1 // SPDX-License-Identifier: GPL-2.0-only
3 * Driver for Pondicherry2 memory controller.
5 * Copyright (c) 2016, Intel Corporation.
7 * [Derived from sb_edac.c]
9 * Translation of system physical addresses to DIMM addresses
10 * is a two stage process:
12 * First the Pondicherry 2 memory controller handles slice and channel interleaving
13 * in "sys2pmi()". This is (almost) completley common between platforms.
15 * Then a platform specific dunit (DIMM unit) completes the process to provide DIMM,
16 * rank, bank, row and column using the appropriate "dunit_ops" functions/parameters.
19 #include <linux/module.h>
20 #include <linux/init.h>
21 #include <linux/pci.h>
22 #include <linux/pci_ids.h>
23 #include <linux/slab.h>
24 #include <linux/delay.h>
25 #include <linux/edac.h>
26 #include <linux/mmzone.h>
27 #include <linux/smp.h>
28 #include <linux/bitmap.h>
29 #include <linux/math64.h>
30 #include <linux/mod_devicetable.h>
31 #include <asm/cpu_device_id.h>
32 #include <asm/intel-family.h>
33 #include <asm/processor.h>
37 #include "edac_module.h"
38 #include "pnd2_edac.h"
40 #define EDAC_MOD_STR "pnd2_edac"
42 #define APL_NUM_CHANNELS 4
43 #define DNV_NUM_CHANNELS 2
44 #define DNV_MAX_DIMMS 2 /* Max DIMMs per channel */
48 DNV, /* All requests go to PMI CH0 on each slice (CH1 disabled) */
61 int dimm_geom[APL_NUM_CHANNELS];
66 * System address space is divided into multiple regions with
67 * different interleave rules in each. The as0/as1 regions
68 * have no interleaving at all. The as2 region is interleaved
69 * between two channels. The mot region is magic and may overlap
70 * other regions, with its interleave rules taking precedence.
71 * Addresses not in any of these regions are interleaved across
74 static struct region {
80 static struct dunit_ops {
86 int dimms_per_channel;
87 int (*rd_reg)(int port, int off, int op, void *data, size_t sz, char *name);
88 int (*get_registers)(void);
89 int (*check_ecc)(void);
90 void (*mk_region)(char *name, struct region *rp, void *asym);
91 void (*get_dimm_config)(struct mem_ctl_info *mci);
92 int (*pmi2mem)(struct mem_ctl_info *mci, u64 pmiaddr, u32 pmiidx,
93 struct dram_addr *daddr, char *msg);
96 static struct mem_ctl_info *pnd2_mci;
98 #define PND2_MSG_SIZE 256
101 #define pnd2_printk(level, fmt, arg...) \
102 edac_printk(level, "pnd2", fmt, ##arg)
104 #define pnd2_mc_printk(mci, level, fmt, arg...) \
105 edac_mc_chipset_printk(mci, level, "pnd2", fmt, ##arg)
107 #define MOT_CHAN_INTLV_BIT_1SLC_2CH 12
108 #define MOT_CHAN_INTLV_BIT_2SLC_2CH 13
109 #define SELECTOR_DISABLED (-1)
110 #define _4GB (1ul << 32)
112 #define PMI_ADDRESS_WIDTH 31
113 #define PND_MAX_PHYS_BIT 39
115 #define APL_ASYMSHIFT 28
116 #define DNV_ASYMSHIFT 31
117 #define CH_HASH_MASK_LSB 6
118 #define SLICE_HASH_MASK_LSB 6
119 #define MOT_SLC_INTLV_BIT 12
120 #define LOG2_PMI_ADDR_GRANULARITY 5
123 #define GET_BITFIELD(v, lo, hi) (((v) & GENMASK_ULL(hi, lo)) >> (lo))
124 #define U64_LSHIFT(val, s) ((u64)(val) << (s))
127 * On Apollo Lake we access memory controller registers via a
128 * side-band mailbox style interface in a hidden PCI device
129 * configuration space.
131 static struct pci_bus *p2sb_bus;
132 #define P2SB_DEVFN PCI_DEVFN(0xd, 0)
133 #define P2SB_ADDR_OFF 0xd0
134 #define P2SB_DATA_OFF 0xd4
135 #define P2SB_STAT_OFF 0xd8
136 #define P2SB_ROUT_OFF 0xda
137 #define P2SB_EADD_OFF 0xdc
138 #define P2SB_HIDE_OFF 0xe1
142 #define P2SB_READ(size, off, ptr) \
143 pci_bus_read_config_##size(p2sb_bus, P2SB_DEVFN, off, ptr)
144 #define P2SB_WRITE(size, off, val) \
145 pci_bus_write_config_##size(p2sb_bus, P2SB_DEVFN, off, val)
147 static bool p2sb_is_busy(u16 *status)
149 P2SB_READ(word, P2SB_STAT_OFF, status);
151 return !!(*status & P2SB_BUSY);
154 static int _apl_rd_reg(int port, int off, int op, u32 *data)
156 int retries = 0xff, ret;
160 /* Unhide the P2SB device, if it's hidden */
161 P2SB_READ(byte, P2SB_HIDE_OFF, &hidden);
163 P2SB_WRITE(byte, P2SB_HIDE_OFF, 0);
165 if (p2sb_is_busy(&status)) {
170 P2SB_WRITE(dword, P2SB_ADDR_OFF, (port << 24) | off);
171 P2SB_WRITE(dword, P2SB_DATA_OFF, 0);
172 P2SB_WRITE(dword, P2SB_EADD_OFF, 0);
173 P2SB_WRITE(word, P2SB_ROUT_OFF, 0);
174 P2SB_WRITE(word, P2SB_STAT_OFF, (op << 8) | P2SB_BUSY);
176 while (p2sb_is_busy(&status)) {
177 if (retries-- == 0) {
183 P2SB_READ(dword, P2SB_DATA_OFF, data);
184 ret = (status >> 1) & 0x3;
186 /* Hide the P2SB device, if it was hidden before */
188 P2SB_WRITE(byte, P2SB_HIDE_OFF, hidden);
193 static int apl_rd_reg(int port, int off, int op, void *data, size_t sz, char *name)
197 edac_dbg(2, "Read %s port=%x off=%x op=%x\n", name, port, off, op);
200 ret = _apl_rd_reg(port, off + 4, op, (u32 *)(data + 4));
203 ret |= _apl_rd_reg(port, off, op, (u32 *)data);
204 pnd2_printk(KERN_DEBUG, "%s=%x%08x ret=%d\n", name,
205 sz == 8 ? *((u32 *)(data + 4)) : 0, *((u32 *)data), ret);
212 static u64 get_mem_ctrl_hub_base_addr(void)
214 struct b_cr_mchbar_lo_pci lo;
215 struct b_cr_mchbar_hi_pci hi;
216 struct pci_dev *pdev;
218 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x1980, NULL);
220 pci_read_config_dword(pdev, 0x48, (u32 *)&lo);
221 pci_read_config_dword(pdev, 0x4c, (u32 *)&hi);
228 edac_dbg(2, "MMIO via memory controller hub base address is disabled!\n");
232 return U64_LSHIFT(hi.base, 32) | U64_LSHIFT(lo.base, 15);
235 static u64 get_sideband_reg_base_addr(void)
237 struct pci_dev *pdev;
241 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x19dd, NULL);
243 /* Unhide the P2SB device, if it's hidden */
244 pci_read_config_byte(pdev, 0xe1, &hidden);
246 pci_write_config_byte(pdev, 0xe1, 0);
248 pci_read_config_dword(pdev, 0x10, &lo);
249 pci_read_config_dword(pdev, 0x14, &hi);
252 /* Hide the P2SB device, if it was hidden before */
254 pci_write_config_byte(pdev, 0xe1, hidden);
257 return (U64_LSHIFT(hi, 32) | U64_LSHIFT(lo, 0));
263 #define DNV_MCHBAR_SIZE 0x8000
264 #define DNV_SB_PORT_SIZE 0x10000
265 static int dnv_rd_reg(int port, int off, int op, void *data, size_t sz, char *name)
267 struct pci_dev *pdev;
273 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x1980, NULL);
277 pci_read_config_dword(pdev, off, data);
280 /* MMIO via memory controller hub base address */
281 if (op == 0 && port == 0x4c) {
282 addr = get_mem_ctrl_hub_base_addr();
285 size = DNV_MCHBAR_SIZE;
287 /* MMIO via sideband register base address */
288 addr = get_sideband_reg_base_addr();
291 addr += (port << 16);
292 size = DNV_SB_PORT_SIZE;
295 base = ioremap((resource_size_t)addr, size);
300 *(u32 *)(data + 4) = *(u32 *)(base + off + 4);
301 *(u32 *)data = *(u32 *)(base + off);
306 edac_dbg(2, "Read %s=%.8x_%.8x\n", name,
307 (sz == 8) ? *(u32 *)(data + 4) : 0, *(u32 *)data);
312 #define RD_REGP(regp, regname, port) \
315 regname##_r_opcode, \
316 regp, sizeof(struct regname), \
319 #define RD_REG(regp, regname) \
320 ops->rd_reg(regname ## _port, \
322 regname##_r_opcode, \
323 regp, sizeof(struct regname), \
326 static u64 top_lm, top_hm;
327 static bool two_slices;
328 static bool two_channels; /* Both PMI channels in one slice enabled */
330 static u8 sym_chan_mask;
331 static u8 asym_chan_mask;
334 static int slice_selector = -1;
335 static int chan_selector = -1;
336 static u64 slice_hash_mask;
337 static u64 chan_hash_mask;
339 static void mk_region(char *name, struct region *rp, u64 base, u64 limit)
344 edac_dbg(2, "Region:%s [%llx, %llx]\n", name, base, limit);
347 static void mk_region_mask(char *name, struct region *rp, u64 base, u64 mask)
350 pr_info(FW_BUG "MOT mask cannot be zero\n");
353 if (mask != GENMASK_ULL(PND_MAX_PHYS_BIT, __ffs(mask))) {
354 pr_info(FW_BUG "MOT mask not power of two\n");
358 pr_info(FW_BUG "MOT region base/mask alignment error\n");
362 rp->limit = (base | ~mask) & GENMASK_ULL(PND_MAX_PHYS_BIT, 0);
364 edac_dbg(2, "Region:%s [%llx, %llx]\n", name, base, rp->limit);
367 static bool in_region(struct region *rp, u64 addr)
372 return rp->base <= addr && addr <= rp->limit;
375 static int gen_sym_mask(struct b_cr_slice_channel_hash *p)
379 if (!p->slice_0_mem_disabled)
380 mask |= p->sym_slice0_channel_enabled;
382 if (!p->slice_1_disabled)
383 mask |= p->sym_slice1_channel_enabled << 2;
385 if (p->ch_1_disabled || p->enable_pmi_dual_data_mode)
391 static int gen_asym_mask(struct b_cr_slice_channel_hash *p,
392 struct b_cr_asym_mem_region0_mchbar *as0,
393 struct b_cr_asym_mem_region1_mchbar *as1,
394 struct b_cr_asym_2way_mem_region_mchbar *as2way)
396 const int intlv[] = { 0x5, 0xA, 0x3, 0xC };
399 if (as2way->asym_2way_interleave_enable)
400 mask = intlv[as2way->asym_2way_intlv_mode];
401 if (as0->slice0_asym_enable)
402 mask |= (1 << as0->slice0_asym_channel_select);
403 if (as1->slice1_asym_enable)
404 mask |= (4 << as1->slice1_asym_channel_select);
405 if (p->slice_0_mem_disabled)
407 if (p->slice_1_disabled)
409 if (p->ch_1_disabled || p->enable_pmi_dual_data_mode)
415 static struct b_cr_tolud_pci tolud;
416 static struct b_cr_touud_lo_pci touud_lo;
417 static struct b_cr_touud_hi_pci touud_hi;
418 static struct b_cr_asym_mem_region0_mchbar asym0;
419 static struct b_cr_asym_mem_region1_mchbar asym1;
420 static struct b_cr_asym_2way_mem_region_mchbar asym_2way;
421 static struct b_cr_mot_out_base_mchbar mot_base;
422 static struct b_cr_mot_out_mask_mchbar mot_mask;
423 static struct b_cr_slice_channel_hash chash;
425 /* Apollo Lake dunit */
427 * Validated on board with just two DIMMs in the [0] and [2] positions
428 * in this array. Other port number matches documentation, but caution
431 static const int apl_dports[APL_NUM_CHANNELS] = { 0x18, 0x10, 0x11, 0x19 };
432 static struct d_cr_drp0 drp0[APL_NUM_CHANNELS];
434 /* Denverton dunit */
435 static const int dnv_dports[DNV_NUM_CHANNELS] = { 0x10, 0x12 };
436 static struct d_cr_dsch dsch;
437 static struct d_cr_ecc_ctrl ecc_ctrl[DNV_NUM_CHANNELS];
438 static struct d_cr_drp drp[DNV_NUM_CHANNELS];
439 static struct d_cr_dmap dmap[DNV_NUM_CHANNELS];
440 static struct d_cr_dmap1 dmap1[DNV_NUM_CHANNELS];
441 static struct d_cr_dmap2 dmap2[DNV_NUM_CHANNELS];
442 static struct d_cr_dmap3 dmap3[DNV_NUM_CHANNELS];
443 static struct d_cr_dmap4 dmap4[DNV_NUM_CHANNELS];
444 static struct d_cr_dmap5 dmap5[DNV_NUM_CHANNELS];
446 static void apl_mk_region(char *name, struct region *rp, void *asym)
448 struct b_cr_asym_mem_region0_mchbar *a = asym;
451 U64_LSHIFT(a->slice0_asym_base, APL_ASYMSHIFT),
452 U64_LSHIFT(a->slice0_asym_limit, APL_ASYMSHIFT) +
453 GENMASK_ULL(APL_ASYMSHIFT - 1, 0));
456 static void dnv_mk_region(char *name, struct region *rp, void *asym)
458 struct b_cr_asym_mem_region_denverton *a = asym;
461 U64_LSHIFT(a->slice_asym_base, DNV_ASYMSHIFT),
462 U64_LSHIFT(a->slice_asym_limit, DNV_ASYMSHIFT) +
463 GENMASK_ULL(DNV_ASYMSHIFT - 1, 0));
466 static int apl_get_registers(void)
471 if (RD_REG(&asym_2way, b_cr_asym_2way_mem_region_mchbar))
475 * RD_REGP() will fail for unpopulated or non-existent
476 * DIMM slots. Return success if we find at least one DIMM.
478 for (i = 0; i < APL_NUM_CHANNELS; i++)
479 if (!RD_REGP(&drp0[i], d_cr_drp0, apl_dports[i]))
485 static int dnv_get_registers(void)
489 if (RD_REG(&dsch, d_cr_dsch))
492 for (i = 0; i < DNV_NUM_CHANNELS; i++)
493 if (RD_REGP(&ecc_ctrl[i], d_cr_ecc_ctrl, dnv_dports[i]) ||
494 RD_REGP(&drp[i], d_cr_drp, dnv_dports[i]) ||
495 RD_REGP(&dmap[i], d_cr_dmap, dnv_dports[i]) ||
496 RD_REGP(&dmap1[i], d_cr_dmap1, dnv_dports[i]) ||
497 RD_REGP(&dmap2[i], d_cr_dmap2, dnv_dports[i]) ||
498 RD_REGP(&dmap3[i], d_cr_dmap3, dnv_dports[i]) ||
499 RD_REGP(&dmap4[i], d_cr_dmap4, dnv_dports[i]) ||
500 RD_REGP(&dmap5[i], d_cr_dmap5, dnv_dports[i]))
507 * Read all the h/w config registers once here (they don't
508 * change at run time. Figure out which address ranges have
509 * which interleave characteristics.
511 static int get_registers(void)
513 const int intlv[] = { 10, 11, 12, 12 };
515 if (RD_REG(&tolud, b_cr_tolud_pci) ||
516 RD_REG(&touud_lo, b_cr_touud_lo_pci) ||
517 RD_REG(&touud_hi, b_cr_touud_hi_pci) ||
518 RD_REG(&asym0, b_cr_asym_mem_region0_mchbar) ||
519 RD_REG(&asym1, b_cr_asym_mem_region1_mchbar) ||
520 RD_REG(&mot_base, b_cr_mot_out_base_mchbar) ||
521 RD_REG(&mot_mask, b_cr_mot_out_mask_mchbar) ||
522 RD_REG(&chash, b_cr_slice_channel_hash))
525 if (ops->get_registers())
528 if (ops->type == DNV) {
529 /* PMI channel idx (always 0) for asymmetric region */
530 asym0.slice0_asym_channel_select = 0;
531 asym1.slice1_asym_channel_select = 0;
532 /* PMI channel bitmap (always 1) for symmetric region */
533 chash.sym_slice0_channel_enabled = 0x1;
534 chash.sym_slice1_channel_enabled = 0x1;
537 if (asym0.slice0_asym_enable)
538 ops->mk_region("as0", &as0, &asym0);
540 if (asym1.slice1_asym_enable)
541 ops->mk_region("as1", &as1, &asym1);
543 if (asym_2way.asym_2way_interleave_enable) {
544 mk_region("as2way", &as2,
545 U64_LSHIFT(asym_2way.asym_2way_base, APL_ASYMSHIFT),
546 U64_LSHIFT(asym_2way.asym_2way_limit, APL_ASYMSHIFT) +
547 GENMASK_ULL(APL_ASYMSHIFT - 1, 0));
550 if (mot_base.imr_en) {
551 mk_region_mask("mot", &mot,
552 U64_LSHIFT(mot_base.mot_out_base, MOT_SHIFT),
553 U64_LSHIFT(mot_mask.mot_out_mask, MOT_SHIFT));
556 top_lm = U64_LSHIFT(tolud.tolud, 20);
557 top_hm = U64_LSHIFT(touud_hi.touud, 32) | U64_LSHIFT(touud_lo.touud, 20);
559 two_slices = !chash.slice_1_disabled &&
560 !chash.slice_0_mem_disabled &&
561 (chash.sym_slice0_channel_enabled != 0) &&
562 (chash.sym_slice1_channel_enabled != 0);
563 two_channels = !chash.ch_1_disabled &&
564 !chash.enable_pmi_dual_data_mode &&
565 ((chash.sym_slice0_channel_enabled == 3) ||
566 (chash.sym_slice1_channel_enabled == 3));
568 sym_chan_mask = gen_sym_mask(&chash);
569 asym_chan_mask = gen_asym_mask(&chash, &asym0, &asym1, &asym_2way);
570 chan_mask = sym_chan_mask | asym_chan_mask;
572 if (two_slices && !two_channels) {
576 slice_selector = intlv[chash.interleave_mode];
577 } else if (!two_slices && two_channels) {
581 chan_selector = intlv[chash.interleave_mode];
582 } else if (two_slices && two_channels) {
583 if (chash.hvm_mode) {
587 slice_selector = intlv[chash.interleave_mode];
588 chan_selector = intlv[chash.interleave_mode] + 1;
594 slice_hash_mask = chash.slice_hash_mask << SLICE_HASH_MASK_LSB;
596 slice_hash_mask |= BIT_ULL(slice_selector);
601 chan_hash_mask = chash.ch_hash_mask << CH_HASH_MASK_LSB;
603 chan_hash_mask |= BIT_ULL(chan_selector);
609 /* Get a contiguous memory address (remove the MMIO gap) */
610 static u64 remove_mmio_gap(u64 sys)
612 return (sys < _4GB) ? sys : sys - (_4GB - top_lm);
615 /* Squeeze out one address bit, shift upper part down to fill gap */
616 static void remove_addr_bit(u64 *addr, int bitidx)
623 mask = (1ull << bitidx) - 1;
624 *addr = ((*addr >> 1) & ~mask) | (*addr & mask);
627 /* XOR all the bits from addr specified in mask */
628 static int hash_by_mask(u64 addr, u64 mask)
630 u64 result = addr & mask;
632 result = (result >> 32) ^ result;
633 result = (result >> 16) ^ result;
634 result = (result >> 8) ^ result;
635 result = (result >> 4) ^ result;
636 result = (result >> 2) ^ result;
637 result = (result >> 1) ^ result;
639 return (int)result & 1;
643 * First stage decode. Take the system address and figure out which
644 * second stage will deal with it based on interleave modes.
646 static int sys2pmi(const u64 addr, u32 *pmiidx, u64 *pmiaddr, char *msg)
648 u64 contig_addr, contig_base, contig_offset, contig_base_adj;
649 int mot_intlv_bit = two_slices ? MOT_CHAN_INTLV_BIT_2SLC_2CH :
650 MOT_CHAN_INTLV_BIT_1SLC_2CH;
651 int slice_intlv_bit_rm = SELECTOR_DISABLED;
652 int chan_intlv_bit_rm = SELECTOR_DISABLED;
653 /* Determine if address is in the MOT region. */
654 bool mot_hit = in_region(&mot, addr);
655 /* Calculate the number of symmetric regions enabled. */
656 int sym_channels = hweight8(sym_chan_mask);
659 * The amount we need to shift the asym base can be determined by the
660 * number of enabled symmetric channels.
661 * NOTE: This can only work because symmetric memory is not supposed
662 * to do a 3-way interleave.
664 int sym_chan_shift = sym_channels >> 1;
666 /* Give up if address is out of range, or in MMIO gap */
667 if (addr >= (1ul << PND_MAX_PHYS_BIT) ||
668 (addr >= top_lm && addr < _4GB) || addr >= top_hm) {
669 snprintf(msg, PND2_MSG_SIZE, "Error address 0x%llx is not DRAM", addr);
673 /* Get a contiguous memory address (remove the MMIO gap) */
674 contig_addr = remove_mmio_gap(addr);
676 if (in_region(&as0, addr)) {
677 *pmiidx = asym0.slice0_asym_channel_select;
679 contig_base = remove_mmio_gap(as0.base);
680 contig_offset = contig_addr - contig_base;
681 contig_base_adj = (contig_base >> sym_chan_shift) *
682 ((chash.sym_slice0_channel_enabled >> (*pmiidx & 1)) & 1);
683 contig_addr = contig_offset + ((sym_channels > 0) ? contig_base_adj : 0ull);
684 } else if (in_region(&as1, addr)) {
685 *pmiidx = 2u + asym1.slice1_asym_channel_select;
687 contig_base = remove_mmio_gap(as1.base);
688 contig_offset = contig_addr - contig_base;
689 contig_base_adj = (contig_base >> sym_chan_shift) *
690 ((chash.sym_slice1_channel_enabled >> (*pmiidx & 1)) & 1);
691 contig_addr = contig_offset + ((sym_channels > 0) ? contig_base_adj : 0ull);
692 } else if (in_region(&as2, addr) && (asym_2way.asym_2way_intlv_mode == 0x3ul)) {
695 mot_intlv_bit = MOT_CHAN_INTLV_BIT_1SLC_2CH;
696 *pmiidx = (asym_2way.asym_2way_intlv_mode & 1) << 1;
697 channel1 = mot_hit ? ((bool)((addr >> mot_intlv_bit) & 1)) :
698 hash_by_mask(contig_addr, chan_hash_mask);
699 *pmiidx |= (u32)channel1;
701 contig_base = remove_mmio_gap(as2.base);
702 chan_intlv_bit_rm = mot_hit ? mot_intlv_bit : chan_selector;
703 contig_offset = contig_addr - contig_base;
704 remove_addr_bit(&contig_offset, chan_intlv_bit_rm);
705 contig_addr = (contig_base >> sym_chan_shift) + contig_offset;
707 /* Otherwise we're in normal, boring symmetric mode. */
714 slice_intlv_bit_rm = MOT_SLC_INTLV_BIT;
715 slice1 = (addr >> MOT_SLC_INTLV_BIT) & 1;
717 slice_intlv_bit_rm = slice_selector;
718 slice1 = hash_by_mask(addr, slice_hash_mask);
721 *pmiidx = (u32)slice1 << 1;
727 mot_intlv_bit = two_slices ? MOT_CHAN_INTLV_BIT_2SLC_2CH :
728 MOT_CHAN_INTLV_BIT_1SLC_2CH;
731 chan_intlv_bit_rm = mot_intlv_bit;
732 channel1 = (addr >> mot_intlv_bit) & 1;
734 chan_intlv_bit_rm = chan_selector;
735 channel1 = hash_by_mask(contig_addr, chan_hash_mask);
738 *pmiidx |= (u32)channel1;
742 /* Remove the chan_selector bit first */
743 remove_addr_bit(&contig_addr, chan_intlv_bit_rm);
744 /* Remove the slice bit (we remove it second because it must be lower */
745 remove_addr_bit(&contig_addr, slice_intlv_bit_rm);
746 *pmiaddr = contig_addr;
751 /* Translate PMI address to memory (rank, row, bank, column) */
752 #define C(n) (0x10 | (n)) /* column */
753 #define B(n) (0x20 | (n)) /* bank */
754 #define R(n) (0x40 | (n)) /* row */
755 #define RS (0x80) /* rank */
771 static struct dimm_geometry {
776 u16 bits[PMI_ADDRESS_WIDTH];
779 .addrdec = AMAP_1KB, .dden = DEN_4Gb, .dwid = X16,
780 .rowbits = 15, .colbits = 10,
782 C(2), C(3), C(4), C(5), C(6), B(0), B(1), B(2), R(0),
783 R(1), R(2), R(3), R(4), R(5), R(6), R(7), R(8), R(9),
784 R(10), C(7), C(8), C(9), R(11), RS, R(12), R(13), R(14),
789 .addrdec = AMAP_1KB, .dden = DEN_4Gb, .dwid = X8,
790 .rowbits = 16, .colbits = 10,
792 C(2), C(3), C(4), C(5), C(6), B(0), B(1), B(2), R(0),
793 R(1), R(2), R(3), R(4), R(5), R(6), R(7), R(8), R(9),
794 R(10), C(7), C(8), C(9), R(11), RS, R(12), R(13), R(14),
799 .addrdec = AMAP_1KB, .dden = DEN_8Gb, .dwid = X16,
800 .rowbits = 16, .colbits = 10,
802 C(2), C(3), C(4), C(5), C(6), B(0), B(1), B(2), R(0),
803 R(1), R(2), R(3), R(4), R(5), R(6), R(7), R(8), R(9),
804 R(10), C(7), C(8), C(9), R(11), RS, R(12), R(13), R(14),
809 .addrdec = AMAP_1KB, .dden = DEN_8Gb, .dwid = X8,
810 .rowbits = 16, .colbits = 11,
812 C(2), C(3), C(4), C(5), C(6), B(0), B(1), B(2), R(0),
813 R(1), R(2), R(3), R(4), R(5), R(6), R(7), R(8), R(9),
814 R(10), C(7), C(8), C(9), R(11), RS, C(11), R(12), R(13),
819 .addrdec = AMAP_2KB, .dden = DEN_4Gb, .dwid = X16,
820 .rowbits = 15, .colbits = 10,
822 C(2), C(3), C(4), C(5), C(6), C(7), B(0), B(1), B(2),
823 R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7), R(8),
824 R(9), R(10), C(8), C(9), R(11), RS, R(12), R(13), R(14),
829 .addrdec = AMAP_2KB, .dden = DEN_4Gb, .dwid = X8,
830 .rowbits = 16, .colbits = 10,
832 C(2), C(3), C(4), C(5), C(6), C(7), B(0), B(1), B(2),
833 R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7), R(8),
834 R(9), R(10), C(8), C(9), R(11), RS, R(12), R(13), R(14),
839 .addrdec = AMAP_2KB, .dden = DEN_8Gb, .dwid = X16,
840 .rowbits = 16, .colbits = 10,
842 C(2), C(3), C(4), C(5), C(6), C(7), B(0), B(1), B(2),
843 R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7), R(8),
844 R(9), R(10), C(8), C(9), R(11), RS, R(12), R(13), R(14),
849 .addrdec = AMAP_2KB, .dden = DEN_8Gb, .dwid = X8,
850 .rowbits = 16, .colbits = 11,
852 C(2), C(3), C(4), C(5), C(6), C(7), B(0), B(1), B(2),
853 R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7), R(8),
854 R(9), R(10), C(8), C(9), R(11), RS, C(11), R(12), R(13),
859 .addrdec = AMAP_4KB, .dden = DEN_4Gb, .dwid = X16,
860 .rowbits = 15, .colbits = 10,
862 C(2), C(3), C(4), C(5), C(6), C(7), C(8), B(0), B(1),
863 B(2), R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7),
864 R(8), R(9), R(10), C(9), R(11), RS, R(12), R(13), R(14),
869 .addrdec = AMAP_4KB, .dden = DEN_4Gb, .dwid = X8,
870 .rowbits = 16, .colbits = 10,
872 C(2), C(3), C(4), C(5), C(6), C(7), C(8), B(0), B(1),
873 B(2), R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7),
874 R(8), R(9), R(10), C(9), R(11), RS, R(12), R(13), R(14),
879 .addrdec = AMAP_4KB, .dden = DEN_8Gb, .dwid = X16,
880 .rowbits = 16, .colbits = 10,
882 C(2), C(3), C(4), C(5), C(6), C(7), C(8), B(0), B(1),
883 B(2), R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7),
884 R(8), R(9), R(10), C(9), R(11), RS, R(12), R(13), R(14),
889 .addrdec = AMAP_4KB, .dden = DEN_8Gb, .dwid = X8,
890 .rowbits = 16, .colbits = 11,
892 C(2), C(3), C(4), C(5), C(6), C(7), C(8), B(0), B(1),
893 B(2), R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7),
894 R(8), R(9), R(10), C(9), R(11), RS, C(11), R(12), R(13),
900 static int bank_hash(u64 pmiaddr, int idx, int shft)
906 bhash ^= ((pmiaddr >> (12 + shft)) ^ (pmiaddr >> (9 + shft))) & 1;
909 bhash ^= (((pmiaddr >> (10 + shft)) ^ (pmiaddr >> (8 + shft))) & 1) << 1;
910 bhash ^= ((pmiaddr >> 22) & 1) << 1;
913 bhash ^= (((pmiaddr >> (13 + shft)) ^ (pmiaddr >> (11 + shft))) & 1) << 2;
920 static int rank_hash(u64 pmiaddr)
922 return ((pmiaddr >> 16) ^ (pmiaddr >> 10)) & 1;
925 /* Second stage decode. Compute rank, bank, row & column. */
926 static int apl_pmi2mem(struct mem_ctl_info *mci, u64 pmiaddr, u32 pmiidx,
927 struct dram_addr *daddr, char *msg)
929 struct d_cr_drp0 *cr_drp0 = &drp0[pmiidx];
930 struct pnd2_pvt *pvt = mci->pvt_info;
931 int g = pvt->dimm_geom[pmiidx];
932 struct dimm_geometry *d = &dimms[g];
933 int column = 0, bank = 0, row = 0, rank = 0;
934 int i, idx, type, skiprs = 0;
936 for (i = 0; i < PMI_ADDRESS_WIDTH; i++) {
937 int bit = (pmiaddr >> i) & 1;
939 if (i + skiprs >= PMI_ADDRESS_WIDTH) {
940 snprintf(msg, PND2_MSG_SIZE, "Bad dimm_geometry[] table\n");
944 type = d->bits[i + skiprs] & ~0xf;
945 idx = d->bits[i + skiprs] & 0xf;
948 * On single rank DIMMs ignore the rank select bit
949 * and shift remainder of "bits[]" down one place.
951 if (type == RS && (cr_drp0->rken0 + cr_drp0->rken1) == 1) {
953 type = d->bits[i + skiprs] & ~0xf;
954 idx = d->bits[i + skiprs] & 0xf;
959 column |= (bit << idx);
962 bank |= (bit << idx);
964 bank ^= bank_hash(pmiaddr, idx, d->addrdec);
972 rank ^= rank_hash(pmiaddr);
976 snprintf(msg, PND2_MSG_SIZE, "Bad translation\n");
993 /* Pluck bit "in" from pmiaddr and return value shifted to bit "out" */
994 #define dnv_get_bit(pmi, in, out) ((int)(((pmi) >> (in)) & 1u) << (out))
996 static int dnv_pmi2mem(struct mem_ctl_info *mci, u64 pmiaddr, u32 pmiidx,
997 struct dram_addr *daddr, char *msg)
1000 daddr->rank = dnv_get_bit(pmiaddr, dmap[pmiidx].rs0 + 13, 0);
1002 daddr->rank |= dnv_get_bit(pmiaddr, dmap[pmiidx].rs1 + 13, 1);
1005 * Normally ranks 0,1 are DIMM0, and 2,3 are DIMM1, but we
1006 * flip them if DIMM1 is larger than DIMM0.
1008 daddr->dimm = (daddr->rank >= 2) ^ drp[pmiidx].dimmflip;
1010 daddr->bank = dnv_get_bit(pmiaddr, dmap[pmiidx].ba0 + 6, 0);
1011 daddr->bank |= dnv_get_bit(pmiaddr, dmap[pmiidx].ba1 + 6, 1);
1012 daddr->bank |= dnv_get_bit(pmiaddr, dmap[pmiidx].bg0 + 6, 2);
1014 daddr->bank |= dnv_get_bit(pmiaddr, dmap[pmiidx].bg1 + 6, 3);
1015 if (dmap1[pmiidx].bxor) {
1017 daddr->bank ^= dnv_get_bit(pmiaddr, dmap3[pmiidx].row6 + 6, 0);
1018 daddr->bank ^= dnv_get_bit(pmiaddr, dmap3[pmiidx].row7 + 6, 1);
1019 if (dsch.chan_width == 0)
1020 /* 64/72 bit dram channel width */
1021 daddr->bank ^= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca3 + 6, 2);
1023 /* 32/40 bit dram channel width */
1024 daddr->bank ^= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca4 + 6, 2);
1025 daddr->bank ^= dnv_get_bit(pmiaddr, dmap2[pmiidx].row2 + 6, 3);
1027 daddr->bank ^= dnv_get_bit(pmiaddr, dmap2[pmiidx].row2 + 6, 0);
1028 daddr->bank ^= dnv_get_bit(pmiaddr, dmap3[pmiidx].row6 + 6, 1);
1029 if (dsch.chan_width == 0)
1030 daddr->bank ^= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca3 + 6, 2);
1032 daddr->bank ^= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca4 + 6, 2);
1036 daddr->row = dnv_get_bit(pmiaddr, dmap2[pmiidx].row0 + 6, 0);
1037 daddr->row |= dnv_get_bit(pmiaddr, dmap2[pmiidx].row1 + 6, 1);
1038 daddr->row |= dnv_get_bit(pmiaddr, dmap2[pmiidx].row2 + 6, 2);
1039 daddr->row |= dnv_get_bit(pmiaddr, dmap2[pmiidx].row3 + 6, 3);
1040 daddr->row |= dnv_get_bit(pmiaddr, dmap2[pmiidx].row4 + 6, 4);
1041 daddr->row |= dnv_get_bit(pmiaddr, dmap2[pmiidx].row5 + 6, 5);
1042 daddr->row |= dnv_get_bit(pmiaddr, dmap3[pmiidx].row6 + 6, 6);
1043 daddr->row |= dnv_get_bit(pmiaddr, dmap3[pmiidx].row7 + 6, 7);
1044 daddr->row |= dnv_get_bit(pmiaddr, dmap3[pmiidx].row8 + 6, 8);
1045 daddr->row |= dnv_get_bit(pmiaddr, dmap3[pmiidx].row9 + 6, 9);
1046 daddr->row |= dnv_get_bit(pmiaddr, dmap3[pmiidx].row10 + 6, 10);
1047 daddr->row |= dnv_get_bit(pmiaddr, dmap3[pmiidx].row11 + 6, 11);
1048 daddr->row |= dnv_get_bit(pmiaddr, dmap4[pmiidx].row12 + 6, 12);
1049 daddr->row |= dnv_get_bit(pmiaddr, dmap4[pmiidx].row13 + 6, 13);
1050 if (dmap4[pmiidx].row14 != 31)
1051 daddr->row |= dnv_get_bit(pmiaddr, dmap4[pmiidx].row14 + 6, 14);
1052 if (dmap4[pmiidx].row15 != 31)
1053 daddr->row |= dnv_get_bit(pmiaddr, dmap4[pmiidx].row15 + 6, 15);
1054 if (dmap4[pmiidx].row16 != 31)
1055 daddr->row |= dnv_get_bit(pmiaddr, dmap4[pmiidx].row16 + 6, 16);
1056 if (dmap4[pmiidx].row17 != 31)
1057 daddr->row |= dnv_get_bit(pmiaddr, dmap4[pmiidx].row17 + 6, 17);
1059 daddr->col = dnv_get_bit(pmiaddr, dmap5[pmiidx].ca3 + 6, 3);
1060 daddr->col |= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca4 + 6, 4);
1061 daddr->col |= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca5 + 6, 5);
1062 daddr->col |= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca6 + 6, 6);
1063 daddr->col |= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca7 + 6, 7);
1064 daddr->col |= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca8 + 6, 8);
1065 daddr->col |= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca9 + 6, 9);
1066 if (!dsch.ddr4en && dmap1[pmiidx].ca11 != 0x3f)
1067 daddr->col |= dnv_get_bit(pmiaddr, dmap1[pmiidx].ca11 + 13, 11);
1072 static int check_channel(int ch)
1074 if (drp0[ch].dramtype != 0) {
1075 pnd2_printk(KERN_INFO, "Unsupported DIMM in channel %d\n", ch);
1077 } else if (drp0[ch].eccen == 0) {
1078 pnd2_printk(KERN_INFO, "ECC disabled on channel %d\n", ch);
1084 static int apl_check_ecc_active(void)
1088 /* Check dramtype and ECC mode for each present DIMM */
1089 for (i = 0; i < APL_NUM_CHANNELS; i++)
1090 if (chan_mask & BIT(i))
1091 ret += check_channel(i);
1092 return ret ? -EINVAL : 0;
1095 #define DIMMS_PRESENT(d) ((d)->rken0 + (d)->rken1 + (d)->rken2 + (d)->rken3)
1097 static int check_unit(int ch)
1099 struct d_cr_drp *d = &drp[ch];
1101 if (DIMMS_PRESENT(d) && !ecc_ctrl[ch].eccen) {
1102 pnd2_printk(KERN_INFO, "ECC disabled on channel %d\n", ch);
1108 static int dnv_check_ecc_active(void)
1112 for (i = 0; i < DNV_NUM_CHANNELS; i++)
1113 ret += check_unit(i);
1114 return ret ? -EINVAL : 0;
1117 static int get_memory_error_data(struct mem_ctl_info *mci, u64 addr,
1118 struct dram_addr *daddr, char *msg)
1124 ret = sys2pmi(addr, &pmiidx, &pmiaddr, msg);
1128 pmiaddr >>= ops->pmiaddr_shift;
1129 /* pmi channel idx to dimm channel idx */
1130 pmiidx >>= ops->pmiidx_shift;
1131 daddr->chan = pmiidx;
1133 ret = ops->pmi2mem(mci, pmiaddr, pmiidx, daddr, msg);
1137 edac_dbg(0, "SysAddr=%llx PmiAddr=%llx Channel=%d DIMM=%d Rank=%d Bank=%d Row=%d Column=%d\n",
1138 addr, pmiaddr, daddr->chan, daddr->dimm, daddr->rank, daddr->bank, daddr->row, daddr->col);
1143 static void pnd2_mce_output_error(struct mem_ctl_info *mci, const struct mce *m,
1144 struct dram_addr *daddr)
1146 enum hw_event_mc_err_type tp_event;
1147 char *optype, msg[PND2_MSG_SIZE];
1148 bool ripv = m->mcgstatus & MCG_STATUS_RIPV;
1149 bool overflow = m->status & MCI_STATUS_OVER;
1150 bool uc_err = m->status & MCI_STATUS_UC;
1151 bool recov = m->status & MCI_STATUS_S;
1152 u32 core_err_cnt = GET_BITFIELD(m->status, 38, 52);
1153 u32 mscod = GET_BITFIELD(m->status, 16, 31);
1154 u32 errcode = GET_BITFIELD(m->status, 0, 15);
1155 u32 optypenum = GET_BITFIELD(m->status, 4, 6);
1158 tp_event = uc_err ? (ripv ? HW_EVENT_ERR_UNCORRECTED : HW_EVENT_ERR_FATAL) :
1159 HW_EVENT_ERR_CORRECTED;
1162 * According with Table 15-9 of the Intel Architecture spec vol 3A,
1163 * memory errors should fit in this mask:
1164 * 000f 0000 1mmm cccc (binary)
1166 * f = Correction Report Filtering Bit. If 1, subsequent errors
1170 * If the mask doesn't match, report an error to the parsing logic
1172 if (!((errcode & 0xef80) == 0x80)) {
1173 optype = "Can't parse: it is not a mem";
1175 switch (optypenum) {
1177 optype = "generic undef request error";
1180 optype = "memory read error";
1183 optype = "memory write error";
1186 optype = "addr/cmd error";
1189 optype = "memory scrubbing error";
1192 optype = "reserved";
1197 /* Only decode errors with an valid address (ADDRV) */
1198 if (!(m->status & MCI_STATUS_ADDRV))
1201 rc = get_memory_error_data(mci, m->addr, daddr, msg);
1205 snprintf(msg, sizeof(msg),
1206 "%s%s err_code:%04x:%04x channel:%d DIMM:%d rank:%d row:%d bank:%d col:%d",
1207 overflow ? " OVERFLOW" : "", (uc_err && recov) ? " recoverable" : "", mscod,
1208 errcode, daddr->chan, daddr->dimm, daddr->rank, daddr->row, daddr->bank, daddr->col);
1210 edac_dbg(0, "%s\n", msg);
1212 /* Call the helper to output message */
1213 edac_mc_handle_error(tp_event, mci, core_err_cnt, m->addr >> PAGE_SHIFT,
1214 m->addr & ~PAGE_MASK, 0, daddr->chan, daddr->dimm, -1, optype, msg);
1219 edac_mc_handle_error(tp_event, mci, core_err_cnt, 0, 0, 0, -1, -1, -1, msg, "");
1222 static void apl_get_dimm_config(struct mem_ctl_info *mci)
1224 struct pnd2_pvt *pvt = mci->pvt_info;
1225 struct dimm_info *dimm;
1226 struct d_cr_drp0 *d;
1230 for (i = 0; i < APL_NUM_CHANNELS; i++) {
1231 if (!(chan_mask & BIT(i)))
1234 dimm = edac_get_dimm(mci, i, 0, 0);
1236 edac_dbg(0, "No allocated DIMM for channel %d\n", i);
1241 for (g = 0; g < ARRAY_SIZE(dimms); g++)
1242 if (dimms[g].addrdec == d->addrdec &&
1243 dimms[g].dden == d->dden &&
1244 dimms[g].dwid == d->dwid)
1247 if (g == ARRAY_SIZE(dimms)) {
1248 edac_dbg(0, "Channel %d: unrecognized DIMM\n", i);
1252 pvt->dimm_geom[i] = g;
1253 capacity = (d->rken0 + d->rken1) * 8 * (1ul << dimms[g].rowbits) *
1254 (1ul << dimms[g].colbits);
1255 edac_dbg(0, "Channel %d: %lld MByte DIMM\n", i, capacity >> (20 - 3));
1256 dimm->nr_pages = MiB_TO_PAGES(capacity >> (20 - 3));
1258 dimm->dtype = (d->dwid == 0) ? DEV_X8 : DEV_X16;
1259 dimm->mtype = MEM_DDR3;
1260 dimm->edac_mode = EDAC_SECDED;
1261 snprintf(dimm->label, sizeof(dimm->label), "Slice#%d_Chan#%d", i / 2, i % 2);
1265 static const int dnv_dtypes[] = {
1266 DEV_X8, DEV_X4, DEV_X16, DEV_UNKNOWN
1269 static void dnv_get_dimm_config(struct mem_ctl_info *mci)
1271 int i, j, ranks_of_dimm[DNV_MAX_DIMMS], banks, rowbits, colbits, memtype;
1272 struct dimm_info *dimm;
1285 for (i = 0; i < DNV_NUM_CHANNELS; i++) {
1286 if (dmap4[i].row14 == 31)
1288 else if (dmap4[i].row15 == 31)
1290 else if (dmap4[i].row16 == 31)
1292 else if (dmap4[i].row17 == 31)
1297 if (memtype == MEM_DDR3) {
1298 if (dmap1[i].ca11 != 0x3f)
1305 /* DIMM0 is present if rank0 and/or rank1 is enabled */
1306 ranks_of_dimm[0] = d->rken0 + d->rken1;
1307 /* DIMM1 is present if rank2 and/or rank3 is enabled */
1308 ranks_of_dimm[1] = d->rken2 + d->rken3;
1310 for (j = 0; j < DNV_MAX_DIMMS; j++) {
1311 if (!ranks_of_dimm[j])
1314 dimm = edac_get_dimm(mci, i, j, 0);
1316 edac_dbg(0, "No allocated DIMM for channel %d DIMM %d\n", i, j);
1320 capacity = ranks_of_dimm[j] * banks * (1ul << rowbits) * (1ul << colbits);
1321 edac_dbg(0, "Channel %d DIMM %d: %lld MByte DIMM\n", i, j, capacity >> (20 - 3));
1322 dimm->nr_pages = MiB_TO_PAGES(capacity >> (20 - 3));
1324 dimm->dtype = dnv_dtypes[j ? d->dimmdwid0 : d->dimmdwid1];
1325 dimm->mtype = memtype;
1326 dimm->edac_mode = EDAC_SECDED;
1327 snprintf(dimm->label, sizeof(dimm->label), "Chan#%d_DIMM#%d", i, j);
1332 static int pnd2_register_mci(struct mem_ctl_info **ppmci)
1334 struct edac_mc_layer layers[2];
1335 struct mem_ctl_info *mci;
1336 struct pnd2_pvt *pvt;
1339 rc = ops->check_ecc();
1343 /* Allocate a new MC control structure */
1344 layers[0].type = EDAC_MC_LAYER_CHANNEL;
1345 layers[0].size = ops->channels;
1346 layers[0].is_virt_csrow = false;
1347 layers[1].type = EDAC_MC_LAYER_SLOT;
1348 layers[1].size = ops->dimms_per_channel;
1349 layers[1].is_virt_csrow = true;
1350 mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers, sizeof(*pvt));
1354 pvt = mci->pvt_info;
1355 memset(pvt, 0, sizeof(*pvt));
1357 mci->mod_name = EDAC_MOD_STR;
1358 mci->dev_name = ops->name;
1359 mci->ctl_name = "Pondicherry2";
1361 /* Get dimm basic config and the memory layout */
1362 ops->get_dimm_config(mci);
1364 if (edac_mc_add_mc(mci)) {
1365 edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
1375 static void pnd2_unregister_mci(struct mem_ctl_info *mci)
1377 if (unlikely(!mci || !mci->pvt_info)) {
1378 pnd2_printk(KERN_ERR, "Couldn't find mci handler\n");
1382 /* Remove MC sysfs nodes */
1383 edac_mc_del_mc(NULL);
1384 edac_dbg(1, "%s: free mci struct\n", mci->ctl_name);
1389 * Callback function registered with core kernel mce code.
1390 * Called once for each logged error.
1392 static int pnd2_mce_check_error(struct notifier_block *nb, unsigned long val, void *data)
1394 struct mce *mce = (struct mce *)data;
1395 struct mem_ctl_info *mci;
1396 struct dram_addr daddr;
1400 if (!mci || (mce->kflags & MCE_HANDLED_CEC))
1404 * Just let mcelog handle it if the error is
1405 * outside the memory controller. A memory error
1406 * is indicated by bit 7 = 1 and bits = 8-11,13-15 = 0.
1407 * bit 12 has an special meaning.
1409 if ((mce->status & 0xefff) >> 7 != 1)
1412 if (mce->mcgstatus & MCG_STATUS_MCIP)
1417 pnd2_mc_printk(mci, KERN_INFO, "HANDLING MCE MEMORY ERROR\n");
1418 pnd2_mc_printk(mci, KERN_INFO, "CPU %u: Machine Check %s: %llx Bank %u: %llx\n",
1419 mce->extcpu, type, mce->mcgstatus, mce->bank, mce->status);
1420 pnd2_mc_printk(mci, KERN_INFO, "TSC %llx ", mce->tsc);
1421 pnd2_mc_printk(mci, KERN_INFO, "ADDR %llx ", mce->addr);
1422 pnd2_mc_printk(mci, KERN_INFO, "MISC %llx ", mce->misc);
1423 pnd2_mc_printk(mci, KERN_INFO, "PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x\n",
1424 mce->cpuvendor, mce->cpuid, mce->time, mce->socketid, mce->apicid);
1426 pnd2_mce_output_error(mci, mce, &daddr);
1428 /* Advice mcelog that the error were handled */
1429 mce->kflags |= MCE_HANDLED_EDAC;
1433 static struct notifier_block pnd2_mce_dec = {
1434 .notifier_call = pnd2_mce_check_error,
1435 .priority = MCE_PRIO_EDAC,
1438 #ifdef CONFIG_EDAC_DEBUG
1440 * Write an address to this file to exercise the address decode
1441 * logic in this driver.
1443 static u64 pnd2_fake_addr;
1444 #define PND2_BLOB_SIZE 1024
1445 static char pnd2_result[PND2_BLOB_SIZE];
1446 static struct dentry *pnd2_test;
1447 static struct debugfs_blob_wrapper pnd2_blob = {
1448 .data = pnd2_result,
1452 static int debugfs_u64_set(void *data, u64 val)
1454 struct dram_addr daddr;
1459 /* ADDRV + MemRd + Unknown channel */
1460 m.status = MCI_STATUS_ADDRV + 0x9f;
1462 pnd2_mce_output_error(pnd2_mci, &m, &daddr);
1463 snprintf(pnd2_blob.data, PND2_BLOB_SIZE,
1464 "SysAddr=%llx Channel=%d DIMM=%d Rank=%d Bank=%d Row=%d Column=%d\n",
1465 m.addr, daddr.chan, daddr.dimm, daddr.rank, daddr.bank, daddr.row, daddr.col);
1466 pnd2_blob.size = strlen(pnd2_blob.data);
1470 DEFINE_DEBUGFS_ATTRIBUTE(fops_u64_wo, NULL, debugfs_u64_set, "%llu\n");
1472 static void setup_pnd2_debug(void)
1474 pnd2_test = edac_debugfs_create_dir("pnd2_test");
1475 edac_debugfs_create_file("pnd2_debug_addr", 0200, pnd2_test,
1476 &pnd2_fake_addr, &fops_u64_wo);
1477 debugfs_create_blob("pnd2_debug_results", 0400, pnd2_test, &pnd2_blob);
1480 static void teardown_pnd2_debug(void)
1482 debugfs_remove_recursive(pnd2_test);
1485 static void setup_pnd2_debug(void) {}
1486 static void teardown_pnd2_debug(void) {}
1487 #endif /* CONFIG_EDAC_DEBUG */
1490 static int pnd2_probe(void)
1495 rc = get_registers();
1499 return pnd2_register_mci(&pnd2_mci);
1502 static void pnd2_remove(void)
1505 pnd2_unregister_mci(pnd2_mci);
1508 static struct dunit_ops apl_ops = {
1511 .pmiaddr_shift = LOG2_PMI_ADDR_GRANULARITY,
1513 .channels = APL_NUM_CHANNELS,
1514 .dimms_per_channel = 1,
1515 .rd_reg = apl_rd_reg,
1516 .get_registers = apl_get_registers,
1517 .check_ecc = apl_check_ecc_active,
1518 .mk_region = apl_mk_region,
1519 .get_dimm_config = apl_get_dimm_config,
1520 .pmi2mem = apl_pmi2mem,
1523 static struct dunit_ops dnv_ops = {
1528 .channels = DNV_NUM_CHANNELS,
1529 .dimms_per_channel = 2,
1530 .rd_reg = dnv_rd_reg,
1531 .get_registers = dnv_get_registers,
1532 .check_ecc = dnv_check_ecc_active,
1533 .mk_region = dnv_mk_region,
1534 .get_dimm_config = dnv_get_dimm_config,
1535 .pmi2mem = dnv_pmi2mem,
1538 static const struct x86_cpu_id pnd2_cpuids[] = {
1539 X86_MATCH_INTEL_FAM6_MODEL(ATOM_GOLDMONT, &apl_ops),
1540 X86_MATCH_INTEL_FAM6_MODEL(ATOM_GOLDMONT_D, &dnv_ops),
1543 MODULE_DEVICE_TABLE(x86cpu, pnd2_cpuids);
1545 static int __init pnd2_init(void)
1547 const struct x86_cpu_id *id;
1553 owner = edac_get_owner();
1554 if (owner && strncmp(owner, EDAC_MOD_STR, sizeof(EDAC_MOD_STR)))
1557 if (cpu_feature_enabled(X86_FEATURE_HYPERVISOR))
1560 id = x86_match_cpu(pnd2_cpuids);
1564 ops = (struct dunit_ops *)id->driver_data;
1566 if (ops->type == APL) {
1567 p2sb_bus = pci_find_bus(0, 0);
1572 /* Ensure that the OPSTATE is set correctly for POLL or NMI */
1577 pnd2_printk(KERN_ERR, "Failed to register device with error %d.\n", rc);
1584 mce_register_decode_chain(&pnd2_mce_dec);
1590 static void __exit pnd2_exit(void)
1593 teardown_pnd2_debug();
1594 mce_unregister_decode_chain(&pnd2_mce_dec);
1598 module_init(pnd2_init);
1599 module_exit(pnd2_exit);
1601 module_param(edac_op_state, int, 0444);
1602 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
1604 MODULE_LICENSE("GPL v2");
1605 MODULE_AUTHOR("Tony Luck");
1606 MODULE_DESCRIPTION("MC Driver for Intel SoC using Pondicherry memory controller");