Merge tag 'leds-6.1-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/pavel/linux...
[platform/kernel/linux-starfive.git] / drivers / edac / sb_edac.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Intel Sandy Bridge -EN/-EP/-EX Memory Controller kernel module
3  *
4  * This driver supports the memory controllers found on the Intel
5  * processor family Sandy Bridge.
6  *
7  * Copyright (c) 2011 by:
8  *       Mauro Carvalho Chehab
9  */
10
11 #include <linux/module.h>
12 #include <linux/init.h>
13 #include <linux/pci.h>
14 #include <linux/pci_ids.h>
15 #include <linux/slab.h>
16 #include <linux/delay.h>
17 #include <linux/edac.h>
18 #include <linux/mmzone.h>
19 #include <linux/smp.h>
20 #include <linux/bitmap.h>
21 #include <linux/math64.h>
22 #include <linux/mod_devicetable.h>
23 #include <asm/cpu_device_id.h>
24 #include <asm/intel-family.h>
25 #include <asm/processor.h>
26 #include <asm/mce.h>
27
28 #include "edac_module.h"
29
30 /* Static vars */
31 static LIST_HEAD(sbridge_edac_list);
32
33 /*
34  * Alter this version for the module when modifications are made
35  */
36 #define SBRIDGE_REVISION    " Ver: 1.1.2 "
37 #define EDAC_MOD_STR        "sb_edac"
38
39 /*
40  * Debug macros
41  */
42 #define sbridge_printk(level, fmt, arg...)                      \
43         edac_printk(level, "sbridge", fmt, ##arg)
44
45 #define sbridge_mc_printk(mci, level, fmt, arg...)              \
46         edac_mc_chipset_printk(mci, level, "sbridge", fmt, ##arg)
47
48 /*
49  * Get a bit field at register value <v>, from bit <lo> to bit <hi>
50  */
51 #define GET_BITFIELD(v, lo, hi) \
52         (((v) & GENMASK_ULL(hi, lo)) >> (lo))
53
54 /* Devices 12 Function 6, Offsets 0x80 to 0xcc */
55 static const u32 sbridge_dram_rule[] = {
56         0x80, 0x88, 0x90, 0x98, 0xa0,
57         0xa8, 0xb0, 0xb8, 0xc0, 0xc8,
58 };
59
60 static const u32 ibridge_dram_rule[] = {
61         0x60, 0x68, 0x70, 0x78, 0x80,
62         0x88, 0x90, 0x98, 0xa0, 0xa8,
63         0xb0, 0xb8, 0xc0, 0xc8, 0xd0,
64         0xd8, 0xe0, 0xe8, 0xf0, 0xf8,
65 };
66
67 static const u32 knl_dram_rule[] = {
68         0x60, 0x68, 0x70, 0x78, 0x80, /* 0-4 */
69         0x88, 0x90, 0x98, 0xa0, 0xa8, /* 5-9 */
70         0xb0, 0xb8, 0xc0, 0xc8, 0xd0, /* 10-14 */
71         0xd8, 0xe0, 0xe8, 0xf0, 0xf8, /* 15-19 */
72         0x100, 0x108, 0x110, 0x118,   /* 20-23 */
73 };
74
75 #define DRAM_RULE_ENABLE(reg)   GET_BITFIELD(reg, 0,  0)
76 #define A7MODE(reg)             GET_BITFIELD(reg, 26, 26)
77
78 static char *show_dram_attr(u32 attr)
79 {
80         switch (attr) {
81                 case 0:
82                         return "DRAM";
83                 case 1:
84                         return "MMCFG";
85                 case 2:
86                         return "NXM";
87                 default:
88                         return "unknown";
89         }
90 }
91
92 static const u32 sbridge_interleave_list[] = {
93         0x84, 0x8c, 0x94, 0x9c, 0xa4,
94         0xac, 0xb4, 0xbc, 0xc4, 0xcc,
95 };
96
97 static const u32 ibridge_interleave_list[] = {
98         0x64, 0x6c, 0x74, 0x7c, 0x84,
99         0x8c, 0x94, 0x9c, 0xa4, 0xac,
100         0xb4, 0xbc, 0xc4, 0xcc, 0xd4,
101         0xdc, 0xe4, 0xec, 0xf4, 0xfc,
102 };
103
104 static const u32 knl_interleave_list[] = {
105         0x64, 0x6c, 0x74, 0x7c, 0x84, /* 0-4 */
106         0x8c, 0x94, 0x9c, 0xa4, 0xac, /* 5-9 */
107         0xb4, 0xbc, 0xc4, 0xcc, 0xd4, /* 10-14 */
108         0xdc, 0xe4, 0xec, 0xf4, 0xfc, /* 15-19 */
109         0x104, 0x10c, 0x114, 0x11c,   /* 20-23 */
110 };
111 #define MAX_INTERLEAVE                                                  \
112         (max_t(unsigned int, ARRAY_SIZE(sbridge_interleave_list),       \
113                max_t(unsigned int, ARRAY_SIZE(ibridge_interleave_list), \
114                      ARRAY_SIZE(knl_interleave_list))))
115
116 struct interleave_pkg {
117         unsigned char start;
118         unsigned char end;
119 };
120
121 static const struct interleave_pkg sbridge_interleave_pkg[] = {
122         { 0, 2 },
123         { 3, 5 },
124         { 8, 10 },
125         { 11, 13 },
126         { 16, 18 },
127         { 19, 21 },
128         { 24, 26 },
129         { 27, 29 },
130 };
131
132 static const struct interleave_pkg ibridge_interleave_pkg[] = {
133         { 0, 3 },
134         { 4, 7 },
135         { 8, 11 },
136         { 12, 15 },
137         { 16, 19 },
138         { 20, 23 },
139         { 24, 27 },
140         { 28, 31 },
141 };
142
143 static inline int sad_pkg(const struct interleave_pkg *table, u32 reg,
144                           int interleave)
145 {
146         return GET_BITFIELD(reg, table[interleave].start,
147                             table[interleave].end);
148 }
149
150 /* Devices 12 Function 7 */
151
152 #define TOLM            0x80
153 #define TOHM            0x84
154 #define HASWELL_TOLM    0xd0
155 #define HASWELL_TOHM_0  0xd4
156 #define HASWELL_TOHM_1  0xd8
157 #define KNL_TOLM        0xd0
158 #define KNL_TOHM_0      0xd4
159 #define KNL_TOHM_1      0xd8
160
161 #define GET_TOLM(reg)           ((GET_BITFIELD(reg, 0,  3) << 28) | 0x3ffffff)
162 #define GET_TOHM(reg)           ((GET_BITFIELD(reg, 0, 20) << 25) | 0x3ffffff)
163
164 /* Device 13 Function 6 */
165
166 #define SAD_TARGET      0xf0
167
168 #define SOURCE_ID(reg)          GET_BITFIELD(reg, 9, 11)
169
170 #define SOURCE_ID_KNL(reg)      GET_BITFIELD(reg, 12, 14)
171
172 #define SAD_CONTROL     0xf4
173
174 /* Device 14 function 0 */
175
176 static const u32 tad_dram_rule[] = {
177         0x40, 0x44, 0x48, 0x4c,
178         0x50, 0x54, 0x58, 0x5c,
179         0x60, 0x64, 0x68, 0x6c,
180 };
181 #define MAX_TAD ARRAY_SIZE(tad_dram_rule)
182
183 #define TAD_LIMIT(reg)          ((GET_BITFIELD(reg, 12, 31) << 26) | 0x3ffffff)
184 #define TAD_SOCK(reg)           GET_BITFIELD(reg, 10, 11)
185 #define TAD_CH(reg)             GET_BITFIELD(reg,  8,  9)
186 #define TAD_TGT3(reg)           GET_BITFIELD(reg,  6,  7)
187 #define TAD_TGT2(reg)           GET_BITFIELD(reg,  4,  5)
188 #define TAD_TGT1(reg)           GET_BITFIELD(reg,  2,  3)
189 #define TAD_TGT0(reg)           GET_BITFIELD(reg,  0,  1)
190
191 /* Device 15, function 0 */
192
193 #define MCMTR                   0x7c
194 #define KNL_MCMTR               0x624
195
196 #define IS_ECC_ENABLED(mcmtr)           GET_BITFIELD(mcmtr, 2, 2)
197 #define IS_LOCKSTEP_ENABLED(mcmtr)      GET_BITFIELD(mcmtr, 1, 1)
198 #define IS_CLOSE_PG(mcmtr)              GET_BITFIELD(mcmtr, 0, 0)
199
200 /* Device 15, function 1 */
201
202 #define RASENABLES              0xac
203 #define IS_MIRROR_ENABLED(reg)          GET_BITFIELD(reg, 0, 0)
204
205 /* Device 15, functions 2-5 */
206
207 static const int mtr_regs[] = {
208         0x80, 0x84, 0x88,
209 };
210
211 static const int knl_mtr_reg = 0xb60;
212
213 #define RANK_DISABLE(mtr)               GET_BITFIELD(mtr, 16, 19)
214 #define IS_DIMM_PRESENT(mtr)            GET_BITFIELD(mtr, 14, 14)
215 #define RANK_CNT_BITS(mtr)              GET_BITFIELD(mtr, 12, 13)
216 #define RANK_WIDTH_BITS(mtr)            GET_BITFIELD(mtr, 2, 4)
217 #define COL_WIDTH_BITS(mtr)             GET_BITFIELD(mtr, 0, 1)
218
219 static const u32 tad_ch_nilv_offset[] = {
220         0x90, 0x94, 0x98, 0x9c,
221         0xa0, 0xa4, 0xa8, 0xac,
222         0xb0, 0xb4, 0xb8, 0xbc,
223 };
224 #define CHN_IDX_OFFSET(reg)             GET_BITFIELD(reg, 28, 29)
225 #define TAD_OFFSET(reg)                 (GET_BITFIELD(reg,  6, 25) << 26)
226
227 static const u32 rir_way_limit[] = {
228         0x108, 0x10c, 0x110, 0x114, 0x118,
229 };
230 #define MAX_RIR_RANGES ARRAY_SIZE(rir_way_limit)
231
232 #define IS_RIR_VALID(reg)       GET_BITFIELD(reg, 31, 31)
233 #define RIR_WAY(reg)            GET_BITFIELD(reg, 28, 29)
234
235 #define MAX_RIR_WAY     8
236
237 static const u32 rir_offset[MAX_RIR_RANGES][MAX_RIR_WAY] = {
238         { 0x120, 0x124, 0x128, 0x12c, 0x130, 0x134, 0x138, 0x13c },
239         { 0x140, 0x144, 0x148, 0x14c, 0x150, 0x154, 0x158, 0x15c },
240         { 0x160, 0x164, 0x168, 0x16c, 0x170, 0x174, 0x178, 0x17c },
241         { 0x180, 0x184, 0x188, 0x18c, 0x190, 0x194, 0x198, 0x19c },
242         { 0x1a0, 0x1a4, 0x1a8, 0x1ac, 0x1b0, 0x1b4, 0x1b8, 0x1bc },
243 };
244
245 #define RIR_RNK_TGT(type, reg) (((type) == BROADWELL) ? \
246         GET_BITFIELD(reg, 20, 23) : GET_BITFIELD(reg, 16, 19))
247
248 #define RIR_OFFSET(type, reg) (((type) == HASWELL || (type) == BROADWELL) ? \
249         GET_BITFIELD(reg,  2, 15) : GET_BITFIELD(reg,  2, 14))
250
251 /* Device 16, functions 2-7 */
252
253 /*
254  * FIXME: Implement the error count reads directly
255  */
256
257 #define RANK_ODD_OV(reg)                GET_BITFIELD(reg, 31, 31)
258 #define RANK_ODD_ERR_CNT(reg)           GET_BITFIELD(reg, 16, 30)
259 #define RANK_EVEN_OV(reg)               GET_BITFIELD(reg, 15, 15)
260 #define RANK_EVEN_ERR_CNT(reg)          GET_BITFIELD(reg,  0, 14)
261
262 #if 0 /* Currently unused*/
263 static const u32 correrrcnt[] = {
264         0x104, 0x108, 0x10c, 0x110,
265 };
266
267 static const u32 correrrthrsld[] = {
268         0x11c, 0x120, 0x124, 0x128,
269 };
270 #endif
271
272 #define RANK_ODD_ERR_THRSLD(reg)        GET_BITFIELD(reg, 16, 30)
273 #define RANK_EVEN_ERR_THRSLD(reg)       GET_BITFIELD(reg,  0, 14)
274
275
276 /* Device 17, function 0 */
277
278 #define SB_RANK_CFG_A           0x0328
279
280 #define IB_RANK_CFG_A           0x0320
281
282 /*
283  * sbridge structs
284  */
285
286 #define NUM_CHANNELS            6       /* Max channels per MC */
287 #define MAX_DIMMS               3       /* Max DIMMS per channel */
288 #define KNL_MAX_CHAS            38      /* KNL max num. of Cache Home Agents */
289 #define KNL_MAX_CHANNELS        6       /* KNL max num. of PCI channels */
290 #define KNL_MAX_EDCS            8       /* Embedded DRAM controllers */
291 #define CHANNEL_UNSPECIFIED     0xf     /* Intel IA32 SDM 15-14 */
292
293 enum type {
294         SANDY_BRIDGE,
295         IVY_BRIDGE,
296         HASWELL,
297         BROADWELL,
298         KNIGHTS_LANDING,
299 };
300
301 enum domain {
302         IMC0 = 0,
303         IMC1,
304         SOCK,
305 };
306
307 enum mirroring_mode {
308         NON_MIRRORING,
309         ADDR_RANGE_MIRRORING,
310         FULL_MIRRORING,
311 };
312
313 struct sbridge_pvt;
314 struct sbridge_info {
315         enum type       type;
316         u32             mcmtr;
317         u32             rankcfgr;
318         u64             (*get_tolm)(struct sbridge_pvt *pvt);
319         u64             (*get_tohm)(struct sbridge_pvt *pvt);
320         u64             (*rir_limit)(u32 reg);
321         u64             (*sad_limit)(u32 reg);
322         u32             (*interleave_mode)(u32 reg);
323         u32             (*dram_attr)(u32 reg);
324         const u32       *dram_rule;
325         const u32       *interleave_list;
326         const struct interleave_pkg *interleave_pkg;
327         u8              max_sad;
328         u8              (*get_node_id)(struct sbridge_pvt *pvt);
329         u8              (*get_ha)(u8 bank);
330         enum mem_type   (*get_memory_type)(struct sbridge_pvt *pvt);
331         enum dev_type   (*get_width)(struct sbridge_pvt *pvt, u32 mtr);
332         struct pci_dev  *pci_vtd;
333 };
334
335 struct sbridge_channel {
336         u32             ranks;
337         u32             dimms;
338         struct dimm {
339                 u32 rowbits;
340                 u32 colbits;
341                 u32 bank_xor_enable;
342                 u32 amap_fine;
343         } dimm[MAX_DIMMS];
344 };
345
346 struct pci_id_descr {
347         int                     dev_id;
348         int                     optional;
349         enum domain             dom;
350 };
351
352 struct pci_id_table {
353         const struct pci_id_descr       *descr;
354         int                             n_devs_per_imc;
355         int                             n_devs_per_sock;
356         int                             n_imcs_per_sock;
357         enum type                       type;
358 };
359
360 struct sbridge_dev {
361         struct list_head        list;
362         int                     seg;
363         u8                      bus, mc;
364         u8                      node_id, source_id;
365         struct pci_dev          **pdev;
366         enum domain             dom;
367         int                     n_devs;
368         int                     i_devs;
369         struct mem_ctl_info     *mci;
370 };
371
372 struct knl_pvt {
373         struct pci_dev          *pci_cha[KNL_MAX_CHAS];
374         struct pci_dev          *pci_channel[KNL_MAX_CHANNELS];
375         struct pci_dev          *pci_mc0;
376         struct pci_dev          *pci_mc1;
377         struct pci_dev          *pci_mc0_misc;
378         struct pci_dev          *pci_mc1_misc;
379         struct pci_dev          *pci_mc_info; /* tolm, tohm */
380 };
381
382 struct sbridge_pvt {
383         /* Devices per socket */
384         struct pci_dev          *pci_ddrio;
385         struct pci_dev          *pci_sad0, *pci_sad1;
386         struct pci_dev          *pci_br0, *pci_br1;
387         /* Devices per memory controller */
388         struct pci_dev          *pci_ha, *pci_ta, *pci_ras;
389         struct pci_dev          *pci_tad[NUM_CHANNELS];
390
391         struct sbridge_dev      *sbridge_dev;
392
393         struct sbridge_info     info;
394         struct sbridge_channel  channel[NUM_CHANNELS];
395
396         /* Memory type detection */
397         bool                    is_cur_addr_mirrored, is_lockstep, is_close_pg;
398         bool                    is_chan_hash;
399         enum mirroring_mode     mirror_mode;
400
401         /* Memory description */
402         u64                     tolm, tohm;
403         struct knl_pvt knl;
404 };
405
406 #define PCI_DESCR(device_id, opt, domain)       \
407         .dev_id = (device_id),          \
408         .optional = opt,        \
409         .dom = domain
410
411 static const struct pci_id_descr pci_dev_descr_sbridge[] = {
412                 /* Processor Home Agent */
413         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0,   0, IMC0) },
414
415                 /* Memory controller */
416         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA,    0, IMC0) },
417         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS,   0, IMC0) },
418         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0,  0, IMC0) },
419         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1,  0, IMC0) },
420         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2,  0, IMC0) },
421         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3,  0, IMC0) },
422         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO, 1, SOCK) },
423
424                 /* System Address Decoder */
425         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0,      0, SOCK) },
426         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1,      0, SOCK) },
427
428                 /* Broadcast Registers */
429         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_BR,        0, SOCK) },
430 };
431
432 #define PCI_ID_TABLE_ENTRY(A, N, M, T) {        \
433         .descr = A,                     \
434         .n_devs_per_imc = N,    \
435         .n_devs_per_sock = ARRAY_SIZE(A),       \
436         .n_imcs_per_sock = M,   \
437         .type = T                       \
438 }
439
440 static const struct pci_id_table pci_dev_descr_sbridge_table[] = {
441         PCI_ID_TABLE_ENTRY(pci_dev_descr_sbridge, ARRAY_SIZE(pci_dev_descr_sbridge), 1, SANDY_BRIDGE),
442         {0,}                    /* 0 terminated list. */
443 };
444
445 /* This changes depending if 1HA or 2HA:
446  * 1HA:
447  *      0x0eb8 (17.0) is DDRIO0
448  * 2HA:
449  *      0x0ebc (17.4) is DDRIO0
450  */
451 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0      0x0eb8
452 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0      0x0ebc
453
454 /* pci ids */
455 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0             0x0ea0
456 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA          0x0ea8
457 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS         0x0e71
458 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0        0x0eaa
459 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1        0x0eab
460 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2        0x0eac
461 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3        0x0ead
462 #define PCI_DEVICE_ID_INTEL_IBRIDGE_SAD                 0x0ec8
463 #define PCI_DEVICE_ID_INTEL_IBRIDGE_BR0                 0x0ec9
464 #define PCI_DEVICE_ID_INTEL_IBRIDGE_BR1                 0x0eca
465 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1             0x0e60
466 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA          0x0e68
467 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS         0x0e79
468 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0        0x0e6a
469 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1        0x0e6b
470 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2        0x0e6c
471 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3        0x0e6d
472
473 static const struct pci_id_descr pci_dev_descr_ibridge[] = {
474                 /* Processor Home Agent */
475         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0,        0, IMC0) },
476         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1,        1, IMC1) },
477
478                 /* Memory controller */
479         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA,     0, IMC0) },
480         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS,    0, IMC0) },
481         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0,   0, IMC0) },
482         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1,   0, IMC0) },
483         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2,   0, IMC0) },
484         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3,   0, IMC0) },
485
486                 /* Optional, mode 2HA */
487         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA,     1, IMC1) },
488         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS,    1, IMC1) },
489         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0,   1, IMC1) },
490         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1,   1, IMC1) },
491         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2,   1, IMC1) },
492         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3,   1, IMC1) },
493
494         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0, 1, SOCK) },
495         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0, 1, SOCK) },
496
497                 /* System Address Decoder */
498         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_SAD,            0, SOCK) },
499
500                 /* Broadcast Registers */
501         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_BR0,            1, SOCK) },
502         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_BR1,            0, SOCK) },
503
504 };
505
506 static const struct pci_id_table pci_dev_descr_ibridge_table[] = {
507         PCI_ID_TABLE_ENTRY(pci_dev_descr_ibridge, 12, 2, IVY_BRIDGE),
508         {0,}                    /* 0 terminated list. */
509 };
510
511 /* Haswell support */
512 /* EN processor:
513  *      - 1 IMC
514  *      - 3 DDR3 channels, 2 DPC per channel
515  * EP processor:
516  *      - 1 or 2 IMC
517  *      - 4 DDR4 channels, 3 DPC per channel
518  * EP 4S processor:
519  *      - 2 IMC
520  *      - 4 DDR4 channels, 3 DPC per channel
521  * EX processor:
522  *      - 2 IMC
523  *      - each IMC interfaces with a SMI 2 channel
524  *      - each SMI channel interfaces with a scalable memory buffer
525  *      - each scalable memory buffer supports 4 DDR3/DDR4 channels, 3 DPC
526  */
527 #define HASWELL_DDRCRCLKCONTROLS 0xa10 /* Ditto on Broadwell */
528 #define HASWELL_HASYSDEFEATURE2 0x84
529 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_VTD_MISC 0x2f28
530 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0     0x2fa0
531 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1     0x2f60
532 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA  0x2fa8
533 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TM  0x2f71
534 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA  0x2f68
535 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TM  0x2f79
536 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0 0x2ffc
537 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1 0x2ffd
538 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0 0x2faa
539 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1 0x2fab
540 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2 0x2fac
541 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3 0x2fad
542 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0 0x2f6a
543 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1 0x2f6b
544 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2 0x2f6c
545 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3 0x2f6d
546 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0 0x2fbd
547 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1 0x2fbf
548 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2 0x2fb9
549 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3 0x2fbb
550 static const struct pci_id_descr pci_dev_descr_haswell[] = {
551         /* first item must be the HA */
552         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0,      0, IMC0) },
553         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1,      1, IMC1) },
554
555         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA,   0, IMC0) },
556         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TM,   0, IMC0) },
557         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0, 0, IMC0) },
558         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1, 0, IMC0) },
559         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2, 1, IMC0) },
560         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3, 1, IMC0) },
561
562         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA,   1, IMC1) },
563         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TM,   1, IMC1) },
564         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0, 1, IMC1) },
565         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1, 1, IMC1) },
566         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2, 1, IMC1) },
567         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3, 1, IMC1) },
568
569         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0, 0, SOCK) },
570         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1, 0, SOCK) },
571         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0,   1, SOCK) },
572         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1,   1, SOCK) },
573         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2,   1, SOCK) },
574         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3,   1, SOCK) },
575 };
576
577 static const struct pci_id_table pci_dev_descr_haswell_table[] = {
578         PCI_ID_TABLE_ENTRY(pci_dev_descr_haswell, 13, 2, HASWELL),
579         {0,}                    /* 0 terminated list. */
580 };
581
582 /* Knight's Landing Support */
583 /*
584  * KNL's memory channels are swizzled between memory controllers.
585  * MC0 is mapped to CH3,4,5 and MC1 is mapped to CH0,1,2
586  */
587 #define knl_channel_remap(mc, chan) ((mc) ? (chan) : (chan) + 3)
588
589 /* Memory controller, TAD tables, error injection - 2-8-0, 2-9-0 (2 of these) */
590 #define PCI_DEVICE_ID_INTEL_KNL_IMC_MC       0x7840
591 /* DRAM channel stuff; bank addrs, dimmmtr, etc.. 2-8-2 - 2-9-4 (6 of these) */
592 #define PCI_DEVICE_ID_INTEL_KNL_IMC_CHAN     0x7843
593 /* kdrwdbu TAD limits/offsets, MCMTR - 2-10-1, 2-11-1 (2 of these) */
594 #define PCI_DEVICE_ID_INTEL_KNL_IMC_TA       0x7844
595 /* CHA broadcast registers, dram rules - 1-29-0 (1 of these) */
596 #define PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0     0x782a
597 /* SAD target - 1-29-1 (1 of these) */
598 #define PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1     0x782b
599 /* Caching / Home Agent */
600 #define PCI_DEVICE_ID_INTEL_KNL_IMC_CHA      0x782c
601 /* Device with TOLM and TOHM, 0-5-0 (1 of these) */
602 #define PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM    0x7810
603
604 /*
605  * KNL differs from SB, IB, and Haswell in that it has multiple
606  * instances of the same device with the same device ID, so we handle that
607  * by creating as many copies in the table as we expect to find.
608  * (Like device ID must be grouped together.)
609  */
610
611 static const struct pci_id_descr pci_dev_descr_knl[] = {
612         [0 ... 1]   = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_MC,    0, IMC0)},
613         [2 ... 7]   = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_CHAN,  0, IMC0) },
614         [8]         = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_TA,    0, IMC0) },
615         [9]         = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM, 0, IMC0) },
616         [10]        = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0,  0, SOCK) },
617         [11]        = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1,  0, SOCK) },
618         [12 ... 49] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_CHA,   0, SOCK) },
619 };
620
621 static const struct pci_id_table pci_dev_descr_knl_table[] = {
622         PCI_ID_TABLE_ENTRY(pci_dev_descr_knl, ARRAY_SIZE(pci_dev_descr_knl), 1, KNIGHTS_LANDING),
623         {0,}
624 };
625
626 /*
627  * Broadwell support
628  *
629  * DE processor:
630  *      - 1 IMC
631  *      - 2 DDR3 channels, 2 DPC per channel
632  * EP processor:
633  *      - 1 or 2 IMC
634  *      - 4 DDR4 channels, 3 DPC per channel
635  * EP 4S processor:
636  *      - 2 IMC
637  *      - 4 DDR4 channels, 3 DPC per channel
638  * EX processor:
639  *      - 2 IMC
640  *      - each IMC interfaces with a SMI 2 channel
641  *      - each SMI channel interfaces with a scalable memory buffer
642  *      - each scalable memory buffer supports 4 DDR3/DDR4 channels, 3 DPC
643  */
644 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_VTD_MISC 0x6f28
645 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0   0x6fa0
646 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1   0x6f60
647 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA        0x6fa8
648 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TM        0x6f71
649 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA        0x6f68
650 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TM        0x6f79
651 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0 0x6ffc
652 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1 0x6ffd
653 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0 0x6faa
654 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1 0x6fab
655 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2 0x6fac
656 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3 0x6fad
657 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0 0x6f6a
658 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1 0x6f6b
659 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2 0x6f6c
660 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3 0x6f6d
661 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0 0x6faf
662
663 static const struct pci_id_descr pci_dev_descr_broadwell[] = {
664         /* first item must be the HA */
665         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0,      0, IMC0) },
666         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1,      1, IMC1) },
667
668         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA,   0, IMC0) },
669         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TM,   0, IMC0) },
670         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0, 0, IMC0) },
671         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1, 0, IMC0) },
672         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2, 1, IMC0) },
673         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3, 1, IMC0) },
674
675         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA,   1, IMC1) },
676         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TM,   1, IMC1) },
677         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0, 1, IMC1) },
678         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1, 1, IMC1) },
679         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2, 1, IMC1) },
680         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3, 1, IMC1) },
681
682         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0, 0, SOCK) },
683         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1, 0, SOCK) },
684         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0,   1, SOCK) },
685 };
686
687 static const struct pci_id_table pci_dev_descr_broadwell_table[] = {
688         PCI_ID_TABLE_ENTRY(pci_dev_descr_broadwell, 10, 2, BROADWELL),
689         {0,}                    /* 0 terminated list. */
690 };
691
692
693 /****************************************************************************
694                         Ancillary status routines
695  ****************************************************************************/
696
697 static inline int numrank(enum type type, u32 mtr)
698 {
699         int ranks = (1 << RANK_CNT_BITS(mtr));
700         int max = 4;
701
702         if (type == HASWELL || type == BROADWELL || type == KNIGHTS_LANDING)
703                 max = 8;
704
705         if (ranks > max) {
706                 edac_dbg(0, "Invalid number of ranks: %d (max = %i) raw value = %x (%04x)\n",
707                          ranks, max, (unsigned int)RANK_CNT_BITS(mtr), mtr);
708                 return -EINVAL;
709         }
710
711         return ranks;
712 }
713
714 static inline int numrow(u32 mtr)
715 {
716         int rows = (RANK_WIDTH_BITS(mtr) + 12);
717
718         if (rows < 13 || rows > 18) {
719                 edac_dbg(0, "Invalid number of rows: %d (should be between 14 and 17) raw value = %x (%04x)\n",
720                          rows, (unsigned int)RANK_WIDTH_BITS(mtr), mtr);
721                 return -EINVAL;
722         }
723
724         return 1 << rows;
725 }
726
727 static inline int numcol(u32 mtr)
728 {
729         int cols = (COL_WIDTH_BITS(mtr) + 10);
730
731         if (cols > 12) {
732                 edac_dbg(0, "Invalid number of cols: %d (max = 4) raw value = %x (%04x)\n",
733                          cols, (unsigned int)COL_WIDTH_BITS(mtr), mtr);
734                 return -EINVAL;
735         }
736
737         return 1 << cols;
738 }
739
740 static struct sbridge_dev *get_sbridge_dev(int seg, u8 bus, enum domain dom,
741                                            int multi_bus,
742                                            struct sbridge_dev *prev)
743 {
744         struct sbridge_dev *sbridge_dev;
745
746         /*
747          * If we have devices scattered across several busses that pertain
748          * to the same memory controller, we'll lump them all together.
749          */
750         if (multi_bus) {
751                 return list_first_entry_or_null(&sbridge_edac_list,
752                                 struct sbridge_dev, list);
753         }
754
755         sbridge_dev = list_entry(prev ? prev->list.next
756                                       : sbridge_edac_list.next, struct sbridge_dev, list);
757
758         list_for_each_entry_from(sbridge_dev, &sbridge_edac_list, list) {
759                 if ((sbridge_dev->seg == seg) && (sbridge_dev->bus == bus) &&
760                                 (dom == SOCK || dom == sbridge_dev->dom))
761                         return sbridge_dev;
762         }
763
764         return NULL;
765 }
766
767 static struct sbridge_dev *alloc_sbridge_dev(int seg, u8 bus, enum domain dom,
768                                              const struct pci_id_table *table)
769 {
770         struct sbridge_dev *sbridge_dev;
771
772         sbridge_dev = kzalloc(sizeof(*sbridge_dev), GFP_KERNEL);
773         if (!sbridge_dev)
774                 return NULL;
775
776         sbridge_dev->pdev = kcalloc(table->n_devs_per_imc,
777                                     sizeof(*sbridge_dev->pdev),
778                                     GFP_KERNEL);
779         if (!sbridge_dev->pdev) {
780                 kfree(sbridge_dev);
781                 return NULL;
782         }
783
784         sbridge_dev->seg = seg;
785         sbridge_dev->bus = bus;
786         sbridge_dev->dom = dom;
787         sbridge_dev->n_devs = table->n_devs_per_imc;
788         list_add_tail(&sbridge_dev->list, &sbridge_edac_list);
789
790         return sbridge_dev;
791 }
792
793 static void free_sbridge_dev(struct sbridge_dev *sbridge_dev)
794 {
795         list_del(&sbridge_dev->list);
796         kfree(sbridge_dev->pdev);
797         kfree(sbridge_dev);
798 }
799
800 static u64 sbridge_get_tolm(struct sbridge_pvt *pvt)
801 {
802         u32 reg;
803
804         /* Address range is 32:28 */
805         pci_read_config_dword(pvt->pci_sad1, TOLM, &reg);
806         return GET_TOLM(reg);
807 }
808
809 static u64 sbridge_get_tohm(struct sbridge_pvt *pvt)
810 {
811         u32 reg;
812
813         pci_read_config_dword(pvt->pci_sad1, TOHM, &reg);
814         return GET_TOHM(reg);
815 }
816
817 static u64 ibridge_get_tolm(struct sbridge_pvt *pvt)
818 {
819         u32 reg;
820
821         pci_read_config_dword(pvt->pci_br1, TOLM, &reg);
822
823         return GET_TOLM(reg);
824 }
825
826 static u64 ibridge_get_tohm(struct sbridge_pvt *pvt)
827 {
828         u32 reg;
829
830         pci_read_config_dword(pvt->pci_br1, TOHM, &reg);
831
832         return GET_TOHM(reg);
833 }
834
835 static u64 rir_limit(u32 reg)
836 {
837         return ((u64)GET_BITFIELD(reg,  1, 10) << 29) | 0x1fffffff;
838 }
839
840 static u64 sad_limit(u32 reg)
841 {
842         return (GET_BITFIELD(reg, 6, 25) << 26) | 0x3ffffff;
843 }
844
845 static u32 interleave_mode(u32 reg)
846 {
847         return GET_BITFIELD(reg, 1, 1);
848 }
849
850 static u32 dram_attr(u32 reg)
851 {
852         return GET_BITFIELD(reg, 2, 3);
853 }
854
855 static u64 knl_sad_limit(u32 reg)
856 {
857         return (GET_BITFIELD(reg, 7, 26) << 26) | 0x3ffffff;
858 }
859
860 static u32 knl_interleave_mode(u32 reg)
861 {
862         return GET_BITFIELD(reg, 1, 2);
863 }
864
865 static const char * const knl_intlv_mode[] = {
866         "[8:6]", "[10:8]", "[14:12]", "[32:30]"
867 };
868
869 static const char *get_intlv_mode_str(u32 reg, enum type t)
870 {
871         if (t == KNIGHTS_LANDING)
872                 return knl_intlv_mode[knl_interleave_mode(reg)];
873         else
874                 return interleave_mode(reg) ? "[8:6]" : "[8:6]XOR[18:16]";
875 }
876
877 static u32 dram_attr_knl(u32 reg)
878 {
879         return GET_BITFIELD(reg, 3, 4);
880 }
881
882
883 static enum mem_type get_memory_type(struct sbridge_pvt *pvt)
884 {
885         u32 reg;
886         enum mem_type mtype;
887
888         if (pvt->pci_ddrio) {
889                 pci_read_config_dword(pvt->pci_ddrio, pvt->info.rankcfgr,
890                                       &reg);
891                 if (GET_BITFIELD(reg, 11, 11))
892                         /* FIXME: Can also be LRDIMM */
893                         mtype = MEM_RDDR3;
894                 else
895                         mtype = MEM_DDR3;
896         } else
897                 mtype = MEM_UNKNOWN;
898
899         return mtype;
900 }
901
902 static enum mem_type haswell_get_memory_type(struct sbridge_pvt *pvt)
903 {
904         u32 reg;
905         bool registered = false;
906         enum mem_type mtype = MEM_UNKNOWN;
907
908         if (!pvt->pci_ddrio)
909                 goto out;
910
911         pci_read_config_dword(pvt->pci_ddrio,
912                               HASWELL_DDRCRCLKCONTROLS, &reg);
913         /* Is_Rdimm */
914         if (GET_BITFIELD(reg, 16, 16))
915                 registered = true;
916
917         pci_read_config_dword(pvt->pci_ta, MCMTR, &reg);
918         if (GET_BITFIELD(reg, 14, 14)) {
919                 if (registered)
920                         mtype = MEM_RDDR4;
921                 else
922                         mtype = MEM_DDR4;
923         } else {
924                 if (registered)
925                         mtype = MEM_RDDR3;
926                 else
927                         mtype = MEM_DDR3;
928         }
929
930 out:
931         return mtype;
932 }
933
934 static enum dev_type knl_get_width(struct sbridge_pvt *pvt, u32 mtr)
935 {
936         /* for KNL value is fixed */
937         return DEV_X16;
938 }
939
940 static enum dev_type sbridge_get_width(struct sbridge_pvt *pvt, u32 mtr)
941 {
942         /* there's no way to figure out */
943         return DEV_UNKNOWN;
944 }
945
946 static enum dev_type __ibridge_get_width(u32 mtr)
947 {
948         enum dev_type type = DEV_UNKNOWN;
949
950         switch (mtr) {
951         case 2:
952                 type = DEV_X16;
953                 break;
954         case 1:
955                 type = DEV_X8;
956                 break;
957         case 0:
958                 type = DEV_X4;
959                 break;
960         }
961
962         return type;
963 }
964
965 static enum dev_type ibridge_get_width(struct sbridge_pvt *pvt, u32 mtr)
966 {
967         /*
968          * ddr3_width on the documentation but also valid for DDR4 on
969          * Haswell
970          */
971         return __ibridge_get_width(GET_BITFIELD(mtr, 7, 8));
972 }
973
974 static enum dev_type broadwell_get_width(struct sbridge_pvt *pvt, u32 mtr)
975 {
976         /* ddr3_width on the documentation but also valid for DDR4 */
977         return __ibridge_get_width(GET_BITFIELD(mtr, 8, 9));
978 }
979
980 static enum mem_type knl_get_memory_type(struct sbridge_pvt *pvt)
981 {
982         /* DDR4 RDIMMS and LRDIMMS are supported */
983         return MEM_RDDR4;
984 }
985
986 static u8 get_node_id(struct sbridge_pvt *pvt)
987 {
988         u32 reg;
989         pci_read_config_dword(pvt->pci_br0, SAD_CONTROL, &reg);
990         return GET_BITFIELD(reg, 0, 2);
991 }
992
993 static u8 haswell_get_node_id(struct sbridge_pvt *pvt)
994 {
995         u32 reg;
996
997         pci_read_config_dword(pvt->pci_sad1, SAD_CONTROL, &reg);
998         return GET_BITFIELD(reg, 0, 3);
999 }
1000
1001 static u8 knl_get_node_id(struct sbridge_pvt *pvt)
1002 {
1003         u32 reg;
1004
1005         pci_read_config_dword(pvt->pci_sad1, SAD_CONTROL, &reg);
1006         return GET_BITFIELD(reg, 0, 2);
1007 }
1008
1009 /*
1010  * Use the reporting bank number to determine which memory
1011  * controller (also known as "ha" for "home agent"). Sandy
1012  * Bridge only has one memory controller per socket, so the
1013  * answer is always zero.
1014  */
1015 static u8 sbridge_get_ha(u8 bank)
1016 {
1017         return 0;
1018 }
1019
1020 /*
1021  * On Ivy Bridge, Haswell and Broadwell the error may be in a
1022  * home agent bank (7, 8), or one of the per-channel memory
1023  * controller banks (9 .. 16).
1024  */
1025 static u8 ibridge_get_ha(u8 bank)
1026 {
1027         switch (bank) {
1028         case 7 ... 8:
1029                 return bank - 7;
1030         case 9 ... 16:
1031                 return (bank - 9) / 4;
1032         default:
1033                 return 0xff;
1034         }
1035 }
1036
1037 /* Not used, but included for safety/symmetry */
1038 static u8 knl_get_ha(u8 bank)
1039 {
1040         return 0xff;
1041 }
1042
1043 static u64 haswell_get_tolm(struct sbridge_pvt *pvt)
1044 {
1045         u32 reg;
1046
1047         pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOLM, &reg);
1048         return (GET_BITFIELD(reg, 26, 31) << 26) | 0x3ffffff;
1049 }
1050
1051 static u64 haswell_get_tohm(struct sbridge_pvt *pvt)
1052 {
1053         u64 rc;
1054         u32 reg;
1055
1056         pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOHM_0, &reg);
1057         rc = GET_BITFIELD(reg, 26, 31);
1058         pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOHM_1, &reg);
1059         rc = ((reg << 6) | rc) << 26;
1060
1061         return rc | 0x3ffffff;
1062 }
1063
1064 static u64 knl_get_tolm(struct sbridge_pvt *pvt)
1065 {
1066         u32 reg;
1067
1068         pci_read_config_dword(pvt->knl.pci_mc_info, KNL_TOLM, &reg);
1069         return (GET_BITFIELD(reg, 26, 31) << 26) | 0x3ffffff;
1070 }
1071
1072 static u64 knl_get_tohm(struct sbridge_pvt *pvt)
1073 {
1074         u64 rc;
1075         u32 reg_lo, reg_hi;
1076
1077         pci_read_config_dword(pvt->knl.pci_mc_info, KNL_TOHM_0, &reg_lo);
1078         pci_read_config_dword(pvt->knl.pci_mc_info, KNL_TOHM_1, &reg_hi);
1079         rc = ((u64)reg_hi << 32) | reg_lo;
1080         return rc | 0x3ffffff;
1081 }
1082
1083
1084 static u64 haswell_rir_limit(u32 reg)
1085 {
1086         return (((u64)GET_BITFIELD(reg,  1, 11) + 1) << 29) - 1;
1087 }
1088
1089 static inline u8 sad_pkg_socket(u8 pkg)
1090 {
1091         /* on Ivy Bridge, nodeID is SASS, where A is HA and S is node id */
1092         return ((pkg >> 3) << 2) | (pkg & 0x3);
1093 }
1094
1095 static inline u8 sad_pkg_ha(u8 pkg)
1096 {
1097         return (pkg >> 2) & 0x1;
1098 }
1099
1100 static int haswell_chan_hash(int idx, u64 addr)
1101 {
1102         int i;
1103
1104         /*
1105          * XOR even bits from 12:26 to bit0 of idx,
1106          *     odd bits from 13:27 to bit1
1107          */
1108         for (i = 12; i < 28; i += 2)
1109                 idx ^= (addr >> i) & 3;
1110
1111         return idx;
1112 }
1113
1114 /* Low bits of TAD limit, and some metadata. */
1115 static const u32 knl_tad_dram_limit_lo[] = {
1116         0x400, 0x500, 0x600, 0x700,
1117         0x800, 0x900, 0xa00, 0xb00,
1118 };
1119
1120 /* Low bits of TAD offset. */
1121 static const u32 knl_tad_dram_offset_lo[] = {
1122         0x404, 0x504, 0x604, 0x704,
1123         0x804, 0x904, 0xa04, 0xb04,
1124 };
1125
1126 /* High 16 bits of TAD limit and offset. */
1127 static const u32 knl_tad_dram_hi[] = {
1128         0x408, 0x508, 0x608, 0x708,
1129         0x808, 0x908, 0xa08, 0xb08,
1130 };
1131
1132 /* Number of ways a tad entry is interleaved. */
1133 static const u32 knl_tad_ways[] = {
1134         8, 6, 4, 3, 2, 1,
1135 };
1136
1137 /*
1138  * Retrieve the n'th Target Address Decode table entry
1139  * from the memory controller's TAD table.
1140  *
1141  * @pvt:        driver private data
1142  * @entry:      which entry you want to retrieve
1143  * @mc:         which memory controller (0 or 1)
1144  * @offset:     output tad range offset
1145  * @limit:      output address of first byte above tad range
1146  * @ways:       output number of interleave ways
1147  *
1148  * The offset value has curious semantics.  It's a sort of running total
1149  * of the sizes of all the memory regions that aren't mapped in this
1150  * tad table.
1151  */
1152 static int knl_get_tad(const struct sbridge_pvt *pvt,
1153                 const int entry,
1154                 const int mc,
1155                 u64 *offset,
1156                 u64 *limit,
1157                 int *ways)
1158 {
1159         u32 reg_limit_lo, reg_offset_lo, reg_hi;
1160         struct pci_dev *pci_mc;
1161         int way_id;
1162
1163         switch (mc) {
1164         case 0:
1165                 pci_mc = pvt->knl.pci_mc0;
1166                 break;
1167         case 1:
1168                 pci_mc = pvt->knl.pci_mc1;
1169                 break;
1170         default:
1171                 WARN_ON(1);
1172                 return -EINVAL;
1173         }
1174
1175         pci_read_config_dword(pci_mc,
1176                         knl_tad_dram_limit_lo[entry], &reg_limit_lo);
1177         pci_read_config_dword(pci_mc,
1178                         knl_tad_dram_offset_lo[entry], &reg_offset_lo);
1179         pci_read_config_dword(pci_mc,
1180                         knl_tad_dram_hi[entry], &reg_hi);
1181
1182         /* Is this TAD entry enabled? */
1183         if (!GET_BITFIELD(reg_limit_lo, 0, 0))
1184                 return -ENODEV;
1185
1186         way_id = GET_BITFIELD(reg_limit_lo, 3, 5);
1187
1188         if (way_id < ARRAY_SIZE(knl_tad_ways)) {
1189                 *ways = knl_tad_ways[way_id];
1190         } else {
1191                 *ways = 0;
1192                 sbridge_printk(KERN_ERR,
1193                                 "Unexpected value %d in mc_tad_limit_lo wayness field\n",
1194                                 way_id);
1195                 return -ENODEV;
1196         }
1197
1198         /*
1199          * The least significant 6 bits of base and limit are truncated.
1200          * For limit, we fill the missing bits with 1s.
1201          */
1202         *offset = ((u64) GET_BITFIELD(reg_offset_lo, 6, 31) << 6) |
1203                                 ((u64) GET_BITFIELD(reg_hi, 0,  15) << 32);
1204         *limit = ((u64) GET_BITFIELD(reg_limit_lo,  6, 31) << 6) | 63 |
1205                                 ((u64) GET_BITFIELD(reg_hi, 16, 31) << 32);
1206
1207         return 0;
1208 }
1209
1210 /* Determine which memory controller is responsible for a given channel. */
1211 static int knl_channel_mc(int channel)
1212 {
1213         WARN_ON(channel < 0 || channel >= 6);
1214
1215         return channel < 3 ? 1 : 0;
1216 }
1217
1218 /*
1219  * Get the Nth entry from EDC_ROUTE_TABLE register.
1220  * (This is the per-tile mapping of logical interleave targets to
1221  *  physical EDC modules.)
1222  *
1223  * entry 0: 0:2
1224  *       1: 3:5
1225  *       2: 6:8
1226  *       3: 9:11
1227  *       4: 12:14
1228  *       5: 15:17
1229  *       6: 18:20
1230  *       7: 21:23
1231  * reserved: 24:31
1232  */
1233 static u32 knl_get_edc_route(int entry, u32 reg)
1234 {
1235         WARN_ON(entry >= KNL_MAX_EDCS);
1236         return GET_BITFIELD(reg, entry*3, (entry*3)+2);
1237 }
1238
1239 /*
1240  * Get the Nth entry from MC_ROUTE_TABLE register.
1241  * (This is the per-tile mapping of logical interleave targets to
1242  *  physical DRAM channels modules.)
1243  *
1244  * entry 0: mc 0:2   channel 18:19
1245  *       1: mc 3:5   channel 20:21
1246  *       2: mc 6:8   channel 22:23
1247  *       3: mc 9:11  channel 24:25
1248  *       4: mc 12:14 channel 26:27
1249  *       5: mc 15:17 channel 28:29
1250  * reserved: 30:31
1251  *
1252  * Though we have 3 bits to identify the MC, we should only see
1253  * the values 0 or 1.
1254  */
1255
1256 static u32 knl_get_mc_route(int entry, u32 reg)
1257 {
1258         int mc, chan;
1259
1260         WARN_ON(entry >= KNL_MAX_CHANNELS);
1261
1262         mc = GET_BITFIELD(reg, entry*3, (entry*3)+2);
1263         chan = GET_BITFIELD(reg, (entry*2) + 18, (entry*2) + 18 + 1);
1264
1265         return knl_channel_remap(mc, chan);
1266 }
1267
1268 /*
1269  * Render the EDC_ROUTE register in human-readable form.
1270  * Output string s should be at least KNL_MAX_EDCS*2 bytes.
1271  */
1272 static void knl_show_edc_route(u32 reg, char *s)
1273 {
1274         int i;
1275
1276         for (i = 0; i < KNL_MAX_EDCS; i++) {
1277                 s[i*2] = knl_get_edc_route(i, reg) + '0';
1278                 s[i*2+1] = '-';
1279         }
1280
1281         s[KNL_MAX_EDCS*2 - 1] = '\0';
1282 }
1283
1284 /*
1285  * Render the MC_ROUTE register in human-readable form.
1286  * Output string s should be at least KNL_MAX_CHANNELS*2 bytes.
1287  */
1288 static void knl_show_mc_route(u32 reg, char *s)
1289 {
1290         int i;
1291
1292         for (i = 0; i < KNL_MAX_CHANNELS; i++) {
1293                 s[i*2] = knl_get_mc_route(i, reg) + '0';
1294                 s[i*2+1] = '-';
1295         }
1296
1297         s[KNL_MAX_CHANNELS*2 - 1] = '\0';
1298 }
1299
1300 #define KNL_EDC_ROUTE 0xb8
1301 #define KNL_MC_ROUTE 0xb4
1302
1303 /* Is this dram rule backed by regular DRAM in flat mode? */
1304 #define KNL_EDRAM(reg) GET_BITFIELD(reg, 29, 29)
1305
1306 /* Is this dram rule cached? */
1307 #define KNL_CACHEABLE(reg) GET_BITFIELD(reg, 28, 28)
1308
1309 /* Is this rule backed by edc ? */
1310 #define KNL_EDRAM_ONLY(reg) GET_BITFIELD(reg, 29, 29)
1311
1312 /* Is this rule backed by DRAM, cacheable in EDRAM? */
1313 #define KNL_CACHEABLE(reg) GET_BITFIELD(reg, 28, 28)
1314
1315 /* Is this rule mod3? */
1316 #define KNL_MOD3(reg) GET_BITFIELD(reg, 27, 27)
1317
1318 /*
1319  * Figure out how big our RAM modules are.
1320  *
1321  * The DIMMMTR register in KNL doesn't tell us the size of the DIMMs, so we
1322  * have to figure this out from the SAD rules, interleave lists, route tables,
1323  * and TAD rules.
1324  *
1325  * SAD rules can have holes in them (e.g. the 3G-4G hole), so we have to
1326  * inspect the TAD rules to figure out how large the SAD regions really are.
1327  *
1328  * When we know the real size of a SAD region and how many ways it's
1329  * interleaved, we know the individual contribution of each channel to
1330  * TAD is size/ways.
1331  *
1332  * Finally, we have to check whether each channel participates in each SAD
1333  * region.
1334  *
1335  * Fortunately, KNL only supports one DIMM per channel, so once we know how
1336  * much memory the channel uses, we know the DIMM is at least that large.
1337  * (The BIOS might possibly choose not to map all available memory, in which
1338  * case we will underreport the size of the DIMM.)
1339  *
1340  * In theory, we could try to determine the EDC sizes as well, but that would
1341  * only work in flat mode, not in cache mode.
1342  *
1343  * @mc_sizes: Output sizes of channels (must have space for KNL_MAX_CHANNELS
1344  *            elements)
1345  */
1346 static int knl_get_dimm_capacity(struct sbridge_pvt *pvt, u64 *mc_sizes)
1347 {
1348         u64 sad_base, sad_limit = 0;
1349         u64 tad_base, tad_size, tad_limit, tad_deadspace, tad_livespace;
1350         int sad_rule = 0;
1351         int tad_rule = 0;
1352         int intrlv_ways, tad_ways;
1353         u32 first_pkg, pkg;
1354         int i;
1355         u64 sad_actual_size[2]; /* sad size accounting for holes, per mc */
1356         u32 dram_rule, interleave_reg;
1357         u32 mc_route_reg[KNL_MAX_CHAS];
1358         u32 edc_route_reg[KNL_MAX_CHAS];
1359         int edram_only;
1360         char edc_route_string[KNL_MAX_EDCS*2];
1361         char mc_route_string[KNL_MAX_CHANNELS*2];
1362         int cur_reg_start;
1363         int mc;
1364         int channel;
1365         int participants[KNL_MAX_CHANNELS];
1366
1367         for (i = 0; i < KNL_MAX_CHANNELS; i++)
1368                 mc_sizes[i] = 0;
1369
1370         /* Read the EDC route table in each CHA. */
1371         cur_reg_start = 0;
1372         for (i = 0; i < KNL_MAX_CHAS; i++) {
1373                 pci_read_config_dword(pvt->knl.pci_cha[i],
1374                                 KNL_EDC_ROUTE, &edc_route_reg[i]);
1375
1376                 if (i > 0 && edc_route_reg[i] != edc_route_reg[i-1]) {
1377                         knl_show_edc_route(edc_route_reg[i-1],
1378                                         edc_route_string);
1379                         if (cur_reg_start == i-1)
1380                                 edac_dbg(0, "edc route table for CHA %d: %s\n",
1381                                         cur_reg_start, edc_route_string);
1382                         else
1383                                 edac_dbg(0, "edc route table for CHA %d-%d: %s\n",
1384                                         cur_reg_start, i-1, edc_route_string);
1385                         cur_reg_start = i;
1386                 }
1387         }
1388         knl_show_edc_route(edc_route_reg[i-1], edc_route_string);
1389         if (cur_reg_start == i-1)
1390                 edac_dbg(0, "edc route table for CHA %d: %s\n",
1391                         cur_reg_start, edc_route_string);
1392         else
1393                 edac_dbg(0, "edc route table for CHA %d-%d: %s\n",
1394                         cur_reg_start, i-1, edc_route_string);
1395
1396         /* Read the MC route table in each CHA. */
1397         cur_reg_start = 0;
1398         for (i = 0; i < KNL_MAX_CHAS; i++) {
1399                 pci_read_config_dword(pvt->knl.pci_cha[i],
1400                         KNL_MC_ROUTE, &mc_route_reg[i]);
1401
1402                 if (i > 0 && mc_route_reg[i] != mc_route_reg[i-1]) {
1403                         knl_show_mc_route(mc_route_reg[i-1], mc_route_string);
1404                         if (cur_reg_start == i-1)
1405                                 edac_dbg(0, "mc route table for CHA %d: %s\n",
1406                                         cur_reg_start, mc_route_string);
1407                         else
1408                                 edac_dbg(0, "mc route table for CHA %d-%d: %s\n",
1409                                         cur_reg_start, i-1, mc_route_string);
1410                         cur_reg_start = i;
1411                 }
1412         }
1413         knl_show_mc_route(mc_route_reg[i-1], mc_route_string);
1414         if (cur_reg_start == i-1)
1415                 edac_dbg(0, "mc route table for CHA %d: %s\n",
1416                         cur_reg_start, mc_route_string);
1417         else
1418                 edac_dbg(0, "mc route table for CHA %d-%d: %s\n",
1419                         cur_reg_start, i-1, mc_route_string);
1420
1421         /* Process DRAM rules */
1422         for (sad_rule = 0; sad_rule < pvt->info.max_sad; sad_rule++) {
1423                 /* previous limit becomes the new base */
1424                 sad_base = sad_limit;
1425
1426                 pci_read_config_dword(pvt->pci_sad0,
1427                         pvt->info.dram_rule[sad_rule], &dram_rule);
1428
1429                 if (!DRAM_RULE_ENABLE(dram_rule))
1430                         break;
1431
1432                 edram_only = KNL_EDRAM_ONLY(dram_rule);
1433
1434                 sad_limit = pvt->info.sad_limit(dram_rule)+1;
1435
1436                 pci_read_config_dword(pvt->pci_sad0,
1437                         pvt->info.interleave_list[sad_rule], &interleave_reg);
1438
1439                 /*
1440                  * Find out how many ways this dram rule is interleaved.
1441                  * We stop when we see the first channel again.
1442                  */
1443                 first_pkg = sad_pkg(pvt->info.interleave_pkg,
1444                                                 interleave_reg, 0);
1445                 for (intrlv_ways = 1; intrlv_ways < 8; intrlv_ways++) {
1446                         pkg = sad_pkg(pvt->info.interleave_pkg,
1447                                                 interleave_reg, intrlv_ways);
1448
1449                         if ((pkg & 0x8) == 0) {
1450                                 /*
1451                                  * 0 bit means memory is non-local,
1452                                  * which KNL doesn't support
1453                                  */
1454                                 edac_dbg(0, "Unexpected interleave target %d\n",
1455                                         pkg);
1456                                 return -1;
1457                         }
1458
1459                         if (pkg == first_pkg)
1460                                 break;
1461                 }
1462                 if (KNL_MOD3(dram_rule))
1463                         intrlv_ways *= 3;
1464
1465                 edac_dbg(3, "dram rule %d (base 0x%llx, limit 0x%llx), %d way interleave%s\n",
1466                         sad_rule,
1467                         sad_base,
1468                         sad_limit,
1469                         intrlv_ways,
1470                         edram_only ? ", EDRAM" : "");
1471
1472                 /*
1473                  * Find out how big the SAD region really is by iterating
1474                  * over TAD tables (SAD regions may contain holes).
1475                  * Each memory controller might have a different TAD table, so
1476                  * we have to look at both.
1477                  *
1478                  * Livespace is the memory that's mapped in this TAD table,
1479                  * deadspace is the holes (this could be the MMIO hole, or it
1480                  * could be memory that's mapped by the other TAD table but
1481                  * not this one).
1482                  */
1483                 for (mc = 0; mc < 2; mc++) {
1484                         sad_actual_size[mc] = 0;
1485                         tad_livespace = 0;
1486                         for (tad_rule = 0;
1487                                         tad_rule < ARRAY_SIZE(
1488                                                 knl_tad_dram_limit_lo);
1489                                         tad_rule++) {
1490                                 if (knl_get_tad(pvt,
1491                                                 tad_rule,
1492                                                 mc,
1493                                                 &tad_deadspace,
1494                                                 &tad_limit,
1495                                                 &tad_ways))
1496                                         break;
1497
1498                                 tad_size = (tad_limit+1) -
1499                                         (tad_livespace + tad_deadspace);
1500                                 tad_livespace += tad_size;
1501                                 tad_base = (tad_limit+1) - tad_size;
1502
1503                                 if (tad_base < sad_base) {
1504                                         if (tad_limit > sad_base)
1505                                                 edac_dbg(0, "TAD region overlaps lower SAD boundary -- TAD tables may be configured incorrectly.\n");
1506                                 } else if (tad_base < sad_limit) {
1507                                         if (tad_limit+1 > sad_limit) {
1508                                                 edac_dbg(0, "TAD region overlaps upper SAD boundary -- TAD tables may be configured incorrectly.\n");
1509                                         } else {
1510                                                 /* TAD region is completely inside SAD region */
1511                                                 edac_dbg(3, "TAD region %d 0x%llx - 0x%llx (%lld bytes) table%d\n",
1512                                                         tad_rule, tad_base,
1513                                                         tad_limit, tad_size,
1514                                                         mc);
1515                                                 sad_actual_size[mc] += tad_size;
1516                                         }
1517                                 }
1518                         }
1519                 }
1520
1521                 for (mc = 0; mc < 2; mc++) {
1522                         edac_dbg(3, " total TAD DRAM footprint in table%d : 0x%llx (%lld bytes)\n",
1523                                 mc, sad_actual_size[mc], sad_actual_size[mc]);
1524                 }
1525
1526                 /* Ignore EDRAM rule */
1527                 if (edram_only)
1528                         continue;
1529
1530                 /* Figure out which channels participate in interleave. */
1531                 for (channel = 0; channel < KNL_MAX_CHANNELS; channel++)
1532                         participants[channel] = 0;
1533
1534                 /* For each channel, does at least one CHA have
1535                  * this channel mapped to the given target?
1536                  */
1537                 for (channel = 0; channel < KNL_MAX_CHANNELS; channel++) {
1538                         int target;
1539                         int cha;
1540
1541                         for (target = 0; target < KNL_MAX_CHANNELS; target++) {
1542                                 for (cha = 0; cha < KNL_MAX_CHAS; cha++) {
1543                                         if (knl_get_mc_route(target,
1544                                                 mc_route_reg[cha]) == channel
1545                                                 && !participants[channel]) {
1546                                                 participants[channel] = 1;
1547                                                 break;
1548                                         }
1549                                 }
1550                         }
1551                 }
1552
1553                 for (channel = 0; channel < KNL_MAX_CHANNELS; channel++) {
1554                         mc = knl_channel_mc(channel);
1555                         if (participants[channel]) {
1556                                 edac_dbg(4, "mc channel %d contributes %lld bytes via sad entry %d\n",
1557                                         channel,
1558                                         sad_actual_size[mc]/intrlv_ways,
1559                                         sad_rule);
1560                                 mc_sizes[channel] +=
1561                                         sad_actual_size[mc]/intrlv_ways;
1562                         }
1563                 }
1564         }
1565
1566         return 0;
1567 }
1568
1569 static void get_source_id(struct mem_ctl_info *mci)
1570 {
1571         struct sbridge_pvt *pvt = mci->pvt_info;
1572         u32 reg;
1573
1574         if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL ||
1575             pvt->info.type == KNIGHTS_LANDING)
1576                 pci_read_config_dword(pvt->pci_sad1, SAD_TARGET, &reg);
1577         else
1578                 pci_read_config_dword(pvt->pci_br0, SAD_TARGET, &reg);
1579
1580         if (pvt->info.type == KNIGHTS_LANDING)
1581                 pvt->sbridge_dev->source_id = SOURCE_ID_KNL(reg);
1582         else
1583                 pvt->sbridge_dev->source_id = SOURCE_ID(reg);
1584 }
1585
1586 static int __populate_dimms(struct mem_ctl_info *mci,
1587                             u64 knl_mc_sizes[KNL_MAX_CHANNELS],
1588                             enum edac_type mode)
1589 {
1590         struct sbridge_pvt *pvt = mci->pvt_info;
1591         int channels = pvt->info.type == KNIGHTS_LANDING ? KNL_MAX_CHANNELS
1592                                                          : NUM_CHANNELS;
1593         unsigned int i, j, banks, ranks, rows, cols, npages;
1594         struct dimm_info *dimm;
1595         enum mem_type mtype;
1596         u64 size;
1597
1598         mtype = pvt->info.get_memory_type(pvt);
1599         if (mtype == MEM_RDDR3 || mtype == MEM_RDDR4)
1600                 edac_dbg(0, "Memory is registered\n");
1601         else if (mtype == MEM_UNKNOWN)
1602                 edac_dbg(0, "Cannot determine memory type\n");
1603         else
1604                 edac_dbg(0, "Memory is unregistered\n");
1605
1606         if (mtype == MEM_DDR4 || mtype == MEM_RDDR4)
1607                 banks = 16;
1608         else
1609                 banks = 8;
1610
1611         for (i = 0; i < channels; i++) {
1612                 u32 mtr, amap = 0;
1613
1614                 int max_dimms_per_channel;
1615
1616                 if (pvt->info.type == KNIGHTS_LANDING) {
1617                         max_dimms_per_channel = 1;
1618                         if (!pvt->knl.pci_channel[i])
1619                                 continue;
1620                 } else {
1621                         max_dimms_per_channel = ARRAY_SIZE(mtr_regs);
1622                         if (!pvt->pci_tad[i])
1623                                 continue;
1624                         pci_read_config_dword(pvt->pci_tad[i], 0x8c, &amap);
1625                 }
1626
1627                 for (j = 0; j < max_dimms_per_channel; j++) {
1628                         dimm = edac_get_dimm(mci, i, j, 0);
1629                         if (pvt->info.type == KNIGHTS_LANDING) {
1630                                 pci_read_config_dword(pvt->knl.pci_channel[i],
1631                                         knl_mtr_reg, &mtr);
1632                         } else {
1633                                 pci_read_config_dword(pvt->pci_tad[i],
1634                                         mtr_regs[j], &mtr);
1635                         }
1636                         edac_dbg(4, "Channel #%d  MTR%d = %x\n", i, j, mtr);
1637
1638                         if (IS_DIMM_PRESENT(mtr)) {
1639                                 if (!IS_ECC_ENABLED(pvt->info.mcmtr)) {
1640                                         sbridge_printk(KERN_ERR, "CPU SrcID #%d, Ha #%d, Channel #%d has DIMMs, but ECC is disabled\n",
1641                                                        pvt->sbridge_dev->source_id,
1642                                                        pvt->sbridge_dev->dom, i);
1643                                         return -ENODEV;
1644                                 }
1645                                 pvt->channel[i].dimms++;
1646
1647                                 ranks = numrank(pvt->info.type, mtr);
1648
1649                                 if (pvt->info.type == KNIGHTS_LANDING) {
1650                                         /* For DDR4, this is fixed. */
1651                                         cols = 1 << 10;
1652                                         rows = knl_mc_sizes[i] /
1653                                                 ((u64) cols * ranks * banks * 8);
1654                                 } else {
1655                                         rows = numrow(mtr);
1656                                         cols = numcol(mtr);
1657                                 }
1658
1659                                 size = ((u64)rows * cols * banks * ranks) >> (20 - 3);
1660                                 npages = MiB_TO_PAGES(size);
1661
1662                                 edac_dbg(0, "mc#%d: ha %d channel %d, dimm %d, %lld MiB (%d pages) bank: %d, rank: %d, row: %#x, col: %#x\n",
1663                                          pvt->sbridge_dev->mc, pvt->sbridge_dev->dom, i, j,
1664                                          size, npages,
1665                                          banks, ranks, rows, cols);
1666
1667                                 dimm->nr_pages = npages;
1668                                 dimm->grain = 32;
1669                                 dimm->dtype = pvt->info.get_width(pvt, mtr);
1670                                 dimm->mtype = mtype;
1671                                 dimm->edac_mode = mode;
1672                                 pvt->channel[i].dimm[j].rowbits = order_base_2(rows);
1673                                 pvt->channel[i].dimm[j].colbits = order_base_2(cols);
1674                                 pvt->channel[i].dimm[j].bank_xor_enable =
1675                                                 GET_BITFIELD(pvt->info.mcmtr, 9, 9);
1676                                 pvt->channel[i].dimm[j].amap_fine = GET_BITFIELD(amap, 0, 0);
1677                                 snprintf(dimm->label, sizeof(dimm->label),
1678                                                  "CPU_SrcID#%u_Ha#%u_Chan#%u_DIMM#%u",
1679                                                  pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom, i, j);
1680                         }
1681                 }
1682         }
1683
1684         return 0;
1685 }
1686
1687 static int get_dimm_config(struct mem_ctl_info *mci)
1688 {
1689         struct sbridge_pvt *pvt = mci->pvt_info;
1690         u64 knl_mc_sizes[KNL_MAX_CHANNELS];
1691         enum edac_type mode;
1692         u32 reg;
1693
1694         pvt->sbridge_dev->node_id = pvt->info.get_node_id(pvt);
1695         edac_dbg(0, "mc#%d: Node ID: %d, source ID: %d\n",
1696                  pvt->sbridge_dev->mc,
1697                  pvt->sbridge_dev->node_id,
1698                  pvt->sbridge_dev->source_id);
1699
1700         /* KNL doesn't support mirroring or lockstep,
1701          * and is always closed page
1702          */
1703         if (pvt->info.type == KNIGHTS_LANDING) {
1704                 mode = EDAC_S4ECD4ED;
1705                 pvt->mirror_mode = NON_MIRRORING;
1706                 pvt->is_cur_addr_mirrored = false;
1707
1708                 if (knl_get_dimm_capacity(pvt, knl_mc_sizes) != 0)
1709                         return -1;
1710                 if (pci_read_config_dword(pvt->pci_ta, KNL_MCMTR, &pvt->info.mcmtr)) {
1711                         edac_dbg(0, "Failed to read KNL_MCMTR register\n");
1712                         return -ENODEV;
1713                 }
1714         } else {
1715                 if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL) {
1716                         if (pci_read_config_dword(pvt->pci_ha, HASWELL_HASYSDEFEATURE2, &reg)) {
1717                                 edac_dbg(0, "Failed to read HASWELL_HASYSDEFEATURE2 register\n");
1718                                 return -ENODEV;
1719                         }
1720                         pvt->is_chan_hash = GET_BITFIELD(reg, 21, 21);
1721                         if (GET_BITFIELD(reg, 28, 28)) {
1722                                 pvt->mirror_mode = ADDR_RANGE_MIRRORING;
1723                                 edac_dbg(0, "Address range partial memory mirroring is enabled\n");
1724                                 goto next;
1725                         }
1726                 }
1727                 if (pci_read_config_dword(pvt->pci_ras, RASENABLES, &reg)) {
1728                         edac_dbg(0, "Failed to read RASENABLES register\n");
1729                         return -ENODEV;
1730                 }
1731                 if (IS_MIRROR_ENABLED(reg)) {
1732                         pvt->mirror_mode = FULL_MIRRORING;
1733                         edac_dbg(0, "Full memory mirroring is enabled\n");
1734                 } else {
1735                         pvt->mirror_mode = NON_MIRRORING;
1736                         edac_dbg(0, "Memory mirroring is disabled\n");
1737                 }
1738
1739 next:
1740                 if (pci_read_config_dword(pvt->pci_ta, MCMTR, &pvt->info.mcmtr)) {
1741                         edac_dbg(0, "Failed to read MCMTR register\n");
1742                         return -ENODEV;
1743                 }
1744                 if (IS_LOCKSTEP_ENABLED(pvt->info.mcmtr)) {
1745                         edac_dbg(0, "Lockstep is enabled\n");
1746                         mode = EDAC_S8ECD8ED;
1747                         pvt->is_lockstep = true;
1748                 } else {
1749                         edac_dbg(0, "Lockstep is disabled\n");
1750                         mode = EDAC_S4ECD4ED;
1751                         pvt->is_lockstep = false;
1752                 }
1753                 if (IS_CLOSE_PG(pvt->info.mcmtr)) {
1754                         edac_dbg(0, "address map is on closed page mode\n");
1755                         pvt->is_close_pg = true;
1756                 } else {
1757                         edac_dbg(0, "address map is on open page mode\n");
1758                         pvt->is_close_pg = false;
1759                 }
1760         }
1761
1762         return __populate_dimms(mci, knl_mc_sizes, mode);
1763 }
1764
1765 static void get_memory_layout(const struct mem_ctl_info *mci)
1766 {
1767         struct sbridge_pvt *pvt = mci->pvt_info;
1768         int i, j, k, n_sads, n_tads, sad_interl;
1769         u32 reg;
1770         u64 limit, prv = 0;
1771         u64 tmp_mb;
1772         u32 gb, mb;
1773         u32 rir_way;
1774
1775         /*
1776          * Step 1) Get TOLM/TOHM ranges
1777          */
1778
1779         pvt->tolm = pvt->info.get_tolm(pvt);
1780         tmp_mb = (1 + pvt->tolm) >> 20;
1781
1782         gb = div_u64_rem(tmp_mb, 1024, &mb);
1783         edac_dbg(0, "TOLM: %u.%03u GB (0x%016Lx)\n",
1784                 gb, (mb*1000)/1024, (u64)pvt->tolm);
1785
1786         /* Address range is already 45:25 */
1787         pvt->tohm = pvt->info.get_tohm(pvt);
1788         tmp_mb = (1 + pvt->tohm) >> 20;
1789
1790         gb = div_u64_rem(tmp_mb, 1024, &mb);
1791         edac_dbg(0, "TOHM: %u.%03u GB (0x%016Lx)\n",
1792                 gb, (mb*1000)/1024, (u64)pvt->tohm);
1793
1794         /*
1795          * Step 2) Get SAD range and SAD Interleave list
1796          * TAD registers contain the interleave wayness. However, it
1797          * seems simpler to just discover it indirectly, with the
1798          * algorithm bellow.
1799          */
1800         prv = 0;
1801         for (n_sads = 0; n_sads < pvt->info.max_sad; n_sads++) {
1802                 /* SAD_LIMIT Address range is 45:26 */
1803                 pci_read_config_dword(pvt->pci_sad0, pvt->info.dram_rule[n_sads],
1804                                       &reg);
1805                 limit = pvt->info.sad_limit(reg);
1806
1807                 if (!DRAM_RULE_ENABLE(reg))
1808                         continue;
1809
1810                 if (limit <= prv)
1811                         break;
1812
1813                 tmp_mb = (limit + 1) >> 20;
1814                 gb = div_u64_rem(tmp_mb, 1024, &mb);
1815                 edac_dbg(0, "SAD#%d %s up to %u.%03u GB (0x%016Lx) Interleave: %s reg=0x%08x\n",
1816                          n_sads,
1817                          show_dram_attr(pvt->info.dram_attr(reg)),
1818                          gb, (mb*1000)/1024,
1819                          ((u64)tmp_mb) << 20L,
1820                          get_intlv_mode_str(reg, pvt->info.type),
1821                          reg);
1822                 prv = limit;
1823
1824                 pci_read_config_dword(pvt->pci_sad0, pvt->info.interleave_list[n_sads],
1825                                       &reg);
1826                 sad_interl = sad_pkg(pvt->info.interleave_pkg, reg, 0);
1827                 for (j = 0; j < 8; j++) {
1828                         u32 pkg = sad_pkg(pvt->info.interleave_pkg, reg, j);
1829                         if (j > 0 && sad_interl == pkg)
1830                                 break;
1831
1832                         edac_dbg(0, "SAD#%d, interleave #%d: %d\n",
1833                                  n_sads, j, pkg);
1834                 }
1835         }
1836
1837         if (pvt->info.type == KNIGHTS_LANDING)
1838                 return;
1839
1840         /*
1841          * Step 3) Get TAD range
1842          */
1843         prv = 0;
1844         for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
1845                 pci_read_config_dword(pvt->pci_ha, tad_dram_rule[n_tads], &reg);
1846                 limit = TAD_LIMIT(reg);
1847                 if (limit <= prv)
1848                         break;
1849                 tmp_mb = (limit + 1) >> 20;
1850
1851                 gb = div_u64_rem(tmp_mb, 1024, &mb);
1852                 edac_dbg(0, "TAD#%d: up to %u.%03u GB (0x%016Lx), socket interleave %d, memory interleave %d, TGT: %d, %d, %d, %d, reg=0x%08x\n",
1853                          n_tads, gb, (mb*1000)/1024,
1854                          ((u64)tmp_mb) << 20L,
1855                          (u32)(1 << TAD_SOCK(reg)),
1856                          (u32)TAD_CH(reg) + 1,
1857                          (u32)TAD_TGT0(reg),
1858                          (u32)TAD_TGT1(reg),
1859                          (u32)TAD_TGT2(reg),
1860                          (u32)TAD_TGT3(reg),
1861                          reg);
1862                 prv = limit;
1863         }
1864
1865         /*
1866          * Step 4) Get TAD offsets, per each channel
1867          */
1868         for (i = 0; i < NUM_CHANNELS; i++) {
1869                 if (!pvt->channel[i].dimms)
1870                         continue;
1871                 for (j = 0; j < n_tads; j++) {
1872                         pci_read_config_dword(pvt->pci_tad[i],
1873                                               tad_ch_nilv_offset[j],
1874                                               &reg);
1875                         tmp_mb = TAD_OFFSET(reg) >> 20;
1876                         gb = div_u64_rem(tmp_mb, 1024, &mb);
1877                         edac_dbg(0, "TAD CH#%d, offset #%d: %u.%03u GB (0x%016Lx), reg=0x%08x\n",
1878                                  i, j,
1879                                  gb, (mb*1000)/1024,
1880                                  ((u64)tmp_mb) << 20L,
1881                                  reg);
1882                 }
1883         }
1884
1885         /*
1886          * Step 6) Get RIR Wayness/Limit, per each channel
1887          */
1888         for (i = 0; i < NUM_CHANNELS; i++) {
1889                 if (!pvt->channel[i].dimms)
1890                         continue;
1891                 for (j = 0; j < MAX_RIR_RANGES; j++) {
1892                         pci_read_config_dword(pvt->pci_tad[i],
1893                                               rir_way_limit[j],
1894                                               &reg);
1895
1896                         if (!IS_RIR_VALID(reg))
1897                                 continue;
1898
1899                         tmp_mb = pvt->info.rir_limit(reg) >> 20;
1900                         rir_way = 1 << RIR_WAY(reg);
1901                         gb = div_u64_rem(tmp_mb, 1024, &mb);
1902                         edac_dbg(0, "CH#%d RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d, reg=0x%08x\n",
1903                                  i, j,
1904                                  gb, (mb*1000)/1024,
1905                                  ((u64)tmp_mb) << 20L,
1906                                  rir_way,
1907                                  reg);
1908
1909                         for (k = 0; k < rir_way; k++) {
1910                                 pci_read_config_dword(pvt->pci_tad[i],
1911                                                       rir_offset[j][k],
1912                                                       &reg);
1913                                 tmp_mb = RIR_OFFSET(pvt->info.type, reg) << 6;
1914
1915                                 gb = div_u64_rem(tmp_mb, 1024, &mb);
1916                                 edac_dbg(0, "CH#%d RIR#%d INTL#%d, offset %u.%03u GB (0x%016Lx), tgt: %d, reg=0x%08x\n",
1917                                          i, j, k,
1918                                          gb, (mb*1000)/1024,
1919                                          ((u64)tmp_mb) << 20L,
1920                                          (u32)RIR_RNK_TGT(pvt->info.type, reg),
1921                                          reg);
1922                         }
1923                 }
1924         }
1925 }
1926
1927 static struct mem_ctl_info *get_mci_for_node_id(u8 node_id, u8 ha)
1928 {
1929         struct sbridge_dev *sbridge_dev;
1930
1931         list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
1932                 if (sbridge_dev->node_id == node_id && sbridge_dev->dom == ha)
1933                         return sbridge_dev->mci;
1934         }
1935         return NULL;
1936 }
1937
1938 static u8 sb_close_row[] = {
1939         15, 16, 17, 18, 20, 21, 22, 28, 10, 11, 12, 13, 29, 30, 31, 32, 33
1940 };
1941
1942 static u8 sb_close_column[] = {
1943         3, 4, 5, 14, 19, 23, 24, 25, 26, 27
1944 };
1945
1946 static u8 sb_open_row[] = {
1947         14, 15, 16, 20, 28, 21, 22, 23, 24, 25, 26, 27, 29, 30, 31, 32, 33
1948 };
1949
1950 static u8 sb_open_column[] = {
1951         3, 4, 5, 6, 7, 8, 9, 10, 11, 12
1952 };
1953
1954 static u8 sb_open_fine_column[] = {
1955         3, 4, 5, 7, 8, 9, 10, 11, 12, 13
1956 };
1957
1958 static int sb_bits(u64 addr, int nbits, u8 *bits)
1959 {
1960         int i, res = 0;
1961
1962         for (i = 0; i < nbits; i++)
1963                 res |= ((addr >> bits[i]) & 1) << i;
1964         return res;
1965 }
1966
1967 static int sb_bank_bits(u64 addr, int b0, int b1, int do_xor, int x0, int x1)
1968 {
1969         int ret = GET_BITFIELD(addr, b0, b0) | (GET_BITFIELD(addr, b1, b1) << 1);
1970
1971         if (do_xor)
1972                 ret ^= GET_BITFIELD(addr, x0, x0) | (GET_BITFIELD(addr, x1, x1) << 1);
1973
1974         return ret;
1975 }
1976
1977 static bool sb_decode_ddr4(struct mem_ctl_info *mci, int ch, u8 rank,
1978                            u64 rank_addr, char *msg)
1979 {
1980         int dimmno = 0;
1981         int row, col, bank_address, bank_group;
1982         struct sbridge_pvt *pvt;
1983         u32 bg0 = 0, rowbits = 0, colbits = 0;
1984         u32 amap_fine = 0, bank_xor_enable = 0;
1985
1986         dimmno = (rank < 12) ? rank / 4 : 2;
1987         pvt = mci->pvt_info;
1988         amap_fine =  pvt->channel[ch].dimm[dimmno].amap_fine;
1989         bg0 = amap_fine ? 6 : 13;
1990         rowbits = pvt->channel[ch].dimm[dimmno].rowbits;
1991         colbits = pvt->channel[ch].dimm[dimmno].colbits;
1992         bank_xor_enable = pvt->channel[ch].dimm[dimmno].bank_xor_enable;
1993
1994         if (pvt->is_lockstep) {
1995                 pr_warn_once("LockStep row/column decode is not supported yet!\n");
1996                 msg[0] = '\0';
1997                 return false;
1998         }
1999
2000         if (pvt->is_close_pg) {
2001                 row = sb_bits(rank_addr, rowbits, sb_close_row);
2002                 col = sb_bits(rank_addr, colbits, sb_close_column);
2003                 col |= 0x400; /* C10 is autoprecharge, always set */
2004                 bank_address = sb_bank_bits(rank_addr, 8, 9, bank_xor_enable, 22, 28);
2005                 bank_group = sb_bank_bits(rank_addr, 6, 7, bank_xor_enable, 20, 21);
2006         } else {
2007                 row = sb_bits(rank_addr, rowbits, sb_open_row);
2008                 if (amap_fine)
2009                         col = sb_bits(rank_addr, colbits, sb_open_fine_column);
2010                 else
2011                         col = sb_bits(rank_addr, colbits, sb_open_column);
2012                 bank_address = sb_bank_bits(rank_addr, 18, 19, bank_xor_enable, 22, 23);
2013                 bank_group = sb_bank_bits(rank_addr, bg0, 17, bank_xor_enable, 20, 21);
2014         }
2015
2016         row &= (1u << rowbits) - 1;
2017
2018         sprintf(msg, "row:0x%x col:0x%x bank_addr:%d bank_group:%d",
2019                 row, col, bank_address, bank_group);
2020         return true;
2021 }
2022
2023 static bool sb_decode_ddr3(struct mem_ctl_info *mci, int ch, u8 rank,
2024                            u64 rank_addr, char *msg)
2025 {
2026         pr_warn_once("DDR3 row/column decode not support yet!\n");
2027         msg[0] = '\0';
2028         return false;
2029 }
2030
2031 static int get_memory_error_data(struct mem_ctl_info *mci,
2032                                  u64 addr,
2033                                  u8 *socket, u8 *ha,
2034                                  long *channel_mask,
2035                                  u8 *rank,
2036                                  char **area_type, char *msg)
2037 {
2038         struct mem_ctl_info     *new_mci;
2039         struct sbridge_pvt *pvt = mci->pvt_info;
2040         struct pci_dev          *pci_ha;
2041         int                     n_rir, n_sads, n_tads, sad_way, sck_xch;
2042         int                     sad_interl, idx, base_ch;
2043         int                     interleave_mode, shiftup = 0;
2044         unsigned int            sad_interleave[MAX_INTERLEAVE];
2045         u32                     reg, dram_rule;
2046         u8                      ch_way, sck_way, pkg, sad_ha = 0, rankid = 0;
2047         u32                     tad_offset;
2048         u32                     rir_way;
2049         u32                     mb, gb;
2050         u64                     ch_addr, offset, limit = 0, prv = 0;
2051         u64                     rank_addr;
2052         enum mem_type           mtype;
2053
2054         /*
2055          * Step 0) Check if the address is at special memory ranges
2056          * The check bellow is probably enough to fill all cases where
2057          * the error is not inside a memory, except for the legacy
2058          * range (e. g. VGA addresses). It is unlikely, however, that the
2059          * memory controller would generate an error on that range.
2060          */
2061         if ((addr > (u64) pvt->tolm) && (addr < (1LL << 32))) {
2062                 sprintf(msg, "Error at TOLM area, on addr 0x%08Lx", addr);
2063                 return -EINVAL;
2064         }
2065         if (addr >= (u64)pvt->tohm) {
2066                 sprintf(msg, "Error at MMIOH area, on addr 0x%016Lx", addr);
2067                 return -EINVAL;
2068         }
2069
2070         /*
2071          * Step 1) Get socket
2072          */
2073         for (n_sads = 0; n_sads < pvt->info.max_sad; n_sads++) {
2074                 pci_read_config_dword(pvt->pci_sad0, pvt->info.dram_rule[n_sads],
2075                                       &reg);
2076
2077                 if (!DRAM_RULE_ENABLE(reg))
2078                         continue;
2079
2080                 limit = pvt->info.sad_limit(reg);
2081                 if (limit <= prv) {
2082                         sprintf(msg, "Can't discover the memory socket");
2083                         return -EINVAL;
2084                 }
2085                 if  (addr <= limit)
2086                         break;
2087                 prv = limit;
2088         }
2089         if (n_sads == pvt->info.max_sad) {
2090                 sprintf(msg, "Can't discover the memory socket");
2091                 return -EINVAL;
2092         }
2093         dram_rule = reg;
2094         *area_type = show_dram_attr(pvt->info.dram_attr(dram_rule));
2095         interleave_mode = pvt->info.interleave_mode(dram_rule);
2096
2097         pci_read_config_dword(pvt->pci_sad0, pvt->info.interleave_list[n_sads],
2098                               &reg);
2099
2100         if (pvt->info.type == SANDY_BRIDGE) {
2101                 sad_interl = sad_pkg(pvt->info.interleave_pkg, reg, 0);
2102                 for (sad_way = 0; sad_way < 8; sad_way++) {
2103                         u32 pkg = sad_pkg(pvt->info.interleave_pkg, reg, sad_way);
2104                         if (sad_way > 0 && sad_interl == pkg)
2105                                 break;
2106                         sad_interleave[sad_way] = pkg;
2107                         edac_dbg(0, "SAD interleave #%d: %d\n",
2108                                  sad_way, sad_interleave[sad_way]);
2109                 }
2110                 edac_dbg(0, "mc#%d: Error detected on SAD#%d: address 0x%016Lx < 0x%016Lx, Interleave [%d:6]%s\n",
2111                          pvt->sbridge_dev->mc,
2112                          n_sads,
2113                          addr,
2114                          limit,
2115                          sad_way + 7,
2116                          !interleave_mode ? "" : "XOR[18:16]");
2117                 if (interleave_mode)
2118                         idx = ((addr >> 6) ^ (addr >> 16)) & 7;
2119                 else
2120                         idx = (addr >> 6) & 7;
2121                 switch (sad_way) {
2122                 case 1:
2123                         idx = 0;
2124                         break;
2125                 case 2:
2126                         idx = idx & 1;
2127                         break;
2128                 case 4:
2129                         idx = idx & 3;
2130                         break;
2131                 case 8:
2132                         break;
2133                 default:
2134                         sprintf(msg, "Can't discover socket interleave");
2135                         return -EINVAL;
2136                 }
2137                 *socket = sad_interleave[idx];
2138                 edac_dbg(0, "SAD interleave index: %d (wayness %d) = CPU socket %d\n",
2139                          idx, sad_way, *socket);
2140         } else if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL) {
2141                 int bits, a7mode = A7MODE(dram_rule);
2142
2143                 if (a7mode) {
2144                         /* A7 mode swaps P9 with P6 */
2145                         bits = GET_BITFIELD(addr, 7, 8) << 1;
2146                         bits |= GET_BITFIELD(addr, 9, 9);
2147                 } else
2148                         bits = GET_BITFIELD(addr, 6, 8);
2149
2150                 if (interleave_mode == 0) {
2151                         /* interleave mode will XOR {8,7,6} with {18,17,16} */
2152                         idx = GET_BITFIELD(addr, 16, 18);
2153                         idx ^= bits;
2154                 } else
2155                         idx = bits;
2156
2157                 pkg = sad_pkg(pvt->info.interleave_pkg, reg, idx);
2158                 *socket = sad_pkg_socket(pkg);
2159                 sad_ha = sad_pkg_ha(pkg);
2160
2161                 if (a7mode) {
2162                         /* MCChanShiftUpEnable */
2163                         pci_read_config_dword(pvt->pci_ha, HASWELL_HASYSDEFEATURE2, &reg);
2164                         shiftup = GET_BITFIELD(reg, 22, 22);
2165                 }
2166
2167                 edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %i, shiftup: %i\n",
2168                          idx, *socket, sad_ha, shiftup);
2169         } else {
2170                 /* Ivy Bridge's SAD mode doesn't support XOR interleave mode */
2171                 idx = (addr >> 6) & 7;
2172                 pkg = sad_pkg(pvt->info.interleave_pkg, reg, idx);
2173                 *socket = sad_pkg_socket(pkg);
2174                 sad_ha = sad_pkg_ha(pkg);
2175                 edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %d\n",
2176                          idx, *socket, sad_ha);
2177         }
2178
2179         *ha = sad_ha;
2180
2181         /*
2182          * Move to the proper node structure, in order to access the
2183          * right PCI registers
2184          */
2185         new_mci = get_mci_for_node_id(*socket, sad_ha);
2186         if (!new_mci) {
2187                 sprintf(msg, "Struct for socket #%u wasn't initialized",
2188                         *socket);
2189                 return -EINVAL;
2190         }
2191         mci = new_mci;
2192         pvt = mci->pvt_info;
2193
2194         /*
2195          * Step 2) Get memory channel
2196          */
2197         prv = 0;
2198         pci_ha = pvt->pci_ha;
2199         for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
2200                 pci_read_config_dword(pci_ha, tad_dram_rule[n_tads], &reg);
2201                 limit = TAD_LIMIT(reg);
2202                 if (limit <= prv) {
2203                         sprintf(msg, "Can't discover the memory channel");
2204                         return -EINVAL;
2205                 }
2206                 if  (addr <= limit)
2207                         break;
2208                 prv = limit;
2209         }
2210         if (n_tads == MAX_TAD) {
2211                 sprintf(msg, "Can't discover the memory channel");
2212                 return -EINVAL;
2213         }
2214
2215         ch_way = TAD_CH(reg) + 1;
2216         sck_way = TAD_SOCK(reg);
2217
2218         if (ch_way == 3)
2219                 idx = addr >> 6;
2220         else {
2221                 idx = (addr >> (6 + sck_way + shiftup)) & 0x3;
2222                 if (pvt->is_chan_hash)
2223                         idx = haswell_chan_hash(idx, addr);
2224         }
2225         idx = idx % ch_way;
2226
2227         /*
2228          * FIXME: Shouldn't we use CHN_IDX_OFFSET() here, when ch_way == 3 ???
2229          */
2230         switch (idx) {
2231         case 0:
2232                 base_ch = TAD_TGT0(reg);
2233                 break;
2234         case 1:
2235                 base_ch = TAD_TGT1(reg);
2236                 break;
2237         case 2:
2238                 base_ch = TAD_TGT2(reg);
2239                 break;
2240         case 3:
2241                 base_ch = TAD_TGT3(reg);
2242                 break;
2243         default:
2244                 sprintf(msg, "Can't discover the TAD target");
2245                 return -EINVAL;
2246         }
2247         *channel_mask = 1 << base_ch;
2248
2249         pci_read_config_dword(pvt->pci_tad[base_ch], tad_ch_nilv_offset[n_tads], &tad_offset);
2250
2251         if (pvt->mirror_mode == FULL_MIRRORING ||
2252             (pvt->mirror_mode == ADDR_RANGE_MIRRORING && n_tads == 0)) {
2253                 *channel_mask |= 1 << ((base_ch + 2) % 4);
2254                 switch(ch_way) {
2255                 case 2:
2256                 case 4:
2257                         sck_xch = (1 << sck_way) * (ch_way >> 1);
2258                         break;
2259                 default:
2260                         sprintf(msg, "Invalid mirror set. Can't decode addr");
2261                         return -EINVAL;
2262                 }
2263
2264                 pvt->is_cur_addr_mirrored = true;
2265         } else {
2266                 sck_xch = (1 << sck_way) * ch_way;
2267                 pvt->is_cur_addr_mirrored = false;
2268         }
2269
2270         if (pvt->is_lockstep)
2271                 *channel_mask |= 1 << ((base_ch + 1) % 4);
2272
2273         offset = TAD_OFFSET(tad_offset);
2274
2275         edac_dbg(0, "TAD#%d: address 0x%016Lx < 0x%016Lx, socket interleave %d, channel interleave %d (offset 0x%08Lx), index %d, base ch: %d, ch mask: 0x%02lx\n",
2276                  n_tads,
2277                  addr,
2278                  limit,
2279                  sck_way,
2280                  ch_way,
2281                  offset,
2282                  idx,
2283                  base_ch,
2284                  *channel_mask);
2285
2286         /* Calculate channel address */
2287         /* Remove the TAD offset */
2288
2289         if (offset > addr) {
2290                 sprintf(msg, "Can't calculate ch addr: TAD offset 0x%08Lx is too high for addr 0x%08Lx!",
2291                         offset, addr);
2292                 return -EINVAL;
2293         }
2294
2295         ch_addr = addr - offset;
2296         ch_addr >>= (6 + shiftup);
2297         ch_addr /= sck_xch;
2298         ch_addr <<= (6 + shiftup);
2299         ch_addr |= addr & ((1 << (6 + shiftup)) - 1);
2300
2301         /*
2302          * Step 3) Decode rank
2303          */
2304         for (n_rir = 0; n_rir < MAX_RIR_RANGES; n_rir++) {
2305                 pci_read_config_dword(pvt->pci_tad[base_ch], rir_way_limit[n_rir], &reg);
2306
2307                 if (!IS_RIR_VALID(reg))
2308                         continue;
2309
2310                 limit = pvt->info.rir_limit(reg);
2311                 gb = div_u64_rem(limit >> 20, 1024, &mb);
2312                 edac_dbg(0, "RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d\n",
2313                          n_rir,
2314                          gb, (mb*1000)/1024,
2315                          limit,
2316                          1 << RIR_WAY(reg));
2317                 if  (ch_addr <= limit)
2318                         break;
2319         }
2320         if (n_rir == MAX_RIR_RANGES) {
2321                 sprintf(msg, "Can't discover the memory rank for ch addr 0x%08Lx",
2322                         ch_addr);
2323                 return -EINVAL;
2324         }
2325         rir_way = RIR_WAY(reg);
2326
2327         if (pvt->is_close_pg)
2328                 idx = (ch_addr >> 6);
2329         else
2330                 idx = (ch_addr >> 13);  /* FIXME: Datasheet says to shift by 15 */
2331         idx %= 1 << rir_way;
2332
2333         pci_read_config_dword(pvt->pci_tad[base_ch], rir_offset[n_rir][idx], &reg);
2334         *rank = RIR_RNK_TGT(pvt->info.type, reg);
2335
2336         if (pvt->info.type == BROADWELL) {
2337                 if (pvt->is_close_pg)
2338                         shiftup = 6;
2339                 else
2340                         shiftup = 13;
2341
2342                 rank_addr = ch_addr >> shiftup;
2343                 rank_addr /= (1 << rir_way);
2344                 rank_addr <<= shiftup;
2345                 rank_addr |= ch_addr & GENMASK_ULL(shiftup - 1, 0);
2346                 rank_addr -= RIR_OFFSET(pvt->info.type, reg);
2347
2348                 mtype = pvt->info.get_memory_type(pvt);
2349                 rankid = *rank;
2350                 if (mtype == MEM_DDR4 || mtype == MEM_RDDR4)
2351                         sb_decode_ddr4(mci, base_ch, rankid, rank_addr, msg);
2352                 else
2353                         sb_decode_ddr3(mci, base_ch, rankid, rank_addr, msg);
2354         } else {
2355                 msg[0] = '\0';
2356         }
2357
2358         edac_dbg(0, "RIR#%d: channel address 0x%08Lx < 0x%08Lx, RIR interleave %d, index %d\n",
2359                  n_rir,
2360                  ch_addr,
2361                  limit,
2362                  rir_way,
2363                  idx);
2364
2365         return 0;
2366 }
2367
2368 static int get_memory_error_data_from_mce(struct mem_ctl_info *mci,
2369                                           const struct mce *m, u8 *socket,
2370                                           u8 *ha, long *channel_mask,
2371                                           char *msg)
2372 {
2373         u32 reg, channel = GET_BITFIELD(m->status, 0, 3);
2374         struct mem_ctl_info *new_mci;
2375         struct sbridge_pvt *pvt;
2376         struct pci_dev *pci_ha;
2377         bool tad0;
2378
2379         if (channel >= NUM_CHANNELS) {
2380                 sprintf(msg, "Invalid channel 0x%x", channel);
2381                 return -EINVAL;
2382         }
2383
2384         pvt = mci->pvt_info;
2385         if (!pvt->info.get_ha) {
2386                 sprintf(msg, "No get_ha()");
2387                 return -EINVAL;
2388         }
2389         *ha = pvt->info.get_ha(m->bank);
2390         if (*ha != 0 && *ha != 1) {
2391                 sprintf(msg, "Impossible bank %d", m->bank);
2392                 return -EINVAL;
2393         }
2394
2395         *socket = m->socketid;
2396         new_mci = get_mci_for_node_id(*socket, *ha);
2397         if (!new_mci) {
2398                 strcpy(msg, "mci socket got corrupted!");
2399                 return -EINVAL;
2400         }
2401
2402         pvt = new_mci->pvt_info;
2403         pci_ha = pvt->pci_ha;
2404         pci_read_config_dword(pci_ha, tad_dram_rule[0], &reg);
2405         tad0 = m->addr <= TAD_LIMIT(reg);
2406
2407         *channel_mask = 1 << channel;
2408         if (pvt->mirror_mode == FULL_MIRRORING ||
2409             (pvt->mirror_mode == ADDR_RANGE_MIRRORING && tad0)) {
2410                 *channel_mask |= 1 << ((channel + 2) % 4);
2411                 pvt->is_cur_addr_mirrored = true;
2412         } else {
2413                 pvt->is_cur_addr_mirrored = false;
2414         }
2415
2416         if (pvt->is_lockstep)
2417                 *channel_mask |= 1 << ((channel + 1) % 4);
2418
2419         return 0;
2420 }
2421
2422 /****************************************************************************
2423         Device initialization routines: put/get, init/exit
2424  ****************************************************************************/
2425
2426 /*
2427  *      sbridge_put_all_devices 'put' all the devices that we have
2428  *                              reserved via 'get'
2429  */
2430 static void sbridge_put_devices(struct sbridge_dev *sbridge_dev)
2431 {
2432         int i;
2433
2434         edac_dbg(0, "\n");
2435         for (i = 0; i < sbridge_dev->n_devs; i++) {
2436                 struct pci_dev *pdev = sbridge_dev->pdev[i];
2437                 if (!pdev)
2438                         continue;
2439                 edac_dbg(0, "Removing dev %02x:%02x.%d\n",
2440                          pdev->bus->number,
2441                          PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
2442                 pci_dev_put(pdev);
2443         }
2444 }
2445
2446 static void sbridge_put_all_devices(void)
2447 {
2448         struct sbridge_dev *sbridge_dev, *tmp;
2449
2450         list_for_each_entry_safe(sbridge_dev, tmp, &sbridge_edac_list, list) {
2451                 sbridge_put_devices(sbridge_dev);
2452                 free_sbridge_dev(sbridge_dev);
2453         }
2454 }
2455
2456 static int sbridge_get_onedevice(struct pci_dev **prev,
2457                                  u8 *num_mc,
2458                                  const struct pci_id_table *table,
2459                                  const unsigned devno,
2460                                  const int multi_bus)
2461 {
2462         struct sbridge_dev *sbridge_dev = NULL;
2463         const struct pci_id_descr *dev_descr = &table->descr[devno];
2464         struct pci_dev *pdev = NULL;
2465         int seg = 0;
2466         u8 bus = 0;
2467         int i = 0;
2468
2469         sbridge_printk(KERN_DEBUG,
2470                 "Seeking for: PCI ID %04x:%04x\n",
2471                 PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2472
2473         pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
2474                               dev_descr->dev_id, *prev);
2475
2476         if (!pdev) {
2477                 if (*prev) {
2478                         *prev = pdev;
2479                         return 0;
2480                 }
2481
2482                 if (dev_descr->optional)
2483                         return 0;
2484
2485                 /* if the HA wasn't found */
2486                 if (devno == 0)
2487                         return -ENODEV;
2488
2489                 sbridge_printk(KERN_INFO,
2490                         "Device not found: %04x:%04x\n",
2491                         PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2492
2493                 /* End of list, leave */
2494                 return -ENODEV;
2495         }
2496         seg = pci_domain_nr(pdev->bus);
2497         bus = pdev->bus->number;
2498
2499 next_imc:
2500         sbridge_dev = get_sbridge_dev(seg, bus, dev_descr->dom,
2501                                       multi_bus, sbridge_dev);
2502         if (!sbridge_dev) {
2503                 /* If the HA1 wasn't found, don't create EDAC second memory controller */
2504                 if (dev_descr->dom == IMC1 && devno != 1) {
2505                         edac_dbg(0, "Skip IMC1: %04x:%04x (since HA1 was absent)\n",
2506                                  PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2507                         pci_dev_put(pdev);
2508                         return 0;
2509                 }
2510
2511                 if (dev_descr->dom == SOCK)
2512                         goto out_imc;
2513
2514                 sbridge_dev = alloc_sbridge_dev(seg, bus, dev_descr->dom, table);
2515                 if (!sbridge_dev) {
2516                         pci_dev_put(pdev);
2517                         return -ENOMEM;
2518                 }
2519                 (*num_mc)++;
2520         }
2521
2522         if (sbridge_dev->pdev[sbridge_dev->i_devs]) {
2523                 sbridge_printk(KERN_ERR,
2524                         "Duplicated device for %04x:%04x\n",
2525                         PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2526                 pci_dev_put(pdev);
2527                 return -ENODEV;
2528         }
2529
2530         sbridge_dev->pdev[sbridge_dev->i_devs++] = pdev;
2531
2532         /* pdev belongs to more than one IMC, do extra gets */
2533         if (++i > 1)
2534                 pci_dev_get(pdev);
2535
2536         if (dev_descr->dom == SOCK && i < table->n_imcs_per_sock)
2537                 goto next_imc;
2538
2539 out_imc:
2540         /* Be sure that the device is enabled */
2541         if (unlikely(pci_enable_device(pdev) < 0)) {
2542                 sbridge_printk(KERN_ERR,
2543                         "Couldn't enable %04x:%04x\n",
2544                         PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2545                 return -ENODEV;
2546         }
2547
2548         edac_dbg(0, "Detected %04x:%04x\n",
2549                  PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2550
2551         /*
2552          * As stated on drivers/pci/search.c, the reference count for
2553          * @from is always decremented if it is not %NULL. So, as we need
2554          * to get all devices up to null, we need to do a get for the device
2555          */
2556         pci_dev_get(pdev);
2557
2558         *prev = pdev;
2559
2560         return 0;
2561 }
2562
2563 /*
2564  * sbridge_get_all_devices - Find and perform 'get' operation on the MCH's
2565  *                           devices we want to reference for this driver.
2566  * @num_mc: pointer to the memory controllers count, to be incremented in case
2567  *          of success.
2568  * @table: model specific table
2569  *
2570  * returns 0 in case of success or error code
2571  */
2572 static int sbridge_get_all_devices(u8 *num_mc,
2573                                         const struct pci_id_table *table)
2574 {
2575         int i, rc;
2576         struct pci_dev *pdev = NULL;
2577         int allow_dups = 0;
2578         int multi_bus = 0;
2579
2580         if (table->type == KNIGHTS_LANDING)
2581                 allow_dups = multi_bus = 1;
2582         while (table && table->descr) {
2583                 for (i = 0; i < table->n_devs_per_sock; i++) {
2584                         if (!allow_dups || i == 0 ||
2585                                         table->descr[i].dev_id !=
2586                                                 table->descr[i-1].dev_id) {
2587                                 pdev = NULL;
2588                         }
2589                         do {
2590                                 rc = sbridge_get_onedevice(&pdev, num_mc,
2591                                                            table, i, multi_bus);
2592                                 if (rc < 0) {
2593                                         if (i == 0) {
2594                                                 i = table->n_devs_per_sock;
2595                                                 break;
2596                                         }
2597                                         sbridge_put_all_devices();
2598                                         return -ENODEV;
2599                                 }
2600                         } while (pdev && !allow_dups);
2601                 }
2602                 table++;
2603         }
2604
2605         return 0;
2606 }
2607
2608 /*
2609  * Device IDs for {SBRIDGE,IBRIDGE,HASWELL,BROADWELL}_IMC_HA0_TAD0 are in
2610  * the format: XXXa. So we can convert from a device to the corresponding
2611  * channel like this
2612  */
2613 #define TAD_DEV_TO_CHAN(dev) (((dev) & 0xf) - 0xa)
2614
2615 static int sbridge_mci_bind_devs(struct mem_ctl_info *mci,
2616                                  struct sbridge_dev *sbridge_dev)
2617 {
2618         struct sbridge_pvt *pvt = mci->pvt_info;
2619         struct pci_dev *pdev;
2620         u8 saw_chan_mask = 0;
2621         int i;
2622
2623         for (i = 0; i < sbridge_dev->n_devs; i++) {
2624                 pdev = sbridge_dev->pdev[i];
2625                 if (!pdev)
2626                         continue;
2627
2628                 switch (pdev->device) {
2629                 case PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0:
2630                         pvt->pci_sad0 = pdev;
2631                         break;
2632                 case PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1:
2633                         pvt->pci_sad1 = pdev;
2634                         break;
2635                 case PCI_DEVICE_ID_INTEL_SBRIDGE_BR:
2636                         pvt->pci_br0 = pdev;
2637                         break;
2638                 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0:
2639                         pvt->pci_ha = pdev;
2640                         break;
2641                 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA:
2642                         pvt->pci_ta = pdev;
2643                         break;
2644                 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS:
2645                         pvt->pci_ras = pdev;
2646                         break;
2647                 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0:
2648                 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1:
2649                 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2:
2650                 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3:
2651                 {
2652                         int id = TAD_DEV_TO_CHAN(pdev->device);
2653                         pvt->pci_tad[id] = pdev;
2654                         saw_chan_mask |= 1 << id;
2655                 }
2656                         break;
2657                 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO:
2658                         pvt->pci_ddrio = pdev;
2659                         break;
2660                 default:
2661                         goto error;
2662                 }
2663
2664                 edac_dbg(0, "Associated PCI %02x:%02x, bus %d with dev = %p\n",
2665                          pdev->vendor, pdev->device,
2666                          sbridge_dev->bus,
2667                          pdev);
2668         }
2669
2670         /* Check if everything were registered */
2671         if (!pvt->pci_sad0 || !pvt->pci_sad1 || !pvt->pci_ha ||
2672             !pvt->pci_ras || !pvt->pci_ta)
2673                 goto enodev;
2674
2675         if (saw_chan_mask != 0x0f)
2676                 goto enodev;
2677         return 0;
2678
2679 enodev:
2680         sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2681         return -ENODEV;
2682
2683 error:
2684         sbridge_printk(KERN_ERR, "Unexpected device %02x:%02x\n",
2685                        PCI_VENDOR_ID_INTEL, pdev->device);
2686         return -EINVAL;
2687 }
2688
2689 static int ibridge_mci_bind_devs(struct mem_ctl_info *mci,
2690                                  struct sbridge_dev *sbridge_dev)
2691 {
2692         struct sbridge_pvt *pvt = mci->pvt_info;
2693         struct pci_dev *pdev;
2694         u8 saw_chan_mask = 0;
2695         int i;
2696
2697         for (i = 0; i < sbridge_dev->n_devs; i++) {
2698                 pdev = sbridge_dev->pdev[i];
2699                 if (!pdev)
2700                         continue;
2701
2702                 switch (pdev->device) {
2703                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0:
2704                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1:
2705                         pvt->pci_ha = pdev;
2706                         break;
2707                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA:
2708                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA:
2709                         pvt->pci_ta = pdev;
2710                         break;
2711                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS:
2712                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS:
2713                         pvt->pci_ras = pdev;
2714                         break;
2715                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0:
2716                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1:
2717                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2:
2718                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3:
2719                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0:
2720                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1:
2721                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2:
2722                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3:
2723                 {
2724                         int id = TAD_DEV_TO_CHAN(pdev->device);
2725                         pvt->pci_tad[id] = pdev;
2726                         saw_chan_mask |= 1 << id;
2727                 }
2728                         break;
2729                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0:
2730                         pvt->pci_ddrio = pdev;
2731                         break;
2732                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0:
2733                         pvt->pci_ddrio = pdev;
2734                         break;
2735                 case PCI_DEVICE_ID_INTEL_IBRIDGE_SAD:
2736                         pvt->pci_sad0 = pdev;
2737                         break;
2738                 case PCI_DEVICE_ID_INTEL_IBRIDGE_BR0:
2739                         pvt->pci_br0 = pdev;
2740                         break;
2741                 case PCI_DEVICE_ID_INTEL_IBRIDGE_BR1:
2742                         pvt->pci_br1 = pdev;
2743                         break;
2744                 default:
2745                         goto error;
2746                 }
2747
2748                 edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
2749                          sbridge_dev->bus,
2750                          PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
2751                          pdev);
2752         }
2753
2754         /* Check if everything were registered */
2755         if (!pvt->pci_sad0 || !pvt->pci_ha || !pvt->pci_br0 ||
2756             !pvt->pci_br1 || !pvt->pci_ras || !pvt->pci_ta)
2757                 goto enodev;
2758
2759         if (saw_chan_mask != 0x0f && /* -EN/-EX */
2760             saw_chan_mask != 0x03)   /* -EP */
2761                 goto enodev;
2762         return 0;
2763
2764 enodev:
2765         sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2766         return -ENODEV;
2767
2768 error:
2769         sbridge_printk(KERN_ERR,
2770                        "Unexpected device %02x:%02x\n", PCI_VENDOR_ID_INTEL,
2771                         pdev->device);
2772         return -EINVAL;
2773 }
2774
2775 static int haswell_mci_bind_devs(struct mem_ctl_info *mci,
2776                                  struct sbridge_dev *sbridge_dev)
2777 {
2778         struct sbridge_pvt *pvt = mci->pvt_info;
2779         struct pci_dev *pdev;
2780         u8 saw_chan_mask = 0;
2781         int i;
2782
2783         /* there's only one device per system; not tied to any bus */
2784         if (pvt->info.pci_vtd == NULL)
2785                 /* result will be checked later */
2786                 pvt->info.pci_vtd = pci_get_device(PCI_VENDOR_ID_INTEL,
2787                                                    PCI_DEVICE_ID_INTEL_HASWELL_IMC_VTD_MISC,
2788                                                    NULL);
2789
2790         for (i = 0; i < sbridge_dev->n_devs; i++) {
2791                 pdev = sbridge_dev->pdev[i];
2792                 if (!pdev)
2793                         continue;
2794
2795                 switch (pdev->device) {
2796                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0:
2797                         pvt->pci_sad0 = pdev;
2798                         break;
2799                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1:
2800                         pvt->pci_sad1 = pdev;
2801                         break;
2802                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0:
2803                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1:
2804                         pvt->pci_ha = pdev;
2805                         break;
2806                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA:
2807                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA:
2808                         pvt->pci_ta = pdev;
2809                         break;
2810                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TM:
2811                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TM:
2812                         pvt->pci_ras = pdev;
2813                         break;
2814                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0:
2815                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1:
2816                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2:
2817                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3:
2818                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0:
2819                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1:
2820                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2:
2821                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3:
2822                 {
2823                         int id = TAD_DEV_TO_CHAN(pdev->device);
2824                         pvt->pci_tad[id] = pdev;
2825                         saw_chan_mask |= 1 << id;
2826                 }
2827                         break;
2828                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0:
2829                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1:
2830                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2:
2831                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3:
2832                         if (!pvt->pci_ddrio)
2833                                 pvt->pci_ddrio = pdev;
2834                         break;
2835                 default:
2836                         break;
2837                 }
2838
2839                 edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
2840                          sbridge_dev->bus,
2841                          PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
2842                          pdev);
2843         }
2844
2845         /* Check if everything were registered */
2846         if (!pvt->pci_sad0 || !pvt->pci_ha || !pvt->pci_sad1 ||
2847             !pvt->pci_ras  || !pvt->pci_ta || !pvt->info.pci_vtd)
2848                 goto enodev;
2849
2850         if (saw_chan_mask != 0x0f && /* -EN/-EX */
2851             saw_chan_mask != 0x03)   /* -EP */
2852                 goto enodev;
2853         return 0;
2854
2855 enodev:
2856         sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2857         return -ENODEV;
2858 }
2859
2860 static int broadwell_mci_bind_devs(struct mem_ctl_info *mci,
2861                                  struct sbridge_dev *sbridge_dev)
2862 {
2863         struct sbridge_pvt *pvt = mci->pvt_info;
2864         struct pci_dev *pdev;
2865         u8 saw_chan_mask = 0;
2866         int i;
2867
2868         /* there's only one device per system; not tied to any bus */
2869         if (pvt->info.pci_vtd == NULL)
2870                 /* result will be checked later */
2871                 pvt->info.pci_vtd = pci_get_device(PCI_VENDOR_ID_INTEL,
2872                                                    PCI_DEVICE_ID_INTEL_BROADWELL_IMC_VTD_MISC,
2873                                                    NULL);
2874
2875         for (i = 0; i < sbridge_dev->n_devs; i++) {
2876                 pdev = sbridge_dev->pdev[i];
2877                 if (!pdev)
2878                         continue;
2879
2880                 switch (pdev->device) {
2881                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0:
2882                         pvt->pci_sad0 = pdev;
2883                         break;
2884                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1:
2885                         pvt->pci_sad1 = pdev;
2886                         break;
2887                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0:
2888                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1:
2889                         pvt->pci_ha = pdev;
2890                         break;
2891                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA:
2892                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA:
2893                         pvt->pci_ta = pdev;
2894                         break;
2895                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TM:
2896                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TM:
2897                         pvt->pci_ras = pdev;
2898                         break;
2899                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0:
2900                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1:
2901                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2:
2902                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3:
2903                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0:
2904                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1:
2905                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2:
2906                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3:
2907                 {
2908                         int id = TAD_DEV_TO_CHAN(pdev->device);
2909                         pvt->pci_tad[id] = pdev;
2910                         saw_chan_mask |= 1 << id;
2911                 }
2912                         break;
2913                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0:
2914                         pvt->pci_ddrio = pdev;
2915                         break;
2916                 default:
2917                         break;
2918                 }
2919
2920                 edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
2921                          sbridge_dev->bus,
2922                          PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
2923                          pdev);
2924         }
2925
2926         /* Check if everything were registered */
2927         if (!pvt->pci_sad0 || !pvt->pci_ha || !pvt->pci_sad1 ||
2928             !pvt->pci_ras  || !pvt->pci_ta || !pvt->info.pci_vtd)
2929                 goto enodev;
2930
2931         if (saw_chan_mask != 0x0f && /* -EN/-EX */
2932             saw_chan_mask != 0x03)   /* -EP */
2933                 goto enodev;
2934         return 0;
2935
2936 enodev:
2937         sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2938         return -ENODEV;
2939 }
2940
2941 static int knl_mci_bind_devs(struct mem_ctl_info *mci,
2942                         struct sbridge_dev *sbridge_dev)
2943 {
2944         struct sbridge_pvt *pvt = mci->pvt_info;
2945         struct pci_dev *pdev;
2946         int dev, func;
2947
2948         int i;
2949         int devidx;
2950
2951         for (i = 0; i < sbridge_dev->n_devs; i++) {
2952                 pdev = sbridge_dev->pdev[i];
2953                 if (!pdev)
2954                         continue;
2955
2956                 /* Extract PCI device and function. */
2957                 dev = (pdev->devfn >> 3) & 0x1f;
2958                 func = pdev->devfn & 0x7;
2959
2960                 switch (pdev->device) {
2961                 case PCI_DEVICE_ID_INTEL_KNL_IMC_MC:
2962                         if (dev == 8)
2963                                 pvt->knl.pci_mc0 = pdev;
2964                         else if (dev == 9)
2965                                 pvt->knl.pci_mc1 = pdev;
2966                         else {
2967                                 sbridge_printk(KERN_ERR,
2968                                         "Memory controller in unexpected place! (dev %d, fn %d)\n",
2969                                         dev, func);
2970                                 continue;
2971                         }
2972                         break;
2973
2974                 case PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0:
2975                         pvt->pci_sad0 = pdev;
2976                         break;
2977
2978                 case PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1:
2979                         pvt->pci_sad1 = pdev;
2980                         break;
2981
2982                 case PCI_DEVICE_ID_INTEL_KNL_IMC_CHA:
2983                         /* There are one of these per tile, and range from
2984                          * 1.14.0 to 1.18.5.
2985                          */
2986                         devidx = ((dev-14)*8)+func;
2987
2988                         if (devidx < 0 || devidx >= KNL_MAX_CHAS) {
2989                                 sbridge_printk(KERN_ERR,
2990                                         "Caching and Home Agent in unexpected place! (dev %d, fn %d)\n",
2991                                         dev, func);
2992                                 continue;
2993                         }
2994
2995                         WARN_ON(pvt->knl.pci_cha[devidx] != NULL);
2996
2997                         pvt->knl.pci_cha[devidx] = pdev;
2998                         break;
2999
3000                 case PCI_DEVICE_ID_INTEL_KNL_IMC_CHAN:
3001                         devidx = -1;
3002
3003                         /*
3004                          *  MC0 channels 0-2 are device 9 function 2-4,
3005                          *  MC1 channels 3-5 are device 8 function 2-4.
3006                          */
3007
3008                         if (dev == 9)
3009                                 devidx = func-2;
3010                         else if (dev == 8)
3011                                 devidx = 3 + (func-2);
3012
3013                         if (devidx < 0 || devidx >= KNL_MAX_CHANNELS) {
3014                                 sbridge_printk(KERN_ERR,
3015                                         "DRAM Channel Registers in unexpected place! (dev %d, fn %d)\n",
3016                                         dev, func);
3017                                 continue;
3018                         }
3019
3020                         WARN_ON(pvt->knl.pci_channel[devidx] != NULL);
3021                         pvt->knl.pci_channel[devidx] = pdev;
3022                         break;
3023
3024                 case PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM:
3025                         pvt->knl.pci_mc_info = pdev;
3026                         break;
3027
3028                 case PCI_DEVICE_ID_INTEL_KNL_IMC_TA:
3029                         pvt->pci_ta = pdev;
3030                         break;
3031
3032                 default:
3033                         sbridge_printk(KERN_ERR, "Unexpected device %d\n",
3034                                 pdev->device);
3035                         break;
3036                 }
3037         }
3038
3039         if (!pvt->knl.pci_mc0  || !pvt->knl.pci_mc1 ||
3040             !pvt->pci_sad0     || !pvt->pci_sad1    ||
3041             !pvt->pci_ta) {
3042                 goto enodev;
3043         }
3044
3045         for (i = 0; i < KNL_MAX_CHANNELS; i++) {
3046                 if (!pvt->knl.pci_channel[i]) {
3047                         sbridge_printk(KERN_ERR, "Missing channel %d\n", i);
3048                         goto enodev;
3049                 }
3050         }
3051
3052         for (i = 0; i < KNL_MAX_CHAS; i++) {
3053                 if (!pvt->knl.pci_cha[i]) {
3054                         sbridge_printk(KERN_ERR, "Missing CHA %d\n", i);
3055                         goto enodev;
3056                 }
3057         }
3058
3059         return 0;
3060
3061 enodev:
3062         sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
3063         return -ENODEV;
3064 }
3065
3066 /****************************************************************************
3067                         Error check routines
3068  ****************************************************************************/
3069
3070 /*
3071  * While Sandy Bridge has error count registers, SMI BIOS read values from
3072  * and resets the counters. So, they are not reliable for the OS to read
3073  * from them. So, we have no option but to just trust on whatever MCE is
3074  * telling us about the errors.
3075  */
3076 static void sbridge_mce_output_error(struct mem_ctl_info *mci,
3077                                     const struct mce *m)
3078 {
3079         struct mem_ctl_info *new_mci;
3080         struct sbridge_pvt *pvt = mci->pvt_info;
3081         enum hw_event_mc_err_type tp_event;
3082         char *optype, msg[256], msg_full[512];
3083         bool ripv = GET_BITFIELD(m->mcgstatus, 0, 0);
3084         bool overflow = GET_BITFIELD(m->status, 62, 62);
3085         bool uncorrected_error = GET_BITFIELD(m->status, 61, 61);
3086         bool recoverable;
3087         u32 core_err_cnt = GET_BITFIELD(m->status, 38, 52);
3088         u32 mscod = GET_BITFIELD(m->status, 16, 31);
3089         u32 errcode = GET_BITFIELD(m->status, 0, 15);
3090         u32 channel = GET_BITFIELD(m->status, 0, 3);
3091         u32 optypenum = GET_BITFIELD(m->status, 4, 6);
3092         /*
3093          * Bits 5-0 of MCi_MISC give the least significant bit that is valid.
3094          * A value 6 is for cache line aligned address, a value 12 is for page
3095          * aligned address reported by patrol scrubber.
3096          */
3097         u32 lsb = GET_BITFIELD(m->misc, 0, 5);
3098         long channel_mask, first_channel;
3099         u8  rank = 0xff, socket, ha;
3100         int rc, dimm;
3101         char *area_type = "DRAM";
3102
3103         if (pvt->info.type != SANDY_BRIDGE)
3104                 recoverable = true;
3105         else
3106                 recoverable = GET_BITFIELD(m->status, 56, 56);
3107
3108         if (uncorrected_error) {
3109                 core_err_cnt = 1;
3110                 if (ripv) {
3111                         tp_event = HW_EVENT_ERR_UNCORRECTED;
3112                 } else {
3113                         tp_event = HW_EVENT_ERR_FATAL;
3114                 }
3115         } else {
3116                 tp_event = HW_EVENT_ERR_CORRECTED;
3117         }
3118
3119         /*
3120          * According with Table 15-9 of the Intel Architecture spec vol 3A,
3121          * memory errors should fit in this mask:
3122          *      000f 0000 1mmm cccc (binary)
3123          * where:
3124          *      f = Correction Report Filtering Bit. If 1, subsequent errors
3125          *          won't be shown
3126          *      mmm = error type
3127          *      cccc = channel
3128          * If the mask doesn't match, report an error to the parsing logic
3129          */
3130         switch (optypenum) {
3131         case 0:
3132                 optype = "generic undef request error";
3133                 break;
3134         case 1:
3135                 optype = "memory read error";
3136                 break;
3137         case 2:
3138                 optype = "memory write error";
3139                 break;
3140         case 3:
3141                 optype = "addr/cmd error";
3142                 break;
3143         case 4:
3144                 optype = "memory scrubbing error";
3145                 break;
3146         default:
3147                 optype = "reserved";
3148                 break;
3149         }
3150
3151         if (pvt->info.type == KNIGHTS_LANDING) {
3152                 if (channel == 14) {
3153                         edac_dbg(0, "%s%s err_code:%04x:%04x EDRAM bank %d\n",
3154                                 overflow ? " OVERFLOW" : "",
3155                                 (uncorrected_error && recoverable)
3156                                 ? " recoverable" : "",
3157                                 mscod, errcode,
3158                                 m->bank);
3159                 } else {
3160                         char A = *("A");
3161
3162                         /*
3163                          * Reported channel is in range 0-2, so we can't map it
3164                          * back to mc. To figure out mc we check machine check
3165                          * bank register that reported this error.
3166                          * bank15 means mc0 and bank16 means mc1.
3167                          */
3168                         channel = knl_channel_remap(m->bank == 16, channel);
3169                         channel_mask = 1 << channel;
3170
3171                         snprintf(msg, sizeof(msg),
3172                                 "%s%s err_code:%04x:%04x channel:%d (DIMM_%c)",
3173                                 overflow ? " OVERFLOW" : "",
3174                                 (uncorrected_error && recoverable)
3175                                 ? " recoverable" : " ",
3176                                 mscod, errcode, channel, A + channel);
3177                         edac_mc_handle_error(tp_event, mci, core_err_cnt,
3178                                 m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0,
3179                                 channel, 0, -1,
3180                                 optype, msg);
3181                 }
3182                 return;
3183         } else if (lsb < 12) {
3184                 rc = get_memory_error_data(mci, m->addr, &socket, &ha,
3185                                            &channel_mask, &rank,
3186                                            &area_type, msg);
3187         } else {
3188                 rc = get_memory_error_data_from_mce(mci, m, &socket, &ha,
3189                                                     &channel_mask, msg);
3190         }
3191
3192         if (rc < 0)
3193                 goto err_parsing;
3194         new_mci = get_mci_for_node_id(socket, ha);
3195         if (!new_mci) {
3196                 strcpy(msg, "Error: socket got corrupted!");
3197                 goto err_parsing;
3198         }
3199         mci = new_mci;
3200         pvt = mci->pvt_info;
3201
3202         first_channel = find_first_bit(&channel_mask, NUM_CHANNELS);
3203
3204         if (rank == 0xff)
3205                 dimm = -1;
3206         else if (rank < 4)
3207                 dimm = 0;
3208         else if (rank < 8)
3209                 dimm = 1;
3210         else
3211                 dimm = 2;
3212
3213         /*
3214          * FIXME: On some memory configurations (mirror, lockstep), the
3215          * Memory Controller can't point the error to a single DIMM. The
3216          * EDAC core should be handling the channel mask, in order to point
3217          * to the group of dimm's where the error may be happening.
3218          */
3219         if (!pvt->is_lockstep && !pvt->is_cur_addr_mirrored && !pvt->is_close_pg)
3220                 channel = first_channel;
3221         snprintf(msg_full, sizeof(msg_full),
3222                  "%s%s area:%s err_code:%04x:%04x socket:%d ha:%d channel_mask:%ld rank:%d %s",
3223                  overflow ? " OVERFLOW" : "",
3224                  (uncorrected_error && recoverable) ? " recoverable" : "",
3225                  area_type,
3226                  mscod, errcode,
3227                  socket, ha,
3228                  channel_mask,
3229                  rank, msg);
3230
3231         edac_dbg(0, "%s\n", msg_full);
3232
3233         /* FIXME: need support for channel mask */
3234
3235         if (channel == CHANNEL_UNSPECIFIED)
3236                 channel = -1;
3237
3238         /* Call the helper to output message */
3239         edac_mc_handle_error(tp_event, mci, core_err_cnt,
3240                              m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0,
3241                              channel, dimm, -1,
3242                              optype, msg_full);
3243         return;
3244 err_parsing:
3245         edac_mc_handle_error(tp_event, mci, core_err_cnt, 0, 0, 0,
3246                              -1, -1, -1,
3247                              msg, "");
3248
3249 }
3250
3251 /*
3252  * Check that logging is enabled and that this is the right type
3253  * of error for us to handle.
3254  */
3255 static int sbridge_mce_check_error(struct notifier_block *nb, unsigned long val,
3256                                    void *data)
3257 {
3258         struct mce *mce = (struct mce *)data;
3259         struct mem_ctl_info *mci;
3260         char *type;
3261
3262         if (mce->kflags & MCE_HANDLED_CEC)
3263                 return NOTIFY_DONE;
3264
3265         /*
3266          * Just let mcelog handle it if the error is
3267          * outside the memory controller. A memory error
3268          * is indicated by bit 7 = 1 and bits = 8-11,13-15 = 0.
3269          * bit 12 has an special meaning.
3270          */
3271         if ((mce->status & 0xefff) >> 7 != 1)
3272                 return NOTIFY_DONE;
3273
3274         /* Check ADDRV bit in STATUS */
3275         if (!GET_BITFIELD(mce->status, 58, 58))
3276                 return NOTIFY_DONE;
3277
3278         /* Check MISCV bit in STATUS */
3279         if (!GET_BITFIELD(mce->status, 59, 59))
3280                 return NOTIFY_DONE;
3281
3282         /* Check address type in MISC (physical address only) */
3283         if (GET_BITFIELD(mce->misc, 6, 8) != 2)
3284                 return NOTIFY_DONE;
3285
3286         mci = get_mci_for_node_id(mce->socketid, IMC0);
3287         if (!mci)
3288                 return NOTIFY_DONE;
3289
3290         if (mce->mcgstatus & MCG_STATUS_MCIP)
3291                 type = "Exception";
3292         else
3293                 type = "Event";
3294
3295         sbridge_mc_printk(mci, KERN_DEBUG, "HANDLING MCE MEMORY ERROR\n");
3296
3297         sbridge_mc_printk(mci, KERN_DEBUG, "CPU %d: Machine Check %s: %Lx "
3298                           "Bank %d: %016Lx\n", mce->extcpu, type,
3299                           mce->mcgstatus, mce->bank, mce->status);
3300         sbridge_mc_printk(mci, KERN_DEBUG, "TSC %llx ", mce->tsc);
3301         sbridge_mc_printk(mci, KERN_DEBUG, "ADDR %llx ", mce->addr);
3302         sbridge_mc_printk(mci, KERN_DEBUG, "MISC %llx ", mce->misc);
3303
3304         sbridge_mc_printk(mci, KERN_DEBUG, "PROCESSOR %u:%x TIME %llu SOCKET "
3305                           "%u APIC %x\n", mce->cpuvendor, mce->cpuid,
3306                           mce->time, mce->socketid, mce->apicid);
3307
3308         sbridge_mce_output_error(mci, mce);
3309
3310         /* Advice mcelog that the error were handled */
3311         mce->kflags |= MCE_HANDLED_EDAC;
3312         return NOTIFY_OK;
3313 }
3314
3315 static struct notifier_block sbridge_mce_dec = {
3316         .notifier_call  = sbridge_mce_check_error,
3317         .priority       = MCE_PRIO_EDAC,
3318 };
3319
3320 /****************************************************************************
3321                         EDAC register/unregister logic
3322  ****************************************************************************/
3323
3324 static void sbridge_unregister_mci(struct sbridge_dev *sbridge_dev)
3325 {
3326         struct mem_ctl_info *mci = sbridge_dev->mci;
3327
3328         if (unlikely(!mci || !mci->pvt_info)) {
3329                 edac_dbg(0, "MC: dev = %p\n", &sbridge_dev->pdev[0]->dev);
3330
3331                 sbridge_printk(KERN_ERR, "Couldn't find mci handler\n");
3332                 return;
3333         }
3334
3335         edac_dbg(0, "MC: mci = %p, dev = %p\n",
3336                  mci, &sbridge_dev->pdev[0]->dev);
3337
3338         /* Remove MC sysfs nodes */
3339         edac_mc_del_mc(mci->pdev);
3340
3341         edac_dbg(1, "%s: free mci struct\n", mci->ctl_name);
3342         kfree(mci->ctl_name);
3343         edac_mc_free(mci);
3344         sbridge_dev->mci = NULL;
3345 }
3346
3347 static int sbridge_register_mci(struct sbridge_dev *sbridge_dev, enum type type)
3348 {
3349         struct mem_ctl_info *mci;
3350         struct edac_mc_layer layers[2];
3351         struct sbridge_pvt *pvt;
3352         struct pci_dev *pdev = sbridge_dev->pdev[0];
3353         int rc;
3354
3355         /* allocate a new MC control structure */
3356         layers[0].type = EDAC_MC_LAYER_CHANNEL;
3357         layers[0].size = type == KNIGHTS_LANDING ?
3358                 KNL_MAX_CHANNELS : NUM_CHANNELS;
3359         layers[0].is_virt_csrow = false;
3360         layers[1].type = EDAC_MC_LAYER_SLOT;
3361         layers[1].size = type == KNIGHTS_LANDING ? 1 : MAX_DIMMS;
3362         layers[1].is_virt_csrow = true;
3363         mci = edac_mc_alloc(sbridge_dev->mc, ARRAY_SIZE(layers), layers,
3364                             sizeof(*pvt));
3365
3366         if (unlikely(!mci))
3367                 return -ENOMEM;
3368
3369         edac_dbg(0, "MC: mci = %p, dev = %p\n",
3370                  mci, &pdev->dev);
3371
3372         pvt = mci->pvt_info;
3373         memset(pvt, 0, sizeof(*pvt));
3374
3375         /* Associate sbridge_dev and mci for future usage */
3376         pvt->sbridge_dev = sbridge_dev;
3377         sbridge_dev->mci = mci;
3378
3379         mci->mtype_cap = type == KNIGHTS_LANDING ?
3380                 MEM_FLAG_DDR4 : MEM_FLAG_DDR3;
3381         mci->edac_ctl_cap = EDAC_FLAG_NONE;
3382         mci->edac_cap = EDAC_FLAG_NONE;
3383         mci->mod_name = EDAC_MOD_STR;
3384         mci->dev_name = pci_name(pdev);
3385         mci->ctl_page_to_phys = NULL;
3386
3387         pvt->info.type = type;
3388         switch (type) {
3389         case IVY_BRIDGE:
3390                 pvt->info.rankcfgr = IB_RANK_CFG_A;
3391                 pvt->info.get_tolm = ibridge_get_tolm;
3392                 pvt->info.get_tohm = ibridge_get_tohm;
3393                 pvt->info.dram_rule = ibridge_dram_rule;
3394                 pvt->info.get_memory_type = get_memory_type;
3395                 pvt->info.get_node_id = get_node_id;
3396                 pvt->info.get_ha = ibridge_get_ha;
3397                 pvt->info.rir_limit = rir_limit;
3398                 pvt->info.sad_limit = sad_limit;
3399                 pvt->info.interleave_mode = interleave_mode;
3400                 pvt->info.dram_attr = dram_attr;
3401                 pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
3402                 pvt->info.interleave_list = ibridge_interleave_list;
3403                 pvt->info.interleave_pkg = ibridge_interleave_pkg;
3404                 pvt->info.get_width = ibridge_get_width;
3405
3406                 /* Store pci devices at mci for faster access */
3407                 rc = ibridge_mci_bind_devs(mci, sbridge_dev);
3408                 if (unlikely(rc < 0))
3409                         goto fail0;
3410                 get_source_id(mci);
3411                 mci->ctl_name = kasprintf(GFP_KERNEL, "Ivy Bridge SrcID#%d_Ha#%d",
3412                         pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
3413                 break;
3414         case SANDY_BRIDGE:
3415                 pvt->info.rankcfgr = SB_RANK_CFG_A;
3416                 pvt->info.get_tolm = sbridge_get_tolm;
3417                 pvt->info.get_tohm = sbridge_get_tohm;
3418                 pvt->info.dram_rule = sbridge_dram_rule;
3419                 pvt->info.get_memory_type = get_memory_type;
3420                 pvt->info.get_node_id = get_node_id;
3421                 pvt->info.get_ha = sbridge_get_ha;
3422                 pvt->info.rir_limit = rir_limit;
3423                 pvt->info.sad_limit = sad_limit;
3424                 pvt->info.interleave_mode = interleave_mode;
3425                 pvt->info.dram_attr = dram_attr;
3426                 pvt->info.max_sad = ARRAY_SIZE(sbridge_dram_rule);
3427                 pvt->info.interleave_list = sbridge_interleave_list;
3428                 pvt->info.interleave_pkg = sbridge_interleave_pkg;
3429                 pvt->info.get_width = sbridge_get_width;
3430
3431                 /* Store pci devices at mci for faster access */
3432                 rc = sbridge_mci_bind_devs(mci, sbridge_dev);
3433                 if (unlikely(rc < 0))
3434                         goto fail0;
3435                 get_source_id(mci);
3436                 mci->ctl_name = kasprintf(GFP_KERNEL, "Sandy Bridge SrcID#%d_Ha#%d",
3437                         pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
3438                 break;
3439         case HASWELL:
3440                 /* rankcfgr isn't used */
3441                 pvt->info.get_tolm = haswell_get_tolm;
3442                 pvt->info.get_tohm = haswell_get_tohm;
3443                 pvt->info.dram_rule = ibridge_dram_rule;
3444                 pvt->info.get_memory_type = haswell_get_memory_type;
3445                 pvt->info.get_node_id = haswell_get_node_id;
3446                 pvt->info.get_ha = ibridge_get_ha;
3447                 pvt->info.rir_limit = haswell_rir_limit;
3448                 pvt->info.sad_limit = sad_limit;
3449                 pvt->info.interleave_mode = interleave_mode;
3450                 pvt->info.dram_attr = dram_attr;
3451                 pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
3452                 pvt->info.interleave_list = ibridge_interleave_list;
3453                 pvt->info.interleave_pkg = ibridge_interleave_pkg;
3454                 pvt->info.get_width = ibridge_get_width;
3455
3456                 /* Store pci devices at mci for faster access */
3457                 rc = haswell_mci_bind_devs(mci, sbridge_dev);
3458                 if (unlikely(rc < 0))
3459                         goto fail0;
3460                 get_source_id(mci);
3461                 mci->ctl_name = kasprintf(GFP_KERNEL, "Haswell SrcID#%d_Ha#%d",
3462                         pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
3463                 break;
3464         case BROADWELL:
3465                 /* rankcfgr isn't used */
3466                 pvt->info.get_tolm = haswell_get_tolm;
3467                 pvt->info.get_tohm = haswell_get_tohm;
3468                 pvt->info.dram_rule = ibridge_dram_rule;
3469                 pvt->info.get_memory_type = haswell_get_memory_type;
3470                 pvt->info.get_node_id = haswell_get_node_id;
3471                 pvt->info.get_ha = ibridge_get_ha;
3472                 pvt->info.rir_limit = haswell_rir_limit;
3473                 pvt->info.sad_limit = sad_limit;
3474                 pvt->info.interleave_mode = interleave_mode;
3475                 pvt->info.dram_attr = dram_attr;
3476                 pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
3477                 pvt->info.interleave_list = ibridge_interleave_list;
3478                 pvt->info.interleave_pkg = ibridge_interleave_pkg;
3479                 pvt->info.get_width = broadwell_get_width;
3480
3481                 /* Store pci devices at mci for faster access */
3482                 rc = broadwell_mci_bind_devs(mci, sbridge_dev);
3483                 if (unlikely(rc < 0))
3484                         goto fail0;
3485                 get_source_id(mci);
3486                 mci->ctl_name = kasprintf(GFP_KERNEL, "Broadwell SrcID#%d_Ha#%d",
3487                         pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
3488                 break;
3489         case KNIGHTS_LANDING:
3490                 /* pvt->info.rankcfgr == ??? */
3491                 pvt->info.get_tolm = knl_get_tolm;
3492                 pvt->info.get_tohm = knl_get_tohm;
3493                 pvt->info.dram_rule = knl_dram_rule;
3494                 pvt->info.get_memory_type = knl_get_memory_type;
3495                 pvt->info.get_node_id = knl_get_node_id;
3496                 pvt->info.get_ha = knl_get_ha;
3497                 pvt->info.rir_limit = NULL;
3498                 pvt->info.sad_limit = knl_sad_limit;
3499                 pvt->info.interleave_mode = knl_interleave_mode;
3500                 pvt->info.dram_attr = dram_attr_knl;
3501                 pvt->info.max_sad = ARRAY_SIZE(knl_dram_rule);
3502                 pvt->info.interleave_list = knl_interleave_list;
3503                 pvt->info.interleave_pkg = ibridge_interleave_pkg;
3504                 pvt->info.get_width = knl_get_width;
3505
3506                 rc = knl_mci_bind_devs(mci, sbridge_dev);
3507                 if (unlikely(rc < 0))
3508                         goto fail0;
3509                 get_source_id(mci);
3510                 mci->ctl_name = kasprintf(GFP_KERNEL, "Knights Landing SrcID#%d_Ha#%d",
3511                         pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
3512                 break;
3513         }
3514
3515         if (!mci->ctl_name) {
3516                 rc = -ENOMEM;
3517                 goto fail0;
3518         }
3519
3520         /* Get dimm basic config and the memory layout */
3521         rc = get_dimm_config(mci);
3522         if (rc < 0) {
3523                 edac_dbg(0, "MC: failed to get_dimm_config()\n");
3524                 goto fail;
3525         }
3526         get_memory_layout(mci);
3527
3528         /* record ptr to the generic device */
3529         mci->pdev = &pdev->dev;
3530
3531         /* add this new MC control structure to EDAC's list of MCs */
3532         if (unlikely(edac_mc_add_mc(mci))) {
3533                 edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
3534                 rc = -EINVAL;
3535                 goto fail;
3536         }
3537
3538         return 0;
3539
3540 fail:
3541         kfree(mci->ctl_name);
3542 fail0:
3543         edac_mc_free(mci);
3544         sbridge_dev->mci = NULL;
3545         return rc;
3546 }
3547
3548 static const struct x86_cpu_id sbridge_cpuids[] = {
3549         X86_MATCH_INTEL_FAM6_MODEL(SANDYBRIDGE_X, &pci_dev_descr_sbridge_table),
3550         X86_MATCH_INTEL_FAM6_MODEL(IVYBRIDGE_X,   &pci_dev_descr_ibridge_table),
3551         X86_MATCH_INTEL_FAM6_MODEL(HASWELL_X,     &pci_dev_descr_haswell_table),
3552         X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_X,   &pci_dev_descr_broadwell_table),
3553         X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_D,   &pci_dev_descr_broadwell_table),
3554         X86_MATCH_INTEL_FAM6_MODEL(XEON_PHI_KNL,  &pci_dev_descr_knl_table),
3555         X86_MATCH_INTEL_FAM6_MODEL(XEON_PHI_KNM,  &pci_dev_descr_knl_table),
3556         { }
3557 };
3558 MODULE_DEVICE_TABLE(x86cpu, sbridge_cpuids);
3559
3560 /*
3561  *      sbridge_probe   Get all devices and register memory controllers
3562  *                      present.
3563  *      return:
3564  *              0 for FOUND a device
3565  *              < 0 for error code
3566  */
3567
3568 static int sbridge_probe(const struct x86_cpu_id *id)
3569 {
3570         int rc;
3571         u8 mc, num_mc = 0;
3572         struct sbridge_dev *sbridge_dev;
3573         struct pci_id_table *ptable = (struct pci_id_table *)id->driver_data;
3574
3575         /* get the pci devices we want to reserve for our use */
3576         rc = sbridge_get_all_devices(&num_mc, ptable);
3577
3578         if (unlikely(rc < 0)) {
3579                 edac_dbg(0, "couldn't get all devices\n");
3580                 goto fail0;
3581         }
3582
3583         mc = 0;
3584
3585         list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
3586                 edac_dbg(0, "Registering MC#%d (%d of %d)\n",
3587                          mc, mc + 1, num_mc);
3588
3589                 sbridge_dev->mc = mc++;
3590                 rc = sbridge_register_mci(sbridge_dev, ptable->type);
3591                 if (unlikely(rc < 0))
3592                         goto fail1;
3593         }
3594
3595         sbridge_printk(KERN_INFO, "%s\n", SBRIDGE_REVISION);
3596
3597         return 0;
3598
3599 fail1:
3600         list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
3601                 sbridge_unregister_mci(sbridge_dev);
3602
3603         sbridge_put_all_devices();
3604 fail0:
3605         return rc;
3606 }
3607
3608 /*
3609  *      sbridge_remove  cleanup
3610  *
3611  */
3612 static void sbridge_remove(void)
3613 {
3614         struct sbridge_dev *sbridge_dev;
3615
3616         edac_dbg(0, "\n");
3617
3618         list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
3619                 sbridge_unregister_mci(sbridge_dev);
3620
3621         /* Release PCI resources */
3622         sbridge_put_all_devices();
3623 }
3624
3625 /*
3626  *      sbridge_init            Module entry function
3627  *                      Try to initialize this module for its devices
3628  */
3629 static int __init sbridge_init(void)
3630 {
3631         const struct x86_cpu_id *id;
3632         const char *owner;
3633         int rc;
3634
3635         edac_dbg(2, "\n");
3636
3637         owner = edac_get_owner();
3638         if (owner && strncmp(owner, EDAC_MOD_STR, sizeof(EDAC_MOD_STR)))
3639                 return -EBUSY;
3640
3641         if (cpu_feature_enabled(X86_FEATURE_HYPERVISOR))
3642                 return -ENODEV;
3643
3644         id = x86_match_cpu(sbridge_cpuids);
3645         if (!id)
3646                 return -ENODEV;
3647
3648         /* Ensure that the OPSTATE is set correctly for POLL or NMI */
3649         opstate_init();
3650
3651         rc = sbridge_probe(id);
3652
3653         if (rc >= 0) {
3654                 mce_register_decode_chain(&sbridge_mce_dec);
3655                 return 0;
3656         }
3657
3658         sbridge_printk(KERN_ERR, "Failed to register device with error %d.\n",
3659                       rc);
3660
3661         return rc;
3662 }
3663
3664 /*
3665  *      sbridge_exit()  Module exit function
3666  *                      Unregister the driver
3667  */
3668 static void __exit sbridge_exit(void)
3669 {
3670         edac_dbg(2, "\n");
3671         sbridge_remove();
3672         mce_unregister_decode_chain(&sbridge_mce_dec);
3673 }
3674
3675 module_init(sbridge_init);
3676 module_exit(sbridge_exit);
3677
3678 module_param(edac_op_state, int, 0444);
3679 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
3680
3681 MODULE_LICENSE("GPL");
3682 MODULE_AUTHOR("Mauro Carvalho Chehab");
3683 MODULE_AUTHOR("Red Hat Inc. (https://www.redhat.com)");
3684 MODULE_DESCRIPTION("MC Driver for Intel Sandy Bridge and Ivy Bridge memory controllers - "
3685                    SBRIDGE_REVISION);