WIP: merge_config
[platform/kernel/linux-starfive.git] / drivers / edac / ghes_edac.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * GHES/EDAC Linux driver
4  *
5  * Copyright (c) 2013 by Mauro Carvalho Chehab
6  *
7  * Red Hat Inc. https://www.redhat.com
8  */
9
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11
12 #include <acpi/ghes.h>
13 #include <linux/edac.h>
14 #include <linux/dmi.h>
15 #include "edac_module.h"
16 #include <ras/ras_event.h>
17
18 #define OTHER_DETAIL_LEN        400
19
20 struct ghes_pvt {
21         struct mem_ctl_info *mci;
22
23         /* Buffers for the error handling routine */
24         char other_detail[OTHER_DETAIL_LEN];
25         char msg[80];
26 };
27
28 static refcount_t ghes_refcount = REFCOUNT_INIT(0);
29
30 /*
31  * Access to ghes_pvt must be protected by ghes_lock. The spinlock
32  * also provides the necessary (implicit) memory barrier for the SMP
33  * case to make the pointer visible on another CPU.
34  */
35 static struct ghes_pvt *ghes_pvt;
36
37 /*
38  * This driver's representation of the system hardware, as collected
39  * from DMI.
40  */
41 static struct ghes_hw_desc {
42         int num_dimms;
43         struct dimm_info *dimms;
44 } ghes_hw;
45
46 /* GHES registration mutex */
47 static DEFINE_MUTEX(ghes_reg_mutex);
48
49 /*
50  * Sync with other, potentially concurrent callers of
51  * ghes_edac_report_mem_error(). We don't know what the
52  * "inventive" firmware would do.
53  */
54 static DEFINE_SPINLOCK(ghes_lock);
55
56 /* "ghes_edac.force_load=1" skips the platform check */
57 static bool __read_mostly force_load;
58 module_param(force_load, bool, 0);
59
60 static bool system_scanned;
61
62 /* Memory Device - Type 17 of SMBIOS spec */
63 struct memdev_dmi_entry {
64         u8 type;
65         u8 length;
66         u16 handle;
67         u16 phys_mem_array_handle;
68         u16 mem_err_info_handle;
69         u16 total_width;
70         u16 data_width;
71         u16 size;
72         u8 form_factor;
73         u8 device_set;
74         u8 device_locator;
75         u8 bank_locator;
76         u8 memory_type;
77         u16 type_detail;
78         u16 speed;
79         u8 manufacturer;
80         u8 serial_number;
81         u8 asset_tag;
82         u8 part_number;
83         u8 attributes;
84         u32 extended_size;
85         u16 conf_mem_clk_speed;
86 } __attribute__((__packed__));
87
88 static struct dimm_info *find_dimm_by_handle(struct mem_ctl_info *mci, u16 handle)
89 {
90         struct dimm_info *dimm;
91
92         mci_for_each_dimm(mci, dimm) {
93                 if (dimm->smbios_handle == handle)
94                         return dimm;
95         }
96
97         return NULL;
98 }
99
100 static void dimm_setup_label(struct dimm_info *dimm, u16 handle)
101 {
102         const char *bank = NULL, *device = NULL;
103
104         dmi_memdev_name(handle, &bank, &device);
105
106         /*
107          * Set to a NULL string when both bank and device are zero. In this case,
108          * the label assigned by default will be preserved.
109          */
110         snprintf(dimm->label, sizeof(dimm->label), "%s%s%s",
111                  (bank && *bank) ? bank : "",
112                  (bank && *bank && device && *device) ? " " : "",
113                  (device && *device) ? device : "");
114 }
115
116 static void assign_dmi_dimm_info(struct dimm_info *dimm, struct memdev_dmi_entry *entry)
117 {
118         u16 rdr_mask = BIT(7) | BIT(13);
119
120         if (entry->size == 0xffff) {
121                 pr_info("Can't get DIMM%i size\n", dimm->idx);
122                 dimm->nr_pages = MiB_TO_PAGES(32);/* Unknown */
123         } else if (entry->size == 0x7fff) {
124                 dimm->nr_pages = MiB_TO_PAGES(entry->extended_size);
125         } else {
126                 if (entry->size & BIT(15))
127                         dimm->nr_pages = MiB_TO_PAGES((entry->size & 0x7fff) << 10);
128                 else
129                         dimm->nr_pages = MiB_TO_PAGES(entry->size);
130         }
131
132         switch (entry->memory_type) {
133         case 0x12:
134                 if (entry->type_detail & BIT(13))
135                         dimm->mtype = MEM_RDDR;
136                 else
137                         dimm->mtype = MEM_DDR;
138                 break;
139         case 0x13:
140                 if (entry->type_detail & BIT(13))
141                         dimm->mtype = MEM_RDDR2;
142                 else
143                         dimm->mtype = MEM_DDR2;
144                 break;
145         case 0x14:
146                 dimm->mtype = MEM_FB_DDR2;
147                 break;
148         case 0x18:
149                 if (entry->type_detail & BIT(12))
150                         dimm->mtype = MEM_NVDIMM;
151                 else if (entry->type_detail & BIT(13))
152                         dimm->mtype = MEM_RDDR3;
153                 else
154                         dimm->mtype = MEM_DDR3;
155                 break;
156         case 0x1a:
157                 if (entry->type_detail & BIT(12))
158                         dimm->mtype = MEM_NVDIMM;
159                 else if (entry->type_detail & BIT(13))
160                         dimm->mtype = MEM_RDDR4;
161                 else
162                         dimm->mtype = MEM_DDR4;
163                 break;
164         default:
165                 if (entry->type_detail & BIT(6))
166                         dimm->mtype = MEM_RMBS;
167                 else if ((entry->type_detail & rdr_mask) == rdr_mask)
168                         dimm->mtype = MEM_RDR;
169                 else if (entry->type_detail & BIT(7))
170                         dimm->mtype = MEM_SDR;
171                 else if (entry->type_detail & BIT(9))
172                         dimm->mtype = MEM_EDO;
173                 else
174                         dimm->mtype = MEM_UNKNOWN;
175         }
176
177         /*
178          * Actually, we can only detect if the memory has bits for
179          * checksum or not
180          */
181         if (entry->total_width == entry->data_width)
182                 dimm->edac_mode = EDAC_NONE;
183         else
184                 dimm->edac_mode = EDAC_SECDED;
185
186         dimm->dtype = DEV_UNKNOWN;
187         dimm->grain = 128;              /* Likely, worse case */
188
189         dimm_setup_label(dimm, entry->handle);
190
191         if (dimm->nr_pages) {
192                 edac_dbg(1, "DIMM%i: %s size = %d MB%s\n",
193                         dimm->idx, edac_mem_types[dimm->mtype],
194                         PAGES_TO_MiB(dimm->nr_pages),
195                         (dimm->edac_mode != EDAC_NONE) ? "(ECC)" : "");
196                 edac_dbg(2, "\ttype %d, detail 0x%02x, width %d(total %d)\n",
197                         entry->memory_type, entry->type_detail,
198                         entry->total_width, entry->data_width);
199         }
200
201         dimm->smbios_handle = entry->handle;
202 }
203
204 static void enumerate_dimms(const struct dmi_header *dh, void *arg)
205 {
206         struct memdev_dmi_entry *entry = (struct memdev_dmi_entry *)dh;
207         struct ghes_hw_desc *hw = (struct ghes_hw_desc *)arg;
208         struct dimm_info *d;
209
210         if (dh->type != DMI_ENTRY_MEM_DEVICE)
211                 return;
212
213         /* Enlarge the array with additional 16 */
214         if (!hw->num_dimms || !(hw->num_dimms % 16)) {
215                 struct dimm_info *new;
216
217                 new = krealloc_array(hw->dimms, hw->num_dimms + 16,
218                                      sizeof(struct dimm_info), GFP_KERNEL);
219                 if (!new) {
220                         WARN_ON_ONCE(1);
221                         return;
222                 }
223
224                 hw->dimms = new;
225         }
226
227         d = &hw->dimms[hw->num_dimms];
228         d->idx = hw->num_dimms;
229
230         assign_dmi_dimm_info(d, entry);
231
232         hw->num_dimms++;
233 }
234
235 static void ghes_scan_system(void)
236 {
237         if (system_scanned)
238                 return;
239
240         dmi_walk(enumerate_dimms, &ghes_hw);
241
242         system_scanned = true;
243 }
244
245 static int print_mem_error_other_detail(const struct cper_sec_mem_err *mem, char *msg,
246                                         const char *location, unsigned int len)
247 {
248         u32 n;
249
250         if (!msg)
251                 return 0;
252
253         n = 0;
254         len -= 1;
255
256         n += scnprintf(msg + n, len - n, "APEI location: %s ", location);
257
258         if (!(mem->validation_bits & CPER_MEM_VALID_ERROR_STATUS))
259                 goto out;
260
261         n += scnprintf(msg + n, len - n, "status(0x%016llx): ", mem->error_status);
262         n += scnprintf(msg + n, len - n, "%s ", cper_mem_err_status_str(mem->error_status));
263
264 out:
265         msg[n] = '\0';
266
267         return n;
268 }
269
270 void ghes_edac_report_mem_error(int sev, struct cper_sec_mem_err *mem_err)
271 {
272         struct cper_mem_err_compact cmem;
273         struct edac_raw_error_desc *e;
274         struct mem_ctl_info *mci;
275         struct ghes_pvt *pvt;
276         unsigned long flags;
277         char *p;
278
279         /*
280          * We can do the locking below because GHES defers error processing
281          * from NMI to IRQ context. Whenever that changes, we'd at least
282          * know.
283          */
284         if (WARN_ON_ONCE(in_nmi()))
285                 return;
286
287         spin_lock_irqsave(&ghes_lock, flags);
288
289         pvt = ghes_pvt;
290         if (!pvt)
291                 goto unlock;
292
293         mci = pvt->mci;
294         e = &mci->error_desc;
295
296         /* Cleans the error report buffer */
297         memset(e, 0, sizeof (*e));
298         e->error_count = 1;
299         e->grain = 1;
300         e->msg = pvt->msg;
301         e->other_detail = pvt->other_detail;
302         e->top_layer = -1;
303         e->mid_layer = -1;
304         e->low_layer = -1;
305         *pvt->other_detail = '\0';
306         *pvt->msg = '\0';
307
308         switch (sev) {
309         case GHES_SEV_CORRECTED:
310                 e->type = HW_EVENT_ERR_CORRECTED;
311                 break;
312         case GHES_SEV_RECOVERABLE:
313                 e->type = HW_EVENT_ERR_UNCORRECTED;
314                 break;
315         case GHES_SEV_PANIC:
316                 e->type = HW_EVENT_ERR_FATAL;
317                 break;
318         default:
319         case GHES_SEV_NO:
320                 e->type = HW_EVENT_ERR_INFO;
321         }
322
323         edac_dbg(1, "error validation_bits: 0x%08llx\n",
324                  (long long)mem_err->validation_bits);
325
326         /* Error type, mapped on e->msg */
327         if (mem_err->validation_bits & CPER_MEM_VALID_ERROR_TYPE) {
328                 u8 etype = mem_err->error_type;
329
330                 p = pvt->msg;
331                 p += snprintf(p, sizeof(pvt->msg), "%s", cper_mem_err_type_str(etype));
332         } else {
333                 strcpy(pvt->msg, "unknown error");
334         }
335
336         /* Error address */
337         if (mem_err->validation_bits & CPER_MEM_VALID_PA) {
338                 e->page_frame_number = PHYS_PFN(mem_err->physical_addr);
339                 e->offset_in_page = offset_in_page(mem_err->physical_addr);
340         }
341
342         /* Error grain */
343         if (mem_err->validation_bits & CPER_MEM_VALID_PA_MASK)
344                 e->grain = ~mem_err->physical_addr_mask + 1;
345
346         /* Memory error location, mapped on e->location */
347         p = e->location;
348         cper_mem_err_pack(mem_err, &cmem);
349         p += cper_mem_err_location(&cmem, p);
350
351         if (mem_err->validation_bits & CPER_MEM_VALID_MODULE_HANDLE) {
352                 struct dimm_info *dimm;
353
354                 p += cper_dimm_err_location(&cmem, p);
355                 dimm = find_dimm_by_handle(mci, mem_err->mem_dev_handle);
356                 if (dimm) {
357                         e->top_layer = dimm->idx;
358                         strcpy(e->label, dimm->label);
359                 }
360         }
361         if (p > e->location)
362                 *(p - 1) = '\0';
363
364         if (!*e->label)
365                 strcpy(e->label, "unknown memory");
366
367         /* All other fields are mapped on e->other_detail */
368         p = pvt->other_detail;
369         p += print_mem_error_other_detail(mem_err, p, e->location, OTHER_DETAIL_LEN);
370         if (p > pvt->other_detail)
371                 *(p - 1) = '\0';
372
373         edac_raw_mc_handle_error(e);
374
375 unlock:
376         spin_unlock_irqrestore(&ghes_lock, flags);
377 }
378
379 /*
380  * Known systems that are safe to enable this module.
381  */
382 static struct acpi_platform_list plat_list[] = {
383         {"HPE   ", "Server  ", 0, ACPI_SIG_FADT, all_versions},
384         { } /* End */
385 };
386
387 int ghes_edac_register(struct ghes *ghes, struct device *dev)
388 {
389         bool fake = false;
390         struct mem_ctl_info *mci;
391         struct ghes_pvt *pvt;
392         struct edac_mc_layer layers[1];
393         unsigned long flags;
394         int idx = -1;
395         int rc = 0;
396
397         if (IS_ENABLED(CONFIG_X86)) {
398                 /* Check if safe to enable on this system */
399                 idx = acpi_match_platform_list(plat_list);
400                 if (!force_load && idx < 0)
401                         return -ENODEV;
402         } else {
403                 force_load = true;
404                 idx = 0;
405         }
406
407         /* finish another registration/unregistration instance first */
408         mutex_lock(&ghes_reg_mutex);
409
410         /*
411          * We have only one logical memory controller to which all DIMMs belong.
412          */
413         if (refcount_inc_not_zero(&ghes_refcount))
414                 goto unlock;
415
416         ghes_scan_system();
417
418         /* Check if we've got a bogus BIOS */
419         if (!ghes_hw.num_dimms) {
420                 fake = true;
421                 ghes_hw.num_dimms = 1;
422         }
423
424         layers[0].type = EDAC_MC_LAYER_ALL_MEM;
425         layers[0].size = ghes_hw.num_dimms;
426         layers[0].is_virt_csrow = true;
427
428         mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers, sizeof(struct ghes_pvt));
429         if (!mci) {
430                 pr_info("Can't allocate memory for EDAC data\n");
431                 rc = -ENOMEM;
432                 goto unlock;
433         }
434
435         pvt             = mci->pvt_info;
436         pvt->mci        = mci;
437
438         mci->pdev = dev;
439         mci->mtype_cap = MEM_FLAG_EMPTY;
440         mci->edac_ctl_cap = EDAC_FLAG_NONE;
441         mci->edac_cap = EDAC_FLAG_NONE;
442         mci->mod_name = "ghes_edac.c";
443         mci->ctl_name = "ghes_edac";
444         mci->dev_name = "ghes";
445
446         if (fake) {
447                 pr_info("This system has a very crappy BIOS: It doesn't even list the DIMMS.\n");
448                 pr_info("Its SMBIOS info is wrong. It is doubtful that the error report would\n");
449                 pr_info("work on such system. Use this driver with caution\n");
450         } else if (idx < 0) {
451                 pr_info("This EDAC driver relies on BIOS to enumerate memory and get error reports.\n");
452                 pr_info("Unfortunately, not all BIOSes reflect the memory layout correctly.\n");
453                 pr_info("So, the end result of using this driver varies from vendor to vendor.\n");
454                 pr_info("If you find incorrect reports, please contact your hardware vendor\n");
455                 pr_info("to correct its BIOS.\n");
456                 pr_info("This system has %d DIMM sockets.\n", ghes_hw.num_dimms);
457         }
458
459         if (!fake) {
460                 struct dimm_info *src, *dst;
461                 int i = 0;
462
463                 mci_for_each_dimm(mci, dst) {
464                         src = &ghes_hw.dimms[i];
465
466                         dst->idx           = src->idx;
467                         dst->smbios_handle = src->smbios_handle;
468                         dst->nr_pages      = src->nr_pages;
469                         dst->mtype         = src->mtype;
470                         dst->edac_mode     = src->edac_mode;
471                         dst->dtype         = src->dtype;
472                         dst->grain         = src->grain;
473
474                         /*
475                          * If no src->label, preserve default label assigned
476                          * from EDAC core.
477                          */
478                         if (strlen(src->label))
479                                 memcpy(dst->label, src->label, sizeof(src->label));
480
481                         i++;
482                 }
483
484         } else {
485                 struct dimm_info *dimm = edac_get_dimm(mci, 0, 0, 0);
486
487                 dimm->nr_pages = 1;
488                 dimm->grain = 128;
489                 dimm->mtype = MEM_UNKNOWN;
490                 dimm->dtype = DEV_UNKNOWN;
491                 dimm->edac_mode = EDAC_SECDED;
492         }
493
494         rc = edac_mc_add_mc(mci);
495         if (rc < 0) {
496                 pr_info("Can't register with the EDAC core\n");
497                 edac_mc_free(mci);
498                 rc = -ENODEV;
499                 goto unlock;
500         }
501
502         spin_lock_irqsave(&ghes_lock, flags);
503         ghes_pvt = pvt;
504         spin_unlock_irqrestore(&ghes_lock, flags);
505
506         /* only set on success */
507         refcount_set(&ghes_refcount, 1);
508
509 unlock:
510
511         /* Not needed anymore */
512         kfree(ghes_hw.dimms);
513         ghes_hw.dimms = NULL;
514
515         mutex_unlock(&ghes_reg_mutex);
516
517         return rc;
518 }
519
520 void ghes_edac_unregister(struct ghes *ghes)
521 {
522         struct mem_ctl_info *mci;
523         unsigned long flags;
524
525         if (!force_load)
526                 return;
527
528         mutex_lock(&ghes_reg_mutex);
529
530         system_scanned = false;
531         memset(&ghes_hw, 0, sizeof(struct ghes_hw_desc));
532
533         if (!refcount_dec_and_test(&ghes_refcount))
534                 goto unlock;
535
536         /*
537          * Wait for the irq handler being finished.
538          */
539         spin_lock_irqsave(&ghes_lock, flags);
540         mci = ghes_pvt ? ghes_pvt->mci : NULL;
541         ghes_pvt = NULL;
542         spin_unlock_irqrestore(&ghes_lock, flags);
543
544         if (!mci)
545                 goto unlock;
546
547         mci = edac_mc_del_mc(mci->pdev);
548         if (mci)
549                 edac_mc_free(mci);
550
551 unlock:
552         mutex_unlock(&ghes_reg_mutex);
553 }