Merge tag 'rtc-6.1' of git://git.kernel.org/pub/scm/linux/kernel/git/abelloni/linux
[platform/kernel/linux-starfive.git] / drivers / edac / edac_mc.c
1 /*
2  * edac_mc kernel module
3  * (C) 2005, 2006 Linux Networx (http://lnxi.com)
4  * This file may be distributed under the terms of the
5  * GNU General Public License.
6  *
7  * Written by Thayne Harbaugh
8  * Based on work by Dan Hollis <goemon at anime dot net> and others.
9  *      http://www.anime.net/~goemon/linux-ecc/
10  *
11  * Modified by Dave Peterson and Doug Thompson
12  *
13  */
14
15 #include <linux/module.h>
16 #include <linux/proc_fs.h>
17 #include <linux/kernel.h>
18 #include <linux/types.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/sysctl.h>
22 #include <linux/highmem.h>
23 #include <linux/timer.h>
24 #include <linux/slab.h>
25 #include <linux/jiffies.h>
26 #include <linux/spinlock.h>
27 #include <linux/list.h>
28 #include <linux/ctype.h>
29 #include <linux/edac.h>
30 #include <linux/bitops.h>
31 #include <linux/uaccess.h>
32 #include <asm/page.h>
33 #include "edac_mc.h"
34 #include "edac_module.h"
35 #include <ras/ras_event.h>
36
37 #ifdef CONFIG_EDAC_ATOMIC_SCRUB
38 #include <asm/edac.h>
39 #else
40 #define edac_atomic_scrub(va, size) do { } while (0)
41 #endif
42
43 int edac_op_state = EDAC_OPSTATE_INVAL;
44 EXPORT_SYMBOL_GPL(edac_op_state);
45
46 /* lock to memory controller's control array */
47 static DEFINE_MUTEX(mem_ctls_mutex);
48 static LIST_HEAD(mc_devices);
49
50 /*
51  * Used to lock EDAC MC to just one module, avoiding two drivers e. g.
52  *      apei/ghes and i7core_edac to be used at the same time.
53  */
54 static const char *edac_mc_owner;
55
56 static struct mem_ctl_info *error_desc_to_mci(struct edac_raw_error_desc *e)
57 {
58         return container_of(e, struct mem_ctl_info, error_desc);
59 }
60
61 unsigned int edac_dimm_info_location(struct dimm_info *dimm, char *buf,
62                                      unsigned int len)
63 {
64         struct mem_ctl_info *mci = dimm->mci;
65         int i, n, count = 0;
66         char *p = buf;
67
68         for (i = 0; i < mci->n_layers; i++) {
69                 n = scnprintf(p, len, "%s %d ",
70                               edac_layer_name[mci->layers[i].type],
71                               dimm->location[i]);
72                 p += n;
73                 len -= n;
74                 count += n;
75         }
76
77         return count;
78 }
79
80 #ifdef CONFIG_EDAC_DEBUG
81
82 static void edac_mc_dump_channel(struct rank_info *chan)
83 {
84         edac_dbg(4, "  channel->chan_idx = %d\n", chan->chan_idx);
85         edac_dbg(4, "    channel = %p\n", chan);
86         edac_dbg(4, "    channel->csrow = %p\n", chan->csrow);
87         edac_dbg(4, "    channel->dimm = %p\n", chan->dimm);
88 }
89
90 static void edac_mc_dump_dimm(struct dimm_info *dimm)
91 {
92         char location[80];
93
94         if (!dimm->nr_pages)
95                 return;
96
97         edac_dimm_info_location(dimm, location, sizeof(location));
98
99         edac_dbg(4, "%s%i: %smapped as virtual row %d, chan %d\n",
100                  dimm->mci->csbased ? "rank" : "dimm",
101                  dimm->idx, location, dimm->csrow, dimm->cschannel);
102         edac_dbg(4, "  dimm = %p\n", dimm);
103         edac_dbg(4, "  dimm->label = '%s'\n", dimm->label);
104         edac_dbg(4, "  dimm->nr_pages = 0x%x\n", dimm->nr_pages);
105         edac_dbg(4, "  dimm->grain = %d\n", dimm->grain);
106 }
107
108 static void edac_mc_dump_csrow(struct csrow_info *csrow)
109 {
110         edac_dbg(4, "csrow->csrow_idx = %d\n", csrow->csrow_idx);
111         edac_dbg(4, "  csrow = %p\n", csrow);
112         edac_dbg(4, "  csrow->first_page = 0x%lx\n", csrow->first_page);
113         edac_dbg(4, "  csrow->last_page = 0x%lx\n", csrow->last_page);
114         edac_dbg(4, "  csrow->page_mask = 0x%lx\n", csrow->page_mask);
115         edac_dbg(4, "  csrow->nr_channels = %d\n", csrow->nr_channels);
116         edac_dbg(4, "  csrow->channels = %p\n", csrow->channels);
117         edac_dbg(4, "  csrow->mci = %p\n", csrow->mci);
118 }
119
120 static void edac_mc_dump_mci(struct mem_ctl_info *mci)
121 {
122         edac_dbg(3, "\tmci = %p\n", mci);
123         edac_dbg(3, "\tmci->mtype_cap = %lx\n", mci->mtype_cap);
124         edac_dbg(3, "\tmci->edac_ctl_cap = %lx\n", mci->edac_ctl_cap);
125         edac_dbg(3, "\tmci->edac_cap = %lx\n", mci->edac_cap);
126         edac_dbg(4, "\tmci->edac_check = %p\n", mci->edac_check);
127         edac_dbg(3, "\tmci->nr_csrows = %d, csrows = %p\n",
128                  mci->nr_csrows, mci->csrows);
129         edac_dbg(3, "\tmci->nr_dimms = %d, dimms = %p\n",
130                  mci->tot_dimms, mci->dimms);
131         edac_dbg(3, "\tdev = %p\n", mci->pdev);
132         edac_dbg(3, "\tmod_name:ctl_name = %s:%s\n",
133                  mci->mod_name, mci->ctl_name);
134         edac_dbg(3, "\tpvt_info = %p\n\n", mci->pvt_info);
135 }
136
137 #endif                          /* CONFIG_EDAC_DEBUG */
138
139 const char * const edac_mem_types[] = {
140         [MEM_EMPTY]     = "Empty",
141         [MEM_RESERVED]  = "Reserved",
142         [MEM_UNKNOWN]   = "Unknown",
143         [MEM_FPM]       = "FPM",
144         [MEM_EDO]       = "EDO",
145         [MEM_BEDO]      = "BEDO",
146         [MEM_SDR]       = "Unbuffered-SDR",
147         [MEM_RDR]       = "Registered-SDR",
148         [MEM_DDR]       = "Unbuffered-DDR",
149         [MEM_RDDR]      = "Registered-DDR",
150         [MEM_RMBS]      = "RMBS",
151         [MEM_DDR2]      = "Unbuffered-DDR2",
152         [MEM_FB_DDR2]   = "FullyBuffered-DDR2",
153         [MEM_RDDR2]     = "Registered-DDR2",
154         [MEM_XDR]       = "XDR",
155         [MEM_DDR3]      = "Unbuffered-DDR3",
156         [MEM_RDDR3]     = "Registered-DDR3",
157         [MEM_LRDDR3]    = "Load-Reduced-DDR3-RAM",
158         [MEM_LPDDR3]    = "Low-Power-DDR3-RAM",
159         [MEM_DDR4]      = "Unbuffered-DDR4",
160         [MEM_RDDR4]     = "Registered-DDR4",
161         [MEM_LPDDR4]    = "Low-Power-DDR4-RAM",
162         [MEM_LRDDR4]    = "Load-Reduced-DDR4-RAM",
163         [MEM_DDR5]      = "Unbuffered-DDR5",
164         [MEM_RDDR5]     = "Registered-DDR5",
165         [MEM_LRDDR5]    = "Load-Reduced-DDR5-RAM",
166         [MEM_NVDIMM]    = "Non-volatile-RAM",
167         [MEM_WIO2]      = "Wide-IO-2",
168         [MEM_HBM2]      = "High-bandwidth-memory-Gen2",
169 };
170 EXPORT_SYMBOL_GPL(edac_mem_types);
171
172 static void _edac_mc_free(struct mem_ctl_info *mci)
173 {
174         put_device(&mci->dev);
175 }
176
177 static void mci_release(struct device *dev)
178 {
179         struct mem_ctl_info *mci = container_of(dev, struct mem_ctl_info, dev);
180         struct csrow_info *csr;
181         int i, chn, row;
182
183         if (mci->dimms) {
184                 for (i = 0; i < mci->tot_dimms; i++)
185                         kfree(mci->dimms[i]);
186                 kfree(mci->dimms);
187         }
188
189         if (mci->csrows) {
190                 for (row = 0; row < mci->nr_csrows; row++) {
191                         csr = mci->csrows[row];
192                         if (!csr)
193                                 continue;
194
195                         if (csr->channels) {
196                                 for (chn = 0; chn < mci->num_cschannel; chn++)
197                                         kfree(csr->channels[chn]);
198                                 kfree(csr->channels);
199                         }
200                         kfree(csr);
201                 }
202                 kfree(mci->csrows);
203         }
204         kfree(mci->pvt_info);
205         kfree(mci->layers);
206         kfree(mci);
207 }
208
209 static int edac_mc_alloc_csrows(struct mem_ctl_info *mci)
210 {
211         unsigned int tot_channels = mci->num_cschannel;
212         unsigned int tot_csrows = mci->nr_csrows;
213         unsigned int row, chn;
214
215         /*
216          * Alocate and fill the csrow/channels structs
217          */
218         mci->csrows = kcalloc(tot_csrows, sizeof(*mci->csrows), GFP_KERNEL);
219         if (!mci->csrows)
220                 return -ENOMEM;
221
222         for (row = 0; row < tot_csrows; row++) {
223                 struct csrow_info *csr;
224
225                 csr = kzalloc(sizeof(**mci->csrows), GFP_KERNEL);
226                 if (!csr)
227                         return -ENOMEM;
228
229                 mci->csrows[row] = csr;
230                 csr->csrow_idx = row;
231                 csr->mci = mci;
232                 csr->nr_channels = tot_channels;
233                 csr->channels = kcalloc(tot_channels, sizeof(*csr->channels),
234                                         GFP_KERNEL);
235                 if (!csr->channels)
236                         return -ENOMEM;
237
238                 for (chn = 0; chn < tot_channels; chn++) {
239                         struct rank_info *chan;
240
241                         chan = kzalloc(sizeof(**csr->channels), GFP_KERNEL);
242                         if (!chan)
243                                 return -ENOMEM;
244
245                         csr->channels[chn] = chan;
246                         chan->chan_idx = chn;
247                         chan->csrow = csr;
248                 }
249         }
250
251         return 0;
252 }
253
254 static int edac_mc_alloc_dimms(struct mem_ctl_info *mci)
255 {
256         unsigned int pos[EDAC_MAX_LAYERS];
257         unsigned int row, chn, idx;
258         int layer;
259         void *p;
260
261         /*
262          * Allocate and fill the dimm structs
263          */
264         mci->dimms  = kcalloc(mci->tot_dimms, sizeof(*mci->dimms), GFP_KERNEL);
265         if (!mci->dimms)
266                 return -ENOMEM;
267
268         memset(&pos, 0, sizeof(pos));
269         row = 0;
270         chn = 0;
271         for (idx = 0; idx < mci->tot_dimms; idx++) {
272                 struct dimm_info *dimm;
273                 struct rank_info *chan;
274                 int n, len;
275
276                 chan = mci->csrows[row]->channels[chn];
277
278                 dimm = kzalloc(sizeof(**mci->dimms), GFP_KERNEL);
279                 if (!dimm)
280                         return -ENOMEM;
281                 mci->dimms[idx] = dimm;
282                 dimm->mci = mci;
283                 dimm->idx = idx;
284
285                 /*
286                  * Copy DIMM location and initialize it.
287                  */
288                 len = sizeof(dimm->label);
289                 p = dimm->label;
290                 n = scnprintf(p, len, "mc#%u", mci->mc_idx);
291                 p += n;
292                 len -= n;
293                 for (layer = 0; layer < mci->n_layers; layer++) {
294                         n = scnprintf(p, len, "%s#%u",
295                                       edac_layer_name[mci->layers[layer].type],
296                                       pos[layer]);
297                         p += n;
298                         len -= n;
299                         dimm->location[layer] = pos[layer];
300                 }
301
302                 /* Link it to the csrows old API data */
303                 chan->dimm = dimm;
304                 dimm->csrow = row;
305                 dimm->cschannel = chn;
306
307                 /* Increment csrow location */
308                 if (mci->layers[0].is_virt_csrow) {
309                         chn++;
310                         if (chn == mci->num_cschannel) {
311                                 chn = 0;
312                                 row++;
313                         }
314                 } else {
315                         row++;
316                         if (row == mci->nr_csrows) {
317                                 row = 0;
318                                 chn++;
319                         }
320                 }
321
322                 /* Increment dimm location */
323                 for (layer = mci->n_layers - 1; layer >= 0; layer--) {
324                         pos[layer]++;
325                         if (pos[layer] < mci->layers[layer].size)
326                                 break;
327                         pos[layer] = 0;
328                 }
329         }
330
331         return 0;
332 }
333
334 struct mem_ctl_info *edac_mc_alloc(unsigned int mc_num,
335                                    unsigned int n_layers,
336                                    struct edac_mc_layer *layers,
337                                    unsigned int sz_pvt)
338 {
339         struct mem_ctl_info *mci;
340         struct edac_mc_layer *layer;
341         unsigned int idx, tot_dimms = 1;
342         unsigned int tot_csrows = 1, tot_channels = 1;
343         bool per_rank = false;
344
345         if (WARN_ON(n_layers > EDAC_MAX_LAYERS || n_layers == 0))
346                 return NULL;
347
348         /*
349          * Calculate the total amount of dimms and csrows/cschannels while
350          * in the old API emulation mode
351          */
352         for (idx = 0; idx < n_layers; idx++) {
353                 tot_dimms *= layers[idx].size;
354
355                 if (layers[idx].is_virt_csrow)
356                         tot_csrows *= layers[idx].size;
357                 else
358                         tot_channels *= layers[idx].size;
359
360                 if (layers[idx].type == EDAC_MC_LAYER_CHIP_SELECT)
361                         per_rank = true;
362         }
363
364         mci = kzalloc(sizeof(struct mem_ctl_info), GFP_KERNEL);
365         if (!mci)
366                 return NULL;
367
368         mci->layers = kcalloc(n_layers, sizeof(struct edac_mc_layer), GFP_KERNEL);
369         if (!mci->layers)
370                 goto error;
371
372         mci->pvt_info = kzalloc(sz_pvt, GFP_KERNEL);
373         if (!mci->pvt_info)
374                 goto error;
375
376         mci->dev.release = mci_release;
377         device_initialize(&mci->dev);
378
379         /* setup index and various internal pointers */
380         mci->mc_idx = mc_num;
381         mci->tot_dimms = tot_dimms;
382         mci->n_layers = n_layers;
383         memcpy(mci->layers, layers, sizeof(*layer) * n_layers);
384         mci->nr_csrows = tot_csrows;
385         mci->num_cschannel = tot_channels;
386         mci->csbased = per_rank;
387
388         if (edac_mc_alloc_csrows(mci))
389                 goto error;
390
391         if (edac_mc_alloc_dimms(mci))
392                 goto error;
393
394         mci->op_state = OP_ALLOC;
395
396         return mci;
397
398 error:
399         _edac_mc_free(mci);
400
401         return NULL;
402 }
403 EXPORT_SYMBOL_GPL(edac_mc_alloc);
404
405 void edac_mc_free(struct mem_ctl_info *mci)
406 {
407         edac_dbg(1, "\n");
408
409         _edac_mc_free(mci);
410 }
411 EXPORT_SYMBOL_GPL(edac_mc_free);
412
413 bool edac_has_mcs(void)
414 {
415         bool ret;
416
417         mutex_lock(&mem_ctls_mutex);
418
419         ret = list_empty(&mc_devices);
420
421         mutex_unlock(&mem_ctls_mutex);
422
423         return !ret;
424 }
425 EXPORT_SYMBOL_GPL(edac_has_mcs);
426
427 /* Caller must hold mem_ctls_mutex */
428 static struct mem_ctl_info *__find_mci_by_dev(struct device *dev)
429 {
430         struct mem_ctl_info *mci;
431         struct list_head *item;
432
433         edac_dbg(3, "\n");
434
435         list_for_each(item, &mc_devices) {
436                 mci = list_entry(item, struct mem_ctl_info, link);
437
438                 if (mci->pdev == dev)
439                         return mci;
440         }
441
442         return NULL;
443 }
444
445 /**
446  * find_mci_by_dev
447  *
448  *      scan list of controllers looking for the one that manages
449  *      the 'dev' device
450  * @dev: pointer to a struct device related with the MCI
451  */
452 struct mem_ctl_info *find_mci_by_dev(struct device *dev)
453 {
454         struct mem_ctl_info *ret;
455
456         mutex_lock(&mem_ctls_mutex);
457         ret = __find_mci_by_dev(dev);
458         mutex_unlock(&mem_ctls_mutex);
459
460         return ret;
461 }
462 EXPORT_SYMBOL_GPL(find_mci_by_dev);
463
464 /*
465  * edac_mc_workq_function
466  *      performs the operation scheduled by a workq request
467  */
468 static void edac_mc_workq_function(struct work_struct *work_req)
469 {
470         struct delayed_work *d_work = to_delayed_work(work_req);
471         struct mem_ctl_info *mci = to_edac_mem_ctl_work(d_work);
472
473         mutex_lock(&mem_ctls_mutex);
474
475         if (mci->op_state != OP_RUNNING_POLL) {
476                 mutex_unlock(&mem_ctls_mutex);
477                 return;
478         }
479
480         if (edac_op_state == EDAC_OPSTATE_POLL)
481                 mci->edac_check(mci);
482
483         mutex_unlock(&mem_ctls_mutex);
484
485         /* Queue ourselves again. */
486         edac_queue_work(&mci->work, msecs_to_jiffies(edac_mc_get_poll_msec()));
487 }
488
489 /*
490  * edac_mc_reset_delay_period(unsigned long value)
491  *
492  *      user space has updated our poll period value, need to
493  *      reset our workq delays
494  */
495 void edac_mc_reset_delay_period(unsigned long value)
496 {
497         struct mem_ctl_info *mci;
498         struct list_head *item;
499
500         mutex_lock(&mem_ctls_mutex);
501
502         list_for_each(item, &mc_devices) {
503                 mci = list_entry(item, struct mem_ctl_info, link);
504
505                 if (mci->op_state == OP_RUNNING_POLL)
506                         edac_mod_work(&mci->work, value);
507         }
508         mutex_unlock(&mem_ctls_mutex);
509 }
510
511
512
513 /* Return 0 on success, 1 on failure.
514  * Before calling this function, caller must
515  * assign a unique value to mci->mc_idx.
516  *
517  *      locking model:
518  *
519  *              called with the mem_ctls_mutex lock held
520  */
521 static int add_mc_to_global_list(struct mem_ctl_info *mci)
522 {
523         struct list_head *item, *insert_before;
524         struct mem_ctl_info *p;
525
526         insert_before = &mc_devices;
527
528         p = __find_mci_by_dev(mci->pdev);
529         if (unlikely(p != NULL))
530                 goto fail0;
531
532         list_for_each(item, &mc_devices) {
533                 p = list_entry(item, struct mem_ctl_info, link);
534
535                 if (p->mc_idx >= mci->mc_idx) {
536                         if (unlikely(p->mc_idx == mci->mc_idx))
537                                 goto fail1;
538
539                         insert_before = item;
540                         break;
541                 }
542         }
543
544         list_add_tail_rcu(&mci->link, insert_before);
545         return 0;
546
547 fail0:
548         edac_printk(KERN_WARNING, EDAC_MC,
549                 "%s (%s) %s %s already assigned %d\n", dev_name(p->pdev),
550                 edac_dev_name(mci), p->mod_name, p->ctl_name, p->mc_idx);
551         return 1;
552
553 fail1:
554         edac_printk(KERN_WARNING, EDAC_MC,
555                 "bug in low-level driver: attempt to assign\n"
556                 "    duplicate mc_idx %d in %s()\n", p->mc_idx, __func__);
557         return 1;
558 }
559
560 static int del_mc_from_global_list(struct mem_ctl_info *mci)
561 {
562         list_del_rcu(&mci->link);
563
564         /* these are for safe removal of devices from global list while
565          * NMI handlers may be traversing list
566          */
567         synchronize_rcu();
568         INIT_LIST_HEAD(&mci->link);
569
570         return list_empty(&mc_devices);
571 }
572
573 struct mem_ctl_info *edac_mc_find(int idx)
574 {
575         struct mem_ctl_info *mci;
576         struct list_head *item;
577
578         mutex_lock(&mem_ctls_mutex);
579
580         list_for_each(item, &mc_devices) {
581                 mci = list_entry(item, struct mem_ctl_info, link);
582                 if (mci->mc_idx == idx)
583                         goto unlock;
584         }
585
586         mci = NULL;
587 unlock:
588         mutex_unlock(&mem_ctls_mutex);
589         return mci;
590 }
591 EXPORT_SYMBOL(edac_mc_find);
592
593 const char *edac_get_owner(void)
594 {
595         return edac_mc_owner;
596 }
597 EXPORT_SYMBOL_GPL(edac_get_owner);
598
599 /* FIXME - should a warning be printed if no error detection? correction? */
600 int edac_mc_add_mc_with_groups(struct mem_ctl_info *mci,
601                                const struct attribute_group **groups)
602 {
603         int ret = -EINVAL;
604         edac_dbg(0, "\n");
605
606 #ifdef CONFIG_EDAC_DEBUG
607         if (edac_debug_level >= 3)
608                 edac_mc_dump_mci(mci);
609
610         if (edac_debug_level >= 4) {
611                 struct dimm_info *dimm;
612                 int i;
613
614                 for (i = 0; i < mci->nr_csrows; i++) {
615                         struct csrow_info *csrow = mci->csrows[i];
616                         u32 nr_pages = 0;
617                         int j;
618
619                         for (j = 0; j < csrow->nr_channels; j++)
620                                 nr_pages += csrow->channels[j]->dimm->nr_pages;
621                         if (!nr_pages)
622                                 continue;
623                         edac_mc_dump_csrow(csrow);
624                         for (j = 0; j < csrow->nr_channels; j++)
625                                 if (csrow->channels[j]->dimm->nr_pages)
626                                         edac_mc_dump_channel(csrow->channels[j]);
627                 }
628
629                 mci_for_each_dimm(mci, dimm)
630                         edac_mc_dump_dimm(dimm);
631         }
632 #endif
633         mutex_lock(&mem_ctls_mutex);
634
635         if (edac_mc_owner && edac_mc_owner != mci->mod_name) {
636                 ret = -EPERM;
637                 goto fail0;
638         }
639
640         if (add_mc_to_global_list(mci))
641                 goto fail0;
642
643         /* set load time so that error rate can be tracked */
644         mci->start_time = jiffies;
645
646         mci->bus = edac_get_sysfs_subsys();
647
648         if (edac_create_sysfs_mci_device(mci, groups)) {
649                 edac_mc_printk(mci, KERN_WARNING,
650                         "failed to create sysfs device\n");
651                 goto fail1;
652         }
653
654         if (mci->edac_check) {
655                 mci->op_state = OP_RUNNING_POLL;
656
657                 INIT_DELAYED_WORK(&mci->work, edac_mc_workq_function);
658                 edac_queue_work(&mci->work, msecs_to_jiffies(edac_mc_get_poll_msec()));
659
660         } else {
661                 mci->op_state = OP_RUNNING_INTERRUPT;
662         }
663
664         /* Report action taken */
665         edac_mc_printk(mci, KERN_INFO,
666                 "Giving out device to module %s controller %s: DEV %s (%s)\n",
667                 mci->mod_name, mci->ctl_name, mci->dev_name,
668                 edac_op_state_to_string(mci->op_state));
669
670         edac_mc_owner = mci->mod_name;
671
672         mutex_unlock(&mem_ctls_mutex);
673         return 0;
674
675 fail1:
676         del_mc_from_global_list(mci);
677
678 fail0:
679         mutex_unlock(&mem_ctls_mutex);
680         return ret;
681 }
682 EXPORT_SYMBOL_GPL(edac_mc_add_mc_with_groups);
683
684 struct mem_ctl_info *edac_mc_del_mc(struct device *dev)
685 {
686         struct mem_ctl_info *mci;
687
688         edac_dbg(0, "\n");
689
690         mutex_lock(&mem_ctls_mutex);
691
692         /* find the requested mci struct in the global list */
693         mci = __find_mci_by_dev(dev);
694         if (mci == NULL) {
695                 mutex_unlock(&mem_ctls_mutex);
696                 return NULL;
697         }
698
699         /* mark MCI offline: */
700         mci->op_state = OP_OFFLINE;
701
702         if (del_mc_from_global_list(mci))
703                 edac_mc_owner = NULL;
704
705         mutex_unlock(&mem_ctls_mutex);
706
707         if (mci->edac_check)
708                 edac_stop_work(&mci->work);
709
710         /* remove from sysfs */
711         edac_remove_sysfs_mci_device(mci);
712
713         edac_printk(KERN_INFO, EDAC_MC,
714                 "Removed device %d for %s %s: DEV %s\n", mci->mc_idx,
715                 mci->mod_name, mci->ctl_name, edac_dev_name(mci));
716
717         return mci;
718 }
719 EXPORT_SYMBOL_GPL(edac_mc_del_mc);
720
721 static void edac_mc_scrub_block(unsigned long page, unsigned long offset,
722                                 u32 size)
723 {
724         struct page *pg;
725         void *virt_addr;
726         unsigned long flags = 0;
727
728         edac_dbg(3, "\n");
729
730         /* ECC error page was not in our memory. Ignore it. */
731         if (!pfn_valid(page))
732                 return;
733
734         /* Find the actual page structure then map it and fix */
735         pg = pfn_to_page(page);
736
737         if (PageHighMem(pg))
738                 local_irq_save(flags);
739
740         virt_addr = kmap_atomic(pg);
741
742         /* Perform architecture specific atomic scrub operation */
743         edac_atomic_scrub(virt_addr + offset, size);
744
745         /* Unmap and complete */
746         kunmap_atomic(virt_addr);
747
748         if (PageHighMem(pg))
749                 local_irq_restore(flags);
750 }
751
752 /* FIXME - should return -1 */
753 int edac_mc_find_csrow_by_page(struct mem_ctl_info *mci, unsigned long page)
754 {
755         struct csrow_info **csrows = mci->csrows;
756         int row, i, j, n;
757
758         edac_dbg(1, "MC%d: 0x%lx\n", mci->mc_idx, page);
759         row = -1;
760
761         for (i = 0; i < mci->nr_csrows; i++) {
762                 struct csrow_info *csrow = csrows[i];
763                 n = 0;
764                 for (j = 0; j < csrow->nr_channels; j++) {
765                         struct dimm_info *dimm = csrow->channels[j]->dimm;
766                         n += dimm->nr_pages;
767                 }
768                 if (n == 0)
769                         continue;
770
771                 edac_dbg(3, "MC%d: first(0x%lx) page(0x%lx) last(0x%lx) mask(0x%lx)\n",
772                          mci->mc_idx,
773                          csrow->first_page, page, csrow->last_page,
774                          csrow->page_mask);
775
776                 if ((page >= csrow->first_page) &&
777                     (page <= csrow->last_page) &&
778                     ((page & csrow->page_mask) ==
779                      (csrow->first_page & csrow->page_mask))) {
780                         row = i;
781                         break;
782                 }
783         }
784
785         if (row == -1)
786                 edac_mc_printk(mci, KERN_ERR,
787                         "could not look up page error address %lx\n",
788                         (unsigned long)page);
789
790         return row;
791 }
792 EXPORT_SYMBOL_GPL(edac_mc_find_csrow_by_page);
793
794 const char *edac_layer_name[] = {
795         [EDAC_MC_LAYER_BRANCH] = "branch",
796         [EDAC_MC_LAYER_CHANNEL] = "channel",
797         [EDAC_MC_LAYER_SLOT] = "slot",
798         [EDAC_MC_LAYER_CHIP_SELECT] = "csrow",
799         [EDAC_MC_LAYER_ALL_MEM] = "memory",
800 };
801 EXPORT_SYMBOL_GPL(edac_layer_name);
802
803 static void edac_inc_ce_error(struct edac_raw_error_desc *e)
804 {
805         int pos[EDAC_MAX_LAYERS] = { e->top_layer, e->mid_layer, e->low_layer };
806         struct mem_ctl_info *mci = error_desc_to_mci(e);
807         struct dimm_info *dimm = edac_get_dimm(mci, pos[0], pos[1], pos[2]);
808
809         mci->ce_mc += e->error_count;
810
811         if (dimm)
812                 dimm->ce_count += e->error_count;
813         else
814                 mci->ce_noinfo_count += e->error_count;
815 }
816
817 static void edac_inc_ue_error(struct edac_raw_error_desc *e)
818 {
819         int pos[EDAC_MAX_LAYERS] = { e->top_layer, e->mid_layer, e->low_layer };
820         struct mem_ctl_info *mci = error_desc_to_mci(e);
821         struct dimm_info *dimm = edac_get_dimm(mci, pos[0], pos[1], pos[2]);
822
823         mci->ue_mc += e->error_count;
824
825         if (dimm)
826                 dimm->ue_count += e->error_count;
827         else
828                 mci->ue_noinfo_count += e->error_count;
829 }
830
831 static void edac_ce_error(struct edac_raw_error_desc *e)
832 {
833         struct mem_ctl_info *mci = error_desc_to_mci(e);
834         unsigned long remapped_page;
835
836         if (edac_mc_get_log_ce()) {
837                 edac_mc_printk(mci, KERN_WARNING,
838                         "%d CE %s%son %s (%s page:0x%lx offset:0x%lx grain:%ld syndrome:0x%lx%s%s)\n",
839                         e->error_count, e->msg,
840                         *e->msg ? " " : "",
841                         e->label, e->location, e->page_frame_number, e->offset_in_page,
842                         e->grain, e->syndrome,
843                         *e->other_detail ? " - " : "",
844                         e->other_detail);
845         }
846
847         edac_inc_ce_error(e);
848
849         if (mci->scrub_mode == SCRUB_SW_SRC) {
850                 /*
851                         * Some memory controllers (called MCs below) can remap
852                         * memory so that it is still available at a different
853                         * address when PCI devices map into memory.
854                         * MC's that can't do this, lose the memory where PCI
855                         * devices are mapped. This mapping is MC-dependent
856                         * and so we call back into the MC driver for it to
857                         * map the MC page to a physical (CPU) page which can
858                         * then be mapped to a virtual page - which can then
859                         * be scrubbed.
860                         */
861                 remapped_page = mci->ctl_page_to_phys ?
862                         mci->ctl_page_to_phys(mci, e->page_frame_number) :
863                         e->page_frame_number;
864
865                 edac_mc_scrub_block(remapped_page, e->offset_in_page, e->grain);
866         }
867 }
868
869 static void edac_ue_error(struct edac_raw_error_desc *e)
870 {
871         struct mem_ctl_info *mci = error_desc_to_mci(e);
872
873         if (edac_mc_get_log_ue()) {
874                 edac_mc_printk(mci, KERN_WARNING,
875                         "%d UE %s%son %s (%s page:0x%lx offset:0x%lx grain:%ld%s%s)\n",
876                         e->error_count, e->msg,
877                         *e->msg ? " " : "",
878                         e->label, e->location, e->page_frame_number, e->offset_in_page,
879                         e->grain,
880                         *e->other_detail ? " - " : "",
881                         e->other_detail);
882         }
883
884         edac_inc_ue_error(e);
885
886         if (edac_mc_get_panic_on_ue()) {
887                 panic("UE %s%son %s (%s page:0x%lx offset:0x%lx grain:%ld%s%s)\n",
888                         e->msg,
889                         *e->msg ? " " : "",
890                         e->label, e->location, e->page_frame_number, e->offset_in_page,
891                         e->grain,
892                         *e->other_detail ? " - " : "",
893                         e->other_detail);
894         }
895 }
896
897 static void edac_inc_csrow(struct edac_raw_error_desc *e, int row, int chan)
898 {
899         struct mem_ctl_info *mci = error_desc_to_mci(e);
900         enum hw_event_mc_err_type type = e->type;
901         u16 count = e->error_count;
902
903         if (row < 0)
904                 return;
905
906         edac_dbg(4, "csrow/channel to increment: (%d,%d)\n", row, chan);
907
908         if (type == HW_EVENT_ERR_CORRECTED) {
909                 mci->csrows[row]->ce_count += count;
910                 if (chan >= 0)
911                         mci->csrows[row]->channels[chan]->ce_count += count;
912         } else {
913                 mci->csrows[row]->ue_count += count;
914         }
915 }
916
917 void edac_raw_mc_handle_error(struct edac_raw_error_desc *e)
918 {
919         struct mem_ctl_info *mci = error_desc_to_mci(e);
920         u8 grain_bits;
921
922         /* Sanity-check driver-supplied grain value. */
923         if (WARN_ON_ONCE(!e->grain))
924                 e->grain = 1;
925
926         grain_bits = fls_long(e->grain - 1);
927
928         /* Report the error via the trace interface */
929         if (IS_ENABLED(CONFIG_RAS))
930                 trace_mc_event(e->type, e->msg, e->label, e->error_count,
931                                mci->mc_idx, e->top_layer, e->mid_layer,
932                                e->low_layer,
933                                (e->page_frame_number << PAGE_SHIFT) | e->offset_in_page,
934                                grain_bits, e->syndrome, e->other_detail);
935
936         if (e->type == HW_EVENT_ERR_CORRECTED)
937                 edac_ce_error(e);
938         else
939                 edac_ue_error(e);
940 }
941 EXPORT_SYMBOL_GPL(edac_raw_mc_handle_error);
942
943 void edac_mc_handle_error(const enum hw_event_mc_err_type type,
944                           struct mem_ctl_info *mci,
945                           const u16 error_count,
946                           const unsigned long page_frame_number,
947                           const unsigned long offset_in_page,
948                           const unsigned long syndrome,
949                           const int top_layer,
950                           const int mid_layer,
951                           const int low_layer,
952                           const char *msg,
953                           const char *other_detail)
954 {
955         struct dimm_info *dimm;
956         char *p, *end;
957         int row = -1, chan = -1;
958         int pos[EDAC_MAX_LAYERS] = { top_layer, mid_layer, low_layer };
959         int i, n_labels = 0;
960         struct edac_raw_error_desc *e = &mci->error_desc;
961         bool any_memory = true;
962         const char *prefix;
963
964         edac_dbg(3, "MC%d\n", mci->mc_idx);
965
966         /* Fills the error report buffer */
967         memset(e, 0, sizeof (*e));
968         e->error_count = error_count;
969         e->type = type;
970         e->top_layer = top_layer;
971         e->mid_layer = mid_layer;
972         e->low_layer = low_layer;
973         e->page_frame_number = page_frame_number;
974         e->offset_in_page = offset_in_page;
975         e->syndrome = syndrome;
976         /* need valid strings here for both: */
977         e->msg = msg ?: "";
978         e->other_detail = other_detail ?: "";
979
980         /*
981          * Check if the event report is consistent and if the memory location is
982          * known. If it is, the DIMM(s) label info will be filled and the DIMM's
983          * error counters will be incremented.
984          */
985         for (i = 0; i < mci->n_layers; i++) {
986                 if (pos[i] >= (int)mci->layers[i].size) {
987
988                         edac_mc_printk(mci, KERN_ERR,
989                                        "INTERNAL ERROR: %s value is out of range (%d >= %d)\n",
990                                        edac_layer_name[mci->layers[i].type],
991                                        pos[i], mci->layers[i].size);
992                         /*
993                          * Instead of just returning it, let's use what's
994                          * known about the error. The increment routines and
995                          * the DIMM filter logic will do the right thing by
996                          * pointing the likely damaged DIMMs.
997                          */
998                         pos[i] = -1;
999                 }
1000                 if (pos[i] >= 0)
1001                         any_memory = false;
1002         }
1003
1004         /*
1005          * Get the dimm label/grain that applies to the match criteria.
1006          * As the error algorithm may not be able to point to just one memory
1007          * stick, the logic here will get all possible labels that could
1008          * pottentially be affected by the error.
1009          * On FB-DIMM memory controllers, for uncorrected errors, it is common
1010          * to have only the MC channel and the MC dimm (also called "branch")
1011          * but the channel is not known, as the memory is arranged in pairs,
1012          * where each memory belongs to a separate channel within the same
1013          * branch.
1014          */
1015         p = e->label;
1016         *p = '\0';
1017         end = p + sizeof(e->label);
1018         prefix = "";
1019
1020         mci_for_each_dimm(mci, dimm) {
1021                 if (top_layer >= 0 && top_layer != dimm->location[0])
1022                         continue;
1023                 if (mid_layer >= 0 && mid_layer != dimm->location[1])
1024                         continue;
1025                 if (low_layer >= 0 && low_layer != dimm->location[2])
1026                         continue;
1027
1028                 /* get the max grain, over the error match range */
1029                 if (dimm->grain > e->grain)
1030                         e->grain = dimm->grain;
1031
1032                 /*
1033                  * If the error is memory-controller wide, there's no need to
1034                  * seek for the affected DIMMs because the whole channel/memory
1035                  * controller/... may be affected. Also, don't show errors for
1036                  * empty DIMM slots.
1037                  */
1038                 if (!dimm->nr_pages)
1039                         continue;
1040
1041                 n_labels++;
1042                 if (n_labels > EDAC_MAX_LABELS) {
1043                         p = e->label;
1044                         *p = '\0';
1045                 } else {
1046                         p += scnprintf(p, end - p, "%s%s", prefix, dimm->label);
1047                         prefix = OTHER_LABEL;
1048                 }
1049
1050                 /*
1051                  * get csrow/channel of the DIMM, in order to allow
1052                  * incrementing the compat API counters
1053                  */
1054                 edac_dbg(4, "%s csrows map: (%d,%d)\n",
1055                         mci->csbased ? "rank" : "dimm",
1056                         dimm->csrow, dimm->cschannel);
1057                 if (row == -1)
1058                         row = dimm->csrow;
1059                 else if (row >= 0 && row != dimm->csrow)
1060                         row = -2;
1061
1062                 if (chan == -1)
1063                         chan = dimm->cschannel;
1064                 else if (chan >= 0 && chan != dimm->cschannel)
1065                         chan = -2;
1066         }
1067
1068         if (any_memory)
1069                 strscpy(e->label, "any memory", sizeof(e->label));
1070         else if (!*e->label)
1071                 strscpy(e->label, "unknown memory", sizeof(e->label));
1072
1073         edac_inc_csrow(e, row, chan);
1074
1075         /* Fill the RAM location data */
1076         p = e->location;
1077         end = p + sizeof(e->location);
1078         prefix = "";
1079
1080         for (i = 0; i < mci->n_layers; i++) {
1081                 if (pos[i] < 0)
1082                         continue;
1083
1084                 p += scnprintf(p, end - p, "%s%s:%d", prefix,
1085                                edac_layer_name[mci->layers[i].type], pos[i]);
1086                 prefix = " ";
1087         }
1088
1089         edac_raw_mc_handle_error(e);
1090 }
1091 EXPORT_SYMBOL_GPL(edac_mc_handle_error);