153 /* Device 14 function 0 */
154
155 static const u32 tad_dram_rule[] = {
156         0x40, 0x44, 0x48, 0x4c,
157         0x50, 0x54, 0x58, 0x5c,
158         0x60, 0x64, 0x68, 0x6c,
159 };
160 #define MAX_TAD ARRAY_SIZE(tad_dram_rule)
161
162 #define TAD_LIMIT(reg)          ((GET_BITFIELD(reg, 12, 31) << 26) | 0x3ffffff)
163 #define TAD_SOCK(reg)           GET_BITFIELD(reg, 10, 11)
164 #define TAD_CH(reg)             GET_BITFIELD(reg,  8,  9)
165 #define TAD_TGT3(reg)           GET_BITFIELD(reg,  6,  7)
166 #define TAD_TGT2(reg)           GET_BITFIELD(reg,  4,  5)
167 #define TAD_TGT1(reg)           GET_BITFIELD(reg,  2,  3)
168 #define TAD_TGT0(reg)           GET_BITFIELD(reg,  0,  1)
169
170 /* Device 15, function 0 */
171
172 #define MCMTR                   0x7c
173
174 #define IS_ECC_ENABLED(mcmtr)           GET_BITFIELD(mcmtr, 2, 2)
175 #define IS_LOCKSTEP_ENABLED(mcmtr)      GET_BITFIELD(mcmtr, 1, 1)
176 #define IS_CLOSE_PG(mcmtr)              GET_BITFIELD(mcmtr, 0, 0)
177
178 /* Device 15, function 1 */
179
180 #define RASENABLES              0xac
181 #define IS_MIRROR_ENABLED(reg)          GET_BITFIELD(reg, 0, 0)
182
183 /* Device 15, functions 2-5 */
184
185 static const int mtr_regs[] = {
186         0x80, 0x84, 0x88,
187 };
188
189 #define RANK_DISABLE(mtr)               GET_BITFIELD(mtr, 16, 19)
190 #define IS_DIMM_PRESENT(mtr)            GET_BITFIELD(mtr, 14, 14)
191 #define RANK_CNT_BITS(mtr)              GET_BITFIELD(mtr, 12, 13)
192 #define RANK_WIDTH_BITS(mtr)            GET_BITFIELD(mtr, 2, 4)
193 #define COL_WIDTH_BITS(mtr)             GET_BITFIELD(mtr, 0, 1)
194
195 static const u32 tad_ch_nilv_offset[] = {
196         0x90, 0x94, 0x98, 0x9c,
197         0xa0, 0xa4, 0xa8, 0xac,
198         0xb0, 0xb4, 0xb8, 0xbc,
199 };
200 #define CHN_IDX_OFFSET(reg)             GET_BITFIELD(reg, 28, 29)
201 #define TAD_OFFSET(reg)                 (GET_BITFIELD(reg,  6, 25) << 26)
202
203 static const u32 rir_way_limit[] = {
204         0x108, 0x10c, 0x110, 0x114, 0x118,
205 };
206 #define MAX_RIR_RANGES ARRAY_SIZE(rir_way_limit)
207
208 #define IS_RIR_VALID(reg)       GET_BITFIELD(reg, 31, 31)
209 #define RIR_WAY(reg)            GET_BITFIELD(reg, 28, 29)
210
211 #define MAX_RIR_WAY     8
212
213 static const u32 rir_offset[MAX_RIR_RANGES][MAX_RIR_WAY] = {
214         { 0x120, 0x124, 0x128, 0x12c, 0x130, 0x134, 0x138, 0x13c },
215         { 0x140, 0x144, 0x148, 0x14c, 0x150, 0x154, 0x158, 0x15c },
216         { 0x160, 0x164, 0x168, 0x16c, 0x170, 0x174, 0x178, 0x17c },
217         { 0x180, 0x184, 0x188, 0x18c, 0x190, 0x194, 0x198, 0x19c },
218         { 0x1a0, 0x1a4, 0x1a8, 0x1ac, 0x1b0, 0x1b4, 0x1b8, 0x1bc },
219 };
220
221 #define RIR_RNK_TGT(type, reg) (((type) == BROADWELL) ? \
222         GET_BITFIELD(reg, 20, 23) : GET_BITFIELD(reg, 16, 19))
223
224 #define RIR_OFFSET(type, reg) (((type) == HASWELL || (type) == BROADWELL) ? \
225         GET_BITFIELD(reg,  2, 15) : GET_BITFIELD(reg,  2, 14))
226
227 /* Device 16, functions 2-7 */
228
229 /*
230  * FIXME: Implement the error count reads directly
231  */
232
233 static const u32 correrrcnt[] = {
234         0x104, 0x108, 0x10c, 0x110,
235 };
236
237 #define RANK_ODD_OV(reg)                GET_BITFIELD(reg, 31, 31)
238 #define RANK_ODD_ERR_CNT(reg)           GET_BITFIELD(reg, 16, 30)
239 #define RANK_EVEN_OV(reg)               GET_BITFIELD(reg, 15, 15)
240 #define RANK_EVEN_ERR_CNT(reg)          GET_BITFIELD(reg,  0, 14)
241
242 static const u32 correrrthrsld[] = {
243         0x11c, 0x120, 0x124, 0x128,
244 };
245
246 #define RANK_ODD_ERR_THRSLD(reg)        GET_BITFIELD(reg, 16, 30)
247 #define RANK_EVEN_ERR_THRSLD(reg)       GET_BITFIELD(reg,  0, 14)
248
249
250 /* Device 17, function 0 */
251
252 #define SB_RANK_CFG_A           0x0328
253
254 #define IB_RANK_CFG_A           0x0320
255
256 /*
257  * sbridge structs
258  */
259
260 #define NUM_CHANNELS            4
261 #define MAX_DIMMS               3       /* Max DIMMS per channel */
262 #define CHANNEL_UNSPECIFIED     0xf     /* Intel IA32 SDM 15-14 */
263
264 enum type {
265         SANDY_BRIDGE,
266         IVY_BRIDGE,
267         HASWELL,
268         BROADWELL,
269 };
270
271 struct sbridge_pvt;
272 struct sbridge_info {
273         enum type       type;
274         u32             mcmtr;
275         u32             rankcfgr;
276         u64             (*get_tolm)(struct sbridge_pvt *pvt);
277         u64             (*get_tohm)(struct sbridge_pvt *pvt);
278         u64             (*rir_limit)(u32 reg);
279         const u32       *dram_rule;
280         const u32       *interleave_list;
281         const struct interleave_pkg *interleave_pkg;
282         u8              max_sad;
283         u8              max_interleave;
284         u8              (*get_node_id)(struct sbridge_pvt *pvt);
285         enum mem_type   (*get_memory_type)(struct sbridge_pvt *pvt);
286         struct pci_dev  *pci_vtd;
287 };
288
289 struct sbridge_channel {
290         u32             ranks;
291         u32             dimms;
292 };
293
294 struct pci_id_descr {
295         int                     dev_id;
296         int                     optional;
297 };
298
299 struct pci_id_table {
300         const struct pci_id_descr       *descr;
301         int                             n_devs;
302 };
303
304 struct sbridge_dev {
305         struct list_head        list;
306         u8                      bus, mc;
307         u8                      node_id, source_id;
308         struct pci_dev          **pdev;
309         int                     n_devs;
310         struct mem_ctl_info     *mci;
311 };
312
313 struct sbridge_pvt {
314         struct pci_dev          *pci_ta, *pci_ddrio, *pci_ras;
315         struct pci_dev          *pci_sad0, *pci_sad1;
316         struct pci_dev          *pci_ha0, *pci_ha1;
317         struct pci_dev          *pci_br0, *pci_br1;
318         struct pci_dev          *pci_ha1_ta;
319         struct pci_dev          *pci_tad[NUM_CHANNELS];
320
321         struct sbridge_dev      *sbridge_dev;
322
323         struct sbridge_info     info;
324         struct sbridge_channel  channel[NUM_CHANNELS];
325
326         /* Memory type detection */
327         bool                    is_mirrored, is_lockstep, is_close_pg;
328
329         /* Fifo double buffers */
330         struct mce              mce_entry[MCE_LOG_LEN];
331         struct mce              mce_outentry[MCE_LOG_LEN];
332
333         /* Fifo in/out counters */
334         unsigned                mce_in, mce_out;
335
336         /* Count indicator to show errors not got */
337         unsigned                mce_overrun;
338
339         /* Memory description */
340         u64                     tolm, tohm;
341 };
342
343 #define PCI_DESCR(device_id, opt)       \
344         .dev_id = (device_id),          \
345         .optional = opt
346
347 static const struct pci_id_descr pci_dev_descr_sbridge[] = {
348                 /* Processor Home Agent */
349         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0, 0)     },
350
351                 /* Memory controller */
352         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA, 0)      },
353         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS, 0)     },
354         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0, 0)    },
355         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1, 0)    },
356         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2, 0)    },
357         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3, 0)    },
358         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO, 1)   },
359
360                 /* System Address Decoder */
361         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0, 0)        },
362         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1, 0)        },
363
364                 /* Broadcast Registers */
365         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_BR, 0)          },
366 };
367
368 #define PCI_ID_TABLE_ENTRY(A) { .descr=A, .n_devs = ARRAY_SIZE(A) }
369 static const struct pci_id_table pci_dev_descr_sbridge_table[] = {
370         PCI_ID_TABLE_ENTRY(pci_dev_descr_sbridge),
371         {0,}                    /* 0 terminated list. */
372 };
373
374 /* This changes depending if 1HA or 2HA:
375  * 1HA:
376  *      0x0eb8 (17.0) is DDRIO0
377  * 2HA:
378  *      0x0ebc (17.4) is DDRIO0
379  */
380 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0      0x0eb8
381 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0      0x0ebc
382
383 /* pci ids */
384 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0             0x0ea0
385 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA          0x0ea8
386 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS         0x0e71
387 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0        0x0eaa
388 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1        0x0eab
389 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2        0x0eac
390 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3        0x0ead
391 #define PCI_DEVICE_ID_INTEL_IBRIDGE_SAD                 0x0ec8
392 #define PCI_DEVICE_ID_INTEL_IBRIDGE_BR0                 0x0ec9
393 #define PCI_DEVICE_ID_INTEL_IBRIDGE_BR1                 0x0eca
394 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1             0x0e60
395 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA          0x0e68
396 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS         0x0e79
397 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0        0x0e6a
398 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1        0x0e6b
399
400 static const struct pci_id_descr pci_dev_descr_ibridge[] = {
401                 /* Processor Home Agent */
402         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0, 0)             },
403
404                 /* Memory controller */
405         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA, 0)          },
406         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS, 0)         },
407         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0, 0)        },
408         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1, 0)        },
409         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2, 0)        },
410         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3, 0)        },
411
412                 /* System Address Decoder */
413         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_SAD, 0)                 },
414
415                 /* Broadcast Registers */
416         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_BR0, 1)                 },
417         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_BR1, 0)                 },
418
419                 /* Optional, mode 2HA */
420         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1, 1)             },
421 #if 0
422         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA, 1)  },
423         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS, 1) },
424 #endif
425         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0, 1)        },
426         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1, 1)        },
427
428         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0, 1)      },
429         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0, 1)      },
430 };
431
432 static const struct pci_id_table pci_dev_descr_ibridge_table[] = {
433         PCI_ID_TABLE_ENTRY(pci_dev_descr_ibridge),
434         {0,}                    /* 0 terminated list. */
435 };
436
437 /* Haswell support */
438 /* EN processor:
439  *      - 1 IMC
440  *      - 3 DDR3 channels, 2 DPC per channel
441  * EP processor:
442  *      - 1 or 2 IMC
443  *      - 4 DDR4 channels, 3 DPC per channel
444  * EP 4S processor:
445  *      - 2 IMC
446  *      - 4 DDR4 channels, 3 DPC per channel
447  * EX processor:
448  *      - 2 IMC
449  *      - each IMC interfaces with a SMI 2 channel
450  *      - each SMI channel interfaces with a scalable memory buffer
451  *      - each scalable memory buffer supports 4 DDR3/DDR4 channels, 3 DPC
452  */
453 #define HASWELL_DDRCRCLKCONTROLS 0xa10 /* Ditto on Broadwell */
454 #define HASWELL_HASYSDEFEATURE2 0x84
455 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_VTD_MISC 0x2f28
456 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0     0x2fa0
457 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1     0x2f60
458 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA  0x2fa8
459 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_THERMAL 0x2f71
460 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA  0x2f68
461 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_THERMAL 0x2f79
462 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0 0x2ffc
463 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1 0x2ffd
464 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0 0x2faa
465 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1 0x2fab
466 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2 0x2fac
467 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3 0x2fad
468 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0 0x2f6a
469 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1 0x2f6b
470 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2 0x2f6c
471 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3 0x2f6d
472 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0 0x2fbd
473 static const struct pci_id_descr pci_dev_descr_haswell[] = {
474         /* first item must be the HA */
475         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0, 0)             },
476
477         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0, 0)        },
478         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1, 0)        },
479
480         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1, 1)             },
481
482         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA, 0)          },
483         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_THERMAL, 0)     },
484         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0, 0)        },
485         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1, 0)        },
486         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2, 1)        },
487         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3, 1)        },
488
489         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0, 1)          },
490
491         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA, 1)          },
492         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_THERMAL, 1)     },
493         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0, 1)        },
494         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1, 1)        },
495         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2, 1)        },
496         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3, 1)        },
497 };
498
499 static const struct pci_id_table pci_dev_descr_haswell_table[] = {
500         PCI_ID_TABLE_ENTRY(pci_dev_descr_haswell),
501         {0,}                    /* 0 terminated list. */
502 };
503
504 /*
505  * Broadwell support
506  *
507  * DE processor:
508  *      - 1 IMC
509  *      - 2 DDR3 channels, 2 DPC per channel
510  */
511 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_VTD_MISC 0x6f28
512 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0   0x6fa0
513 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA        0x6fa8
514 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_THERMAL 0x6f71
515 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0 0x6ffc
516 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1 0x6ffd
517 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0 0x6faa
518 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1 0x6fab
519 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2 0x6fac
520 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3 0x6fad
521 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0 0x6faf
522
523 static const struct pci_id_descr pci_dev_descr_broadwell[] = {
524         /* first item must be the HA */
525         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0, 0)           },
526
527         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0, 0)      },
528         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1, 0)      },
529
530         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA, 0)        },
531         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_THERMAL, 0)   },
532         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0, 0)      },
533         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1, 0)      },
534         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2, 0)      },
535         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3, 0)      },
536         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0, 1)        },
537 };
538
539 static const struct pci_id_table pci_dev_descr_broadwell_table[] = {
540         PCI_ID_TABLE_ENTRY(pci_dev_descr_broadwell),
541         {0,}                    /* 0 terminated list. */
542 };
543
544 /*
545  *      pci_device_id   table for which devices we are looking for
546  */
547 static const struct pci_device_id sbridge_pci_tbl[] = {
548         {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0)},
549         {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA)},
550         {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0)},
551         {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0)},
552         {0,}                    /* 0 terminated list. */
553 };
554
555
556 /****************************************************************************
557                         Ancillary status routines
558  ****************************************************************************/
559
560 static inline int numrank(enum type type, u32 mtr)
561 {
562         int ranks = (1 << RANK_CNT_BITS(mtr));
563         int max = 4;
564
565         if (type == HASWELL)
566                 max = 8;
567
568         if (ranks > max) {
569                 edac_dbg(0, "Invalid number of ranks: %d (max = %i) raw value = %x (%04x)\n",
570                          ranks, max, (unsigned int)RANK_CNT_BITS(mtr), mtr);
571                 return -EINVAL;
572         }
573
574         return ranks;
575 }
576
577 static inline int numrow(u32 mtr)
578 {
579         int rows = (RANK_WIDTH_BITS(mtr) + 12);
580
581         if (rows < 13 || rows > 18) {
582                 edac_dbg(0, "Invalid number of rows: %d (should be between 14 and 17) raw value = %x (%04x)\n",
583                          rows, (unsigned int)RANK_WIDTH_BITS(mtr), mtr);
584                 return -EINVAL;
585         }
586
587         return 1 << rows;
588 }
589
590 static inline int numcol(u32 mtr)
591 {
592         int cols = (COL_WIDTH_BITS(mtr) + 10);
593
594         if (cols > 12) {
595                 edac_dbg(0, "Invalid number of cols: %d (max = 4) raw value = %x (%04x)\n",
596                          cols, (unsigned int)COL_WIDTH_BITS(mtr), mtr);
597                 return -EINVAL;
598         }
599
600         return 1 << cols;
601 }
602
603 static struct sbridge_dev *get_sbridge_dev(u8 bus)
604 {
605         struct sbridge_dev *sbridge_dev;
606
607         list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
608                 if (sbridge_dev->bus == bus)
609                         return sbridge_dev;
610         }
611
612         return NULL;
613 }
614
615 static struct sbridge_dev *alloc_sbridge_dev(u8 bus,
616                                            const struct pci_id_table *table)
617 {
618         struct sbridge_dev *sbridge_dev;
619
620         sbridge_dev = kzalloc(sizeof(*sbridge_dev), GFP_KERNEL);
621         if (!sbridge_dev)
622                 return NULL;
623
624         sbridge_dev->pdev = kzalloc(sizeof(*sbridge_dev->pdev) * table->n_devs,
625                                    GFP_KERNEL);
626         if (!sbridge_dev->pdev) {
627                 kfree(sbridge_dev);
628                 return NULL;
629         }
630
631         sbridge_dev->bus = bus;
632         sbridge_dev->n_devs = table->n_devs;
633         list_add_tail(&sbridge_dev->list, &sbridge_edac_list);
634
635         return sbridge_dev;
636 }
637
638 static void free_sbridge_dev(struct sbridge_dev *sbridge_dev)
639 {
640         list_del(&sbridge_dev->list);
641         kfree(sbridge_dev->pdev);
642         kfree(sbridge_dev);
643 }
644
645 static u64 sbridge_get_tolm(struct sbridge_pvt *pvt)
646 {
647         u32 reg;
648
649         /* Address range is 32:28 */
650         pci_read_config_dword(pvt->pci_sad1, TOLM, &reg);
651         return GET_TOLM(reg);
652 }
653
654 static u64 sbridge_get_tohm(struct sbridge_pvt *pvt)
655 {
656         u32 reg;
657
658         pci_read_config_dword(pvt->pci_sad1, TOHM, &reg);
659         return GET_TOHM(reg);
660 }
661
662 static u64 ibridge_get_tolm(struct sbridge_pvt *pvt)
663 {
664         u32 reg;
665
666         pci_read_config_dword(pvt->pci_br1, TOLM, &reg);
667
668         return GET_TOLM(reg);
669 }
670
671 static u64 ibridge_get_tohm(struct sbridge_pvt *pvt)
672 {
673         u32 reg;
674
675         pci_read_config_dword(pvt->pci_br1, TOHM, &reg);
676
677         return GET_TOHM(reg);
678 }
679
680 static u64 rir_limit(u32 reg)
681 {
682         return ((u64)GET_BITFIELD(reg,  1, 10) << 29) | 0x1fffffff;
683 }
684
685 static enum mem_type get_memory_type(struct sbridge_pvt *pvt)
686 {
687         u32 reg;
688         enum mem_type mtype;
689
690         if (pvt->pci_ddrio) {
691                 pci_read_config_dword(pvt->pci_ddrio, pvt->info.rankcfgr,
692                                       &reg);
693                 if (GET_BITFIELD(reg, 11, 11))
694                         /* FIXME: Can also be LRDIMM */
695                         mtype = MEM_RDDR3;
696                 else
697                         mtype = MEM_DDR3;
698         } else
699                 mtype = MEM_UNKNOWN;
700
701         return mtype;
702 }
703
704 static enum mem_type haswell_get_memory_type(struct sbridge_pvt *pvt)
705 {
706         u32 reg;
707         bool registered = false;
708         enum mem_type mtype = MEM_UNKNOWN;
709
710         if (!pvt->pci_ddrio)
711                 goto out;
712
713         pci_read_config_dword(pvt->pci_ddrio,
714                               HASWELL_DDRCRCLKCONTROLS, &reg);
715         /* Is_Rdimm */
716         if (GET_BITFIELD(reg, 16, 16))
717                 registered = true;
718
719         pci_read_config_dword(pvt->pci_ta, MCMTR, &reg);
720         if (GET_BITFIELD(reg, 14, 14)) {
721                 if (registered)
722                         mtype = MEM_RDDR4;
723                 else
724                         mtype = MEM_DDR4;
725         } else {
726                 if (registered)
727                         mtype = MEM_RDDR3;
728                 else
729                         mtype = MEM_DDR3;
730         }
731
732 out:
733         return mtype;
734 }
735
736 static u8 get_node_id(struct sbridge_pvt *pvt)
737 {
738         u32 reg;
739         pci_read_config_dword(pvt->pci_br0, SAD_CONTROL, &reg);
740         return GET_BITFIELD(reg, 0, 2);
741 }
742
743 static u8 haswell_get_node_id(struct sbridge_pvt *pvt)
744 {
745         u32 reg;
746
747         pci_read_config_dword(pvt->pci_sad1, SAD_CONTROL, &reg);
748         return GET_BITFIELD(reg, 0, 3);
749 }
750
751 static u64 haswell_get_tolm(struct sbridge_pvt *pvt)
752 {
753         u32 reg;
754
755         pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOLM, &reg);
756         return (GET_BITFIELD(reg, 26, 31) << 26) | 0x3ffffff;
757 }
758
759 static u64 haswell_get_tohm(struct sbridge_pvt *pvt)
760 {
761         u64 rc;
762         u32 reg;
763
764         pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOHM_0, &reg);
765         rc = GET_BITFIELD(reg, 26, 31);
766         pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOHM_1, &reg);
767         rc = ((reg << 6) | rc) << 26;
768
769         return rc | 0x1ffffff;
770 }
771
772 static u64 haswell_rir_limit(u32 reg)
773 {
774         return (((u64)GET_BITFIELD(reg,  1, 11) + 1) << 29) - 1;
775 }
776
777 static inline u8 sad_pkg_socket(u8 pkg)
778 {
779         /* on Ivy Bridge, nodeID is SASS, where A is HA and S is node id */
780         return ((pkg >> 3) << 2) | (pkg & 0x3);
781 }
782
783 static inline u8 sad_pkg_ha(u8 pkg)
784 {
785         return (pkg >> 2) & 0x1;
786 }
787
788 /****************************************************************************
789                         Memory check routines
790  ****************************************************************************/
791 static struct pci_dev *get_pdev_same_bus(u8 bus, u32 id)
792 {
793         struct pci_dev *pdev = NULL;
794
795         do {
796                 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, id, pdev);
797                 if (pdev && pdev->bus->number == bus)
798                         break;
799         } while (pdev);
800
801         return pdev;
802 }
803
804 /**
805  * check_if_ecc_is_active() - Checks if ECC is active
806  * @bus:        Device bus
807  * @type:       Memory controller type
808  * returns: 0 in case ECC is active, -ENODEV if it can't be determined or
809  *          disabled
810  */
811 static int check_if_ecc_is_active(const u8 bus, enum type type)
812 {
813         struct pci_dev *pdev = NULL;
814         u32 mcmtr, id;
815
816         switch (type) {
817         case IVY_BRIDGE:
818                 id = PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA;
819                 break;
820         case HASWELL:
821                 id = PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA;
822                 break;
823         case SANDY_BRIDGE:
824                 id = PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA;
825                 break;
826         case BROADWELL:
827                 id = PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA;
828                 break;
829         default:
830                 return -ENODEV;
831         }
832
833         pdev = get_pdev_same_bus(bus, id);
834         if (!pdev) {
835                 sbridge_printk(KERN_ERR, "Couldn't find PCI device "
836                                         "%04x:%04x! on bus %02d\n",
837                                         PCI_VENDOR_ID_INTEL, id, bus);
838                 return -ENODEV;
839         }
840
841         pci_read_config_dword(pdev, MCMTR, &mcmtr);
842         if (!IS_ECC_ENABLED(mcmtr)) {
843                 sbridge_printk(KERN_ERR, "ECC is disabled. Aborting\n");
844                 return -ENODEV;
845         }
846         return 0;
847 }
848
849 static int get_dimm_config(struct mem_ctl_info *mci)
850 {
851         struct sbridge_pvt *pvt = mci->pvt_info;
852         struct dimm_info *dimm;
853         unsigned i, j, banks, ranks, rows, cols, npages;
854         u64 size;
855         u32 reg;
856         enum edac_type mode;
857         enum mem_type mtype;
858
859         if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL)
860                 pci_read_config_dword(pvt->pci_sad1, SAD_TARGET, &reg);
861         else
862                 pci_read_config_dword(pvt->pci_br0, SAD_TARGET, &reg);
863
864         pvt->sbridge_dev->source_id = SOURCE_ID(reg);
865
866         pvt->sbridge_dev->node_id = pvt->info.get_node_id(pvt);
867         edac_dbg(0, "mc#%d: Node ID: %d, source ID: %d\n",
868                  pvt->sbridge_dev->mc,
869                  pvt->sbridge_dev->node_id,
870                  pvt->sbridge_dev->source_id);
871
872         pci_read_config_dword(pvt->pci_ras, RASENABLES, &reg);
873         if (IS_MIRROR_ENABLED(reg)) {
874                 edac_dbg(0, "Memory mirror is enabled\n");
875                 pvt->is_mirrored = true;
876         } else {
877                 edac_dbg(0, "Memory mirror is disabled\n");
878                 pvt->is_mirrored = false;
879         }
880
881         pci_read_config_dword(pvt->pci_ta, MCMTR, &pvt->info.mcmtr);
882         if (IS_LOCKSTEP_ENABLED(pvt->info.mcmtr)) {
883                 edac_dbg(0, "Lockstep is enabled\n");
884                 mode = EDAC_S8ECD8ED;
885                 pvt->is_lockstep = true;
886         } else {
887                 edac_dbg(0, "Lockstep is disabled\n");
888                 mode = EDAC_S4ECD4ED;
889                 pvt->is_lockstep = false;
890         }
891         if (IS_CLOSE_PG(pvt->info.mcmtr)) {
892                 edac_dbg(0, "address map is on closed page mode\n");
893                 pvt->is_close_pg = true;
894         } else {
895                 edac_dbg(0, "address map is on open page mode\n");
896                 pvt->is_close_pg = false;
897         }
898
899         mtype = pvt->info.get_memory_type(pvt);
900         if (mtype == MEM_RDDR3 || mtype == MEM_RDDR4)
901                 edac_dbg(0, "Memory is registered\n");
902         else if (mtype == MEM_UNKNOWN)
903                 edac_dbg(0, "Cannot determine memory type\n");
904         else
905                 edac_dbg(0, "Memory is unregistered\n");
906
907         if (mtype == MEM_DDR4 || mtype == MEM_RDDR4)
908                 banks = 16;
909         else
910                 banks = 8;
911
912         for (i = 0; i < NUM_CHANNELS; i++) {
913                 u32 mtr;
914
915                 for (j = 0; j < ARRAY_SIZE(mtr_regs); j++) {
916                         dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms, mci->n_layers,
917                                        i, j, 0);
918                         pci_read_config_dword(pvt->pci_tad[i],
919                                               mtr_regs[j], &mtr);
920                         edac_dbg(4, "Channel #%d  MTR%d = %x\n", i, j, mtr);
921                         if (IS_DIMM_PRESENT(mtr)) {
922                                 pvt->channel[i].dimms++;
923
924                                 ranks = numrank(pvt->info.type, mtr);
925                                 rows = numrow(mtr);
926                                 cols = numcol(mtr);
927
928                                 size = ((u64)rows * cols * banks * ranks) >> (20 - 3);
929                                 npages = MiB_TO_PAGES(size);
930
931                                 edac_dbg(0, "mc#%d: channel %d, dimm %d, %Ld Mb (%d pages) bank: %d, rank: %d, row: %#x, col: %#x\n",
932                                          pvt->sbridge_dev->mc, i, j,
933                                          size, npages,
934                                          banks, ranks, rows, cols);
935
936                                 dimm->nr_pages = npages;
937                                 dimm->grain = 32;
938                                 switch (banks) {
939                                 case 16:
940                                         dimm->dtype = DEV_X16;
941                                         break;
942                                 case 8:
943                                         dimm->dtype = DEV_X8;
944                                         break;
945                                 case 4:
946                                         dimm->dtype = DEV_X4;
947                                         break;
948                                 }
949                                 dimm->mtype = mtype;
950                                 dimm->edac_mode = mode;
951                                 snprintf(dimm->label, sizeof(dimm->label),
952                                          "CPU_SrcID#%u_Channel#%u_DIMM#%u",
953                                          pvt->sbridge_dev->source_id, i, j);
954                         }
955                 }
956         }
957
958         return 0;
959 }
960
961 static void get_memory_layout(const struct mem_ctl_info *mci)
962 {
963         struct sbridge_pvt *pvt = mci->pvt_info;
964         int i, j, k, n_sads, n_tads, sad_interl;
965         u32 reg;
966         u64 limit, prv = 0;
967         u64 tmp_mb;
968         u32 gb, mb;
969         u32 rir_way;
970
971         /*
972          * Step 1) Get TOLM/TOHM ranges
973          */
974
975         pvt->tolm = pvt->info.get_tolm(pvt);
976         tmp_mb = (1 + pvt->tolm) >> 20;
977
978         gb = div_u64_rem(tmp_mb, 1024, &mb);
979         edac_dbg(0, "TOLM: %u.%03u GB (0x%016Lx)\n",
980                 gb, (mb*1000)/1024, (u64)pvt->tolm);
981
982         /* Address range is already 45:25 */
983         pvt->tohm = pvt->info.get_tohm(pvt);
984         tmp_mb = (1 + pvt->tohm) >> 20;
985
986         gb = div_u64_rem(tmp_mb, 1024, &mb);
987         edac_dbg(0, "TOHM: %u.%03u GB (0x%016Lx)\n",
988                 gb, (mb*1000)/1024, (u64)pvt->tohm);
989
990         /*
991          * Step 2) Get SAD range and SAD Interleave list
992          * TAD registers contain the interleave wayness. However, it
993          * seems simpler to just discover it indirectly, with the
994          * algorithm bellow.
995          */
996         prv = 0;
997         for (n_sads = 0; n_sads < pvt->info.max_sad; n_sads++) {
998                 /* SAD_LIMIT Address range is 45:26 */
999                 pci_read_config_dword(pvt->pci_sad0, pvt->info.dram_rule[n_sads],
1000                                       &reg);
1001                 limit = SAD_LIMIT(reg);
1002
1003                 if (!DRAM_RULE_ENABLE(reg))
1004                         continue;
1005
1006                 if (limit <= prv)
1007                         break;
1008
1009                 tmp_mb = (limit + 1) >> 20;
1010                 gb = div_u64_rem(tmp_mb, 1024, &mb);
1011                 edac_dbg(0, "SAD#%d %s up to %u.%03u GB (0x%016Lx) Interleave: %s reg=0x%08x\n",
1012                          n_sads,
1013                          get_dram_attr(reg),
1014                          gb, (mb*1000)/1024,
1015                          ((u64)tmp_mb) << 20L,
1016                          INTERLEAVE_MODE(reg) ? "8:6" : "[8:6]XOR[18:16]",
1017                          reg);
1018                 prv = limit;
1019
1020                 pci_read_config_dword(pvt->pci_sad0, pvt->info.interleave_list[n_sads],
1021                                       &reg);
1022                 sad_interl = sad_pkg(pvt->info.interleave_pkg, reg, 0);
1023                 for (j = 0; j < 8; j++) {
1024                         u32 pkg = sad_pkg(pvt->info.interleave_pkg, reg, j);
1025                         if (j > 0 && sad_interl == pkg)
1026                                 break;
1027
1028                         edac_dbg(0, "SAD#%d, interleave #%d: %d\n",
1029                                  n_sads, j, pkg);
1030                 }
1031         }
1032
1033         /*
1034          * Step 3) Get TAD range
1035          */
1036         prv = 0;
1037         for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
1038                 pci_read_config_dword(pvt->pci_ha0, tad_dram_rule[n_tads],
1039                                       &reg);
1040                 limit = TAD_LIMIT(reg);
1041                 if (limit <= prv)
1042                         break;
1043                 tmp_mb = (limit + 1) >> 20;
1044
1045                 gb = div_u64_rem(tmp_mb, 1024, &mb);
1046                 edac_dbg(0, "TAD#%d: up to %u.%03u GB (0x%016Lx), socket interleave %d, memory interleave %d, TGT: %d, %d, %d, %d, reg=0x%08x\n",
1047                          n_tads, gb, (mb*1000)/1024,
1048                          ((u64)tmp_mb) << 20L,
1049                          (u32)(1 << TAD_SOCK(reg)),
1050                          (u32)TAD_CH(reg) + 1,
1051                          (u32)TAD_TGT0(reg),
1052                          (u32)TAD_TGT1(reg),
1053                          (u32)TAD_TGT2(reg),
1054                          (u32)TAD_TGT3(reg),
1055                          reg);
1056                 prv = limit;
1057         }
1058
1059         /*
1060          * Step 4) Get TAD offsets, per each channel
1061          */
1062         for (i = 0; i < NUM_CHANNELS; i++) {
1063                 if (!pvt->channel[i].dimms)
1064                         continue;
1065                 for (j = 0; j < n_tads; j++) {
1066                         pci_read_config_dword(pvt->pci_tad[i],
1067                                               tad_ch_nilv_offset[j],
1068                                               &reg);
1069                         tmp_mb = TAD_OFFSET(reg) >> 20;
1070                         gb = div_u64_rem(tmp_mb, 1024, &mb);
1071                         edac_dbg(0, "TAD CH#%d, offset #%d: %u.%03u GB (0x%016Lx), reg=0x%08x\n",
1072                                  i, j,
1073                                  gb, (mb*1000)/1024,
1074                                  ((u64)tmp_mb) << 20L,
1075                                  reg);
1076                 }
1077         }
1078
1079         /*
1080          * Step 6) Get RIR Wayness/Limit, per each channel
1081          */
1082         for (i = 0; i < NUM_CHANNELS; i++) {
1083                 if (!pvt->channel[i].dimms)
1084                         continue;
1085                 for (j = 0; j < MAX_RIR_RANGES; j++) {
1086                         pci_read_config_dword(pvt->pci_tad[i],
1087                                               rir_way_limit[j],
1088                                               &reg);
1089
1090                         if (!IS_RIR_VALID(reg))
1091                                 continue;
1092
1093                         tmp_mb = pvt->info.rir_limit(reg) >> 20;
1094                         rir_way = 1 << RIR_WAY(reg);
1095                         gb = div_u64_rem(tmp_mb, 1024, &mb);
1096                         edac_dbg(0, "CH#%d RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d, reg=0x%08x\n",
1097                                  i, j,
1098                                  gb, (mb*1000)/1024,
1099                                  ((u64)tmp_mb) << 20L,
1100                                  rir_way,
1101                                  reg);
1102
1103                         for (k = 0; k < rir_way; k++) {
1104                                 pci_read_config_dword(pvt->pci_tad[i],
1105                                                       rir_offset[j][k],
1106                                                       &reg);
1107                                 tmp_mb = RIR_OFFSET(pvt->info.type, reg) << 6;
1108
1109                                 gb = div_u64_rem(tmp_mb, 1024, &mb);
1110                                 edac_dbg(0, "CH#%d RIR#%d INTL#%d, offset %u.%03u GB (0x%016Lx), tgt: %d, reg=0x%08x\n",
1111                                          i, j, k,
1112                                          gb, (mb*1000)/1024,
1113                                          ((u64)tmp_mb) << 20L,
1114                                          (u32)RIR_RNK_TGT(pvt->info.type, reg),
1115                                          reg);
1116                         }
1117                 }
1118         }
1119 }
1120
1121 static struct mem_ctl_info *get_mci_for_node_id(u8 node_id)
1122 {
1123         struct sbridge_dev *sbridge_dev;
1124
1125         list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
1126                 if (sbridge_dev->node_id == node_id)
1127                         return sbridge_dev->mci;
1128         }
1129         return NULL;
1130 }
1131
1132 static int get_memory_error_data(struct mem_ctl_info *mci,
1133                                  u64 addr,
1134                                  u8 *socket,
1135                                  long *channel_mask,
1136                                  u8 *rank,
1137                                  char **area_type, char *msg)
1138 {
1139         struct mem_ctl_info     *new_mci;
1140         struct sbridge_pvt *pvt = mci->pvt_info;
1141         struct pci_dev          *pci_ha;
1142         int                     n_rir, n_sads, n_tads, sad_way, sck_xch;
1143         int                     sad_interl, idx, base_ch;
1144         int                     interleave_mode, shiftup = 0;
1145         unsigned                sad_interleave[pvt->info.max_interleave];
1146         u32                     reg, dram_rule;
1147         u8                      ch_way, sck_way, pkg, sad_ha = 0;
1148         u32                     tad_offset;
1149         u32                     rir_way;
1150         u32                     mb, gb;
1151         u64                     ch_addr, offset, limit = 0, prv = 0;
1152
1153
1154         /*
1155          * Step 0) Check if the address is at special memory ranges
1156          * The check bellow is probably enough to fill all cases where
1157          * the error is not inside a memory, except for the legacy
1158          * range (e. g. VGA addresses). It is unlikely, however, that the
1159          * memory controller would generate an error on that range.
1160          */
1161         if ((addr > (u64) pvt->tolm) && (addr < (1LL << 32))) {
1162                 sprintf(msg, "Error at TOLM area, on addr 0x%08Lx", addr);
1163                 return -EINVAL;
1164         }
1165         if (addr >= (u64)pvt->tohm) {
1166                 sprintf(msg, "Error at MMIOH area, on addr 0x%016Lx", addr);
1167                 return -EINVAL;
1168         }
1169
1170         /*
1171          * Step 1) Get socket
1172          */
1173         for (n_sads = 0; n_sads < pvt->info.max_sad; n_sads++) {
1174                 pci_read_config_dword(pvt->pci_sad0, pvt->info.dram_rule[n_sads],
1175                                       &reg);
1176
1177                 if (!DRAM_RULE_ENABLE(reg))
1178                         continue;
1179
1180                 limit = SAD_LIMIT(reg);
1181                 if (limit <= prv) {
1182                         sprintf(msg, "Can't discover the memory socket");
1183                         return -EINVAL;
1184                 }
1185                 if  (addr <= limit)
1186                         break;
1187                 prv = limit;
1188         }
1189         if (n_sads == pvt->info.max_sad) {
1190                 sprintf(msg, "Can't discover the memory socket");
1191                 return -EINVAL;
1192         }
1193         dram_rule = reg;
1194         *area_type = get_dram_attr(dram_rule);
1195         interleave_mode = INTERLEAVE_MODE(dram_rule);
1196
1197         pci_read_config_dword(pvt->pci_sad0, pvt->info.interleave_list[n_sads],
1198                               &reg);
1199
1200         if (pvt->info.type == SANDY_BRIDGE) {
1201                 sad_interl = sad_pkg(pvt->info.interleave_pkg, reg, 0);
1202                 for (sad_way = 0; sad_way < 8; sad_way++) {
1203                         u32 pkg = sad_pkg(pvt->info.interleave_pkg, reg, sad_way);
1204                         if (sad_way > 0 && sad_interl == pkg)
1205                                 break;
1206                         sad_interleave[sad_way] = pkg;
1207                         edac_dbg(0, "SAD interleave #%d: %d\n",
1208                                  sad_way, sad_interleave[sad_way]);
1209                 }
1210                 edac_dbg(0, "mc#%d: Error detected on SAD#%d: address 0x%016Lx < 0x%016Lx, Interleave [%d:6]%s\n",
1211                          pvt->sbridge_dev->mc,
1212                          n_sads,
1213                          addr,
1214                          limit,
1215                          sad_way + 7,
1216                          !interleave_mode ? "" : "XOR[18:16]");
1217                 if (interleave_mode)
1218                         idx = ((addr >> 6) ^ (addr >> 16)) & 7;
1219                 else
1220                         idx = (addr >> 6) & 7;
1221                 switch (sad_way) {
1222                 case 1:
1223                         idx = 0;
1224                         break;
1225                 case 2:
1226                         idx = idx & 1;
1227                         break;
1228                 case 4:
1229                         idx = idx & 3;
1230                         break;
1231                 case 8:
1232                         break;
1233                 default:
1234                         sprintf(msg, "Can't discover socket interleave");
1235                         return -EINVAL;
1236                 }
1237                 *socket = sad_interleave[idx];
1238                 edac_dbg(0, "SAD interleave index: %d (wayness %d) = CPU socket %d\n",
1239                          idx, sad_way, *socket);
1240         } else if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL) {
1241                 int bits, a7mode = A7MODE(dram_rule);
1242
1243                 if (a7mode) {
1244                         /* A7 mode swaps P9 with P6 */
1245                         bits = GET_BITFIELD(addr, 7, 8) << 1;
1246                         bits |= GET_BITFIELD(addr, 9, 9);
1247                 } else
1248                         bits = GET_BITFIELD(addr, 7, 9);
1249
1250                 if (interleave_mode) {
1251                         /* interleave mode will XOR {8,7,6} with {18,17,16} */
1252                         idx = GET_BITFIELD(addr, 16, 18);
1253                         idx ^= bits;
1254                 } else
1255                         idx = bits;
1256
1257                 pkg = sad_pkg(pvt->info.interleave_pkg, reg, idx);
1258                 *socket = sad_pkg_socket(pkg);
1259                 sad_ha = sad_pkg_ha(pkg);
1260
1261                 if (a7mode) {
1262                         /* MCChanShiftUpEnable */
1263                         pci_read_config_dword(pvt->pci_ha0,
1264                                               HASWELL_HASYSDEFEATURE2, &reg);
1265                         shiftup = GET_BITFIELD(reg, 22, 22);
1266                 }
1267
1268                 edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %i, shiftup: %i\n",
1269                          idx, *socket, sad_ha, shiftup);
1270         } else {
1271                 /* Ivy Bridge's SAD mode doesn't support XOR interleave mode */
1272                 idx = (addr >> 6) & 7;
1273                 pkg = sad_pkg(pvt->info.interleave_pkg, reg, idx);
1274                 *socket = sad_pkg_socket(pkg);
1275                 sad_ha = sad_pkg_ha(pkg);
1276                 edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %d\n",
1277                          idx, *socket, sad_ha);
1278         }
1279
1280         /*
1281          * Move to the proper node structure, in order to access the
1282          * right PCI registers
1283          */
1284         new_mci = get_mci_for_node_id(*socket);
1285         if (!new_mci) {
1286                 sprintf(msg, "Struct for socket #%u wasn't initialized",
1287                         *socket);
1288                 return -EINVAL;
1289         }
1290         mci = new_mci;
1291         pvt = mci->pvt_info;
1292
1293         /*
1294          * Step 2) Get memory channel
1295          */
1296         prv = 0;
1297         if (pvt->info.type == SANDY_BRIDGE)
1298                 pci_ha = pvt->pci_ha0;
1299         else {
1300                 if (sad_ha)
1301                         pci_ha = pvt->pci_ha1;
1302                 else
1303                         pci_ha = pvt->pci_ha0;
1304         }
1305         for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
1306                 pci_read_config_dword(pci_ha, tad_dram_rule[n_tads], &reg);
1307                 limit = TAD_LIMIT(reg);
1308                 if (limit <= prv) {
1309                         sprintf(msg, "Can't discover the memory channel");
1310                         return -EINVAL;
1311                 }
1312                 if  (addr <= limit)
1313                         break;
1314                 prv = limit;
1315         }
1316         if (n_tads == MAX_TAD) {
1317                 sprintf(msg, "Can't discover the memory channel");
1318                 return -EINVAL;
1319         }
1320
1321         ch_way = TAD_CH(reg) + 1;
1322         sck_way = TAD_SOCK(reg);
1323
1324         if (ch_way == 3)
1325                 idx = addr >> 6;
1326         else
1327                 idx = (addr >> (6 + sck_way + shiftup)) & 0x3;
1328         idx = idx % ch_way;
1329
1330         /*
1331          * FIXME: Shouldn't we use CHN_IDX_OFFSET() here, when ch_way == 3 ???
1332          */
1333         switch (idx) {
1334         case 0:
1335                 base_ch = TAD_TGT0(reg);
1336                 break;
1337         case 1:
1338                 base_ch = TAD_TGT1(reg);
1339                 break;
1340         case 2:
1341                 base_ch = TAD_TGT2(reg);
1342                 break;
1343         case 3:
1344                 base_ch = TAD_TGT3(reg);
1345                 break;
1346         default:
1347                 sprintf(msg, "Can't discover the TAD target");
1348                 return -EINVAL;
1349         }
1350         *channel_mask = 1 << base_ch;
1351
1352         pci_read_config_dword(pvt->pci_tad[base_ch],
1353                                 tad_ch_nilv_offset[n_tads],
1354                                 &tad_offset);
1355
1356         if (pvt->is_mirrored) {
1357                 *channel_mask |= 1 << ((base_ch + 2) % 4);
1358                 switch(ch_way) {
1359                 case 2:
1360                 case 4:
1361                         sck_xch = (1 << sck_way) * (ch_way >> 1);
1362                         break;
1363                 default:
1364                         sprintf(msg, "Invalid mirror set. Can't decode addr");
1365                         return -EINVAL;
1366                 }
1367         } else
1368                 sck_xch = (1 << sck_way) * ch_way;
1369
1370         if (pvt->is_lockstep)
1371                 *channel_mask |= 1 << ((base_ch + 1) % 4);
1372
1373         offset = TAD_OFFSET(tad_offset);
1374
1375         edac_dbg(0, "TAD#%d: address 0x%016Lx < 0x%016Lx, socket interleave %d, channel interleave %d (offset 0x%08Lx), index %d, base ch: %d, ch mask: 0x%02lx\n",
1376                  n_tads,
1377                  addr,
1378                  limit,
1379                  sck_way,
1380                  ch_way,
1381                  offset,
1382                  idx,
1383                  base_ch,
1384                  *channel_mask);
1385
1386         /* Calculate channel address */
1387         /* Remove the TAD offset */
1388
1389         if (offset > addr) {
1390                 sprintf(msg, "Can't calculate ch addr: TAD offset 0x%08Lx is too high for addr 0x%08Lx!",
1391                         offset, addr);
1392                 return -EINVAL;
1393         }
1394
1395         ch_addr = addr - offset;
1396         ch_addr >>= (6 + shiftup);
1397         ch_addr /= sck_xch;
1398         ch_addr <<= (6 + shiftup);
1399         ch_addr |= addr & ((1 << (6 + shiftup)) - 1);
1400
1401         /*
1402          * Step 3) Decode rank
1403          */
1404         for (n_rir = 0; n_rir < MAX_RIR_RANGES; n_rir++) {
1405                 pci_read_config_dword(pvt->pci_tad[base_ch],
1406                                       rir_way_limit[n_rir],
1407                                       &reg);
1408
1409                 if (!IS_RIR_VALID(reg))
1410                         continue;
1411
1412                 limit = pvt->info.rir_limit(reg);
1413                 gb = div_u64_rem(limit >> 20, 1024, &mb);
1414                 edac_dbg(0, "RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d\n",
1415                          n_rir,
1416                          gb, (mb*1000)/1024,
1417                          limit,
1418                          1 << RIR_WAY(reg));
1419                 if  (ch_addr <= limit)
1420                         break;
1421         }
1422         if (n_rir == MAX_RIR_RANGES) {
1423                 sprintf(msg, "Can't discover the memory rank for ch addr 0x%08Lx",
1424                         ch_addr);
1425                 return -EINVAL;
1426         }
1427         rir_way = RIR_WAY(reg);
1428
1429         if (pvt->is_close_pg)
1430                 idx = (ch_addr >> 6);
1431         else
1432                 idx = (ch_addr >> 13);  /* FIXME: Datasheet says to shift by 15 */
1433         idx %= 1 << rir_way;
1434
1435         pci_read_config_dword(pvt->pci_tad[base_ch],
1436                               rir_offset[n_rir][idx],
1437                               &reg);
1438         *rank = RIR_RNK_TGT(pvt->info.type, reg);
1439
1440         edac_dbg(0, "RIR#%d: channel address 0x%08Lx < 0x%08Lx, RIR interleave %d, index %d\n",
1441                  n_rir,
1442                  ch_addr,
1443                  limit,
1444                  rir_way,
1445                  idx);
1446
1447         return 0;
1448 }
1449
1450 /****************************************************************************
1451         Device initialization routines: put/get, init/exit
1452  ****************************************************************************/
1453
1454 /*
1455  *      sbridge_put_all_devices 'put' all the devices that we have
1456  *                              reserved via 'get'
1457  */
1458 static void sbridge_put_devices(struct sbridge_dev *sbridge_dev)
1459 {
1460         int i;
1461
1462         edac_dbg(0, "\n");
1463         for (i = 0; i < sbridge_dev->n_devs; i++) {
1464                 struct pci_dev *pdev = sbridge_dev->pdev[i];
1465                 if (!pdev)
1466                         continue;
1467                 edac_dbg(0, "Removing dev %02x:%02x.%d\n",
1468                          pdev->bus->number,
1469                          PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
1470                 pci_dev_put(pdev);
1471         }
1472 }
1473
1474 static void sbridge_put_all_devices(void)
1475 {
1476         struct sbridge_dev *sbridge_dev, *tmp;
1477
1478         list_for_each_entry_safe(sbridge_dev, tmp, &sbridge_edac_list, list) {
1479                 sbridge_put_devices(sbridge_dev);
1480                 free_sbridge_dev(sbridge_dev);
1481         }
1482 }
1483
1484 static int sbridge_get_onedevice(struct pci_dev **prev,
1485                                  u8 *num_mc,
1486                                  const struct pci_id_table *table,
1487                                  const unsigned devno)
1488 {
1489         struct sbridge_dev *sbridge_dev;
1490         const struct pci_id_descr *dev_descr = &table->descr[devno];
1491         struct pci_dev *pdev = NULL;
1492         u8 bus = 0;
1493
1494         sbridge_printk(KERN_DEBUG,
1495                 "Seeking for: PCI ID %04x:%04x\n",
1496                 PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1497
1498         pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
1499                               dev_descr->dev_id, *prev);
1500
1501         if (!pdev) {
1502                 if (*prev) {
1503                         *prev = pdev;
1504                         return 0;
1505                 }
1506
1507                 if (dev_descr->optional)
1508                         return 0;
1509
1510                 /* if the HA wasn't found */
1511                 if (devno == 0)
1512                         return -ENODEV;
1513
1514                 sbridge_printk(KERN_INFO,
1515                         "Device not found: %04x:%04x\n",
1516                         PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1517
1518                 /* End of list, leave */
1519                 return -ENODEV;
1520         }
1521         bus = pdev->bus->number;
1522
1523         sbridge_dev = get_sbridge_dev(bus);
1524         if (!sbridge_dev) {
1525                 sbridge_dev = alloc_sbridge_dev(bus, table);
1526                 if (!sbridge_dev) {
1527                         pci_dev_put(pdev);
1528                         return -ENOMEM;
1529                 }
1530                 (*num_mc)++;
1531         }
1532
1533         if (sbridge_dev->pdev[devno]) {
1534                 sbridge_printk(KERN_ERR,
1535                         "Duplicated device for %04x:%04x\n",
1536                         PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1537                 pci_dev_put(pdev);
1538                 return -ENODEV;
1539         }
1540
1541         sbridge_dev->pdev[devno] = pdev;
1542
1543         /* Be sure that the device is enabled */
1544         if (unlikely(pci_enable_device(pdev) < 0)) {
1545                 sbridge_printk(KERN_ERR,
1546                         "Couldn't enable %04x:%04x\n",
1547                         PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1548                 return -ENODEV;
1549         }
1550
1551         edac_dbg(0, "Detected %04x:%04x\n",
1552                  PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1553
1554         /*
1555          * As stated on drivers/pci/search.c, the reference count for
1556          * @from is always decremented if it is not %NULL. So, as we need
1557          * to get all devices up to null, we need to do a get for the device
1558          */
1559         pci_dev_get(pdev);
1560
1561         *prev = pdev;
1562
1563         return 0;
1564 }
1565
1566 /*
1567  * sbridge_get_all_devices - Find and perform 'get' operation on the MCH's
1568  *                           devices we want to reference for this driver.
1569  * @num_mc: pointer to the memory controllers count, to be incremented in case
1570  *          of success.
1571  * @table: model specific table
1572  *
1573  * returns 0 in case of success or error code
1574  */
1575 static int sbridge_get_all_devices(u8 *num_mc,
1576                                    const struct pci_id_table *table)
1577 {
1578         int i, rc;
1579         struct pci_dev *pdev = NULL;
1580
1581         while (table && table->descr) {
1582                 for (i = 0; i < table->n_devs; i++) {
1583                         pdev = NULL;
1584                         do {
1585                                 rc = sbridge_get_onedevice(&pdev, num_mc,
1586                                                            table, i);
1587                                 if (rc < 0) {
1588                                         if (i == 0) {
1589                                                 i = table->n_devs;
1590                                                 break;
1591                                         }
1592                                         sbridge_put_all_devices();
1593                                         return -ENODEV;
1594                                 }
1595                         } while (pdev);
1596                 }
1597                 table++;
1598         }
1599
1600         return 0;
1601 }
1602
1603 static int sbridge_mci_bind_devs(struct mem_ctl_info *mci,
1604                                  struct sbridge_dev *sbridge_dev)
1605 {
1606         struct sbridge_pvt *pvt = mci->pvt_info;
1607         struct pci_dev *pdev;
1608         u8 saw_chan_mask = 0;
1609         int i;
1610
1611         for (i = 0; i < sbridge_dev->n_devs; i++) {
1612                 pdev = sbridge_dev->pdev[i];
1613                 if (!pdev)
1614                         continue;
1615
1616                 switch (pdev->device) {
1617                 case PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0:
1618                         pvt->pci_sad0 = pdev;
1619                         break;
1620                 case PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1:
1621                         pvt->pci_sad1 = pdev;
1622                         break;
1623                 case PCI_DEVICE_ID_INTEL_SBRIDGE_BR:
1624                         pvt->pci_br0 = pdev;
1625                         break;
1626                 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0:
1627                         pvt->pci_ha0 = pdev;
1628                         break;
1629                 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA:
1630                         pvt->pci_ta = pdev;
1631                         break;
1632                 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS:
1633                         pvt->pci_ras = pdev;
1634                         break;
1635                 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0:
1636                 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1:
1637                 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2:
1638                 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3:
1639                 {
1640                         int id = pdev->device - PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0;
1641                         pvt->pci_tad[id] = pdev;
1642                         saw_chan_mask |= 1 << id;
1643                 }
1644                         break;
1645                 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO:
1646                         pvt->pci_ddrio = pdev;
1647                         break;
1648                 default:
1649                         goto error;
1650                 }
1651
1652                 edac_dbg(0, "Associated PCI %02x:%02x, bus %d with dev = %p\n",
1653                          pdev->vendor, pdev->device,
1654                          sbridge_dev->bus,
1655                          pdev);
1656         }
1657
1658         /* Check if everything were registered */
1659         if (!pvt->pci_sad0 || !pvt->pci_sad1 || !pvt->pci_ha0 ||
1660             !pvt-> pci_tad || !pvt->pci_ras  || !pvt->pci_ta)
1661                 goto enodev;
1662
1663         if (saw_chan_mask != 0x0f)
1664                 goto enodev;
1665         return 0;
1666
1667 enodev:
1668         sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
1669         return -ENODEV;
1670
1671 error:
1672         sbridge_printk(KERN_ERR, "Unexpected device %02x:%02x\n",
1673                        PCI_VENDOR_ID_INTEL, pdev->device);
1674         return -EINVAL;
1675 }
1676
1677 static int ibridge_mci_bind_devs(struct mem_ctl_info *mci,
1678                                  struct sbridge_dev *sbridge_dev)
1679 {
1680         struct sbridge_pvt *pvt = mci->pvt_info;
1681         struct pci_dev *pdev, *tmp;
1682         int i;
1683         bool mode_2ha = false;
1684
1685         tmp = pci_get_device(PCI_VENDOR_ID_INTEL,
1686                              PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1, NULL);
1687         if (tmp) {
1688                 mode_2ha = true;
1689                 pci_dev_put(tmp);
1690         }
1691
1692         for (i = 0; i < sbridge_dev->n_devs; i++) {
1693                 pdev = sbridge_dev->pdev[i];
1694                 if (!pdev)
1695                         continue;
1696
1697                 switch (pdev->device) {
1698                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0:
1699                         pvt->pci_ha0 = pdev;
1700                         break;
1701                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA:
1702                         pvt->pci_ta = pdev;
1703                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS:
1704                         pvt->pci_ras = pdev;
1705                         break;
1706                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2:
1707                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3:
1708                         /* if we have 2 HAs active, channels 2 and 3
1709                          * are in other device */
1710                         if (mode_2ha)
1711                                 break;
1712                         /* fall through */
1713                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0:
1714                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1:
1715                 {
1716                         int id = pdev->device - PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0;
1717                         pvt->pci_tad[id] = pdev;
1718                 }
1719                         break;
1720                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0:
1721                         pvt->pci_ddrio = pdev;
1722                         break;
1723                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0:
1724                         if (!mode_2ha)
1725                                 pvt->pci_ddrio = pdev;
1726                         break;
1727                 case PCI_DEVICE_ID_INTEL_IBRIDGE_SAD:
1728                         pvt->pci_sad0 = pdev;
1729                         break;
1730                 case PCI_DEVICE_ID_INTEL_IBRIDGE_BR0:
1731                         pvt->pci_br0 = pdev;
1732                         break;
1733                 case PCI_DEVICE_ID_INTEL_IBRIDGE_BR1:
1734                         pvt->pci_br1 = pdev;
1735                         break;
1736                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1:
1737                         pvt->pci_ha1 = pdev;
1738                         break;
1739                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0:
1740                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1:
1741                 {
1742                         int id = pdev->device - PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0 + 2;
1743
1744                         /* we shouldn't have this device if we have just one
1745                          * HA present */
1746                         WARN_ON(!mode_2ha);
1747                         pvt->pci_tad[id] = pdev;
1748                 }
1749                         break;
1750                 default:
1751                         goto error;
1752                 }
1753
1754                 edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
1755                          sbridge_dev->bus,
1756                          PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
1757                          pdev);
1758         }
1759
1760         /* Check if everything were registered */
1761         if (!pvt->pci_sad0 || !pvt->pci_ha0 || !pvt->pci_br0 ||
1762             !pvt->pci_br1 || !pvt->pci_tad || !pvt->pci_ras  ||
1763             !pvt->pci_ta)
1764                 goto enodev;
1765
1766         for (i = 0; i < NUM_CHANNELS; i++) {
1767                 if (!pvt->pci_tad[i])
1768                         goto enodev;
1769         }
1770         return 0;
1771
1772 enodev:
1773         sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
1774         return -ENODEV;
1775
1776 error:
1777         sbridge_printk(KERN_ERR,
1778                        "Unexpected device %02x:%02x\n", PCI_VENDOR_ID_INTEL,
1779                         pdev->device);
1780         return -EINVAL;
1781 }
1782
1783 static int haswell_mci_bind_devs(struct mem_ctl_info *mci,
1784                                  struct sbridge_dev *sbridge_dev)
1785 {
1786         struct sbridge_pvt *pvt = mci->pvt_info;
1787         struct pci_dev *pdev, *tmp;
1788         int i;
1789         bool mode_2ha = false;
1790
1791         tmp = pci_get_device(PCI_VENDOR_ID_INTEL,
1792                              PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1, NULL);
1793         if (tmp) {
1794                 mode_2ha = true;
1795                 pci_dev_put(tmp);
1796         }
1797
1798         /* there's only one device per system; not tied to any bus */
1799         if (pvt->info.pci_vtd == NULL)
1800                 /* result will be checked later */
1801                 pvt->info.pci_vtd = pci_get_device(PCI_VENDOR_ID_INTEL,
1802                                                    PCI_DEVICE_ID_INTEL_HASWELL_IMC_VTD_MISC,
1803                                                    NULL);
1804
1805         for (i = 0; i < sbridge_dev->n_devs; i++) {
1806                 pdev = sbridge_dev->pdev[i];
1807                 if (!pdev)
1808                         continue;
1809
1810                 switch (pdev->device) {
1811                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0:
1812                         pvt->pci_sad0 = pdev;
1813                         break;
1814                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1:
1815                         pvt->pci_sad1 = pdev;
1816                         break;
1817                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0:
1818                         pvt->pci_ha0 = pdev;
1819                         break;
1820                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA:
1821                         pvt->pci_ta = pdev;
1822                         break;
1823                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_THERMAL:
1824                         pvt->pci_ras = pdev;
1825                         break;
1826                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0:
1827                         pvt->pci_tad[0] = pdev;
1828                         break;
1829                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1:
1830                         pvt->pci_tad[1] = pdev;
1831                         break;
1832                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2:
1833                         if (!mode_2ha)
1834                                 pvt->pci_tad[2] = pdev;
1835                         break;
1836                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3:
1837                         if (!mode_2ha)
1838                                 pvt->pci_tad[3] = pdev;
1839                         break;
1840                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0:
1841                         pvt->pci_ddrio = pdev;
1842                         break;
1843                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1:
1844                         pvt->pci_ha1 = pdev;
1845                         break;
1846                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA:
1847                         pvt->pci_ha1_ta = pdev;
1848                         break;
1849                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0:
1850                         if (mode_2ha)
1851                                 pvt->pci_tad[2] = pdev;
1852                         break;
1853                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1:
1854                         if (mode_2ha)
1855                                 pvt->pci_tad[3] = pdev;
1856                         break;
1857                 default:
1858                         break;
1859                 }
1860
1861                 edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
1862                          sbridge_dev->bus,
1863                          PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
1864                          pdev);
1865         }
1866
1867         /* Check if everything were registered */
1868         if (!pvt->pci_sad0 || !pvt->pci_ha0 || !pvt->pci_sad1 ||
1869             !pvt->pci_ras  || !pvt->pci_ta || !pvt->info.pci_vtd)
1870                 goto enodev;
1871
1872         for (i = 0; i < NUM_CHANNELS; i++) {
1873                 if (!pvt->pci_tad[i])
1874                         goto enodev;
1875         }
1876         return 0;
1877
1878 enodev:
1879         sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
1880         return -ENODEV;
1881 }
1882
1883 static int broadwell_mci_bind_devs(struct mem_ctl_info *mci,
1884                                  struct sbridge_dev *sbridge_dev)
1885 {
1886         struct sbridge_pvt *pvt = mci->pvt_info;
1887         struct pci_dev *pdev;
1888         int i;
1889
1890         /* there's only one device per system; not tied to any bus */
1891         if (pvt->info.pci_vtd == NULL)
1892                 /* result will be checked later */
1893                 pvt->info.pci_vtd = pci_get_device(PCI_VENDOR_ID_INTEL,
1894                                                    PCI_DEVICE_ID_INTEL_BROADWELL_IMC_VTD_MISC,
1895                                                    NULL);
1896
1897         for (i = 0; i < sbridge_dev->n_devs; i++) {
1898                 pdev = sbridge_dev->pdev[i];
1899                 if (!pdev)
1900                         continue;
1901
1902                 switch (pdev->device) {
1903                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0:
1904                         pvt->pci_sad0 = pdev;
1905                         break;
1906                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1:
1907                         pvt->pci_sad1 = pdev;
1908                         break;
1909                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0:
1910                         pvt->pci_ha0 = pdev;
1911                         break;
1912                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA:
1913                         pvt->pci_ta = pdev;
1914                         break;
1915                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_THERMAL:
1916                         pvt->pci_ras = pdev;
1917                         break;
1918                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0:
1919                         pvt->pci_tad[0] = pdev;
1920                         break;
1921                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1:
1922                         pvt->pci_tad[1] = pdev;
1923                         break;
1924                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2:
1925                         pvt->pci_tad[2] = pdev;
1926                         break;
1927                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3:
1928                         pvt->pci_tad[3] = pdev;
1929                         break;
1930                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0:
1931                         pvt->pci_ddrio = pdev;
1932                         break;
1933                 default:
1934                         break;
1935                 }
1936
1937                 edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
1938                          sbridge_dev->bus,
1939                          PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
1940                          pdev);
1941         }
1942
1943         /* Check if everything were registered */
1944         if (!pvt->pci_sad0 || !pvt->pci_ha0 || !pvt->pci_sad1 ||
1945             !pvt->pci_ras  || !pvt->pci_ta || !pvt->info.pci_vtd)
1946                 goto enodev;
1947
1948         for (i = 0; i < NUM_CHANNELS; i++) {
1949                 if (!pvt->pci_tad[i])
1950                         goto enodev;
1951         }
1952         return 0;
1953
1954 enodev:
1955         sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
1956         return -ENODEV;
1957 }
1958
1959 /****************************************************************************
1960                         Error check routines
1961  ****************************************************************************/
1962
1963 /*
1964  * While Sandy Bridge has error count registers, SMI BIOS read values from
1965  * and resets the counters. So, they are not reliable for the OS to read
1966  * from them. So, we have no option but to just trust on whatever MCE is
1967  * telling us about the errors.
1968  */
1969 static void sbridge_mce_output_error(struct mem_ctl_info *mci,
1970                                     const struct mce *m)
1971 {
1972         struct mem_ctl_info *new_mci;
1973         struct sbridge_pvt *pvt = mci->pvt_info;
1974         enum hw_event_mc_err_type tp_event;
1975         char *type, *optype, msg[256];
1976         bool ripv = GET_BITFIELD(m->mcgstatus, 0, 0);
1977         bool overflow = GET_BITFIELD(m->status, 62, 62);
1978         bool uncorrected_error = GET_BITFIELD(m->status, 61, 61);
1979         bool recoverable;
1980         u32 core_err_cnt = GET_BITFIELD(m->status, 38, 52);
1981         u32 mscod = GET_BITFIELD(m->status, 16, 31);
1982         u32 errcode = GET_BITFIELD(m->status, 0, 15);
1983         u32 channel = GET_BITFIELD(m->status, 0, 3);
1984         u32 optypenum = GET_BITFIELD(m->status, 4, 6);
1985         long channel_mask, first_channel;
1986         u8  rank, socket;
1987         int rc, dimm;
1988         char *area_type = NULL;
1989
1990         if (pvt->info.type == IVY_BRIDGE)
1991                 recoverable = true;
1992         else
1993                 recoverable = GET_BITFIELD(m->status, 56, 56);
1994
1995         if (uncorrected_error) {
1996                 if (ripv) {
1997                         type = "FATAL";
1998                         tp_event = HW_EVENT_ERR_FATAL;
1999                 } else {
2000                         type = "NON_FATAL";
2001                         tp_event = HW_EVENT_ERR_UNCORRECTED;
2002                 }
2003         } else {
2004                 type = "CORRECTED";
2005                 tp_event = HW_EVENT_ERR_CORRECTED;
2006         }
2007
2008         /*
2009          * According with Table 15-9 of the Intel Architecture spec vol 3A,
2010          * memory errors should fit in this mask:
2011          *      000f 0000 1mmm cccc (binary)
2012          * where:
2013          *      f = Correction Report Filtering Bit. If 1, subsequent errors
2014          *          won't be shown
2015          *      mmm = error type
2016          *      cccc = channel
2017          * If the mask doesn't match, report an error to the parsing logic
2018          */
2019         if (! ((errcode & 0xef80) == 0x80)) {
2020                 optype = "Can't parse: it is not a mem";
2021         } else {
2022                 switch (optypenum) {
2023                 case 0:
2024                         optype = "generic undef request error";
2025                         break;
2026                 case 1:
2027                         optype = "memory read error";
2028                         break;
2029                 case 2:
2030                         optype = "memory write error";
2031                         break;
2032                 case 3:
2033                         optype = "addr/cmd error";
2034                         break;
2035                 case 4:
2036                         optype = "memory scrubbing error";
2037                         break;
2038                 default:
2039                         optype = "reserved";
2040                         break;
2041                 }
2042         }
2043
2044         /* Only decode errors with an valid address (ADDRV) */
2045         if (!GET_BITFIELD(m->status, 58, 58))
2046                 return;
2047
2048         rc = get_memory_error_data(mci, m->addr, &socket,
2049                                    &channel_mask, &rank, &area_type, msg);
2050         if (rc < 0)
2051                 goto err_parsing;
2052         new_mci = get_mci_for_node_id(socket);
2053         if (!new_mci) {
2054                 strcpy(msg, "Error: socket got corrupted!");
2055                 goto err_parsing;
2056         }
2057         mci = new_mci;
2058         pvt = mci->pvt_info;
2059
2060         first_channel = find_first_bit(&channel_mask, NUM_CHANNELS);
2061
2062         if (rank < 4)
2063                 dimm = 0;
2064         else if (rank < 8)
2065                 dimm = 1;
2066         else
2067                 dimm = 2;
2068
2069
2070         /*
2071          * FIXME: On some memory configurations (mirror, lockstep), the
2072          * Memory Controller can't point the error to a single DIMM. The
2073          * EDAC core should be handling the channel mask, in order to point
2074          * to the group of dimm's where the error may be happening.
2075          */
2076         if (!pvt->is_lockstep && !pvt->is_mirrored && !pvt->is_close_pg)
2077                 channel = first_channel;
2078
2079         snprintf(msg, sizeof(msg),
2080                  "%s%s area:%s err_code:%04x:%04x socket:%d channel_mask:%ld rank:%d",
2081                  overflow ? " OVERFLOW" : "",
2082                  (uncorrected_error && recoverable) ? " recoverable" : "",
2083                  area_type,
2084                  mscod, errcode,
2085                  socket,
2086                  channel_mask,
2087                  rank);
2088
2089         edac_dbg(0, "%s\n", msg);
2090
2091         /* FIXME: need support for channel mask */
2092
2093         if (channel == CHANNEL_UNSPECIFIED)
2094                 channel = -1;
2095
2096         /* Call the helper to output message */
2097         edac_mc_handle_error(tp_event, mci, core_err_cnt,
2098                              m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0,
2099                              channel, dimm, -1,
2100                              optype, msg);
2101         return;
2102 err_parsing:
2103         edac_mc_handle_error(tp_event, mci, core_err_cnt, 0, 0, 0,
2104                              -1, -1, -1,
2105                              msg, "");
2106
2107 }
2108
2109 /*
2110  *      sbridge_check_error     Retrieve and process errors reported by the
2111  *                              hardware. Called by the Core module.
2112  */
2113 static void sbridge_check_error(struct mem_ctl_info *mci)
2114 {
2115         struct sbridge_pvt *pvt = mci->pvt_info;
2116         int i;
2117         unsigned count = 0;
2118         struct mce *m;
2119
2120         /*
2121          * MCE first step: Copy all mce errors into a temporary buffer
2122          * We use a double buffering here, to reduce the risk of
2123          * loosing an error.
2124          */
2125         smp_rmb();
2126         count = (pvt->mce_out + MCE_LOG_LEN - pvt->mce_in)
2127                 % MCE_LOG_LEN;
2128         if (!count)
2129                 return;
2130
2131         m = pvt->mce_outentry;
2132         if (pvt->mce_in + count > MCE_LOG_LEN) {
2133                 unsigned l = MCE_LOG_LEN - pvt->mce_in;
2134
2135                 memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * l);
2136                 smp_wmb();
2137                 pvt->mce_in = 0;
2138                 count -= l;
2139                 m += l;
2140         }
2141         memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * count);
2142         smp_wmb();
2143         pvt->mce_in += count;
2144
2145         smp_rmb();
2146         if (pvt->mce_overrun) {
2147                 sbridge_printk(KERN_ERR, "Lost %d memory errors\n",
2148                               pvt->mce_overrun);
2149                 smp_wmb();
2150                 pvt->mce_overrun = 0;
2151         }
2152
2153         /*
2154          * MCE second step: parse errors and display
2155          */
2156         for (i = 0; i < count; i++)
2157                 sbridge_mce_output_error(mci, &pvt->mce_outentry[i]);
2158 }
2159
2160 /*
2161  * sbridge_mce_check_error      Replicates mcelog routine to get errors
2162  *                              This routine simply queues mcelog errors, and
2163  *                              return. The error itself should be handled later
2164  *                              by sbridge_check_error.
2165  * WARNING: As this routine should be called at NMI time, extra care should
2166  * be taken to avoid deadlocks, and to be as fast as possible.
2167  */
2168 static int sbridge_mce_check_error(struct notifier_block *nb, unsigned long val,
2169                                    void *data)
2170 {
2171         struct mce *mce = (struct mce *)data;
2172         struct mem_ctl_info *mci;
2173         struct sbridge_pvt *pvt;
2174         char *type;
2175
2176         if (get_edac_report_status() == EDAC_REPORTING_DISABLED)
2177                 return NOTIFY_DONE;
2178
2179         mci = get_mci_for_node_id(mce->socketid);
2180         if (!mci)
2181                 return NOTIFY_DONE;
2182         pvt = mci->pvt_info;
2183
2184         /*
2185          * Just let mcelog handle it if the error is
2186          * outside the memory controller. A memory error
2187          * is indicated by bit 7 = 1 and bits = 8-11,13-15 = 0.
2188          * bit 12 has an special meaning.
2189          */
2190         if ((mce->status & 0xefff) >> 7 != 1)
2191                 return NOTIFY_DONE;
2192
2193         if (mce->mcgstatus & MCG_STATUS_MCIP)
2194                 type = "Exception";
2195         else
2196                 type = "Event";
2197
2198         sbridge_mc_printk(mci, KERN_DEBUG, "HANDLING MCE MEMORY ERROR\n");
2199
2200         sbridge_mc_printk(mci, KERN_DEBUG, "CPU %d: Machine Check %s: %Lx "
2201                           "Bank %d: %016Lx\n", mce->extcpu, type,
2202                           mce->mcgstatus, mce->bank, mce->status);
2203         sbridge_mc_printk(mci, KERN_DEBUG, "TSC %llx ", mce->tsc);
2204         sbridge_mc_printk(mci, KERN_DEBUG, "ADDR %llx ", mce->addr);
2205         sbridge_mc_printk(mci, KERN_DEBUG, "MISC %llx ", mce->misc);
2206
2207         sbridge_mc_printk(mci, KERN_DEBUG, "PROCESSOR %u:%x TIME %llu SOCKET "
2208                           "%u APIC %x\n", mce->cpuvendor, mce->cpuid,
2209                           mce->time, mce->socketid, mce->apicid);
2210
2211         smp_rmb();
2212         if ((pvt->mce_out + 1) % MCE_LOG_LEN == pvt->mce_in) {
2213                 smp_wmb();
2214                 pvt->mce_overrun++;
2215                 return NOTIFY_DONE;
2216         }
2217
2218         /* Copy memory error at the ringbuffer */
2219         memcpy(&pvt->mce_entry[pvt->mce_out], mce, sizeof(*mce));
2220         smp_wmb();
2221         pvt->mce_out = (pvt->mce_out + 1) % MCE_LOG_LEN;
2222
2223         /* Handle fatal errors immediately */
2224         if (mce->mcgstatus & 1)
2225                 sbridge_check_error(mci);
2226
2227         /* Advice mcelog that the error were handled */
2228         return NOTIFY_STOP;
2229 }
2230
2231 static struct notifier_block sbridge_mce_dec = {
2232         .notifier_call      = sbridge_mce_check_error,
2233 };
2234
2235 /****************************************************************************
2236                         EDAC register/unregister logic
2237  ****************************************************************************/
2238
2239 static void sbridge_unregister_mci(struct sbridge_dev *sbridge_dev)
2240 {
2241         struct mem_ctl_info *mci = sbridge_dev->mci;
2242         struct sbridge_pvt *pvt;
2243
2244         if (unlikely(!mci || !mci->pvt_info)) {
2245                 edac_dbg(0, "MC: dev = %p\n", &sbridge_dev->pdev[0]->dev);
2246
2247                 sbridge_printk(KERN_ERR, "Couldn't find mci handler\n");
2248                 return;
2249         }
2250
2251         pvt = mci->pvt_info;
2252
2253         edac_dbg(0, "MC: mci = %p, dev = %p\n",
2254                  mci, &sbridge_dev->pdev[0]->dev);
2255
2256         /* Remove MC sysfs nodes */
2257         edac_mc_del_mc(mci->pdev);
2258
2259         edac_dbg(1, "%s: free mci struct\n", mci->ctl_name);
2260         kfree(mci->ctl_name);
2261         edac_mc_free(mci);
2262         sbridge_dev->mci = NULL;
2263 }
2264
2265 static int sbridge_register_mci(struct sbridge_dev *sbridge_dev, enum type type)
2266 {
2267         struct mem_ctl_info *mci;
2268         struct edac_mc_layer layers[2];
2269         struct sbridge_pvt *pvt;
2270         struct pci_dev *pdev = sbridge_dev->pdev[0];
2271         int rc;
2272
2273         /* Check the number of active and not disabled channels */
2274         rc = check_if_ecc_is_active(sbridge_dev->bus, type);
2275         if (unlikely(rc < 0))
2276                 return rc;
2277
2278         /* allocate a new MC control structure */
2279         layers[0].type = EDAC_MC_LAYER_CHANNEL;
2280         layers[0].size = NUM_CHANNELS;
2281         layers[0].is_virt_csrow = false;
2282         layers[1].type = EDAC_MC_LAYER_SLOT;
2283         layers[1].size = MAX_DIMMS;
2284         layers[1].is_virt_csrow = true;
2285         mci = edac_mc_alloc(sbridge_dev->mc, ARRAY_SIZE(layers), layers,
2286                             sizeof(*pvt));
2287
2288         if (unlikely(!mci))
2289                 return -ENOMEM;
2290
2291         edac_dbg(0, "MC: mci = %p, dev = %p\n",
2292                  mci, &pdev->dev);
2293
2294         pvt = mci->pvt_info;
2295         memset(pvt, 0, sizeof(*pvt));
2296
2297         /* Associate sbridge_dev and mci for future usage */
2298         pvt->sbridge_dev = sbridge_dev;
2299         sbridge_dev->mci = mci;
2300
2301         mci->mtype_cap = MEM_FLAG_DDR3;
2302         mci->edac_ctl_cap = EDAC_FLAG_NONE;
2303         mci->edac_cap = EDAC_FLAG_NONE;
2304         mci->mod_name = "sbridge_edac.c";
2305         mci->mod_ver = SBRIDGE_REVISION;
2306         mci->dev_name = pci_name(pdev);
2307         mci->ctl_page_to_phys = NULL;
2308
2309         /* Set the function pointer to an actual operation function */
2310         mci->edac_check = sbridge_check_error;
2311
2312         pvt->info.type = type;
2313         switch (type) {
2314         case IVY_BRIDGE:
2315                 pvt->info.rankcfgr = IB_RANK_CFG_A;
2316                 pvt->info.get_tolm = ibridge_get_tolm;
2317                 pvt->info.get_tohm = ibridge_get_tohm;
2318                 pvt->info.dram_rule = ibridge_dram_rule;
2319                 pvt->info.get_memory_type = get_memory_type;
2320                 pvt->info.get_node_id = get_node_id;
2321                 pvt->info.rir_limit = rir_limit;
2322                 pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
2323                 pvt->info.interleave_list = ibridge_interleave_list;
2324                 pvt->info.max_interleave = ARRAY_SIZE(ibridge_interleave_list);
2325                 pvt->info.interleave_pkg = ibridge_interleave_pkg;
2326                 mci->ctl_name = kasprintf(GFP_KERNEL, "Ivy Bridge Socket#%d", mci->mc_idx);
2327
2328                 /* Store pci devices at mci for faster access */
2329                 rc = ibridge_mci_bind_devs(mci, sbridge_dev);
2330                 if (unlikely(rc < 0))
2331                         goto fail0;
2332                 break;
2333         case SANDY_BRIDGE:
2334                 pvt->info.rankcfgr = SB_RANK_CFG_A;
2335                 pvt->info.get_tolm = sbridge_get_tolm;
2336                 pvt->info.get_tohm = sbridge_get_tohm;
2337                 pvt->info.dram_rule = sbridge_dram_rule;
2338                 pvt->info.get_memory_type = get_memory_type;
2339                 pvt->info.get_node_id = get_node_id;
2340                 pvt->info.rir_limit = rir_limit;
2341                 pvt->info.max_sad = ARRAY_SIZE(sbridge_dram_rule);
2342                 pvt->info.interleave_list = sbridge_interleave_list;
2343                 pvt->info.max_interleave = ARRAY_SIZE(sbridge_interleave_list);
2344                 pvt->info.interleave_pkg = sbridge_interleave_pkg;
2345                 mci->ctl_name = kasprintf(GFP_KERNEL, "Sandy Bridge Socket#%d", mci->mc_idx);
2346
2347                 /* Store pci devices at mci for faster access */
2348                 rc = sbridge_mci_bind_devs(mci, sbridge_dev);
2349                 if (unlikely(rc < 0))
2350                         goto fail0;
2351                 break;
2352         case HASWELL:
2353                 /* rankcfgr isn't used */
2354                 pvt->info.get_tolm = haswell_get_tolm;
2355                 pvt->info.get_tohm = haswell_get_tohm;
2356                 pvt->info.dram_rule = ibridge_dram_rule;
2357                 pvt->info.get_memory_type = haswell_get_memory_type;
2358                 pvt->info.get_node_id = haswell_get_node_id;
2359                 pvt->info.rir_limit = haswell_rir_limit;
2360                 pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
2361                 pvt->info.interleave_list = ibridge_interleave_list;
2362                 pvt->info.max_interleave = ARRAY_SIZE(ibridge_interleave_list);
2363                 pvt->info.interleave_pkg = ibridge_interleave_pkg;
2364                 mci->ctl_name = kasprintf(GFP_KERNEL, "Haswell Socket#%d", mci->mc_idx);
2365
2366                 /* Store pci devices at mci for faster access */
2367                 rc = haswell_mci_bind_devs(mci, sbridge_dev);
2368                 if (unlikely(rc < 0))
2369                         goto fail0;
2370                 break;
2371         case BROADWELL:
2372                 /* rankcfgr isn't used */
2373                 pvt->info.get_tolm = haswell_get_tolm;
2374                 pvt->info.get_tohm = haswell_get_tohm;
2375                 pvt->info.dram_rule = ibridge_dram_rule;
2376                 pvt->info.get_memory_type = haswell_get_memory_type;
2377                 pvt->info.get_node_id = haswell_get_node_id;
2378                 pvt->info.rir_limit = haswell_rir_limit;
2379                 pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
2380                 pvt->info.interleave_list = ibridge_interleave_list;
2381                 pvt->info.max_interleave = ARRAY_SIZE(ibridge_interleave_list);
2382                 pvt->info.interleave_pkg = ibridge_interleave_pkg;
2383                 mci->ctl_name = kasprintf(GFP_KERNEL, "Broadwell Socket#%d", mci->mc_idx);
2384
2385                 /* Store pci devices at mci for faster access */
2386                 rc = broadwell_mci_bind_devs(mci, sbridge_dev);
2387                 if (unlikely(rc < 0))
2388                         goto fail0;
2389                 break;
2390         }
2391
2392         /* Get dimm basic config and the memory layout */
2393         get_dimm_config(mci);
2394         get_memory_layout(mci);
2395
2396         /* record ptr to the generic device */
2397         mci->pdev = &pdev->dev;
2398
2399         /* add this new MC control structure to EDAC's list of MCs */
2400         if (unlikely(edac_mc_add_mc(mci))) {
2401                 edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
2402                 rc = -EINVAL;
2403                 goto fail0;
2404         }
2405
2406         return 0;
2407
2408 fail0:
2409         kfree(mci->ctl_name);
2410         edac_mc_free(mci);
2411         sbridge_dev->mci = NULL;
2412         return rc;
2413 }
2414
2415 /*
2416  *      sbridge_probe   Probe for ONE instance of device to see if it is
2417  *                      present.
2418  *      return:
2419  *              0 for FOUND a device
2420  *              < 0 for error code
2421  */
2422
2423 static int sbridge_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2424 {
2425         int rc = -ENODEV;
2426         u8 mc, num_mc = 0;
2427         struct sbridge_dev *sbridge_dev;
2428         enum type type = SANDY_BRIDGE;
2429
2430         /* get the pci devices we want to reserve for our use */
2431         mutex_lock(&sbridge_edac_lock);
2432
2433         /*
2434          * All memory controllers are allocated at the first pass.
2435          */
2436         if (unlikely(probed >= 1)) {
2437                 mutex_unlock(&sbridge_edac_lock);
2438                 return -ENODEV;
2439         }
2440         probed++;
2441
2442         switch (pdev->device) {
2443         case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA:
2444                 rc = sbridge_get_all_devices(&num_mc, pci_dev_descr_ibridge_table);
2445                 type = IVY_BRIDGE;
2446                 break;
2447         case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0:
2448                 rc = sbridge_get_all_devices(&num_mc, pci_dev_descr_sbridge_table);
2449                 type = SANDY_BRIDGE;
2450                 break;
2451         case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0:
2452                 rc = sbridge_get_all_devices(&num_mc, pci_dev_descr_haswell_table);
2453                 type = HASWELL;
2454                 break;
2455         case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0:
2456                 rc = sbridge_get_all_devices(&num_mc, pci_dev_descr_broadwell_table);
2457                 type = BROADWELL;
2458                 break;
2459         }
2460         if (unlikely(rc < 0)) {
2461                 edac_dbg(0, "couldn't get all devices for 0x%x\n", pdev->device);
2462                 goto fail0;
2463         }
2464
2465         mc = 0;
2466
2467         list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
2468                 edac_dbg(0, "Registering MC#%d (%d of %d)\n",
2469                          mc, mc + 1, num_mc);
2470
2471                 sbridge_dev->mc = mc++;
2472                 rc = sbridge_register_mci(sbridge_dev, type);
2473                 if (unlikely(rc < 0))
2474                         goto fail1;
2475         }
2476
2477         sbridge_printk(KERN_INFO, "%s\n", SBRIDGE_REVISION);
2478
2479         mutex_unlock(&sbridge_edac_lock);
2480         return 0;
2481
2482 fail1:
2483         list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
2484                 sbridge_unregister_mci(sbridge_dev);
2485
2486         sbridge_put_all_devices();
2487 fail0:
2488         mutex_unlock(&sbridge_edac_lock);
2489         return rc;
2490 }
2491
2492 /*
2493  *      sbridge_remove  destructor for one instance of device
2494  *
2495  */
2496 static void sbridge_remove(struct pci_dev *pdev)
2497 {
2498         struct sbridge_dev *sbridge_dev;
2499
2500         edac_dbg(0, "\n");
2501
2502         /*
2503          * we have a trouble here: pdev value for removal will be wrong, since
2504          * it will point to the X58 register used to detect that the machine
2505          * is a Nehalem or upper design. However, due to the way several PCI
2506          * devices are grouped together to provide MC functionality, we need
2507          * to use a different method for releasing the devices
2508          */
2509
2510         mutex_lock(&sbridge_edac_lock);
2511
2512         if (unlikely(!probed)) {
2513                 mutex_unlock(&sbridge_edac_lock);
2514                 return;
2515         }
2516
2517         list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
2518                 sbridge_unregister_mci(sbridge_dev);
2519
2520         /* Release PCI resources */
2521         sbridge_put_all_devices();
2522
2523         probed--;
2524
2525         mutex_unlock(&sbridge_edac_lock);
2526 }
2527
2528 MODULE_DEVICE_TABLE(pci, sbridge_pci_tbl);
2529
2530 /*
2531  *      sbridge_driver  pci_driver structure for this module
2532  *
2533  */
2534 static struct pci_driver sbridge_driver = {
2535         .name     = "sbridge_edac",
2536         .probe    = sbridge_probe,
2537         .remove   = sbridge_remove,
2538         .id_table = sbridge_pci_tbl,
2539 };
2540
2541 /*
2542  *      sbridge_init            Module entry function
2543  *                      Try to initialize this module for its devices
2544  */
2545 static int __init sbridge_init(void)
2546 {
2547         int pci_rc;
2548
2549         edac_dbg(2, "\n");
2550
2551         /* Ensure that the OPSTATE is set correctly for POLL or NMI */
2552         opstate_init();
2553
2554         pci_rc = pci_register_driver(&sbridge_driver);
2555         if (pci_rc >= 0) {
2556                 mce_register_decode_chain(&sbridge_mce_dec);
2557                 if (get_edac_report_status() == EDAC_REPORTING_DISABLED)
2558                         sbridge_printk(KERN_WARNING, "Loading driver, error reporting disabled.\n");
2559                 return 0;
2560         }
2561
2562         sbridge_printk(KERN_ERR, "Failed to register device with error %d.\n",
2563                       pci_rc);
2564
2565         return pci_rc;
2566 }
2567
2568 /*
2569  *      sbridge_exit()  Module exit function
2570  *                      Unregister the driver
2571  */
2572 static void __exit sbridge_exit(void)
2573 {
2574         edac_dbg(2, "\n");
2575         pci_unregister_driver(&sbridge_driver);
2576         mce_unregister_decode_chain(&sbridge_mce_dec);
2577 }
2578
2579 module_init(sbridge_init);
2580 module_exit(sbridge_exit);
2581
2582 module_param(edac_op_state, int, 0444);
2583 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
2584
2585 MODULE_LICENSE("GPL");
2586 MODULE_AUTHOR("Mauro Carvalho Chehab");
2587 MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)");
2588 MODULE_DESCRIPTION("MC Driver for Intel Sandy Bridge and Ivy Bridge memory controllers - "
2589                    SBRIDGE_REVISION);