1 // SPDX-License-Identifier: GPL-2.0-only
3 * Freescale Memory Controller kernel module
5 * Support Power-based SoCs including MPC85xx, MPC86xx, MPC83xx and
6 * ARM-based Layerscape SoCs including LS2xxx and LS1021A. Originally
7 * split out from mpc85xx_edac EDAC driver.
9 * Parts Copyrighted (c) 2013 by Freescale Semiconductor, Inc.
11 * Author: Dave Jiang <djiang@mvista.com>
13 * 2006-2007 (c) MontaVista Software, Inc.
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/interrupt.h>
18 #include <linux/ctype.h>
20 #include <linux/mod_devicetable.h>
21 #include <linux/edac.h>
22 #include <linux/smp.h>
23 #include <linux/gfp.h>
26 #include <linux/of_address.h>
27 #include "edac_module.h"
28 #include "fsl_ddr_edac.h"
30 #define EDAC_MOD_STR "fsl_ddr_edac"
32 static int edac_mc_idx;
34 static u32 orig_ddr_err_disable;
35 static u32 orig_ddr_err_sbe;
36 static bool little_endian;
38 static inline u32 ddr_in32(void __iomem *addr)
40 return little_endian ? ioread32(addr) : ioread32be(addr);
43 static inline void ddr_out32(void __iomem *addr, u32 value)
46 iowrite32(value, addr);
48 iowrite32be(value, addr);
51 #ifdef CONFIG_EDAC_DEBUG
52 /************************ MC SYSFS parts ***********************************/
54 #define to_mci(k) container_of(k, struct mem_ctl_info, dev)
56 static ssize_t fsl_mc_inject_data_hi_show(struct device *dev,
57 struct device_attribute *mattr,
60 struct mem_ctl_info *mci = to_mci(dev);
61 struct fsl_mc_pdata *pdata = mci->pvt_info;
62 return sprintf(data, "0x%08x",
63 ddr_in32(pdata->mc_vbase + FSL_MC_DATA_ERR_INJECT_HI));
66 static ssize_t fsl_mc_inject_data_lo_show(struct device *dev,
67 struct device_attribute *mattr,
70 struct mem_ctl_info *mci = to_mci(dev);
71 struct fsl_mc_pdata *pdata = mci->pvt_info;
72 return sprintf(data, "0x%08x",
73 ddr_in32(pdata->mc_vbase + FSL_MC_DATA_ERR_INJECT_LO));
76 static ssize_t fsl_mc_inject_ctrl_show(struct device *dev,
77 struct device_attribute *mattr,
80 struct mem_ctl_info *mci = to_mci(dev);
81 struct fsl_mc_pdata *pdata = mci->pvt_info;
82 return sprintf(data, "0x%08x",
83 ddr_in32(pdata->mc_vbase + FSL_MC_ECC_ERR_INJECT));
86 static ssize_t fsl_mc_inject_data_hi_store(struct device *dev,
87 struct device_attribute *mattr,
88 const char *data, size_t count)
90 struct mem_ctl_info *mci = to_mci(dev);
91 struct fsl_mc_pdata *pdata = mci->pvt_info;
96 rc = kstrtoul(data, 0, &val);
100 ddr_out32(pdata->mc_vbase + FSL_MC_DATA_ERR_INJECT_HI, val);
106 static ssize_t fsl_mc_inject_data_lo_store(struct device *dev,
107 struct device_attribute *mattr,
108 const char *data, size_t count)
110 struct mem_ctl_info *mci = to_mci(dev);
111 struct fsl_mc_pdata *pdata = mci->pvt_info;
115 if (isdigit(*data)) {
116 rc = kstrtoul(data, 0, &val);
120 ddr_out32(pdata->mc_vbase + FSL_MC_DATA_ERR_INJECT_LO, val);
126 static ssize_t fsl_mc_inject_ctrl_store(struct device *dev,
127 struct device_attribute *mattr,
128 const char *data, size_t count)
130 struct mem_ctl_info *mci = to_mci(dev);
131 struct fsl_mc_pdata *pdata = mci->pvt_info;
135 if (isdigit(*data)) {
136 rc = kstrtoul(data, 0, &val);
140 ddr_out32(pdata->mc_vbase + FSL_MC_ECC_ERR_INJECT, val);
146 static DEVICE_ATTR(inject_data_hi, S_IRUGO | S_IWUSR,
147 fsl_mc_inject_data_hi_show, fsl_mc_inject_data_hi_store);
148 static DEVICE_ATTR(inject_data_lo, S_IRUGO | S_IWUSR,
149 fsl_mc_inject_data_lo_show, fsl_mc_inject_data_lo_store);
150 static DEVICE_ATTR(inject_ctrl, S_IRUGO | S_IWUSR,
151 fsl_mc_inject_ctrl_show, fsl_mc_inject_ctrl_store);
152 #endif /* CONFIG_EDAC_DEBUG */
154 static struct attribute *fsl_ddr_dev_attrs[] = {
155 #ifdef CONFIG_EDAC_DEBUG
156 &dev_attr_inject_data_hi.attr,
157 &dev_attr_inject_data_lo.attr,
158 &dev_attr_inject_ctrl.attr,
163 ATTRIBUTE_GROUPS(fsl_ddr_dev);
165 /**************************** MC Err device ***************************/
168 * Taken from table 8-55 in the MPC8641 User's Manual and/or 9-61 in the
169 * MPC8572 User's Manual. Each line represents a syndrome bit column as a
170 * 64-bit value, but split into an upper and lower 32-bit chunk. The labels
171 * below correspond to Freescale's manuals.
173 static unsigned int ecc_table[16] = {
176 0xf00fe11e, 0xc33c0ff7, /* Syndrome bit 7 */
177 0x00ff00ff, 0x00fff0ff,
178 0x0f0f0f0f, 0x0f0fff00,
179 0x11113333, 0x7777000f,
180 0x22224444, 0x8888222f,
181 0x44448888, 0xffff4441,
182 0x8888ffff, 0x11118882,
183 0xffff1111, 0x22221114, /* Syndrome bit 0 */
187 * Calculate the correct ECC value for a 64-bit value specified by high:low
189 static u8 calculate_ecc(u32 high, u32 low)
198 for (i = 0; i < 8; i++) {
199 mask_high = ecc_table[i * 2];
200 mask_low = ecc_table[i * 2 + 1];
203 for (j = 0; j < 32; j++) {
204 if ((mask_high >> j) & 1)
205 bit_cnt ^= (high >> j) & 1;
206 if ((mask_low >> j) & 1)
207 bit_cnt ^= (low >> j) & 1;
217 * Create the syndrome code which is generated if the data line specified by
218 * 'bit' failed. Eg generate an 8-bit codes seen in Table 8-55 in the MPC8641
219 * User's Manual and 9-61 in the MPC8572 User's Manual.
221 static u8 syndrome_from_bit(unsigned int bit) {
226 * Cycle through the upper or lower 32-bit portion of each value in
227 * ecc_table depending on if 'bit' is in the upper or lower half of
230 for (i = bit < 32; i < 16; i += 2)
231 syndrome |= ((ecc_table[i] >> (bit % 32)) & 1) << (i / 2);
237 * Decode data and ecc syndrome to determine what went wrong
238 * Note: This can only decode single-bit errors
240 static void sbe_ecc_decode(u32 cap_high, u32 cap_low, u32 cap_ecc,
241 int *bad_data_bit, int *bad_ecc_bit)
250 * Calculate the ECC of the captured data and XOR it with the captured
251 * ECC to find an ECC syndrome value we can search for
253 syndrome = calculate_ecc(cap_high, cap_low) ^ cap_ecc;
255 /* Check if a data line is stuck... */
256 for (i = 0; i < 64; i++) {
257 if (syndrome == syndrome_from_bit(i)) {
263 /* If data is correct, check ECC bits for errors... */
264 for (i = 0; i < 8; i++) {
265 if ((syndrome >> i) & 0x1) {
272 #define make64(high, low) (((u64)(high) << 32) | (low))
274 static void fsl_mc_check(struct mem_ctl_info *mci)
276 struct fsl_mc_pdata *pdata = mci->pvt_info;
277 struct csrow_info *csrow;
289 err_detect = ddr_in32(pdata->mc_vbase + FSL_MC_ERR_DETECT);
293 fsl_mc_printk(mci, KERN_ERR, "Err Detect Register: %#8.8x\n",
296 /* no more processing if not ECC bit errors */
297 if (!(err_detect & (DDR_EDE_SBE | DDR_EDE_MBE))) {
298 ddr_out32(pdata->mc_vbase + FSL_MC_ERR_DETECT, err_detect);
302 syndrome = ddr_in32(pdata->mc_vbase + FSL_MC_CAPTURE_ECC);
304 /* Mask off appropriate bits of syndrome based on bus width */
305 bus_width = (ddr_in32(pdata->mc_vbase + FSL_MC_DDR_SDRAM_CFG) &
306 DSC_DBW_MASK) ? 32 : 64;
313 ddr_in32(pdata->mc_vbase + FSL_MC_CAPTURE_EXT_ADDRESS),
314 ddr_in32(pdata->mc_vbase + FSL_MC_CAPTURE_ADDRESS));
315 pfn = err_addr >> PAGE_SHIFT;
317 for (row_index = 0; row_index < mci->nr_csrows; row_index++) {
318 csrow = mci->csrows[row_index];
319 if ((pfn >= csrow->first_page) && (pfn <= csrow->last_page))
323 cap_high = ddr_in32(pdata->mc_vbase + FSL_MC_CAPTURE_DATA_HI);
324 cap_low = ddr_in32(pdata->mc_vbase + FSL_MC_CAPTURE_DATA_LO);
327 * Analyze single-bit errors on 64-bit wide buses
328 * TODO: Add support for 32-bit wide buses
330 if ((err_detect & DDR_EDE_SBE) && (bus_width == 64)) {
331 sbe_ecc_decode(cap_high, cap_low, syndrome,
332 &bad_data_bit, &bad_ecc_bit);
334 if (bad_data_bit != -1)
335 fsl_mc_printk(mci, KERN_ERR,
336 "Faulty Data bit: %d\n", bad_data_bit);
337 if (bad_ecc_bit != -1)
338 fsl_mc_printk(mci, KERN_ERR,
339 "Faulty ECC bit: %d\n", bad_ecc_bit);
341 fsl_mc_printk(mci, KERN_ERR,
342 "Expected Data / ECC:\t%#8.8x_%08x / %#2.2x\n",
343 cap_high ^ (1 << (bad_data_bit - 32)),
344 cap_low ^ (1 << bad_data_bit),
345 syndrome ^ (1 << bad_ecc_bit));
348 fsl_mc_printk(mci, KERN_ERR,
349 "Captured Data / ECC:\t%#8.8x_%08x / %#2.2x\n",
350 cap_high, cap_low, syndrome);
351 fsl_mc_printk(mci, KERN_ERR, "Err addr: %#8.8llx\n", err_addr);
352 fsl_mc_printk(mci, KERN_ERR, "PFN: %#8.8x\n", pfn);
354 /* we are out of range */
355 if (row_index == mci->nr_csrows)
356 fsl_mc_printk(mci, KERN_ERR, "PFN out of range!\n");
358 if (err_detect & DDR_EDE_SBE)
359 edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 1,
360 pfn, err_addr & ~PAGE_MASK, syndrome,
364 if (err_detect & DDR_EDE_MBE)
365 edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci, 1,
366 pfn, err_addr & ~PAGE_MASK, syndrome,
370 ddr_out32(pdata->mc_vbase + FSL_MC_ERR_DETECT, err_detect);
373 static irqreturn_t fsl_mc_isr(int irq, void *dev_id)
375 struct mem_ctl_info *mci = dev_id;
376 struct fsl_mc_pdata *pdata = mci->pvt_info;
379 err_detect = ddr_in32(pdata->mc_vbase + FSL_MC_ERR_DETECT);
388 static void fsl_ddr_init_csrows(struct mem_ctl_info *mci)
390 struct fsl_mc_pdata *pdata = mci->pvt_info;
391 struct csrow_info *csrow;
392 struct dimm_info *dimm;
399 sdram_ctl = ddr_in32(pdata->mc_vbase + FSL_MC_DDR_SDRAM_CFG);
401 sdtype = sdram_ctl & DSC_SDTYPE_MASK;
402 if (sdram_ctl & DSC_RD_EN) {
440 for (index = 0; index < mci->nr_csrows; index++) {
444 csrow = mci->csrows[index];
445 dimm = csrow->channels[0]->dimm;
447 cs_bnds = ddr_in32(pdata->mc_vbase + FSL_MC_CS_BNDS_0 +
448 (index * FSL_MC_CS_BNDS_OFS));
450 start = (cs_bnds & 0xffff0000) >> 16;
451 end = (cs_bnds & 0x0000ffff);
454 continue; /* not populated */
456 start <<= (24 - PAGE_SHIFT);
457 end <<= (24 - PAGE_SHIFT);
458 end |= (1 << (24 - PAGE_SHIFT)) - 1;
460 csrow->first_page = start;
461 csrow->last_page = end;
463 dimm->nr_pages = end + 1 - start;
466 dimm->dtype = DEV_UNKNOWN;
467 if (sdram_ctl & DSC_X32_EN)
468 dimm->dtype = DEV_X32;
469 dimm->edac_mode = EDAC_SECDED;
473 int fsl_mc_err_probe(struct platform_device *op)
475 struct mem_ctl_info *mci;
476 struct edac_mc_layer layers[2];
477 struct fsl_mc_pdata *pdata;
482 if (!devres_open_group(&op->dev, fsl_mc_err_probe, GFP_KERNEL))
485 layers[0].type = EDAC_MC_LAYER_CHIP_SELECT;
487 layers[0].is_virt_csrow = true;
488 layers[1].type = EDAC_MC_LAYER_CHANNEL;
490 layers[1].is_virt_csrow = false;
491 mci = edac_mc_alloc(edac_mc_idx, ARRAY_SIZE(layers), layers,
494 devres_release_group(&op->dev, fsl_mc_err_probe);
498 pdata = mci->pvt_info;
499 pdata->name = "fsl_mc_err";
500 mci->pdev = &op->dev;
501 pdata->edac_idx = edac_mc_idx++;
502 dev_set_drvdata(mci->pdev, mci);
503 mci->ctl_name = pdata->name;
504 mci->dev_name = pdata->name;
507 * Get the endianness of DDR controller registers.
508 * Default is big endian.
510 little_endian = of_property_read_bool(op->dev.of_node, "little-endian");
512 res = of_address_to_resource(op->dev.of_node, 0, &r);
514 pr_err("%s: Unable to get resource for MC err regs\n",
519 if (!devm_request_mem_region(&op->dev, r.start, resource_size(&r),
521 pr_err("%s: Error while requesting mem region\n",
527 pdata->mc_vbase = devm_ioremap(&op->dev, r.start, resource_size(&r));
528 if (!pdata->mc_vbase) {
529 pr_err("%s: Unable to setup MC err regs\n", __func__);
534 sdram_ctl = ddr_in32(pdata->mc_vbase + FSL_MC_DDR_SDRAM_CFG);
535 if (!(sdram_ctl & DSC_ECC_EN)) {
537 pr_warn("%s: No ECC DIMMs discovered\n", __func__);
542 edac_dbg(3, "init mci\n");
543 mci->mtype_cap = MEM_FLAG_DDR | MEM_FLAG_RDDR |
544 MEM_FLAG_DDR2 | MEM_FLAG_RDDR2 |
545 MEM_FLAG_DDR3 | MEM_FLAG_RDDR3 |
546 MEM_FLAG_DDR4 | MEM_FLAG_RDDR4;
547 mci->edac_ctl_cap = EDAC_FLAG_NONE | EDAC_FLAG_SECDED;
548 mci->edac_cap = EDAC_FLAG_SECDED;
549 mci->mod_name = EDAC_MOD_STR;
551 if (edac_op_state == EDAC_OPSTATE_POLL)
552 mci->edac_check = fsl_mc_check;
554 mci->ctl_page_to_phys = NULL;
556 mci->scrub_mode = SCRUB_SW_SRC;
558 fsl_ddr_init_csrows(mci);
560 /* store the original error disable bits */
561 orig_ddr_err_disable = ddr_in32(pdata->mc_vbase + FSL_MC_ERR_DISABLE);
562 ddr_out32(pdata->mc_vbase + FSL_MC_ERR_DISABLE, 0);
564 /* clear all error bits */
565 ddr_out32(pdata->mc_vbase + FSL_MC_ERR_DETECT, ~0);
567 res = edac_mc_add_mc_with_groups(mci, fsl_ddr_dev_groups);
569 edac_dbg(3, "failed edac_mc_add_mc()\n");
573 if (edac_op_state == EDAC_OPSTATE_INT) {
574 ddr_out32(pdata->mc_vbase + FSL_MC_ERR_INT_EN,
575 DDR_EIE_MBEE | DDR_EIE_SBEE);
577 /* store the original error management threshold */
578 orig_ddr_err_sbe = ddr_in32(pdata->mc_vbase +
579 FSL_MC_ERR_SBE) & 0xff0000;
581 /* set threshold to 1 error per interrupt */
582 ddr_out32(pdata->mc_vbase + FSL_MC_ERR_SBE, 0x10000);
584 /* register interrupts */
585 pdata->irq = platform_get_irq(op, 0);
586 res = devm_request_irq(&op->dev, pdata->irq,
589 "[EDAC] MC err", mci);
591 pr_err("%s: Unable to request irq %d for FSL DDR DRAM ERR\n",
592 __func__, pdata->irq);
597 pr_info(EDAC_MOD_STR " acquired irq %d for MC\n",
601 devres_remove_group(&op->dev, fsl_mc_err_probe);
602 edac_dbg(3, "success\n");
603 pr_info(EDAC_MOD_STR " MC err registered\n");
608 edac_mc_del_mc(&op->dev);
610 devres_release_group(&op->dev, fsl_mc_err_probe);
615 int fsl_mc_err_remove(struct platform_device *op)
617 struct mem_ctl_info *mci = dev_get_drvdata(&op->dev);
618 struct fsl_mc_pdata *pdata = mci->pvt_info;
622 if (edac_op_state == EDAC_OPSTATE_INT) {
623 ddr_out32(pdata->mc_vbase + FSL_MC_ERR_INT_EN, 0);
626 ddr_out32(pdata->mc_vbase + FSL_MC_ERR_DISABLE,
627 orig_ddr_err_disable);
628 ddr_out32(pdata->mc_vbase + FSL_MC_ERR_SBE, orig_ddr_err_sbe);
630 edac_mc_del_mc(&op->dev);