2 * edac_mc kernel module
3 * (C) 2005, 2006 Linux Networx (http://lnxi.com)
4 * This file may be distributed under the terms of the
5 * GNU General Public License.
7 * Written by Thayne Harbaugh
8 * Based on work by Dan Hollis <goemon at anime dot net> and others.
9 * http://www.anime.net/~goemon/linux-ecc/
11 * Modified by Dave Peterson and Doug Thompson
15 #include <linux/module.h>
16 #include <linux/proc_fs.h>
17 #include <linux/kernel.h>
18 #include <linux/types.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/sysctl.h>
22 #include <linux/highmem.h>
23 #include <linux/timer.h>
24 #include <linux/slab.h>
25 #include <linux/jiffies.h>
26 #include <linux/spinlock.h>
27 #include <linux/list.h>
28 #include <linux/ctype.h>
29 #include <linux/edac.h>
30 #include <asm/uaccess.h>
33 #include "edac_core.h"
34 #include "edac_module.h"
36 /* lock to memory controller's control array */
37 static DEFINE_MUTEX(mem_ctls_mutex);
38 static LIST_HEAD(mc_devices);
40 #ifdef CONFIG_EDAC_DEBUG
42 static void edac_mc_dump_channel(struct rank_info *chan)
44 debugf4("\tchannel = %p\n", chan);
45 debugf4("\tchannel->chan_idx = %d\n", chan->chan_idx);
46 debugf4("\tchannel->csrow = %p\n\n", chan->csrow);
47 debugf4("\tchannel->dimm = %p\n", chan->dimm);
50 static void edac_mc_dump_dimm(struct dimm_info *dimm)
54 debugf4("\tdimm = %p\n", dimm);
55 debugf4("\tdimm->label = '%s'\n", dimm->label);
56 debugf4("\tdimm->nr_pages = 0x%x\n", dimm->nr_pages);
57 debugf4("\tdimm location ");
58 for (i = 0; i < dimm->mci->n_layers; i++) {
59 printk(KERN_CONT "%d", dimm->location[i]);
60 if (i < dimm->mci->n_layers - 1)
61 printk(KERN_CONT ".");
63 printk(KERN_CONT "\n");
64 debugf4("\tdimm->grain = %d\n", dimm->grain);
65 debugf4("\tdimm->nr_pages = 0x%x\n", dimm->nr_pages);
68 static void edac_mc_dump_csrow(struct csrow_info *csrow)
70 debugf4("\tcsrow = %p\n", csrow);
71 debugf4("\tcsrow->csrow_idx = %d\n", csrow->csrow_idx);
72 debugf4("\tcsrow->first_page = 0x%lx\n", csrow->first_page);
73 debugf4("\tcsrow->last_page = 0x%lx\n", csrow->last_page);
74 debugf4("\tcsrow->page_mask = 0x%lx\n", csrow->page_mask);
75 debugf4("\tcsrow->nr_channels = %d\n", csrow->nr_channels);
76 debugf4("\tcsrow->channels = %p\n", csrow->channels);
77 debugf4("\tcsrow->mci = %p\n\n", csrow->mci);
80 static void edac_mc_dump_mci(struct mem_ctl_info *mci)
82 debugf3("\tmci = %p\n", mci);
83 debugf3("\tmci->mtype_cap = %lx\n", mci->mtype_cap);
84 debugf3("\tmci->edac_ctl_cap = %lx\n", mci->edac_ctl_cap);
85 debugf3("\tmci->edac_cap = %lx\n", mci->edac_cap);
86 debugf4("\tmci->edac_check = %p\n", mci->edac_check);
87 debugf3("\tmci->nr_csrows = %d, csrows = %p\n",
88 mci->nr_csrows, mci->csrows);
89 debugf3("\tmci->nr_dimms = %d, dimms = %p\n",
90 mci->tot_dimms, mci->dimms);
91 debugf3("\tdev = %p\n", mci->dev);
92 debugf3("\tmod_name:ctl_name = %s:%s\n", mci->mod_name, mci->ctl_name);
93 debugf3("\tpvt_info = %p\n\n", mci->pvt_info);
96 #endif /* CONFIG_EDAC_DEBUG */
99 * keep those in sync with the enum mem_type
101 const char *edac_mem_types[] = {
103 "Reserved csrow type",
104 "Unknown csrow type",
105 "Fast page mode RAM",
106 "Extended data out RAM",
107 "Burst Extended data out RAM",
108 "Single data rate SDRAM",
109 "Registered single data rate SDRAM",
110 "Double data rate SDRAM",
111 "Registered Double data rate SDRAM",
113 "Unbuffered DDR2 RAM",
114 "Fully buffered DDR2",
115 "Registered DDR2 RAM",
117 "Unbuffered DDR3 RAM",
118 "Registered DDR3 RAM",
120 EXPORT_SYMBOL_GPL(edac_mem_types);
123 * edac_align_ptr - Prepares the pointer offsets for a single-shot allocation
124 * @p: pointer to a pointer with the memory offset to be used. At
125 * return, this will be incremented to point to the next offset
126 * @size: Size of the data structure to be reserved
127 * @n_elems: Number of elements that should be reserved
129 * If 'size' is a constant, the compiler will optimize this whole function
130 * down to either a no-op or the addition of a constant to the value of '*p'.
132 * The 'p' pointer is absolutely needed to keep the proper advancing
133 * further in memory to the proper offsets when allocating the struct along
134 * with its embedded structs, as edac_device_alloc_ctl_info() does it
135 * above, for example.
137 * At return, the pointer 'p' will be incremented to be used on a next call
140 void *edac_align_ptr(void **p, unsigned size, int n_elems)
145 *p += size * n_elems;
148 * 'p' can possibly be an unaligned item X such that sizeof(X) is
149 * 'size'. Adjust 'p' so that its alignment is at least as
150 * stringent as what the compiler would provide for X and return
151 * the aligned result.
152 * Here we assume that the alignment of a "long long" is the most
153 * stringent alignment that the compiler will ever provide by default.
154 * As far as I know, this is a reasonable assumption.
156 if (size > sizeof(long))
157 align = sizeof(long long);
158 else if (size > sizeof(int))
159 align = sizeof(long);
160 else if (size > sizeof(short))
162 else if (size > sizeof(char))
163 align = sizeof(short);
167 r = (unsigned long)p % align;
174 return (void *)(((unsigned long)ptr) + align - r);
178 * edac_mc_alloc: Allocate and partially fill a struct mem_ctl_info structure
179 * @mc_num: Memory controller number
180 * @n_layers: Number of MC hierarchy layers
181 * layers: Describes each layer as seen by the Memory Controller
182 * @size_pvt: size of private storage needed
185 * Everything is kmalloc'ed as one big chunk - more efficient.
186 * Only can be used if all structures have the same lifetime - otherwise
187 * you have to allocate and initialize your own structures.
189 * Use edac_mc_free() to free mc structures allocated by this function.
191 * NOTE: drivers handle multi-rank memories in different ways: in some
192 * drivers, one multi-rank memory stick is mapped as one entry, while, in
193 * others, a single multi-rank memory stick would be mapped into several
194 * entries. Currently, this function will allocate multiple struct dimm_info
195 * on such scenarios, as grouping the multiple ranks require drivers change.
199 * On success: struct mem_ctl_info pointer
201 struct mem_ctl_info *edac_mc_alloc(unsigned mc_num,
203 struct edac_mc_layer *layers,
206 struct mem_ctl_info *mci;
207 struct edac_mc_layer *layer;
208 struct csrow_info *csi, *csr;
209 struct rank_info *chi, *chp, *chan;
210 struct dimm_info *dimm;
211 u32 *ce_per_layer[EDAC_MAX_LAYERS], *ue_per_layer[EDAC_MAX_LAYERS];
212 unsigned pos[EDAC_MAX_LAYERS];
213 unsigned size, tot_dimms = 1, count = 1;
214 unsigned tot_csrows = 1, tot_channels = 1, tot_errcount = 0;
215 void *pvt, *p, *ptr = NULL;
216 int i, j, err, row, chn, n, len;
217 bool per_rank = false;
219 BUG_ON(n_layers > EDAC_MAX_LAYERS || n_layers == 0);
221 * Calculate the total amount of dimms and csrows/cschannels while
222 * in the old API emulation mode
224 for (i = 0; i < n_layers; i++) {
225 tot_dimms *= layers[i].size;
226 if (layers[i].is_virt_csrow)
227 tot_csrows *= layers[i].size;
229 tot_channels *= layers[i].size;
231 if (layers[i].type == EDAC_MC_LAYER_CHIP_SELECT)
235 /* Figure out the offsets of the various items from the start of an mc
236 * structure. We want the alignment of each item to be at least as
237 * stringent as what the compiler would provide if we could simply
238 * hardcode everything into a single struct.
240 mci = edac_align_ptr(&ptr, sizeof(*mci), 1);
241 layer = edac_align_ptr(&ptr, sizeof(*layer), n_layers);
242 csi = edac_align_ptr(&ptr, sizeof(*csi), tot_csrows);
243 chi = edac_align_ptr(&ptr, sizeof(*chi), tot_csrows * tot_channels);
244 dimm = edac_align_ptr(&ptr, sizeof(*dimm), tot_dimms);
245 for (i = 0; i < n_layers; i++) {
246 count *= layers[i].size;
247 debugf4("%s: errcount layer %d size %d\n", __func__, i, count);
248 ce_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count);
249 ue_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count);
250 tot_errcount += 2 * count;
253 debugf4("%s: allocating %d error counters\n", __func__, tot_errcount);
254 pvt = edac_align_ptr(&ptr, sz_pvt, 1);
255 size = ((unsigned long)pvt) + sz_pvt;
257 debugf1("%s(): allocating %u bytes for mci data (%d %s, %d csrows/channels)\n",
260 per_rank ? "ranks" : "dimms",
261 tot_csrows * tot_channels);
262 mci = kzalloc(size, GFP_KERNEL);
266 /* Adjust pointers so they point within the memory we just allocated
267 * rather than an imaginary chunk of memory located at address 0.
269 layer = (struct edac_mc_layer *)(((char *)mci) + ((unsigned long)layer));
270 csi = (struct csrow_info *)(((char *)mci) + ((unsigned long)csi));
271 chi = (struct rank_info *)(((char *)mci) + ((unsigned long)chi));
272 dimm = (struct dimm_info *)(((char *)mci) + ((unsigned long)dimm));
273 for (i = 0; i < n_layers; i++) {
274 mci->ce_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ce_per_layer[i]));
275 mci->ue_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ue_per_layer[i]));
277 pvt = sz_pvt ? (((char *)mci) + ((unsigned long)pvt)) : NULL;
279 /* setup index and various internal pointers */
280 mci->mc_idx = mc_num;
283 mci->tot_dimms = tot_dimms;
285 mci->n_layers = n_layers;
287 memcpy(mci->layers, layers, sizeof(*layer) * n_layers);
288 mci->nr_csrows = tot_csrows;
289 mci->num_cschannel = tot_channels;
290 mci->mem_is_per_rank = per_rank;
293 * Fill the csrow struct
295 for (row = 0; row < tot_csrows; row++) {
297 csr->csrow_idx = row;
299 csr->nr_channels = tot_channels;
300 chp = &chi[row * tot_channels];
303 for (chn = 0; chn < tot_channels; chn++) {
305 chan->chan_idx = chn;
311 * Fill the dimm struct
313 memset(&pos, 0, sizeof(pos));
316 debugf4("%s: initializing %d %s\n", __func__, tot_dimms,
317 per_rank ? "ranks" : "dimms");
318 for (i = 0; i < tot_dimms; i++) {
319 chan = &csi[row].channels[chn];
320 dimm = EDAC_DIMM_PTR(layer, mci->dimms, n_layers,
321 pos[0], pos[1], pos[2]);
324 debugf2("%s: %d: %s%zd (%d:%d:%d): row %d, chan %d\n", __func__,
325 i, per_rank ? "rank" : "dimm", (dimm - mci->dimms),
326 pos[0], pos[1], pos[2], row, chn);
329 * Copy DIMM location and initialize it.
331 len = sizeof(dimm->label);
333 n = snprintf(p, len, "mc#%u", mc_num);
336 for (j = 0; j < n_layers; j++) {
337 n = snprintf(p, len, "%s#%u",
338 edac_layer_name[layers[j].type],
342 dimm->location[j] = pos[j];
348 /* Link it to the csrows old API data */
351 dimm->cschannel = chn;
353 /* Increment csrow location */
355 if (row == tot_csrows) {
360 /* Increment dimm location */
361 for (j = n_layers - 1; j >= 0; j--) {
363 if (pos[j] < layers[j].size)
369 mci->op_state = OP_ALLOC;
370 INIT_LIST_HEAD(&mci->grp_kobj_list);
373 * Initialize the 'root' kobj for the edac_mc controller
375 err = edac_mc_register_sysfs_main_kobj(mci);
381 /* at this point, the root kobj is valid, and in order to
382 * 'free' the object, then the function:
383 * edac_mc_unregister_sysfs_main_kobj() must be called
384 * which will perform kobj unregistration and the actual free
385 * will occur during the kobject callback operation
389 EXPORT_SYMBOL_GPL(edac_mc_alloc);
393 * 'Free' a previously allocated 'mci' structure
394 * @mci: pointer to a struct mem_ctl_info structure
396 void edac_mc_free(struct mem_ctl_info *mci)
398 debugf1("%s()\n", __func__);
400 edac_mc_unregister_sysfs_main_kobj(mci);
402 /* free the mci instance memory here */
405 EXPORT_SYMBOL_GPL(edac_mc_free);
411 * scan list of controllers looking for the one that manages
413 * @dev: pointer to a struct device related with the MCI
415 struct mem_ctl_info *find_mci_by_dev(struct device *dev)
417 struct mem_ctl_info *mci;
418 struct list_head *item;
420 debugf3("%s()\n", __func__);
422 list_for_each(item, &mc_devices) {
423 mci = list_entry(item, struct mem_ctl_info, link);
431 EXPORT_SYMBOL_GPL(find_mci_by_dev);
434 * handler for EDAC to check if NMI type handler has asserted interrupt
436 static int edac_mc_assert_error_check_and_clear(void)
440 if (edac_op_state == EDAC_OPSTATE_POLL)
443 old_state = edac_err_assert;
450 * edac_mc_workq_function
451 * performs the operation scheduled by a workq request
453 static void edac_mc_workq_function(struct work_struct *work_req)
455 struct delayed_work *d_work = to_delayed_work(work_req);
456 struct mem_ctl_info *mci = to_edac_mem_ctl_work(d_work);
458 mutex_lock(&mem_ctls_mutex);
460 /* if this control struct has movd to offline state, we are done */
461 if (mci->op_state == OP_OFFLINE) {
462 mutex_unlock(&mem_ctls_mutex);
466 /* Only poll controllers that are running polled and have a check */
467 if (edac_mc_assert_error_check_and_clear() && (mci->edac_check != NULL))
468 mci->edac_check(mci);
470 mutex_unlock(&mem_ctls_mutex);
473 queue_delayed_work(edac_workqueue, &mci->work,
474 msecs_to_jiffies(edac_mc_get_poll_msec()));
478 * edac_mc_workq_setup
479 * initialize a workq item for this mci
480 * passing in the new delay period in msec
484 * called with the mem_ctls_mutex held
486 static void edac_mc_workq_setup(struct mem_ctl_info *mci, unsigned msec)
488 debugf0("%s()\n", __func__);
490 /* if this instance is not in the POLL state, then simply return */
491 if (mci->op_state != OP_RUNNING_POLL)
494 INIT_DELAYED_WORK(&mci->work, edac_mc_workq_function);
495 queue_delayed_work(edac_workqueue, &mci->work, msecs_to_jiffies(msec));
499 * edac_mc_workq_teardown
500 * stop the workq processing on this mci
504 * called WITHOUT lock held
506 static void edac_mc_workq_teardown(struct mem_ctl_info *mci)
510 if (mci->op_state != OP_RUNNING_POLL)
513 status = cancel_delayed_work(&mci->work);
515 debugf0("%s() not canceled, flush the queue\n",
518 /* workq instance might be running, wait for it */
519 flush_workqueue(edac_workqueue);
524 * edac_mc_reset_delay_period(unsigned long value)
526 * user space has updated our poll period value, need to
527 * reset our workq delays
529 void edac_mc_reset_delay_period(int value)
531 struct mem_ctl_info *mci;
532 struct list_head *item;
534 mutex_lock(&mem_ctls_mutex);
536 /* scan the list and turn off all workq timers, doing so under lock
538 list_for_each(item, &mc_devices) {
539 mci = list_entry(item, struct mem_ctl_info, link);
541 if (mci->op_state == OP_RUNNING_POLL)
542 cancel_delayed_work(&mci->work);
545 mutex_unlock(&mem_ctls_mutex);
548 /* re-walk the list, and reset the poll delay */
549 mutex_lock(&mem_ctls_mutex);
551 list_for_each(item, &mc_devices) {
552 mci = list_entry(item, struct mem_ctl_info, link);
554 edac_mc_workq_setup(mci, (unsigned long) value);
557 mutex_unlock(&mem_ctls_mutex);
562 /* Return 0 on success, 1 on failure.
563 * Before calling this function, caller must
564 * assign a unique value to mci->mc_idx.
568 * called with the mem_ctls_mutex lock held
570 static int add_mc_to_global_list(struct mem_ctl_info *mci)
572 struct list_head *item, *insert_before;
573 struct mem_ctl_info *p;
575 insert_before = &mc_devices;
577 p = find_mci_by_dev(mci->dev);
578 if (unlikely(p != NULL))
581 list_for_each(item, &mc_devices) {
582 p = list_entry(item, struct mem_ctl_info, link);
584 if (p->mc_idx >= mci->mc_idx) {
585 if (unlikely(p->mc_idx == mci->mc_idx))
588 insert_before = item;
593 list_add_tail_rcu(&mci->link, insert_before);
594 atomic_inc(&edac_handlers);
598 edac_printk(KERN_WARNING, EDAC_MC,
599 "%s (%s) %s %s already assigned %d\n", dev_name(p->dev),
600 edac_dev_name(mci), p->mod_name, p->ctl_name, p->mc_idx);
604 edac_printk(KERN_WARNING, EDAC_MC,
605 "bug in low-level driver: attempt to assign\n"
606 " duplicate mc_idx %d in %s()\n", p->mc_idx, __func__);
610 static void del_mc_from_global_list(struct mem_ctl_info *mci)
612 atomic_dec(&edac_handlers);
613 list_del_rcu(&mci->link);
615 /* these are for safe removal of devices from global list while
616 * NMI handlers may be traversing list
619 INIT_LIST_HEAD(&mci->link);
623 * edac_mc_find: Search for a mem_ctl_info structure whose index is 'idx'.
625 * If found, return a pointer to the structure.
628 * Caller must hold mem_ctls_mutex.
630 struct mem_ctl_info *edac_mc_find(int idx)
632 struct list_head *item;
633 struct mem_ctl_info *mci;
635 list_for_each(item, &mc_devices) {
636 mci = list_entry(item, struct mem_ctl_info, link);
638 if (mci->mc_idx >= idx) {
639 if (mci->mc_idx == idx)
648 EXPORT_SYMBOL(edac_mc_find);
651 * edac_mc_add_mc: Insert the 'mci' structure into the mci global list and
652 * create sysfs entries associated with mci structure
653 * @mci: pointer to the mci structure to be added to the list
660 /* FIXME - should a warning be printed if no error detection? correction? */
661 int edac_mc_add_mc(struct mem_ctl_info *mci)
663 debugf0("%s()\n", __func__);
665 #ifdef CONFIG_EDAC_DEBUG
666 if (edac_debug_level >= 3)
667 edac_mc_dump_mci(mci);
669 if (edac_debug_level >= 4) {
672 for (i = 0; i < mci->nr_csrows; i++) {
675 edac_mc_dump_csrow(&mci->csrows[i]);
676 for (j = 0; j < mci->csrows[i].nr_channels; j++)
677 edac_mc_dump_channel(&mci->csrows[i].
680 for (i = 0; i < mci->tot_dimms; i++)
681 edac_mc_dump_dimm(&mci->dimms[i]);
684 mutex_lock(&mem_ctls_mutex);
686 if (add_mc_to_global_list(mci))
689 /* set load time so that error rate can be tracked */
690 mci->start_time = jiffies;
692 if (edac_create_sysfs_mci_device(mci)) {
693 edac_mc_printk(mci, KERN_WARNING,
694 "failed to create sysfs device\n");
698 /* If there IS a check routine, then we are running POLLED */
699 if (mci->edac_check != NULL) {
700 /* This instance is NOW RUNNING */
701 mci->op_state = OP_RUNNING_POLL;
703 edac_mc_workq_setup(mci, edac_mc_get_poll_msec());
705 mci->op_state = OP_RUNNING_INTERRUPT;
708 /* Report action taken */
709 edac_mc_printk(mci, KERN_INFO, "Giving out device to '%s' '%s':"
710 " DEV %s\n", mci->mod_name, mci->ctl_name, edac_dev_name(mci));
712 mutex_unlock(&mem_ctls_mutex);
716 del_mc_from_global_list(mci);
719 mutex_unlock(&mem_ctls_mutex);
722 EXPORT_SYMBOL_GPL(edac_mc_add_mc);
725 * edac_mc_del_mc: Remove sysfs entries for specified mci structure and
726 * remove mci structure from global list
727 * @pdev: Pointer to 'struct device' representing mci structure to remove.
729 * Return pointer to removed mci structure, or NULL if device not found.
731 struct mem_ctl_info *edac_mc_del_mc(struct device *dev)
733 struct mem_ctl_info *mci;
735 debugf0("%s()\n", __func__);
737 mutex_lock(&mem_ctls_mutex);
739 /* find the requested mci struct in the global list */
740 mci = find_mci_by_dev(dev);
742 mutex_unlock(&mem_ctls_mutex);
746 del_mc_from_global_list(mci);
747 mutex_unlock(&mem_ctls_mutex);
749 /* flush workq processes */
750 edac_mc_workq_teardown(mci);
752 /* marking MCI offline */
753 mci->op_state = OP_OFFLINE;
755 /* remove from sysfs */
756 edac_remove_sysfs_mci_device(mci);
758 edac_printk(KERN_INFO, EDAC_MC,
759 "Removed device %d for %s %s: DEV %s\n", mci->mc_idx,
760 mci->mod_name, mci->ctl_name, edac_dev_name(mci));
764 EXPORT_SYMBOL_GPL(edac_mc_del_mc);
766 static void edac_mc_scrub_block(unsigned long page, unsigned long offset,
771 unsigned long flags = 0;
773 debugf3("%s()\n", __func__);
775 /* ECC error page was not in our memory. Ignore it. */
776 if (!pfn_valid(page))
779 /* Find the actual page structure then map it and fix */
780 pg = pfn_to_page(page);
783 local_irq_save(flags);
785 virt_addr = kmap_atomic(pg);
787 /* Perform architecture specific atomic scrub operation */
788 atomic_scrub(virt_addr + offset, size);
790 /* Unmap and complete */
791 kunmap_atomic(virt_addr);
794 local_irq_restore(flags);
797 /* FIXME - should return -1 */
798 int edac_mc_find_csrow_by_page(struct mem_ctl_info *mci, unsigned long page)
800 struct csrow_info *csrows = mci->csrows;
803 debugf1("MC%d: %s(): 0x%lx\n", mci->mc_idx, __func__, page);
806 for (i = 0; i < mci->nr_csrows; i++) {
807 struct csrow_info *csrow = &csrows[i];
809 for (j = 0; j < csrow->nr_channels; j++) {
810 struct dimm_info *dimm = csrow->channels[j].dimm;
816 debugf3("MC%d: %s(): first(0x%lx) page(0x%lx) last(0x%lx) "
817 "mask(0x%lx)\n", mci->mc_idx, __func__,
818 csrow->first_page, page, csrow->last_page,
821 if ((page >= csrow->first_page) &&
822 (page <= csrow->last_page) &&
823 ((page & csrow->page_mask) ==
824 (csrow->first_page & csrow->page_mask))) {
831 edac_mc_printk(mci, KERN_ERR,
832 "could not look up page error address %lx\n",
833 (unsigned long)page);
837 EXPORT_SYMBOL_GPL(edac_mc_find_csrow_by_page);
839 const char *edac_layer_name[] = {
840 [EDAC_MC_LAYER_BRANCH] = "branch",
841 [EDAC_MC_LAYER_CHANNEL] = "channel",
842 [EDAC_MC_LAYER_SLOT] = "slot",
843 [EDAC_MC_LAYER_CHIP_SELECT] = "csrow",
845 EXPORT_SYMBOL_GPL(edac_layer_name);
847 static void edac_inc_ce_error(struct mem_ctl_info *mci,
848 bool enable_per_layer_report,
849 const int pos[EDAC_MAX_LAYERS])
855 if (!enable_per_layer_report) {
856 mci->ce_noinfo_count++;
860 for (i = 0; i < mci->n_layers; i++) {
864 mci->ce_per_layer[i][index]++;
866 if (i < mci->n_layers - 1)
867 index *= mci->layers[i + 1].size;
871 static void edac_inc_ue_error(struct mem_ctl_info *mci,
872 bool enable_per_layer_report,
873 const int pos[EDAC_MAX_LAYERS])
879 if (!enable_per_layer_report) {
880 mci->ce_noinfo_count++;
884 for (i = 0; i < mci->n_layers; i++) {
888 mci->ue_per_layer[i][index]++;
890 if (i < mci->n_layers - 1)
891 index *= mci->layers[i + 1].size;
895 static void edac_ce_error(struct mem_ctl_info *mci,
896 const int pos[EDAC_MAX_LAYERS],
898 const char *location,
901 const char *other_detail,
902 const bool enable_per_layer_report,
903 const unsigned long page_frame_number,
904 const unsigned long offset_in_page,
907 unsigned long remapped_page;
909 if (edac_mc_get_log_ce()) {
910 if (other_detail && *other_detail)
911 edac_mc_printk(mci, KERN_WARNING,
912 "CE %s on %s (%s%s - %s)\n",
913 msg, label, location,
914 detail, other_detail);
916 edac_mc_printk(mci, KERN_WARNING,
917 "CE %s on %s (%s%s)\n",
918 msg, label, location,
921 edac_inc_ce_error(mci, enable_per_layer_report, pos);
923 if (mci->scrub_mode & SCRUB_SW_SRC) {
925 * Some memory controllers (called MCs below) can remap
926 * memory so that it is still available at a different
927 * address when PCI devices map into memory.
928 * MC's that can't do this, lose the memory where PCI
929 * devices are mapped. This mapping is MC-dependent
930 * and so we call back into the MC driver for it to
931 * map the MC page to a physical (CPU) page which can
932 * then be mapped to a virtual page - which can then
935 remapped_page = mci->ctl_page_to_phys ?
936 mci->ctl_page_to_phys(mci, page_frame_number) :
939 edac_mc_scrub_block(remapped_page,
940 offset_in_page, grain);
944 static void edac_ue_error(struct mem_ctl_info *mci,
945 const int pos[EDAC_MAX_LAYERS],
947 const char *location,
950 const char *other_detail,
951 const bool enable_per_layer_report)
953 if (edac_mc_get_log_ue()) {
954 if (other_detail && *other_detail)
955 edac_mc_printk(mci, KERN_WARNING,
956 "UE %s on %s (%s%s - %s)\n",
957 msg, label, location, detail,
960 edac_mc_printk(mci, KERN_WARNING,
961 "UE %s on %s (%s%s)\n",
962 msg, label, location, detail);
965 if (edac_mc_get_panic_on_ue()) {
966 if (other_detail && *other_detail)
967 panic("UE %s on %s (%s%s - %s)\n",
968 msg, label, location, detail, other_detail);
970 panic("UE %s on %s (%s%s)\n",
971 msg, label, location, detail);
974 edac_inc_ue_error(mci, enable_per_layer_report, pos);
977 #define OTHER_LABEL " or "
978 void edac_mc_handle_error(const enum hw_event_mc_err_type type,
979 struct mem_ctl_info *mci,
980 const unsigned long page_frame_number,
981 const unsigned long offset_in_page,
982 const unsigned long syndrome,
987 const char *other_detail,
990 /* FIXME: too much for stack: move it to some pre-alocated area */
991 char detail[80], location[80];
992 char label[(EDAC_MC_LABEL_LEN + 1 + sizeof(OTHER_LABEL)) * mci->tot_dimms];
994 int row = -1, chan = -1;
995 int pos[EDAC_MAX_LAYERS] = { layer0, layer1, layer2 };
998 bool enable_per_layer_report = false;
1000 debugf3("MC%d: %s()\n", mci->mc_idx, __func__);
1003 * Check if the event report is consistent and if the memory
1004 * location is known. If it is known, enable_per_layer_report will be
1005 * true, the DIMM(s) label info will be filled and the per-layer
1006 * error counters will be incremented.
1008 for (i = 0; i < mci->n_layers; i++) {
1009 if (pos[i] >= (int)mci->layers[i].size) {
1010 if (type == HW_EVENT_ERR_CORRECTED)
1015 edac_mc_printk(mci, KERN_ERR,
1016 "INTERNAL ERROR: %s value is out of range (%d >= %d)\n",
1017 edac_layer_name[mci->layers[i].type],
1018 pos[i], mci->layers[i].size);
1020 * Instead of just returning it, let's use what's
1021 * known about the error. The increment routines and
1022 * the DIMM filter logic will do the right thing by
1023 * pointing the likely damaged DIMMs.
1028 enable_per_layer_report = true;
1032 * Get the dimm label/grain that applies to the match criteria.
1033 * As the error algorithm may not be able to point to just one memory
1034 * stick, the logic here will get all possible labels that could
1035 * pottentially be affected by the error.
1036 * On FB-DIMM memory controllers, for uncorrected errors, it is common
1037 * to have only the MC channel and the MC dimm (also called "branch")
1038 * but the channel is not known, as the memory is arranged in pairs,
1039 * where each memory belongs to a separate channel within the same
1045 for (i = 0; i < mci->tot_dimms; i++) {
1046 struct dimm_info *dimm = &mci->dimms[i];
1048 if (layer0 >= 0 && layer0 != dimm->location[0])
1050 if (layer1 >= 0 && layer1 != dimm->location[1])
1052 if (layer2 >= 0 && layer2 != dimm->location[2])
1055 /* get the max grain, over the error match range */
1056 if (dimm->grain > grain)
1057 grain = dimm->grain;
1060 * If the error is memory-controller wide, there's no need to
1061 * seek for the affected DIMMs because the whole
1062 * channel/memory controller/... may be affected.
1063 * Also, don't show errors for empty DIMM slots.
1065 if (enable_per_layer_report && dimm->nr_pages) {
1067 strcpy(p, OTHER_LABEL);
1068 p += strlen(OTHER_LABEL);
1070 strcpy(p, dimm->label);
1075 * get csrow/channel of the DIMM, in order to allow
1076 * incrementing the compat API counters
1078 debugf4("%s: %s csrows map: (%d,%d)\n",
1080 mci->mem_is_per_rank ? "rank" : "dimm",
1081 dimm->csrow, dimm->cschannel);
1085 else if (row >= 0 && row != dimm->csrow)
1089 chan = dimm->cschannel;
1090 else if (chan >= 0 && chan != dimm->cschannel)
1095 if (!enable_per_layer_report) {
1096 strcpy(label, "any memory");
1098 debugf4("%s: csrow/channel to increment: (%d,%d)\n",
1099 __func__, row, chan);
1101 strcpy(label, "unknown memory");
1102 if (type == HW_EVENT_ERR_CORRECTED) {
1104 mci->csrows[row].ce_count++;
1106 mci->csrows[row].channels[chan].ce_count++;
1110 mci->csrows[row].ue_count++;
1113 /* Fill the RAM location data */
1115 for (i = 0; i < mci->n_layers; i++) {
1119 p += sprintf(p, "%s:%d ",
1120 edac_layer_name[mci->layers[i].type],
1124 /* Memory type dependent details about the error */
1125 if (type == HW_EVENT_ERR_CORRECTED) {
1126 snprintf(detail, sizeof(detail),
1127 "page:0x%lx offset:0x%lx grain:%d syndrome:0x%lx",
1128 page_frame_number, offset_in_page,
1130 edac_ce_error(mci, pos, msg, location, label, detail,
1131 other_detail, enable_per_layer_report,
1132 page_frame_number, offset_in_page, grain);
1134 snprintf(detail, sizeof(detail),
1135 "page:0x%lx offset:0x%lx grain:%d",
1136 page_frame_number, offset_in_page, grain);
1138 edac_ue_error(mci, pos, msg, location, label, detail,
1139 other_detail, enable_per_layer_report);
1142 EXPORT_SYMBOL_GPL(edac_mc_handle_error);