1 #include "amd64_edac.h"
2 #include <asm/amd_nb.h>
4 static struct edac_pci_ctl_info *amd64_ctl_pci;
6 static int report_gart_errors;
7 module_param(report_gart_errors, int, 0644);
10 * Set by command line parameter. If BIOS has enabled the ECC, this override is
11 * cleared to prevent re-enabling the hardware by this driver.
13 static int ecc_enable_override;
14 module_param(ecc_enable_override, int, 0644);
16 static struct msr __percpu *msrs;
19 * count successfully initialized driver instances for setup_pci_device()
21 static atomic_t drv_instances = ATOMIC_INIT(0);
23 /* Per-node driver instances */
24 static struct mem_ctl_info **mcis;
25 static struct ecc_settings **ecc_stngs;
28 * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
29 * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
32 *FIXME: Produce a better mapping/linearisation.
35 u32 scrubval; /* bit pattern for scrub rate */
36 u32 bandwidth; /* bandwidth consumed (bytes/sec) */
38 { 0x01, 1600000000UL},
60 { 0x00, 0UL}, /* scrubbing off */
63 static int __amd64_read_pci_cfg_dword(struct pci_dev *pdev, int offset,
64 u32 *val, const char *func)
68 err = pci_read_config_dword(pdev, offset, val);
70 amd64_warn("%s: error reading F%dx%03x.\n",
71 func, PCI_FUNC(pdev->devfn), offset);
76 int __amd64_write_pci_cfg_dword(struct pci_dev *pdev, int offset,
77 u32 val, const char *func)
81 err = pci_write_config_dword(pdev, offset, val);
83 amd64_warn("%s: error writing to F%dx%03x.\n",
84 func, PCI_FUNC(pdev->devfn), offset);
91 * Depending on the family, F2 DCT reads need special handling:
93 * K8: has a single DCT only
95 * F10h: each DCT has its own set of regs
99 * F15h: we select which DCT we access using F1x10C[DctCfgSel]
102 static int k8_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
108 return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
111 static int f10_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
114 return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
117 static int f15_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
123 if (addr >= 0x140 && addr <= 0x1a0) {
128 amd64_read_pci_cfg(pvt->F1, DCT_CFG_SEL, ®);
131 amd64_write_pci_cfg(pvt->F1, DCT_CFG_SEL, reg);
133 return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
137 * Memory scrubber control interface. For K8, memory scrubbing is handled by
138 * hardware and can involve L2 cache, dcache as well as the main memory. With
139 * F10, this is extended to L3 cache scrubbing on CPU models sporting that
142 * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
143 * (dram) over to cache lines. This is nasty, so we will use bandwidth in
144 * bytes/sec for the setting.
146 * Currently, we only do dram scrubbing. If the scrubbing is done in software on
147 * other archs, we might not have access to the caches directly.
151 * scan the scrub rate mapping table for a close or matching bandwidth value to
152 * issue. If requested is too big, then use last maximum value found.
154 static int __amd64_set_scrub_rate(struct pci_dev *ctl, u32 new_bw, u32 min_rate)
160 * map the configured rate (new_bw) to a value specific to the AMD64
161 * memory controller and apply to register. Search for the first
162 * bandwidth entry that is greater or equal than the setting requested
163 * and program that. If at last entry, turn off DRAM scrubbing.
165 for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
167 * skip scrub rates which aren't recommended
168 * (see F10 BKDG, F3x58)
170 if (scrubrates[i].scrubval < min_rate)
173 if (scrubrates[i].bandwidth <= new_bw)
177 * if no suitable bandwidth found, turn off DRAM scrubbing
178 * entirely by falling back to the last element in the
183 scrubval = scrubrates[i].scrubval;
185 pci_write_bits32(ctl, SCRCTRL, scrubval, 0x001F);
188 return scrubrates[i].bandwidth;
193 static int amd64_set_scrub_rate(struct mem_ctl_info *mci, u32 bw)
195 struct amd64_pvt *pvt = mci->pvt_info;
196 u32 min_scrubrate = 0x5;
198 if (boot_cpu_data.x86 == 0xf)
201 return __amd64_set_scrub_rate(pvt->F3, bw, min_scrubrate);
204 static int amd64_get_scrub_rate(struct mem_ctl_info *mci)
206 struct amd64_pvt *pvt = mci->pvt_info;
208 int i, retval = -EINVAL;
210 amd64_read_pci_cfg(pvt->F3, SCRCTRL, &scrubval);
212 scrubval = scrubval & 0x001F;
214 for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
215 if (scrubrates[i].scrubval == scrubval) {
216 retval = scrubrates[i].bandwidth;
224 * returns true if the SysAddr given by sys_addr matches the
225 * DRAM base/limit associated with node_id
227 static bool amd64_base_limit_match(struct amd64_pvt *pvt, u64 sys_addr,
232 /* The K8 treats this as a 40-bit value. However, bits 63-40 will be
233 * all ones if the most significant implemented address bit is 1.
234 * Here we discard bits 63-40. See section 3.4.2 of AMD publication
235 * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
236 * Application Programming.
238 addr = sys_addr & 0x000000ffffffffffull;
240 return ((addr >= get_dram_base(pvt, nid)) &&
241 (addr <= get_dram_limit(pvt, nid)));
245 * Attempt to map a SysAddr to a node. On success, return a pointer to the
246 * mem_ctl_info structure for the node that the SysAddr maps to.
248 * On failure, return NULL.
250 static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
253 struct amd64_pvt *pvt;
258 * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
259 * 3.4.4.2) registers to map the SysAddr to a node ID.
264 * The value of this field should be the same for all DRAM Base
265 * registers. Therefore we arbitrarily choose to read it from the
266 * register for node 0.
268 intlv_en = dram_intlv_en(pvt, 0);
271 for (node_id = 0; node_id < DRAM_RANGES; node_id++) {
272 if (amd64_base_limit_match(pvt, sys_addr, node_id))
278 if (unlikely((intlv_en != 0x01) &&
279 (intlv_en != 0x03) &&
280 (intlv_en != 0x07))) {
281 amd64_warn("DRAM Base[IntlvEn] junk value: 0x%x, BIOS bug?\n", intlv_en);
285 bits = (((u32) sys_addr) >> 12) & intlv_en;
287 for (node_id = 0; ; ) {
288 if ((dram_intlv_sel(pvt, node_id) & intlv_en) == bits)
289 break; /* intlv_sel field matches */
291 if (++node_id >= DRAM_RANGES)
295 /* sanity test for sys_addr */
296 if (unlikely(!amd64_base_limit_match(pvt, sys_addr, node_id))) {
297 amd64_warn("%s: sys_addr 0x%llx falls outside base/limit address"
298 "range for node %d with node interleaving enabled.\n",
299 __func__, sys_addr, node_id);
304 return edac_mc_find((int)node_id);
307 debugf2("sys_addr 0x%lx doesn't match any node\n",
308 (unsigned long)sys_addr);
314 * compute the CS base address of the @csrow on the DRAM controller @dct.
315 * For details see F2x[5C:40] in the processor's BKDG
317 static void get_cs_base_and_mask(struct amd64_pvt *pvt, int csrow, u8 dct,
318 u64 *base, u64 *mask)
320 u64 csbase, csmask, base_bits, mask_bits;
323 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
324 csbase = pvt->csels[dct].csbases[csrow];
325 csmask = pvt->csels[dct].csmasks[csrow];
326 base_bits = GENMASK(21, 31) | GENMASK(9, 15);
327 mask_bits = GENMASK(21, 29) | GENMASK(9, 15);
330 csbase = pvt->csels[dct].csbases[csrow];
331 csmask = pvt->csels[dct].csmasks[csrow >> 1];
334 if (boot_cpu_data.x86 == 0x15)
335 base_bits = mask_bits = GENMASK(19,30) | GENMASK(5,13);
337 base_bits = mask_bits = GENMASK(19,28) | GENMASK(5,13);
340 *base = (csbase & base_bits) << addr_shift;
343 /* poke holes for the csmask */
344 *mask &= ~(mask_bits << addr_shift);
346 *mask |= (csmask & mask_bits) << addr_shift;
349 #define for_each_chip_select(i, dct, pvt) \
350 for (i = 0; i < pvt->csels[dct].b_cnt; i++)
352 #define chip_select_base(i, dct, pvt) \
353 pvt->csels[dct].csbases[i]
355 #define for_each_chip_select_mask(i, dct, pvt) \
356 for (i = 0; i < pvt->csels[dct].m_cnt; i++)
359 * @input_addr is an InputAddr associated with the node given by mci. Return the
360 * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
362 static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
364 struct amd64_pvt *pvt;
370 for_each_chip_select(csrow, 0, pvt) {
371 if (!csrow_enabled(csrow, 0, pvt))
374 get_cs_base_and_mask(pvt, csrow, 0, &base, &mask);
378 if ((input_addr & mask) == (base & mask)) {
379 debugf2("InputAddr 0x%lx matches csrow %d (node %d)\n",
380 (unsigned long)input_addr, csrow,
386 debugf2("no matching csrow for InputAddr 0x%lx (MC node %d)\n",
387 (unsigned long)input_addr, pvt->mc_node_id);
393 * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
394 * for the node represented by mci. Info is passed back in *hole_base,
395 * *hole_offset, and *hole_size. Function returns 0 if info is valid or 1 if
396 * info is invalid. Info may be invalid for either of the following reasons:
398 * - The revision of the node is not E or greater. In this case, the DRAM Hole
399 * Address Register does not exist.
401 * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
402 * indicating that its contents are not valid.
404 * The values passed back in *hole_base, *hole_offset, and *hole_size are
405 * complete 32-bit values despite the fact that the bitfields in the DHAR
406 * only represent bits 31-24 of the base and offset values.
408 int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
409 u64 *hole_offset, u64 *hole_size)
411 struct amd64_pvt *pvt = mci->pvt_info;
414 /* only revE and later have the DRAM Hole Address Register */
415 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_E) {
416 debugf1(" revision %d for node %d does not support DHAR\n",
417 pvt->ext_model, pvt->mc_node_id);
421 /* valid for Fam10h and above */
422 if (boot_cpu_data.x86 >= 0x10 && !dhar_mem_hoist_valid(pvt)) {
423 debugf1(" Dram Memory Hoisting is DISABLED on this system\n");
427 if (!dhar_valid(pvt)) {
428 debugf1(" Dram Memory Hoisting is DISABLED on this node %d\n",
433 /* This node has Memory Hoisting */
435 /* +------------------+--------------------+--------------------+-----
436 * | memory | DRAM hole | relocated |
437 * | [0, (x - 1)] | [x, 0xffffffff] | addresses from |
439 * | | | [0x100000000, |
440 * | | | (0x100000000+ |
441 * | | | (0xffffffff-x))] |
442 * +------------------+--------------------+--------------------+-----
444 * Above is a diagram of physical memory showing the DRAM hole and the
445 * relocated addresses from the DRAM hole. As shown, the DRAM hole
446 * starts at address x (the base address) and extends through address
447 * 0xffffffff. The DRAM Hole Address Register (DHAR) relocates the
448 * addresses in the hole so that they start at 0x100000000.
451 base = dhar_base(pvt);
454 *hole_size = (0x1ull << 32) - base;
456 if (boot_cpu_data.x86 > 0xf)
457 *hole_offset = f10_dhar_offset(pvt);
459 *hole_offset = k8_dhar_offset(pvt);
461 debugf1(" DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
462 pvt->mc_node_id, (unsigned long)*hole_base,
463 (unsigned long)*hole_offset, (unsigned long)*hole_size);
467 EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);
470 * Return the DramAddr that the SysAddr given by @sys_addr maps to. It is
471 * assumed that sys_addr maps to the node given by mci.
473 * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
474 * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
475 * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
476 * then it is also involved in translating a SysAddr to a DramAddr. Sections
477 * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
478 * These parts of the documentation are unclear. I interpret them as follows:
480 * When node n receives a SysAddr, it processes the SysAddr as follows:
482 * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
483 * Limit registers for node n. If the SysAddr is not within the range
484 * specified by the base and limit values, then node n ignores the Sysaddr
485 * (since it does not map to node n). Otherwise continue to step 2 below.
487 * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
488 * disabled so skip to step 3 below. Otherwise see if the SysAddr is within
489 * the range of relocated addresses (starting at 0x100000000) from the DRAM
490 * hole. If not, skip to step 3 below. Else get the value of the
491 * DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
492 * offset defined by this value from the SysAddr.
494 * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
495 * Base register for node n. To obtain the DramAddr, subtract the base
496 * address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
498 static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
500 struct amd64_pvt *pvt = mci->pvt_info;
501 u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
504 dram_base = get_dram_base(pvt, pvt->mc_node_id);
506 ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
509 if ((sys_addr >= (1ull << 32)) &&
510 (sys_addr < ((1ull << 32) + hole_size))) {
511 /* use DHAR to translate SysAddr to DramAddr */
512 dram_addr = sys_addr - hole_offset;
514 debugf2("using DHAR to translate SysAddr 0x%lx to "
516 (unsigned long)sys_addr,
517 (unsigned long)dram_addr);
524 * Translate the SysAddr to a DramAddr as shown near the start of
525 * section 3.4.4 (p. 70). Although sys_addr is a 64-bit value, the k8
526 * only deals with 40-bit values. Therefore we discard bits 63-40 of
527 * sys_addr below. If bit 39 of sys_addr is 1 then the bits we
528 * discard are all 1s. Otherwise the bits we discard are all 0s. See
529 * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
530 * Programmer's Manual Volume 1 Application Programming.
532 dram_addr = (sys_addr & GENMASK(0, 39)) - dram_base;
534 debugf2("using DRAM Base register to translate SysAddr 0x%lx to "
535 "DramAddr 0x%lx\n", (unsigned long)sys_addr,
536 (unsigned long)dram_addr);
541 * @intlv_en is the value of the IntlvEn field from a DRAM Base register
542 * (section 3.4.4.1). Return the number of bits from a SysAddr that are used
543 * for node interleaving.
545 static int num_node_interleave_bits(unsigned intlv_en)
547 static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
550 BUG_ON(intlv_en > 7);
551 n = intlv_shift_table[intlv_en];
555 /* Translate the DramAddr given by @dram_addr to an InputAddr. */
556 static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
558 struct amd64_pvt *pvt;
565 * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
566 * concerning translating a DramAddr to an InputAddr.
568 intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
569 input_addr = ((dram_addr >> intlv_shift) & GENMASK(12, 35)) +
572 debugf2(" Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
573 intlv_shift, (unsigned long)dram_addr,
574 (unsigned long)input_addr);
580 * Translate the SysAddr represented by @sys_addr to an InputAddr. It is
581 * assumed that @sys_addr maps to the node given by mci.
583 static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
588 dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));
590 debugf2("SysAdddr 0x%lx translates to InputAddr 0x%lx\n",
591 (unsigned long)sys_addr, (unsigned long)input_addr);
598 * @input_addr is an InputAddr associated with the node represented by mci.
599 * Translate @input_addr to a DramAddr and return the result.
601 static u64 input_addr_to_dram_addr(struct mem_ctl_info *mci, u64 input_addr)
603 struct amd64_pvt *pvt;
604 unsigned node_id, intlv_shift;
609 * Near the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
610 * shows how to translate a DramAddr to an InputAddr. Here we reverse
611 * this procedure. When translating from a DramAddr to an InputAddr, the
612 * bits used for node interleaving are discarded. Here we recover these
613 * bits from the IntlvSel field of the DRAM Limit register (section
614 * 3.4.4.2) for the node that input_addr is associated with.
617 node_id = pvt->mc_node_id;
621 intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
622 if (intlv_shift == 0) {
623 debugf1(" InputAddr 0x%lx translates to DramAddr of "
624 "same value\n", (unsigned long)input_addr);
629 bits = ((input_addr & GENMASK(12, 35)) << intlv_shift) +
630 (input_addr & 0xfff);
632 intlv_sel = dram_intlv_sel(pvt, node_id) & ((1 << intlv_shift) - 1);
633 dram_addr = bits + (intlv_sel << 12);
635 debugf1("InputAddr 0x%lx translates to DramAddr 0x%lx "
636 "(%d node interleave bits)\n", (unsigned long)input_addr,
637 (unsigned long)dram_addr, intlv_shift);
643 * @dram_addr is a DramAddr that maps to the node represented by mci. Convert
644 * @dram_addr to a SysAddr.
646 static u64 dram_addr_to_sys_addr(struct mem_ctl_info *mci, u64 dram_addr)
648 struct amd64_pvt *pvt = mci->pvt_info;
649 u64 hole_base, hole_offset, hole_size, base, sys_addr;
652 ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
655 if ((dram_addr >= hole_base) &&
656 (dram_addr < (hole_base + hole_size))) {
657 sys_addr = dram_addr + hole_offset;
659 debugf1("using DHAR to translate DramAddr 0x%lx to "
660 "SysAddr 0x%lx\n", (unsigned long)dram_addr,
661 (unsigned long)sys_addr);
667 base = get_dram_base(pvt, pvt->mc_node_id);
668 sys_addr = dram_addr + base;
671 * The sys_addr we have computed up to this point is a 40-bit value
672 * because the k8 deals with 40-bit values. However, the value we are
673 * supposed to return is a full 64-bit physical address. The AMD
674 * x86-64 architecture specifies that the most significant implemented
675 * address bit through bit 63 of a physical address must be either all
676 * 0s or all 1s. Therefore we sign-extend the 40-bit sys_addr to a
677 * 64-bit value below. See section 3.4.2 of AMD publication 24592:
678 * AMD x86-64 Architecture Programmer's Manual Volume 1 Application
681 sys_addr |= ~((sys_addr & (1ull << 39)) - 1);
683 debugf1(" Node %d, DramAddr 0x%lx to SysAddr 0x%lx\n",
684 pvt->mc_node_id, (unsigned long)dram_addr,
685 (unsigned long)sys_addr);
691 * @input_addr is an InputAddr associated with the node given by mci. Translate
692 * @input_addr to a SysAddr.
694 static inline u64 input_addr_to_sys_addr(struct mem_ctl_info *mci,
697 return dram_addr_to_sys_addr(mci,
698 input_addr_to_dram_addr(mci, input_addr));
702 * Find the minimum and maximum InputAddr values that map to the given @csrow.
703 * Pass back these values in *input_addr_min and *input_addr_max.
705 static void find_csrow_limits(struct mem_ctl_info *mci, int csrow,
706 u64 *input_addr_min, u64 *input_addr_max)
708 struct amd64_pvt *pvt;
712 BUG_ON((csrow < 0) || (csrow >= pvt->csels[0].b_cnt));
714 get_cs_base_and_mask(pvt, csrow, 0, &base, &mask);
716 *input_addr_min = base & ~mask;
717 *input_addr_max = base | mask;
720 /* Map the Error address to a PAGE and PAGE OFFSET. */
721 static inline void error_address_to_page_and_offset(u64 error_address,
722 u32 *page, u32 *offset)
724 *page = (u32) (error_address >> PAGE_SHIFT);
725 *offset = ((u32) error_address) & ~PAGE_MASK;
729 * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
730 * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
731 * of a node that detected an ECC memory error. mci represents the node that
732 * the error address maps to (possibly different from the node that detected
733 * the error). Return the number of the csrow that sys_addr maps to, or -1 on
736 static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
740 csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));
743 amd64_mc_err(mci, "Failed to translate InputAddr to csrow for "
744 "address 0x%lx\n", (unsigned long)sys_addr);
748 static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16);
751 * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
754 static enum edac_type amd64_determine_edac_cap(struct amd64_pvt *pvt)
757 enum dev_type edac_cap = EDAC_FLAG_NONE;
759 bit = (boot_cpu_data.x86 > 0xf || pvt->ext_model >= K8_REV_F)
763 if (pvt->dclr0 & BIT(bit))
764 edac_cap = EDAC_FLAG_SECDED;
769 static void amd64_debug_display_dimm_sizes(struct amd64_pvt *, u8);
771 static void amd64_dump_dramcfg_low(u32 dclr, int chan)
773 debugf1("F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr);
775 debugf1(" DIMM type: %sbuffered; all DIMMs support ECC: %s\n",
776 (dclr & BIT(16)) ? "un" : "",
777 (dclr & BIT(19)) ? "yes" : "no");
779 debugf1(" PAR/ERR parity: %s\n",
780 (dclr & BIT(8)) ? "enabled" : "disabled");
782 if (boot_cpu_data.x86 == 0x10)
783 debugf1(" DCT 128bit mode width: %s\n",
784 (dclr & BIT(11)) ? "128b" : "64b");
786 debugf1(" x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n",
787 (dclr & BIT(12)) ? "yes" : "no",
788 (dclr & BIT(13)) ? "yes" : "no",
789 (dclr & BIT(14)) ? "yes" : "no",
790 (dclr & BIT(15)) ? "yes" : "no");
793 /* Display and decode various NB registers for debug purposes. */
794 static void dump_misc_regs(struct amd64_pvt *pvt)
796 debugf1("F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap);
798 debugf1(" NB two channel DRAM capable: %s\n",
799 (pvt->nbcap & NBCAP_DCT_DUAL) ? "yes" : "no");
801 debugf1(" ECC capable: %s, ChipKill ECC capable: %s\n",
802 (pvt->nbcap & NBCAP_SECDED) ? "yes" : "no",
803 (pvt->nbcap & NBCAP_CHIPKILL) ? "yes" : "no");
805 amd64_dump_dramcfg_low(pvt->dclr0, 0);
807 debugf1("F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare);
809 debugf1("F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, "
811 pvt->dhar, dhar_base(pvt),
812 (boot_cpu_data.x86 == 0xf) ? k8_dhar_offset(pvt)
813 : f10_dhar_offset(pvt));
815 debugf1(" DramHoleValid: %s\n", dhar_valid(pvt) ? "yes" : "no");
817 amd64_debug_display_dimm_sizes(pvt, 0);
819 /* everything below this point is Fam10h and above */
820 if (boot_cpu_data.x86 == 0xf)
823 amd64_debug_display_dimm_sizes(pvt, 1);
825 amd64_info("using %s syndromes.\n", ((pvt->ecc_sym_sz == 8) ? "x8" : "x4"));
827 /* Only if NOT ganged does dclr1 have valid info */
828 if (!dct_ganging_enabled(pvt))
829 amd64_dump_dramcfg_low(pvt->dclr1, 1);
833 * see BKDG, F2x[1,0][5C:40], F2[1,0][6C:60]
835 static void prep_chip_selects(struct amd64_pvt *pvt)
837 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
838 pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
839 pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 8;
841 pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
842 pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 4;
847 * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask registers
849 static void read_dct_base_mask(struct amd64_pvt *pvt)
853 prep_chip_selects(pvt);
855 for_each_chip_select(cs, 0, pvt) {
856 int reg0 = DCSB0 + (cs * 4);
857 int reg1 = DCSB1 + (cs * 4);
858 u32 *base0 = &pvt->csels[0].csbases[cs];
859 u32 *base1 = &pvt->csels[1].csbases[cs];
861 if (!amd64_read_dct_pci_cfg(pvt, reg0, base0))
862 debugf0(" DCSB0[%d]=0x%08x reg: F2x%x\n",
865 if (boot_cpu_data.x86 == 0xf || dct_ganging_enabled(pvt))
868 if (!amd64_read_dct_pci_cfg(pvt, reg1, base1))
869 debugf0(" DCSB1[%d]=0x%08x reg: F2x%x\n",
873 for_each_chip_select_mask(cs, 0, pvt) {
874 int reg0 = DCSM0 + (cs * 4);
875 int reg1 = DCSM1 + (cs * 4);
876 u32 *mask0 = &pvt->csels[0].csmasks[cs];
877 u32 *mask1 = &pvt->csels[1].csmasks[cs];
879 if (!amd64_read_dct_pci_cfg(pvt, reg0, mask0))
880 debugf0(" DCSM0[%d]=0x%08x reg: F2x%x\n",
883 if (boot_cpu_data.x86 == 0xf || dct_ganging_enabled(pvt))
886 if (!amd64_read_dct_pci_cfg(pvt, reg1, mask1))
887 debugf0(" DCSM1[%d]=0x%08x reg: F2x%x\n",
892 static enum mem_type amd64_determine_memory_type(struct amd64_pvt *pvt, int cs)
896 /* F15h supports only DDR3 */
897 if (boot_cpu_data.x86 >= 0x15)
898 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
899 else if (boot_cpu_data.x86 == 0x10 || pvt->ext_model >= K8_REV_F) {
900 if (pvt->dchr0 & DDR3_MODE)
901 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
903 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
905 type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
908 amd64_info("CS%d: %s\n", cs, edac_mem_types[type]);
913 /* Get the number of DCT channels the memory controller is using. */
914 static int k8_early_channel_count(struct amd64_pvt *pvt)
918 if (pvt->ext_model >= K8_REV_F)
919 /* RevF (NPT) and later */
920 flag = pvt->dclr0 & WIDTH_128;
922 /* RevE and earlier */
923 flag = pvt->dclr0 & REVE_WIDTH_128;
928 return (flag) ? 2 : 1;
931 /* On F10h and later ErrAddr is MC4_ADDR[47:1] */
932 static u64 get_error_address(struct mce *m)
937 if (boot_cpu_data.x86 == 0xf) {
942 return m->addr & GENMASK(start_bit, end_bit);
945 static void read_dram_base_limit_regs(struct amd64_pvt *pvt, unsigned range)
947 int off = range << 3;
949 amd64_read_pci_cfg(pvt->F1, DRAM_BASE_LO + off, &pvt->ranges[range].base.lo);
950 amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_LO + off, &pvt->ranges[range].lim.lo);
952 if (boot_cpu_data.x86 == 0xf)
955 if (!dram_rw(pvt, range))
958 amd64_read_pci_cfg(pvt->F1, DRAM_BASE_HI + off, &pvt->ranges[range].base.hi);
959 amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_HI + off, &pvt->ranges[range].lim.hi);
962 static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
965 struct mem_ctl_info *src_mci;
966 struct amd64_pvt *pvt = mci->pvt_info;
970 /* CHIPKILL enabled */
971 if (pvt->nbcfg & NBCFG_CHIPKILL) {
972 channel = get_channel_from_ecc_syndrome(mci, syndrome);
975 * Syndrome didn't map, so we don't know which of the
976 * 2 DIMMs is in error. So we need to ID 'both' of them
979 amd64_mc_warn(mci, "unknown syndrome 0x%04x - possible "
980 "error reporting race\n", syndrome);
981 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
986 * non-chipkill ecc mode
988 * The k8 documentation is unclear about how to determine the
989 * channel number when using non-chipkill memory. This method
990 * was obtained from email communication with someone at AMD.
991 * (Wish the email was placed in this comment - norsk)
993 channel = ((sys_addr & BIT(3)) != 0);
997 * Find out which node the error address belongs to. This may be
998 * different from the node that detected the error.
1000 src_mci = find_mc_by_sys_addr(mci, sys_addr);
1002 amd64_mc_err(mci, "failed to map error addr 0x%lx to a node\n",
1003 (unsigned long)sys_addr);
1004 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1008 /* Now map the sys_addr to a CSROW */
1009 csrow = sys_addr_to_csrow(src_mci, sys_addr);
1011 edac_mc_handle_ce_no_info(src_mci, EDAC_MOD_STR);
1013 error_address_to_page_and_offset(sys_addr, &page, &offset);
1015 edac_mc_handle_ce(src_mci, page, offset, syndrome, csrow,
1016 channel, EDAC_MOD_STR);
1020 static int ddr2_cs_size(unsigned i, bool dct_width)
1026 else if (!(i & 0x1))
1029 shift = (i + 1) >> 1;
1031 return 128 << (shift + !!dct_width);
1034 static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1037 u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;
1039 if (pvt->ext_model >= K8_REV_F) {
1040 WARN_ON(cs_mode > 11);
1041 return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
1043 else if (pvt->ext_model >= K8_REV_D) {
1044 WARN_ON(cs_mode > 10);
1046 if (cs_mode == 3 || cs_mode == 8)
1047 return 32 << (cs_mode - 1);
1049 return 32 << cs_mode;
1052 WARN_ON(cs_mode > 6);
1053 return 32 << cs_mode;
1058 * Get the number of DCT channels in use.
1061 * number of Memory Channels in operation
1063 * contents of the DCL0_LOW register
1065 static int f1x_early_channel_count(struct amd64_pvt *pvt)
1067 int i, j, channels = 0;
1069 /* On F10h, if we are in 128 bit mode, then we are using 2 channels */
1070 if (boot_cpu_data.x86 == 0x10 && (pvt->dclr0 & WIDTH_128))
1074 * Need to check if in unganged mode: In such, there are 2 channels,
1075 * but they are not in 128 bit mode and thus the above 'dclr0' status
1078 * Need to check DCT0[0] and DCT1[0] to see if only one of them has
1079 * their CSEnable bit on. If so, then SINGLE DIMM case.
1081 debugf0("Data width is not 128 bits - need more decoding\n");
1084 * Check DRAM Bank Address Mapping values for each DIMM to see if there
1085 * is more than just one DIMM present in unganged mode. Need to check
1086 * both controllers since DIMMs can be placed in either one.
1088 for (i = 0; i < 2; i++) {
1089 u32 dbam = (i ? pvt->dbam1 : pvt->dbam0);
1091 for (j = 0; j < 4; j++) {
1092 if (DBAM_DIMM(j, dbam) > 0) {
1102 amd64_info("MCT channel count: %d\n", channels);
1107 static int ddr3_cs_size(unsigned i, bool dct_width)
1112 if (i == 0 || i == 3 || i == 4)
1118 else if (!(i & 0x1))
1121 shift = (i + 1) >> 1;
1124 cs_size = (128 * (1 << !!dct_width)) << shift;
1129 static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1132 u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;
1134 WARN_ON(cs_mode > 11);
1136 if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE)
1137 return ddr3_cs_size(cs_mode, dclr & WIDTH_128);
1139 return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
1143 * F15h supports only 64bit DCT interfaces
1145 static int f15_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1148 WARN_ON(cs_mode > 12);
1150 return ddr3_cs_size(cs_mode, false);
1153 static void read_dram_ctl_register(struct amd64_pvt *pvt)
1156 if (boot_cpu_data.x86 == 0xf)
1159 if (!amd64_read_dct_pci_cfg(pvt, DCT_SEL_LO, &pvt->dct_sel_lo)) {
1160 debugf0("F2x110 (DCTSelLow): 0x%08x, High range addrs at: 0x%x\n",
1161 pvt->dct_sel_lo, dct_sel_baseaddr(pvt));
1163 debugf0(" DCTs operate in %s mode.\n",
1164 (dct_ganging_enabled(pvt) ? "ganged" : "unganged"));
1166 if (!dct_ganging_enabled(pvt))
1167 debugf0(" Address range split per DCT: %s\n",
1168 (dct_high_range_enabled(pvt) ? "yes" : "no"));
1170 debugf0(" data interleave for ECC: %s, "
1171 "DRAM cleared since last warm reset: %s\n",
1172 (dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"),
1173 (dct_memory_cleared(pvt) ? "yes" : "no"));
1175 debugf0(" channel interleave: %s, "
1176 "interleave bits selector: 0x%x\n",
1177 (dct_interleave_enabled(pvt) ? "enabled" : "disabled"),
1178 dct_sel_interleave_addr(pvt));
1181 amd64_read_dct_pci_cfg(pvt, DCT_SEL_HI, &pvt->dct_sel_hi);
1185 * Determine channel (DCT) based on the interleaving mode: F10h BKDG, 2.8.9 Memory
1186 * Interleaving Modes.
1188 static u8 f1x_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
1189 bool hi_range_sel, u8 intlv_en)
1191 u8 dct_sel_high = (pvt->dct_sel_lo >> 1) & 1;
1193 if (dct_ganging_enabled(pvt))
1197 return dct_sel_high;
1200 * see F2x110[DctSelIntLvAddr] - channel interleave mode
1202 if (dct_interleave_enabled(pvt)) {
1203 u8 intlv_addr = dct_sel_interleave_addr(pvt);
1205 /* return DCT select function: 0=DCT0, 1=DCT1 */
1207 return sys_addr >> 6 & 1;
1209 if (intlv_addr & 0x2) {
1210 u8 shift = intlv_addr & 0x1 ? 9 : 6;
1211 u32 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) % 2;
1213 return ((sys_addr >> shift) & 1) ^ temp;
1216 return (sys_addr >> (12 + hweight8(intlv_en))) & 1;
1219 if (dct_high_range_enabled(pvt))
1220 return ~dct_sel_high & 1;
1225 /* Convert the sys_addr to the normalized DCT address */
1226 static u64 f1x_get_norm_dct_addr(struct amd64_pvt *pvt, unsigned range,
1227 u64 sys_addr, bool hi_rng,
1228 u32 dct_sel_base_addr)
1231 u64 dram_base = get_dram_base(pvt, range);
1232 u64 hole_off = f10_dhar_offset(pvt);
1233 u64 dct_sel_base_off = (pvt->dct_sel_hi & 0xFFFFFC00) << 16;
1238 * base address of high range is below 4Gb
1239 * (bits [47:27] at [31:11])
1240 * DRAM address space on this DCT is hoisted above 4Gb &&
1243 * remove hole offset from sys_addr
1245 * remove high range offset from sys_addr
1247 if ((!(dct_sel_base_addr >> 16) ||
1248 dct_sel_base_addr < dhar_base(pvt)) &&
1250 (sys_addr >= BIT_64(32)))
1251 chan_off = hole_off;
1253 chan_off = dct_sel_base_off;
1257 * we have a valid hole &&
1262 * remove dram base to normalize to DCT address
1264 if (dhar_valid(pvt) && (sys_addr >= BIT_64(32)))
1265 chan_off = hole_off;
1267 chan_off = dram_base;
1270 return (sys_addr & GENMASK(6,47)) - (chan_off & GENMASK(23,47));
1274 * checks if the csrow passed in is marked as SPARED, if so returns the new
1277 static int f10_process_possible_spare(struct amd64_pvt *pvt, u8 dct, int csrow)
1281 if (online_spare_swap_done(pvt, dct) &&
1282 csrow == online_spare_bad_dramcs(pvt, dct)) {
1284 for_each_chip_select(tmp_cs, dct, pvt) {
1285 if (chip_select_base(tmp_cs, dct, pvt) & 0x2) {
1295 * Iterate over the DRAM DCT "base" and "mask" registers looking for a
1296 * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
1299 * -EINVAL: NOT FOUND
1300 * 0..csrow = Chip-Select Row
1302 static int f1x_lookup_addr_in_dct(u64 in_addr, u32 nid, u8 dct)
1304 struct mem_ctl_info *mci;
1305 struct amd64_pvt *pvt;
1306 u64 cs_base, cs_mask;
1307 int cs_found = -EINVAL;
1314 pvt = mci->pvt_info;
1316 debugf1("input addr: 0x%llx, DCT: %d\n", in_addr, dct);
1318 for_each_chip_select(csrow, dct, pvt) {
1319 if (!csrow_enabled(csrow, dct, pvt))
1322 get_cs_base_and_mask(pvt, csrow, dct, &cs_base, &cs_mask);
1324 debugf1(" CSROW=%d CSBase=0x%llx CSMask=0x%llx\n",
1325 csrow, cs_base, cs_mask);
1329 debugf1(" (InputAddr & ~CSMask)=0x%llx "
1330 "(CSBase & ~CSMask)=0x%llx\n",
1331 (in_addr & cs_mask), (cs_base & cs_mask));
1333 if ((in_addr & cs_mask) == (cs_base & cs_mask)) {
1334 cs_found = f10_process_possible_spare(pvt, dct, csrow);
1336 debugf1(" MATCH csrow=%d\n", cs_found);
1344 * See F2x10C. Non-interleaved graphics framebuffer memory under the 16G is
1345 * swapped with a region located at the bottom of memory so that the GPU can use
1346 * the interleaved region and thus two channels.
1348 static u64 f1x_swap_interleaved_region(struct amd64_pvt *pvt, u64 sys_addr)
1350 u32 swap_reg, swap_base, swap_limit, rgn_size, tmp_addr;
1352 if (boot_cpu_data.x86 == 0x10) {
1353 /* only revC3 and revE have that feature */
1354 if (boot_cpu_data.x86_model < 4 ||
1355 (boot_cpu_data.x86_model < 0xa &&
1356 boot_cpu_data.x86_mask < 3))
1360 amd64_read_dct_pci_cfg(pvt, SWAP_INTLV_REG, &swap_reg);
1362 if (!(swap_reg & 0x1))
1365 swap_base = (swap_reg >> 3) & 0x7f;
1366 swap_limit = (swap_reg >> 11) & 0x7f;
1367 rgn_size = (swap_reg >> 20) & 0x7f;
1368 tmp_addr = sys_addr >> 27;
1370 if (!(sys_addr >> 34) &&
1371 (((tmp_addr >= swap_base) &&
1372 (tmp_addr <= swap_limit)) ||
1373 (tmp_addr < rgn_size)))
1374 return sys_addr ^ (u64)swap_base << 27;
1379 /* For a given @dram_range, check if @sys_addr falls within it. */
1380 static int f1x_match_to_this_node(struct amd64_pvt *pvt, unsigned range,
1381 u64 sys_addr, int *nid, int *chan_sel)
1383 int cs_found = -EINVAL;
1387 bool high_range = false;
1389 u8 node_id = dram_dst_node(pvt, range);
1390 u8 intlv_en = dram_intlv_en(pvt, range);
1391 u32 intlv_sel = dram_intlv_sel(pvt, range);
1393 debugf1("(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
1394 range, sys_addr, get_dram_limit(pvt, range));
1396 if (dhar_valid(pvt) &&
1397 dhar_base(pvt) <= sys_addr &&
1398 sys_addr < BIT_64(32)) {
1399 amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n",
1404 if (intlv_en && (intlv_sel != ((sys_addr >> 12) & intlv_en)))
1407 sys_addr = f1x_swap_interleaved_region(pvt, sys_addr);
1409 dct_sel_base = dct_sel_baseaddr(pvt);
1412 * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
1413 * select between DCT0 and DCT1.
1415 if (dct_high_range_enabled(pvt) &&
1416 !dct_ganging_enabled(pvt) &&
1417 ((sys_addr >> 27) >= (dct_sel_base >> 11)))
1420 channel = f1x_determine_channel(pvt, sys_addr, high_range, intlv_en);
1422 chan_addr = f1x_get_norm_dct_addr(pvt, range, sys_addr,
1423 high_range, dct_sel_base);
1425 /* Remove node interleaving, see F1x120 */
1427 chan_addr = ((chan_addr >> (12 + hweight8(intlv_en))) << 12) |
1428 (chan_addr & 0xfff);
1430 /* remove channel interleave */
1431 if (dct_interleave_enabled(pvt) &&
1432 !dct_high_range_enabled(pvt) &&
1433 !dct_ganging_enabled(pvt)) {
1435 if (dct_sel_interleave_addr(pvt) != 1) {
1436 if (dct_sel_interleave_addr(pvt) == 0x3)
1438 chan_addr = ((chan_addr >> 10) << 9) |
1439 (chan_addr & 0x1ff);
1441 /* A[6] or hash 6 */
1442 chan_addr = ((chan_addr >> 7) << 6) |
1446 chan_addr = ((chan_addr >> 13) << 12) |
1447 (chan_addr & 0xfff);
1450 debugf1(" Normalized DCT addr: 0x%llx\n", chan_addr);
1452 cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, channel);
1454 if (cs_found >= 0) {
1456 *chan_sel = channel;
1461 static int f1x_translate_sysaddr_to_cs(struct amd64_pvt *pvt, u64 sys_addr,
1462 int *node, int *chan_sel)
1464 int cs_found = -EINVAL;
1467 for (range = 0; range < DRAM_RANGES; range++) {
1469 if (!dram_rw(pvt, range))
1472 if ((get_dram_base(pvt, range) <= sys_addr) &&
1473 (get_dram_limit(pvt, range) >= sys_addr)) {
1475 cs_found = f1x_match_to_this_node(pvt, range,
1486 * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps
1487 * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW).
1489 * The @sys_addr is usually an error address received from the hardware
1492 static void f1x_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
1495 struct amd64_pvt *pvt = mci->pvt_info;
1497 int nid, csrow, chan = 0;
1499 csrow = f1x_translate_sysaddr_to_cs(pvt, sys_addr, &nid, &chan);
1502 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1506 error_address_to_page_and_offset(sys_addr, &page, &offset);
1509 * We need the syndromes for channel detection only when we're
1510 * ganged. Otherwise @chan should already contain the channel at
1513 if (dct_ganging_enabled(pvt))
1514 chan = get_channel_from_ecc_syndrome(mci, syndrome);
1517 edac_mc_handle_ce(mci, page, offset, syndrome, csrow, chan,
1521 * Channel unknown, report all channels on this CSROW as failed.
1523 for (chan = 0; chan < mci->csrows[csrow].nr_channels; chan++)
1524 edac_mc_handle_ce(mci, page, offset, syndrome,
1525 csrow, chan, EDAC_MOD_STR);
1529 * debug routine to display the memory sizes of all logical DIMMs and its
1532 static void amd64_debug_display_dimm_sizes(struct amd64_pvt *pvt, u8 ctrl)
1534 int dimm, size0, size1, factor = 0;
1535 u32 *dcsb = ctrl ? pvt->csels[1].csbases : pvt->csels[0].csbases;
1536 u32 dbam = ctrl ? pvt->dbam1 : pvt->dbam0;
1538 if (boot_cpu_data.x86 == 0xf) {
1539 if (pvt->dclr0 & WIDTH_128)
1542 /* K8 families < revF not supported yet */
1543 if (pvt->ext_model < K8_REV_F)
1549 dbam = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->dbam1 : pvt->dbam0;
1550 dcsb = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->csels[1].csbases
1551 : pvt->csels[0].csbases;
1553 debugf1("F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n", ctrl, dbam);
1555 edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl);
1557 /* Dump memory sizes for DIMM and its CSROWs */
1558 for (dimm = 0; dimm < 4; dimm++) {
1561 if (dcsb[dimm*2] & DCSB_CS_ENABLE)
1562 size0 = pvt->ops->dbam_to_cs(pvt, ctrl,
1563 DBAM_DIMM(dimm, dbam));
1566 if (dcsb[dimm*2 + 1] & DCSB_CS_ENABLE)
1567 size1 = pvt->ops->dbam_to_cs(pvt, ctrl,
1568 DBAM_DIMM(dimm, dbam));
1570 amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n",
1571 dimm * 2, size0 << factor,
1572 dimm * 2 + 1, size1 << factor);
1576 static struct amd64_family_type amd64_family_types[] = {
1579 .f1_id = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
1580 .f3_id = PCI_DEVICE_ID_AMD_K8_NB_MISC,
1582 .early_channel_count = k8_early_channel_count,
1583 .map_sysaddr_to_csrow = k8_map_sysaddr_to_csrow,
1584 .dbam_to_cs = k8_dbam_to_chip_select,
1585 .read_dct_pci_cfg = k8_read_dct_pci_cfg,
1590 .f1_id = PCI_DEVICE_ID_AMD_10H_NB_MAP,
1591 .f3_id = PCI_DEVICE_ID_AMD_10H_NB_MISC,
1593 .early_channel_count = f1x_early_channel_count,
1594 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
1595 .dbam_to_cs = f10_dbam_to_chip_select,
1596 .read_dct_pci_cfg = f10_read_dct_pci_cfg,
1601 .f1_id = PCI_DEVICE_ID_AMD_15H_NB_F1,
1602 .f3_id = PCI_DEVICE_ID_AMD_15H_NB_F3,
1604 .early_channel_count = f1x_early_channel_count,
1605 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
1606 .dbam_to_cs = f15_dbam_to_chip_select,
1607 .read_dct_pci_cfg = f15_read_dct_pci_cfg,
1612 static struct pci_dev *pci_get_related_function(unsigned int vendor,
1613 unsigned int device,
1614 struct pci_dev *related)
1616 struct pci_dev *dev = NULL;
1618 dev = pci_get_device(vendor, device, dev);
1620 if ((dev->bus->number == related->bus->number) &&
1621 (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
1623 dev = pci_get_device(vendor, device, dev);
1630 * These are tables of eigenvectors (one per line) which can be used for the
1631 * construction of the syndrome tables. The modified syndrome search algorithm
1632 * uses those to find the symbol in error and thus the DIMM.
1634 * Algorithm courtesy of Ross LaFetra from AMD.
1636 static u16 x4_vectors[] = {
1637 0x2f57, 0x1afe, 0x66cc, 0xdd88,
1638 0x11eb, 0x3396, 0x7f4c, 0xeac8,
1639 0x0001, 0x0002, 0x0004, 0x0008,
1640 0x1013, 0x3032, 0x4044, 0x8088,
1641 0x106b, 0x30d6, 0x70fc, 0xe0a8,
1642 0x4857, 0xc4fe, 0x13cc, 0x3288,
1643 0x1ac5, 0x2f4a, 0x5394, 0xa1e8,
1644 0x1f39, 0x251e, 0xbd6c, 0x6bd8,
1645 0x15c1, 0x2a42, 0x89ac, 0x4758,
1646 0x2b03, 0x1602, 0x4f0c, 0xca08,
1647 0x1f07, 0x3a0e, 0x6b04, 0xbd08,
1648 0x8ba7, 0x465e, 0x244c, 0x1cc8,
1649 0x2b87, 0x164e, 0x642c, 0xdc18,
1650 0x40b9, 0x80de, 0x1094, 0x20e8,
1651 0x27db, 0x1eb6, 0x9dac, 0x7b58,
1652 0x11c1, 0x2242, 0x84ac, 0x4c58,
1653 0x1be5, 0x2d7a, 0x5e34, 0xa718,
1654 0x4b39, 0x8d1e, 0x14b4, 0x28d8,
1655 0x4c97, 0xc87e, 0x11fc, 0x33a8,
1656 0x8e97, 0x497e, 0x2ffc, 0x1aa8,
1657 0x16b3, 0x3d62, 0x4f34, 0x8518,
1658 0x1e2f, 0x391a, 0x5cac, 0xf858,
1659 0x1d9f, 0x3b7a, 0x572c, 0xfe18,
1660 0x15f5, 0x2a5a, 0x5264, 0xa3b8,
1661 0x1dbb, 0x3b66, 0x715c, 0xe3f8,
1662 0x4397, 0xc27e, 0x17fc, 0x3ea8,
1663 0x1617, 0x3d3e, 0x6464, 0xb8b8,
1664 0x23ff, 0x12aa, 0xab6c, 0x56d8,
1665 0x2dfb, 0x1ba6, 0x913c, 0x7328,
1666 0x185d, 0x2ca6, 0x7914, 0x9e28,
1667 0x171b, 0x3e36, 0x7d7c, 0xebe8,
1668 0x4199, 0x82ee, 0x19f4, 0x2e58,
1669 0x4807, 0xc40e, 0x130c, 0x3208,
1670 0x1905, 0x2e0a, 0x5804, 0xac08,
1671 0x213f, 0x132a, 0xadfc, 0x5ba8,
1672 0x19a9, 0x2efe, 0xb5cc, 0x6f88,
1675 static u16 x8_vectors[] = {
1676 0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480,
1677 0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80,
1678 0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80,
1679 0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80,
1680 0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780,
1681 0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080,
1682 0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080,
1683 0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080,
1684 0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80,
1685 0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580,
1686 0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880,
1687 0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280,
1688 0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180,
1689 0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580,
1690 0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280,
1691 0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180,
1692 0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080,
1693 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
1694 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000,
1697 static int decode_syndrome(u16 syndrome, u16 *vectors, unsigned num_vecs,
1700 unsigned int i, err_sym;
1702 for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) {
1704 unsigned v_idx = err_sym * v_dim;
1705 unsigned v_end = (err_sym + 1) * v_dim;
1707 /* walk over all 16 bits of the syndrome */
1708 for (i = 1; i < (1U << 16); i <<= 1) {
1710 /* if bit is set in that eigenvector... */
1711 if (v_idx < v_end && vectors[v_idx] & i) {
1712 u16 ev_comp = vectors[v_idx++];
1714 /* ... and bit set in the modified syndrome, */
1724 /* can't get to zero, move to next symbol */
1729 debugf0("syndrome(%x) not found\n", syndrome);
1733 static int map_err_sym_to_channel(int err_sym, int sym_size)
1746 return err_sym >> 4;
1752 /* imaginary bits not in a DIMM */
1754 WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n",
1766 return err_sym >> 3;
1772 static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome)
1774 struct amd64_pvt *pvt = mci->pvt_info;
1777 if (pvt->ecc_sym_sz == 8)
1778 err_sym = decode_syndrome(syndrome, x8_vectors,
1779 ARRAY_SIZE(x8_vectors),
1781 else if (pvt->ecc_sym_sz == 4)
1782 err_sym = decode_syndrome(syndrome, x4_vectors,
1783 ARRAY_SIZE(x4_vectors),
1786 amd64_warn("Illegal syndrome type: %u\n", pvt->ecc_sym_sz);
1790 return map_err_sym_to_channel(err_sym, pvt->ecc_sym_sz);
1794 * Handle any Correctable Errors (CEs) that have occurred. Check for valid ERROR
1795 * ADDRESS and process.
1797 static void amd64_handle_ce(struct mem_ctl_info *mci, struct mce *m)
1799 struct amd64_pvt *pvt = mci->pvt_info;
1803 /* Ensure that the Error Address is VALID */
1804 if (!(m->status & MCI_STATUS_ADDRV)) {
1805 amd64_mc_err(mci, "HW has no ERROR_ADDRESS available\n");
1806 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1810 sys_addr = get_error_address(m);
1811 syndrome = extract_syndrome(m->status);
1813 amd64_mc_err(mci, "CE ERROR_ADDRESS= 0x%llx\n", sys_addr);
1815 pvt->ops->map_sysaddr_to_csrow(mci, sys_addr, syndrome);
1818 /* Handle any Un-correctable Errors (UEs) */
1819 static void amd64_handle_ue(struct mem_ctl_info *mci, struct mce *m)
1821 struct mem_ctl_info *log_mci, *src_mci = NULL;
1828 if (!(m->status & MCI_STATUS_ADDRV)) {
1829 amd64_mc_err(mci, "HW has no ERROR_ADDRESS available\n");
1830 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
1834 sys_addr = get_error_address(m);
1837 * Find out which node the error address belongs to. This may be
1838 * different from the node that detected the error.
1840 src_mci = find_mc_by_sys_addr(mci, sys_addr);
1842 amd64_mc_err(mci, "ERROR ADDRESS (0x%lx) NOT mapped to a MC\n",
1843 (unsigned long)sys_addr);
1844 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
1850 csrow = sys_addr_to_csrow(log_mci, sys_addr);
1852 amd64_mc_err(mci, "ERROR_ADDRESS (0x%lx) NOT mapped to CS\n",
1853 (unsigned long)sys_addr);
1854 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
1856 error_address_to_page_and_offset(sys_addr, &page, &offset);
1857 edac_mc_handle_ue(log_mci, page, offset, csrow, EDAC_MOD_STR);
1861 static inline void __amd64_decode_bus_error(struct mem_ctl_info *mci,
1864 u16 ec = EC(m->status);
1865 u8 xec = XEC(m->status, 0x1f);
1866 u8 ecc_type = (m->status >> 45) & 0x3;
1868 /* Bail early out if this was an 'observed' error */
1869 if (PP(ec) == NBSL_PP_OBS)
1872 /* Do only ECC errors */
1873 if (xec && xec != F10_NBSL_EXT_ERR_ECC)
1877 amd64_handle_ce(mci, m);
1878 else if (ecc_type == 1)
1879 amd64_handle_ue(mci, m);
1882 void amd64_decode_bus_error(int node_id, struct mce *m, u32 nbcfg)
1884 struct mem_ctl_info *mci = mcis[node_id];
1886 __amd64_decode_bus_error(mci, m);
1890 * Use pvt->F2 which contains the F2 CPU PCI device to get the related
1891 * F1 (AddrMap) and F3 (Misc) devices. Return negative value on error.
1893 static int reserve_mc_sibling_devs(struct amd64_pvt *pvt, u16 f1_id, u16 f3_id)
1895 /* Reserve the ADDRESS MAP Device */
1896 pvt->F1 = pci_get_related_function(pvt->F2->vendor, f1_id, pvt->F2);
1898 amd64_err("error address map device not found: "
1899 "vendor %x device 0x%x (broken BIOS?)\n",
1900 PCI_VENDOR_ID_AMD, f1_id);
1904 /* Reserve the MISC Device */
1905 pvt->F3 = pci_get_related_function(pvt->F2->vendor, f3_id, pvt->F2);
1907 pci_dev_put(pvt->F1);
1910 amd64_err("error F3 device not found: "
1911 "vendor %x device 0x%x (broken BIOS?)\n",
1912 PCI_VENDOR_ID_AMD, f3_id);
1916 debugf1("F1: %s\n", pci_name(pvt->F1));
1917 debugf1("F2: %s\n", pci_name(pvt->F2));
1918 debugf1("F3: %s\n", pci_name(pvt->F3));
1923 static void free_mc_sibling_devs(struct amd64_pvt *pvt)
1925 pci_dev_put(pvt->F1);
1926 pci_dev_put(pvt->F3);
1930 * Retrieve the hardware registers of the memory controller (this includes the
1931 * 'Address Map' and 'Misc' device regs)
1933 static void read_mc_regs(struct amd64_pvt *pvt)
1935 struct cpuinfo_x86 *c = &boot_cpu_data;
1941 * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
1942 * those are Read-As-Zero
1944 rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem);
1945 debugf0(" TOP_MEM: 0x%016llx\n", pvt->top_mem);
1947 /* check first whether TOP_MEM2 is enabled */
1948 rdmsrl(MSR_K8_SYSCFG, msr_val);
1949 if (msr_val & (1U << 21)) {
1950 rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2);
1951 debugf0(" TOP_MEM2: 0x%016llx\n", pvt->top_mem2);
1953 debugf0(" TOP_MEM2 disabled.\n");
1955 amd64_read_pci_cfg(pvt->F3, NBCAP, &pvt->nbcap);
1957 read_dram_ctl_register(pvt);
1959 for (range = 0; range < DRAM_RANGES; range++) {
1962 /* read settings for this DRAM range */
1963 read_dram_base_limit_regs(pvt, range);
1965 rw = dram_rw(pvt, range);
1969 debugf1(" DRAM range[%d], base: 0x%016llx; limit: 0x%016llx\n",
1971 get_dram_base(pvt, range),
1972 get_dram_limit(pvt, range));
1974 debugf1(" IntlvEn=%s; Range access: %s%s IntlvSel=%d DstNode=%d\n",
1975 dram_intlv_en(pvt, range) ? "Enabled" : "Disabled",
1976 (rw & 0x1) ? "R" : "-",
1977 (rw & 0x2) ? "W" : "-",
1978 dram_intlv_sel(pvt, range),
1979 dram_dst_node(pvt, range));
1982 read_dct_base_mask(pvt);
1984 amd64_read_pci_cfg(pvt->F1, DHAR, &pvt->dhar);
1985 amd64_read_dct_pci_cfg(pvt, DBAM0, &pvt->dbam0);
1987 amd64_read_pci_cfg(pvt->F3, F10_ONLINE_SPARE, &pvt->online_spare);
1989 amd64_read_dct_pci_cfg(pvt, DCLR0, &pvt->dclr0);
1990 amd64_read_dct_pci_cfg(pvt, DCHR0, &pvt->dchr0);
1992 if (!dct_ganging_enabled(pvt)) {
1993 amd64_read_dct_pci_cfg(pvt, DCLR1, &pvt->dclr1);
1994 amd64_read_dct_pci_cfg(pvt, DCHR1, &pvt->dchr1);
1997 pvt->ecc_sym_sz = 4;
1999 if (c->x86 >= 0x10) {
2000 amd64_read_pci_cfg(pvt->F3, EXT_NB_MCA_CFG, &tmp);
2001 amd64_read_dct_pci_cfg(pvt, DBAM1, &pvt->dbam1);
2003 /* F10h, revD and later can do x8 ECC too */
2004 if ((c->x86 > 0x10 || c->x86_model > 7) && tmp & BIT(25))
2005 pvt->ecc_sym_sz = 8;
2007 dump_misc_regs(pvt);
2011 * NOTE: CPU Revision Dependent code
2014 * @csrow_nr ChipSelect Row Number (0..NUM_CHIPSELECTS-1)
2015 * k8 private pointer to -->
2016 * DRAM Bank Address mapping register
2018 * DCL register where dual_channel_active is
2020 * The DBAM register consists of 4 sets of 4 bits each definitions:
2023 * 0-3 CSROWs 0 and 1
2024 * 4-7 CSROWs 2 and 3
2025 * 8-11 CSROWs 4 and 5
2026 * 12-15 CSROWs 6 and 7
2028 * Values range from: 0 to 15
2029 * The meaning of the values depends on CPU revision and dual-channel state,
2030 * see relevant BKDG more info.
2032 * The memory controller provides for total of only 8 CSROWs in its current
2033 * architecture. Each "pair" of CSROWs normally represents just one DIMM in
2034 * single channel or two (2) DIMMs in dual channel mode.
2036 * The following code logic collapses the various tables for CSROW based on CPU
2040 * The number of PAGE_SIZE pages on the specified CSROW number it
2044 static u32 amd64_csrow_nr_pages(struct amd64_pvt *pvt, u8 dct, int csrow_nr)
2046 u32 cs_mode, nr_pages;
2049 * The math on this doesn't look right on the surface because x/2*4 can
2050 * be simplified to x*2 but this expression makes use of the fact that
2051 * it is integral math where 1/2=0. This intermediate value becomes the
2052 * number of bits to shift the DBAM register to extract the proper CSROW
2055 cs_mode = (pvt->dbam0 >> ((csrow_nr / 2) * 4)) & 0xF;
2057 nr_pages = pvt->ops->dbam_to_cs(pvt, dct, cs_mode) << (20 - PAGE_SHIFT);
2060 * If dual channel then double the memory size of single channel.
2061 * Channel count is 1 or 2
2063 nr_pages <<= (pvt->channel_count - 1);
2065 debugf0(" (csrow=%d) DBAM map index= %d\n", csrow_nr, cs_mode);
2066 debugf0(" nr_pages= %u channel-count = %d\n",
2067 nr_pages, pvt->channel_count);
2073 * Initialize the array of csrow attribute instances, based on the values
2074 * from pci config hardware registers.
2076 static int init_csrows(struct mem_ctl_info *mci)
2078 struct csrow_info *csrow;
2079 struct amd64_pvt *pvt = mci->pvt_info;
2080 u64 input_addr_min, input_addr_max, sys_addr, base, mask;
2084 amd64_read_pci_cfg(pvt->F3, NBCFG, &val);
2088 debugf0("node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n",
2089 pvt->mc_node_id, val,
2090 !!(val & NBCFG_CHIPKILL), !!(val & NBCFG_ECC_ENABLE));
2092 for_each_chip_select(i, 0, pvt) {
2093 csrow = &mci->csrows[i];
2095 if (!csrow_enabled(i, 0, pvt)) {
2096 debugf1("----CSROW %d EMPTY for node %d\n", i,
2101 debugf1("----CSROW %d VALID for MC node %d\n",
2102 i, pvt->mc_node_id);
2105 csrow->nr_pages = amd64_csrow_nr_pages(pvt, 0, i);
2106 find_csrow_limits(mci, i, &input_addr_min, &input_addr_max);
2107 sys_addr = input_addr_to_sys_addr(mci, input_addr_min);
2108 csrow->first_page = (u32) (sys_addr >> PAGE_SHIFT);
2109 sys_addr = input_addr_to_sys_addr(mci, input_addr_max);
2110 csrow->last_page = (u32) (sys_addr >> PAGE_SHIFT);
2112 get_cs_base_and_mask(pvt, i, 0, &base, &mask);
2113 csrow->page_mask = ~mask;
2114 /* 8 bytes of resolution */
2116 csrow->mtype = amd64_determine_memory_type(pvt, i);
2118 debugf1(" for MC node %d csrow %d:\n", pvt->mc_node_id, i);
2119 debugf1(" input_addr_min: 0x%lx input_addr_max: 0x%lx\n",
2120 (unsigned long)input_addr_min,
2121 (unsigned long)input_addr_max);
2122 debugf1(" sys_addr: 0x%lx page_mask: 0x%lx\n",
2123 (unsigned long)sys_addr, csrow->page_mask);
2124 debugf1(" nr_pages: %u first_page: 0x%lx "
2125 "last_page: 0x%lx\n",
2126 (unsigned)csrow->nr_pages,
2127 csrow->first_page, csrow->last_page);
2130 * determine whether CHIPKILL or JUST ECC or NO ECC is operating
2132 if (pvt->nbcfg & NBCFG_ECC_ENABLE)
2134 (pvt->nbcfg & NBCFG_CHIPKILL) ?
2135 EDAC_S4ECD4ED : EDAC_SECDED;
2137 csrow->edac_mode = EDAC_NONE;
2143 /* get all cores on this DCT */
2144 static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, unsigned nid)
2148 for_each_online_cpu(cpu)
2149 if (amd_get_nb_id(cpu) == nid)
2150 cpumask_set_cpu(cpu, mask);
2153 /* check MCG_CTL on all the cpus on this node */
2154 static bool amd64_nb_mce_bank_enabled_on_node(unsigned nid)
2160 if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
2161 amd64_warn("%s: Error allocating mask\n", __func__);
2165 get_cpus_on_this_dct_cpumask(mask, nid);
2167 rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs);
2169 for_each_cpu(cpu, mask) {
2170 struct msr *reg = per_cpu_ptr(msrs, cpu);
2171 nbe = reg->l & MSR_MCGCTL_NBE;
2173 debugf0("core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
2175 (nbe ? "enabled" : "disabled"));
2183 free_cpumask_var(mask);
2187 static int toggle_ecc_err_reporting(struct ecc_settings *s, u8 nid, bool on)
2189 cpumask_var_t cmask;
2192 if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) {
2193 amd64_warn("%s: error allocating mask\n", __func__);
2197 get_cpus_on_this_dct_cpumask(cmask, nid);
2199 rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2201 for_each_cpu(cpu, cmask) {
2203 struct msr *reg = per_cpu_ptr(msrs, cpu);
2206 if (reg->l & MSR_MCGCTL_NBE)
2207 s->flags.nb_mce_enable = 1;
2209 reg->l |= MSR_MCGCTL_NBE;
2212 * Turn off NB MCE reporting only when it was off before
2214 if (!s->flags.nb_mce_enable)
2215 reg->l &= ~MSR_MCGCTL_NBE;
2218 wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2220 free_cpumask_var(cmask);
2225 static bool enable_ecc_error_reporting(struct ecc_settings *s, u8 nid,
2229 u32 value, mask = 0x3; /* UECC/CECC enable */
2231 if (toggle_ecc_err_reporting(s, nid, ON)) {
2232 amd64_warn("Error enabling ECC reporting over MCGCTL!\n");
2236 amd64_read_pci_cfg(F3, NBCTL, &value);
2238 s->old_nbctl = value & mask;
2239 s->nbctl_valid = true;
2242 amd64_write_pci_cfg(F3, NBCTL, value);
2244 amd64_read_pci_cfg(F3, NBCFG, &value);
2246 debugf0("1: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
2247 nid, value, !!(value & NBCFG_ECC_ENABLE));
2249 if (!(value & NBCFG_ECC_ENABLE)) {
2250 amd64_warn("DRAM ECC disabled on this node, enabling...\n");
2252 s->flags.nb_ecc_prev = 0;
2254 /* Attempt to turn on DRAM ECC Enable */
2255 value |= NBCFG_ECC_ENABLE;
2256 amd64_write_pci_cfg(F3, NBCFG, value);
2258 amd64_read_pci_cfg(F3, NBCFG, &value);
2260 if (!(value & NBCFG_ECC_ENABLE)) {
2261 amd64_warn("Hardware rejected DRAM ECC enable,"
2262 "check memory DIMM configuration.\n");
2265 amd64_info("Hardware accepted DRAM ECC Enable\n");
2268 s->flags.nb_ecc_prev = 1;
2271 debugf0("2: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
2272 nid, value, !!(value & NBCFG_ECC_ENABLE));
2277 static void restore_ecc_error_reporting(struct ecc_settings *s, u8 nid,
2280 u32 value, mask = 0x3; /* UECC/CECC enable */
2283 if (!s->nbctl_valid)
2286 amd64_read_pci_cfg(F3, NBCTL, &value);
2288 value |= s->old_nbctl;
2290 amd64_write_pci_cfg(F3, NBCTL, value);
2292 /* restore previous BIOS DRAM ECC "off" setting we force-enabled */
2293 if (!s->flags.nb_ecc_prev) {
2294 amd64_read_pci_cfg(F3, NBCFG, &value);
2295 value &= ~NBCFG_ECC_ENABLE;
2296 amd64_write_pci_cfg(F3, NBCFG, value);
2299 /* restore the NB Enable MCGCTL bit */
2300 if (toggle_ecc_err_reporting(s, nid, OFF))
2301 amd64_warn("Error restoring NB MCGCTL settings!\n");
2305 * EDAC requires that the BIOS have ECC enabled before
2306 * taking over the processing of ECC errors. A command line
2307 * option allows to force-enable hardware ECC later in
2308 * enable_ecc_error_reporting().
2310 static const char *ecc_msg =
2311 "ECC disabled in the BIOS or no ECC capability, module will not load.\n"
2312 " Either enable ECC checking or force module loading by setting "
2313 "'ecc_enable_override'.\n"
2314 " (Note that use of the override may cause unknown side effects.)\n";
2316 static bool ecc_enabled(struct pci_dev *F3, u8 nid)
2320 bool nb_mce_en = false;
2322 amd64_read_pci_cfg(F3, NBCFG, &value);
2324 ecc_en = !!(value & NBCFG_ECC_ENABLE);
2325 amd64_info("DRAM ECC %s.\n", (ecc_en ? "enabled" : "disabled"));
2327 nb_mce_en = amd64_nb_mce_bank_enabled_on_node(nid);
2329 amd64_notice("NB MCE bank disabled, set MSR "
2330 "0x%08x[4] on node %d to enable.\n",
2331 MSR_IA32_MCG_CTL, nid);
2333 if (!ecc_en || !nb_mce_en) {
2334 amd64_notice("%s", ecc_msg);
2340 struct mcidev_sysfs_attribute sysfs_attrs[ARRAY_SIZE(amd64_dbg_attrs) +
2341 ARRAY_SIZE(amd64_inj_attrs) +
2344 struct mcidev_sysfs_attribute terminator = { .attr = { .name = NULL } };
2346 static void set_mc_sysfs_attrs(struct mem_ctl_info *mci)
2348 unsigned int i = 0, j = 0;
2350 for (; i < ARRAY_SIZE(amd64_dbg_attrs); i++)
2351 sysfs_attrs[i] = amd64_dbg_attrs[i];
2353 if (boot_cpu_data.x86 >= 0x10)
2354 for (j = 0; j < ARRAY_SIZE(amd64_inj_attrs); j++, i++)
2355 sysfs_attrs[i] = amd64_inj_attrs[j];
2357 sysfs_attrs[i] = terminator;
2359 mci->mc_driver_sysfs_attributes = sysfs_attrs;
2362 static void setup_mci_misc_attrs(struct mem_ctl_info *mci,
2363 struct amd64_family_type *fam)
2365 struct amd64_pvt *pvt = mci->pvt_info;
2367 mci->mtype_cap = MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
2368 mci->edac_ctl_cap = EDAC_FLAG_NONE;
2370 if (pvt->nbcap & NBCAP_SECDED)
2371 mci->edac_ctl_cap |= EDAC_FLAG_SECDED;
2373 if (pvt->nbcap & NBCAP_CHIPKILL)
2374 mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
2376 mci->edac_cap = amd64_determine_edac_cap(pvt);
2377 mci->mod_name = EDAC_MOD_STR;
2378 mci->mod_ver = EDAC_AMD64_VERSION;
2379 mci->ctl_name = fam->ctl_name;
2380 mci->dev_name = pci_name(pvt->F2);
2381 mci->ctl_page_to_phys = NULL;
2383 /* memory scrubber interface */
2384 mci->set_sdram_scrub_rate = amd64_set_scrub_rate;
2385 mci->get_sdram_scrub_rate = amd64_get_scrub_rate;
2389 * returns a pointer to the family descriptor on success, NULL otherwise.
2391 static struct amd64_family_type *amd64_per_family_init(struct amd64_pvt *pvt)
2393 u8 fam = boot_cpu_data.x86;
2394 struct amd64_family_type *fam_type = NULL;
2398 fam_type = &amd64_family_types[K8_CPUS];
2399 pvt->ops = &amd64_family_types[K8_CPUS].ops;
2403 fam_type = &amd64_family_types[F10_CPUS];
2404 pvt->ops = &amd64_family_types[F10_CPUS].ops;
2408 fam_type = &amd64_family_types[F15_CPUS];
2409 pvt->ops = &amd64_family_types[F15_CPUS].ops;
2413 amd64_err("Unsupported family!\n");
2417 pvt->ext_model = boot_cpu_data.x86_model >> 4;
2419 amd64_info("%s %sdetected (node %d).\n", fam_type->ctl_name,
2421 (pvt->ext_model >= K8_REV_F ? "revF or later "
2422 : "revE or earlier ")
2423 : ""), pvt->mc_node_id);
2427 static int amd64_init_one_instance(struct pci_dev *F2)
2429 struct amd64_pvt *pvt = NULL;
2430 struct amd64_family_type *fam_type = NULL;
2431 struct mem_ctl_info *mci = NULL;
2433 u8 nid = get_node_id(F2);
2436 pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
2440 pvt->mc_node_id = nid;
2444 fam_type = amd64_per_family_init(pvt);
2449 err = reserve_mc_sibling_devs(pvt, fam_type->f1_id, fam_type->f3_id);
2456 * We need to determine how many memory channels there are. Then use
2457 * that information for calculating the size of the dynamic instance
2458 * tables in the 'mci' structure.
2461 pvt->channel_count = pvt->ops->early_channel_count(pvt);
2462 if (pvt->channel_count < 0)
2466 mci = edac_mc_alloc(0, pvt->csels[0].b_cnt, pvt->channel_count, nid);
2470 mci->pvt_info = pvt;
2471 mci->dev = &pvt->F2->dev;
2473 setup_mci_misc_attrs(mci, fam_type);
2475 if (init_csrows(mci))
2476 mci->edac_cap = EDAC_FLAG_NONE;
2478 set_mc_sysfs_attrs(mci);
2481 if (edac_mc_add_mc(mci)) {
2482 debugf1("failed edac_mc_add_mc()\n");
2486 /* register stuff with EDAC MCE */
2487 if (report_gart_errors)
2488 amd_report_gart_errors(true);
2490 amd_register_ecc_decoder(amd64_decode_bus_error);
2494 atomic_inc(&drv_instances);
2502 free_mc_sibling_devs(pvt);
2511 static int __devinit amd64_probe_one_instance(struct pci_dev *pdev,
2512 const struct pci_device_id *mc_type)
2514 u8 nid = get_node_id(pdev);
2515 struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
2516 struct ecc_settings *s;
2519 ret = pci_enable_device(pdev);
2521 debugf0("ret=%d\n", ret);
2526 s = kzalloc(sizeof(struct ecc_settings), GFP_KERNEL);
2532 if (!ecc_enabled(F3, nid)) {
2535 if (!ecc_enable_override)
2538 amd64_warn("Forcing ECC on!\n");
2540 if (!enable_ecc_error_reporting(s, nid, F3))
2544 ret = amd64_init_one_instance(pdev);
2546 amd64_err("Error probing instance: %d\n", nid);
2547 restore_ecc_error_reporting(s, nid, F3);
2554 ecc_stngs[nid] = NULL;
2560 static void __devexit amd64_remove_one_instance(struct pci_dev *pdev)
2562 struct mem_ctl_info *mci;
2563 struct amd64_pvt *pvt;
2564 u8 nid = get_node_id(pdev);
2565 struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
2566 struct ecc_settings *s = ecc_stngs[nid];
2568 /* Remove from EDAC CORE tracking list */
2569 mci = edac_mc_del_mc(&pdev->dev);
2573 pvt = mci->pvt_info;
2575 restore_ecc_error_reporting(s, nid, F3);
2577 free_mc_sibling_devs(pvt);
2579 /* unregister from EDAC MCE */
2580 amd_report_gart_errors(false);
2581 amd_unregister_ecc_decoder(amd64_decode_bus_error);
2583 kfree(ecc_stngs[nid]);
2584 ecc_stngs[nid] = NULL;
2586 /* Free the EDAC CORE resources */
2587 mci->pvt_info = NULL;
2595 * This table is part of the interface for loading drivers for PCI devices. The
2596 * PCI core identifies what devices are on a system during boot, and then
2597 * inquiry this table to see if this driver is for a given device found.
2599 static const struct pci_device_id amd64_pci_table[] __devinitdata = {
2601 .vendor = PCI_VENDOR_ID_AMD,
2602 .device = PCI_DEVICE_ID_AMD_K8_NB_MEMCTL,
2603 .subvendor = PCI_ANY_ID,
2604 .subdevice = PCI_ANY_ID,
2609 .vendor = PCI_VENDOR_ID_AMD,
2610 .device = PCI_DEVICE_ID_AMD_10H_NB_DRAM,
2611 .subvendor = PCI_ANY_ID,
2612 .subdevice = PCI_ANY_ID,
2617 .vendor = PCI_VENDOR_ID_AMD,
2618 .device = PCI_DEVICE_ID_AMD_15H_NB_F2,
2619 .subvendor = PCI_ANY_ID,
2620 .subdevice = PCI_ANY_ID,
2627 MODULE_DEVICE_TABLE(pci, amd64_pci_table);
2629 static struct pci_driver amd64_pci_driver = {
2630 .name = EDAC_MOD_STR,
2631 .probe = amd64_probe_one_instance,
2632 .remove = __devexit_p(amd64_remove_one_instance),
2633 .id_table = amd64_pci_table,
2636 static void setup_pci_device(void)
2638 struct mem_ctl_info *mci;
2639 struct amd64_pvt *pvt;
2647 pvt = mci->pvt_info;
2649 edac_pci_create_generic_ctl(&pvt->F2->dev, EDAC_MOD_STR);
2651 if (!amd64_ctl_pci) {
2652 pr_warning("%s(): Unable to create PCI control\n",
2655 pr_warning("%s(): PCI error report via EDAC not set\n",
2661 static int __init amd64_edac_init(void)
2665 printk(KERN_INFO "AMD64 EDAC driver v%s\n", EDAC_AMD64_VERSION);
2669 if (amd_cache_northbridges() < 0)
2673 mcis = kzalloc(amd_nb_num() * sizeof(mcis[0]), GFP_KERNEL);
2674 ecc_stngs = kzalloc(amd_nb_num() * sizeof(ecc_stngs[0]), GFP_KERNEL);
2675 if (!(mcis && ecc_stngs))
2678 msrs = msrs_alloc();
2682 err = pci_register_driver(&amd64_pci_driver);
2687 if (!atomic_read(&drv_instances))
2688 goto err_no_instances;
2694 pci_unregister_driver(&amd64_pci_driver);
2711 static void __exit amd64_edac_exit(void)
2714 edac_pci_release_generic_ctl(amd64_ctl_pci);
2716 pci_unregister_driver(&amd64_pci_driver);
2728 module_init(amd64_edac_init);
2729 module_exit(amd64_edac_exit);
2731 MODULE_LICENSE("GPL");
2732 MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
2733 "Dave Peterson, Thayne Harbaugh");
2734 MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
2735 EDAC_AMD64_VERSION);
2737 module_param(edac_op_state, int, 0444);
2738 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");