1 // SPDX-License-Identifier: GPL-2.0-only
2 #include "amd64_edac.h"
3 #include <asm/amd_nb.h>
5 static struct edac_pci_ctl_info *pci_ctl;
8 * Set by command line parameter. If BIOS has enabled the ECC, this override is
9 * cleared to prevent re-enabling the hardware by this driver.
11 static int ecc_enable_override;
12 module_param(ecc_enable_override, int, 0644);
14 static struct msr __percpu *msrs;
16 static struct amd64_family_type *fam_type;
19 static struct ecc_settings **ecc_stngs;
21 /* Device for the PCI component */
22 static struct device *pci_ctl_dev;
25 * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
26 * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
29 *FIXME: Produce a better mapping/linearisation.
31 static const struct scrubrate {
32 u32 scrubval; /* bit pattern for scrub rate */
33 u32 bandwidth; /* bandwidth consumed (bytes/sec) */
35 { 0x01, 1600000000UL},
57 { 0x00, 0UL}, /* scrubbing off */
60 int __amd64_read_pci_cfg_dword(struct pci_dev *pdev, int offset,
61 u32 *val, const char *func)
65 err = pci_read_config_dword(pdev, offset, val);
67 amd64_warn("%s: error reading F%dx%03x.\n",
68 func, PCI_FUNC(pdev->devfn), offset);
73 int __amd64_write_pci_cfg_dword(struct pci_dev *pdev, int offset,
74 u32 val, const char *func)
78 err = pci_write_config_dword(pdev, offset, val);
80 amd64_warn("%s: error writing to F%dx%03x.\n",
81 func, PCI_FUNC(pdev->devfn), offset);
87 * Select DCT to which PCI cfg accesses are routed
89 static void f15h_select_dct(struct amd64_pvt *pvt, u8 dct)
93 amd64_read_pci_cfg(pvt->F1, DCT_CFG_SEL, ®);
94 reg &= (pvt->model == 0x30) ? ~3 : ~1;
96 amd64_write_pci_cfg(pvt->F1, DCT_CFG_SEL, reg);
101 * Depending on the family, F2 DCT reads need special handling:
103 * K8: has a single DCT only and no address offsets >= 0x100
105 * F10h: each DCT has its own set of regs
109 * F16h: has only 1 DCT
111 * F15h: we select which DCT we access using F1x10C[DctCfgSel]
113 static inline int amd64_read_dct_pci_cfg(struct amd64_pvt *pvt, u8 dct,
114 int offset, u32 *val)
118 if (dct || offset >= 0x100)
125 * Note: If ganging is enabled, barring the regs
126 * F2x[1,0]98 and F2x[1,0]9C; reads reads to F2x1xx
127 * return 0. (cf. Section 2.8.1 F10h BKDG)
129 if (dct_ganging_enabled(pvt))
138 * F15h: F2x1xx addresses do not map explicitly to DCT1.
139 * We should select which DCT we access using F1x10C[DctCfgSel]
141 dct = (dct && pvt->model == 0x30) ? 3 : dct;
142 f15h_select_dct(pvt, dct);
153 return amd64_read_pci_cfg(pvt->F2, offset, val);
157 * Memory scrubber control interface. For K8, memory scrubbing is handled by
158 * hardware and can involve L2 cache, dcache as well as the main memory. With
159 * F10, this is extended to L3 cache scrubbing on CPU models sporting that
162 * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
163 * (dram) over to cache lines. This is nasty, so we will use bandwidth in
164 * bytes/sec for the setting.
166 * Currently, we only do dram scrubbing. If the scrubbing is done in software on
167 * other archs, we might not have access to the caches directly.
170 static inline void __f17h_set_scrubval(struct amd64_pvt *pvt, u32 scrubval)
173 * Fam17h supports scrub values between 0x5 and 0x14. Also, the values
174 * are shifted down by 0x5, so scrubval 0x5 is written to the register
175 * as 0x0, scrubval 0x6 as 0x1, etc.
177 if (scrubval >= 0x5 && scrubval <= 0x14) {
179 pci_write_bits32(pvt->F6, F17H_SCR_LIMIT_ADDR, scrubval, 0xF);
180 pci_write_bits32(pvt->F6, F17H_SCR_BASE_ADDR, 1, 0x1);
182 pci_write_bits32(pvt->F6, F17H_SCR_BASE_ADDR, 0, 0x1);
186 * Scan the scrub rate mapping table for a close or matching bandwidth value to
187 * issue. If requested is too big, then use last maximum value found.
189 static int __set_scrub_rate(struct amd64_pvt *pvt, u32 new_bw, u32 min_rate)
195 * map the configured rate (new_bw) to a value specific to the AMD64
196 * memory controller and apply to register. Search for the first
197 * bandwidth entry that is greater or equal than the setting requested
198 * and program that. If at last entry, turn off DRAM scrubbing.
200 * If no suitable bandwidth is found, turn off DRAM scrubbing entirely
201 * by falling back to the last element in scrubrates[].
203 for (i = 0; i < ARRAY_SIZE(scrubrates) - 1; i++) {
205 * skip scrub rates which aren't recommended
206 * (see F10 BKDG, F3x58)
208 if (scrubrates[i].scrubval < min_rate)
211 if (scrubrates[i].bandwidth <= new_bw)
215 scrubval = scrubrates[i].scrubval;
218 __f17h_set_scrubval(pvt, scrubval);
219 } else if (pvt->fam == 0x15 && pvt->model == 0x60) {
220 f15h_select_dct(pvt, 0);
221 pci_write_bits32(pvt->F2, F15H_M60H_SCRCTRL, scrubval, 0x001F);
222 f15h_select_dct(pvt, 1);
223 pci_write_bits32(pvt->F2, F15H_M60H_SCRCTRL, scrubval, 0x001F);
225 pci_write_bits32(pvt->F3, SCRCTRL, scrubval, 0x001F);
229 return scrubrates[i].bandwidth;
234 static int set_scrub_rate(struct mem_ctl_info *mci, u32 bw)
236 struct amd64_pvt *pvt = mci->pvt_info;
237 u32 min_scrubrate = 0x5;
242 if (pvt->fam == 0x15) {
244 if (pvt->model < 0x10)
245 f15h_select_dct(pvt, 0);
247 if (pvt->model == 0x60)
250 return __set_scrub_rate(pvt, bw, min_scrubrate);
253 static int get_scrub_rate(struct mem_ctl_info *mci)
255 struct amd64_pvt *pvt = mci->pvt_info;
256 int i, retval = -EINVAL;
260 amd64_read_pci_cfg(pvt->F6, F17H_SCR_BASE_ADDR, &scrubval);
261 if (scrubval & BIT(0)) {
262 amd64_read_pci_cfg(pvt->F6, F17H_SCR_LIMIT_ADDR, &scrubval);
268 } else if (pvt->fam == 0x15) {
270 if (pvt->model < 0x10)
271 f15h_select_dct(pvt, 0);
273 if (pvt->model == 0x60)
274 amd64_read_pci_cfg(pvt->F2, F15H_M60H_SCRCTRL, &scrubval);
276 amd64_read_pci_cfg(pvt->F3, SCRCTRL, &scrubval);
278 amd64_read_pci_cfg(pvt->F3, SCRCTRL, &scrubval);
281 scrubval = scrubval & 0x001F;
283 for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
284 if (scrubrates[i].scrubval == scrubval) {
285 retval = scrubrates[i].bandwidth;
293 * returns true if the SysAddr given by sys_addr matches the
294 * DRAM base/limit associated with node_id
296 static bool base_limit_match(struct amd64_pvt *pvt, u64 sys_addr, u8 nid)
300 /* The K8 treats this as a 40-bit value. However, bits 63-40 will be
301 * all ones if the most significant implemented address bit is 1.
302 * Here we discard bits 63-40. See section 3.4.2 of AMD publication
303 * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
304 * Application Programming.
306 addr = sys_addr & 0x000000ffffffffffull;
308 return ((addr >= get_dram_base(pvt, nid)) &&
309 (addr <= get_dram_limit(pvt, nid)));
313 * Attempt to map a SysAddr to a node. On success, return a pointer to the
314 * mem_ctl_info structure for the node that the SysAddr maps to.
316 * On failure, return NULL.
318 static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
321 struct amd64_pvt *pvt;
326 * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
327 * 3.4.4.2) registers to map the SysAddr to a node ID.
332 * The value of this field should be the same for all DRAM Base
333 * registers. Therefore we arbitrarily choose to read it from the
334 * register for node 0.
336 intlv_en = dram_intlv_en(pvt, 0);
339 for (node_id = 0; node_id < DRAM_RANGES; node_id++) {
340 if (base_limit_match(pvt, sys_addr, node_id))
346 if (unlikely((intlv_en != 0x01) &&
347 (intlv_en != 0x03) &&
348 (intlv_en != 0x07))) {
349 amd64_warn("DRAM Base[IntlvEn] junk value: 0x%x, BIOS bug?\n", intlv_en);
353 bits = (((u32) sys_addr) >> 12) & intlv_en;
355 for (node_id = 0; ; ) {
356 if ((dram_intlv_sel(pvt, node_id) & intlv_en) == bits)
357 break; /* intlv_sel field matches */
359 if (++node_id >= DRAM_RANGES)
363 /* sanity test for sys_addr */
364 if (unlikely(!base_limit_match(pvt, sys_addr, node_id))) {
365 amd64_warn("%s: sys_addr 0x%llx falls outside base/limit address"
366 "range for node %d with node interleaving enabled.\n",
367 __func__, sys_addr, node_id);
372 return edac_mc_find((int)node_id);
375 edac_dbg(2, "sys_addr 0x%lx doesn't match any node\n",
376 (unsigned long)sys_addr);
382 * compute the CS base address of the @csrow on the DRAM controller @dct.
383 * For details see F2x[5C:40] in the processor's BKDG
385 static void get_cs_base_and_mask(struct amd64_pvt *pvt, int csrow, u8 dct,
386 u64 *base, u64 *mask)
388 u64 csbase, csmask, base_bits, mask_bits;
391 if (pvt->fam == 0xf && pvt->ext_model < K8_REV_F) {
392 csbase = pvt->csels[dct].csbases[csrow];
393 csmask = pvt->csels[dct].csmasks[csrow];
394 base_bits = GENMASK_ULL(31, 21) | GENMASK_ULL(15, 9);
395 mask_bits = GENMASK_ULL(29, 21) | GENMASK_ULL(15, 9);
399 * F16h and F15h, models 30h and later need two addr_shift values:
400 * 8 for high and 6 for low (cf. F16h BKDG).
402 } else if (pvt->fam == 0x16 ||
403 (pvt->fam == 0x15 && pvt->model >= 0x30)) {
404 csbase = pvt->csels[dct].csbases[csrow];
405 csmask = pvt->csels[dct].csmasks[csrow >> 1];
407 *base = (csbase & GENMASK_ULL(15, 5)) << 6;
408 *base |= (csbase & GENMASK_ULL(30, 19)) << 8;
411 /* poke holes for the csmask */
412 *mask &= ~((GENMASK_ULL(15, 5) << 6) |
413 (GENMASK_ULL(30, 19) << 8));
415 *mask |= (csmask & GENMASK_ULL(15, 5)) << 6;
416 *mask |= (csmask & GENMASK_ULL(30, 19)) << 8;
420 csbase = pvt->csels[dct].csbases[csrow];
421 csmask = pvt->csels[dct].csmasks[csrow >> 1];
424 if (pvt->fam == 0x15)
425 base_bits = mask_bits =
426 GENMASK_ULL(30,19) | GENMASK_ULL(13,5);
428 base_bits = mask_bits =
429 GENMASK_ULL(28,19) | GENMASK_ULL(13,5);
432 *base = (csbase & base_bits) << addr_shift;
435 /* poke holes for the csmask */
436 *mask &= ~(mask_bits << addr_shift);
438 *mask |= (csmask & mask_bits) << addr_shift;
441 #define for_each_chip_select(i, dct, pvt) \
442 for (i = 0; i < pvt->csels[dct].b_cnt; i++)
444 #define chip_select_base(i, dct, pvt) \
445 pvt->csels[dct].csbases[i]
447 #define for_each_chip_select_mask(i, dct, pvt) \
448 for (i = 0; i < pvt->csels[dct].m_cnt; i++)
450 #define for_each_umc(i) \
451 for (i = 0; i < fam_type->max_mcs; i++)
454 * @input_addr is an InputAddr associated with the node given by mci. Return the
455 * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
457 static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
459 struct amd64_pvt *pvt;
465 for_each_chip_select(csrow, 0, pvt) {
466 if (!csrow_enabled(csrow, 0, pvt))
469 get_cs_base_and_mask(pvt, csrow, 0, &base, &mask);
473 if ((input_addr & mask) == (base & mask)) {
474 edac_dbg(2, "InputAddr 0x%lx matches csrow %d (node %d)\n",
475 (unsigned long)input_addr, csrow,
481 edac_dbg(2, "no matching csrow for InputAddr 0x%lx (MC node %d)\n",
482 (unsigned long)input_addr, pvt->mc_node_id);
488 * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
489 * for the node represented by mci. Info is passed back in *hole_base,
490 * *hole_offset, and *hole_size. Function returns 0 if info is valid or 1 if
491 * info is invalid. Info may be invalid for either of the following reasons:
493 * - The revision of the node is not E or greater. In this case, the DRAM Hole
494 * Address Register does not exist.
496 * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
497 * indicating that its contents are not valid.
499 * The values passed back in *hole_base, *hole_offset, and *hole_size are
500 * complete 32-bit values despite the fact that the bitfields in the DHAR
501 * only represent bits 31-24 of the base and offset values.
503 static int get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
504 u64 *hole_offset, u64 *hole_size)
506 struct amd64_pvt *pvt = mci->pvt_info;
508 /* only revE and later have the DRAM Hole Address Register */
509 if (pvt->fam == 0xf && pvt->ext_model < K8_REV_E) {
510 edac_dbg(1, " revision %d for node %d does not support DHAR\n",
511 pvt->ext_model, pvt->mc_node_id);
515 /* valid for Fam10h and above */
516 if (pvt->fam >= 0x10 && !dhar_mem_hoist_valid(pvt)) {
517 edac_dbg(1, " Dram Memory Hoisting is DISABLED on this system\n");
521 if (!dhar_valid(pvt)) {
522 edac_dbg(1, " Dram Memory Hoisting is DISABLED on this node %d\n",
527 /* This node has Memory Hoisting */
529 /* +------------------+--------------------+--------------------+-----
530 * | memory | DRAM hole | relocated |
531 * | [0, (x - 1)] | [x, 0xffffffff] | addresses from |
533 * | | | [0x100000000, |
534 * | | | (0x100000000+ |
535 * | | | (0xffffffff-x))] |
536 * +------------------+--------------------+--------------------+-----
538 * Above is a diagram of physical memory showing the DRAM hole and the
539 * relocated addresses from the DRAM hole. As shown, the DRAM hole
540 * starts at address x (the base address) and extends through address
541 * 0xffffffff. The DRAM Hole Address Register (DHAR) relocates the
542 * addresses in the hole so that they start at 0x100000000.
545 *hole_base = dhar_base(pvt);
546 *hole_size = (1ULL << 32) - *hole_base;
548 *hole_offset = (pvt->fam > 0xf) ? f10_dhar_offset(pvt)
549 : k8_dhar_offset(pvt);
551 edac_dbg(1, " DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
552 pvt->mc_node_id, (unsigned long)*hole_base,
553 (unsigned long)*hole_offset, (unsigned long)*hole_size);
558 #ifdef CONFIG_EDAC_DEBUG
559 #define EDAC_DCT_ATTR_SHOW(reg) \
560 static ssize_t reg##_show(struct device *dev, \
561 struct device_attribute *mattr, char *data) \
563 struct mem_ctl_info *mci = to_mci(dev); \
564 struct amd64_pvt *pvt = mci->pvt_info; \
566 return sprintf(data, "0x%016llx\n", (u64)pvt->reg); \
569 EDAC_DCT_ATTR_SHOW(dhar);
570 EDAC_DCT_ATTR_SHOW(dbam0);
571 EDAC_DCT_ATTR_SHOW(top_mem);
572 EDAC_DCT_ATTR_SHOW(top_mem2);
574 static ssize_t dram_hole_show(struct device *dev, struct device_attribute *mattr,
577 struct mem_ctl_info *mci = to_mci(dev);
583 get_dram_hole_info(mci, &hole_base, &hole_offset, &hole_size);
585 return sprintf(data, "%llx %llx %llx\n", hole_base, hole_offset,
590 * update NUM_DBG_ATTRS in case you add new members
592 static DEVICE_ATTR(dhar, S_IRUGO, dhar_show, NULL);
593 static DEVICE_ATTR(dbam, S_IRUGO, dbam0_show, NULL);
594 static DEVICE_ATTR(topmem, S_IRUGO, top_mem_show, NULL);
595 static DEVICE_ATTR(topmem2, S_IRUGO, top_mem2_show, NULL);
596 static DEVICE_ATTR_RO(dram_hole);
598 static struct attribute *dbg_attrs[] = {
601 &dev_attr_topmem.attr,
602 &dev_attr_topmem2.attr,
603 &dev_attr_dram_hole.attr,
607 static const struct attribute_group dbg_group = {
611 static ssize_t inject_section_show(struct device *dev,
612 struct device_attribute *mattr, char *buf)
614 struct mem_ctl_info *mci = to_mci(dev);
615 struct amd64_pvt *pvt = mci->pvt_info;
616 return sprintf(buf, "0x%x\n", pvt->injection.section);
620 * store error injection section value which refers to one of 4 16-byte sections
621 * within a 64-byte cacheline
625 static ssize_t inject_section_store(struct device *dev,
626 struct device_attribute *mattr,
627 const char *data, size_t count)
629 struct mem_ctl_info *mci = to_mci(dev);
630 struct amd64_pvt *pvt = mci->pvt_info;
634 ret = kstrtoul(data, 10, &value);
639 amd64_warn("%s: invalid section 0x%lx\n", __func__, value);
643 pvt->injection.section = (u32) value;
647 static ssize_t inject_word_show(struct device *dev,
648 struct device_attribute *mattr, char *buf)
650 struct mem_ctl_info *mci = to_mci(dev);
651 struct amd64_pvt *pvt = mci->pvt_info;
652 return sprintf(buf, "0x%x\n", pvt->injection.word);
656 * store error injection word value which refers to one of 9 16-bit word of the
657 * 16-byte (128-bit + ECC bits) section
661 static ssize_t inject_word_store(struct device *dev,
662 struct device_attribute *mattr,
663 const char *data, size_t count)
665 struct mem_ctl_info *mci = to_mci(dev);
666 struct amd64_pvt *pvt = mci->pvt_info;
670 ret = kstrtoul(data, 10, &value);
675 amd64_warn("%s: invalid word 0x%lx\n", __func__, value);
679 pvt->injection.word = (u32) value;
683 static ssize_t inject_ecc_vector_show(struct device *dev,
684 struct device_attribute *mattr,
687 struct mem_ctl_info *mci = to_mci(dev);
688 struct amd64_pvt *pvt = mci->pvt_info;
689 return sprintf(buf, "0x%x\n", pvt->injection.bit_map);
693 * store 16 bit error injection vector which enables injecting errors to the
694 * corresponding bit within the error injection word above. When used during a
695 * DRAM ECC read, it holds the contents of the of the DRAM ECC bits.
697 static ssize_t inject_ecc_vector_store(struct device *dev,
698 struct device_attribute *mattr,
699 const char *data, size_t count)
701 struct mem_ctl_info *mci = to_mci(dev);
702 struct amd64_pvt *pvt = mci->pvt_info;
706 ret = kstrtoul(data, 16, &value);
710 if (value & 0xFFFF0000) {
711 amd64_warn("%s: invalid EccVector: 0x%lx\n", __func__, value);
715 pvt->injection.bit_map = (u32) value;
720 * Do a DRAM ECC read. Assemble staged values in the pvt area, format into
721 * fields needed by the injection registers and read the NB Array Data Port.
723 static ssize_t inject_read_store(struct device *dev,
724 struct device_attribute *mattr,
725 const char *data, size_t count)
727 struct mem_ctl_info *mci = to_mci(dev);
728 struct amd64_pvt *pvt = mci->pvt_info;
730 u32 section, word_bits;
733 ret = kstrtoul(data, 10, &value);
737 /* Form value to choose 16-byte section of cacheline */
738 section = F10_NB_ARRAY_DRAM | SET_NB_ARRAY_ADDR(pvt->injection.section);
740 amd64_write_pci_cfg(pvt->F3, F10_NB_ARRAY_ADDR, section);
742 word_bits = SET_NB_DRAM_INJECTION_READ(pvt->injection);
744 /* Issue 'word' and 'bit' along with the READ request */
745 amd64_write_pci_cfg(pvt->F3, F10_NB_ARRAY_DATA, word_bits);
747 edac_dbg(0, "section=0x%x word_bits=0x%x\n", section, word_bits);
753 * Do a DRAM ECC write. Assemble staged values in the pvt area and format into
754 * fields needed by the injection registers.
756 static ssize_t inject_write_store(struct device *dev,
757 struct device_attribute *mattr,
758 const char *data, size_t count)
760 struct mem_ctl_info *mci = to_mci(dev);
761 struct amd64_pvt *pvt = mci->pvt_info;
762 u32 section, word_bits, tmp;
766 ret = kstrtoul(data, 10, &value);
770 /* Form value to choose 16-byte section of cacheline */
771 section = F10_NB_ARRAY_DRAM | SET_NB_ARRAY_ADDR(pvt->injection.section);
773 amd64_write_pci_cfg(pvt->F3, F10_NB_ARRAY_ADDR, section);
775 word_bits = SET_NB_DRAM_INJECTION_WRITE(pvt->injection);
777 pr_notice_once("Don't forget to decrease MCE polling interval in\n"
778 "/sys/bus/machinecheck/devices/machinecheck<CPUNUM>/check_interval\n"
779 "so that you can get the error report faster.\n");
781 on_each_cpu(disable_caches, NULL, 1);
783 /* Issue 'word' and 'bit' along with the READ request */
784 amd64_write_pci_cfg(pvt->F3, F10_NB_ARRAY_DATA, word_bits);
787 /* wait until injection happens */
788 amd64_read_pci_cfg(pvt->F3, F10_NB_ARRAY_DATA, &tmp);
789 if (tmp & F10_NB_ARR_ECC_WR_REQ) {
794 on_each_cpu(enable_caches, NULL, 1);
796 edac_dbg(0, "section=0x%x word_bits=0x%x\n", section, word_bits);
802 * update NUM_INJ_ATTRS in case you add new members
805 static DEVICE_ATTR_RW(inject_section);
806 static DEVICE_ATTR_RW(inject_word);
807 static DEVICE_ATTR_RW(inject_ecc_vector);
808 static DEVICE_ATTR_WO(inject_write);
809 static DEVICE_ATTR_WO(inject_read);
811 static struct attribute *inj_attrs[] = {
812 &dev_attr_inject_section.attr,
813 &dev_attr_inject_word.attr,
814 &dev_attr_inject_ecc_vector.attr,
815 &dev_attr_inject_write.attr,
816 &dev_attr_inject_read.attr,
820 static umode_t inj_is_visible(struct kobject *kobj, struct attribute *attr, int idx)
822 struct device *dev = kobj_to_dev(kobj);
823 struct mem_ctl_info *mci = container_of(dev, struct mem_ctl_info, dev);
824 struct amd64_pvt *pvt = mci->pvt_info;
826 /* Families which have that injection hw */
827 if (pvt->fam >= 0x10 && pvt->fam <= 0x16)
833 static const struct attribute_group inj_group = {
835 .is_visible = inj_is_visible,
837 #endif /* CONFIG_EDAC_DEBUG */
840 * Return the DramAddr that the SysAddr given by @sys_addr maps to. It is
841 * assumed that sys_addr maps to the node given by mci.
843 * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
844 * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
845 * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
846 * then it is also involved in translating a SysAddr to a DramAddr. Sections
847 * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
848 * These parts of the documentation are unclear. I interpret them as follows:
850 * When node n receives a SysAddr, it processes the SysAddr as follows:
852 * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
853 * Limit registers for node n. If the SysAddr is not within the range
854 * specified by the base and limit values, then node n ignores the Sysaddr
855 * (since it does not map to node n). Otherwise continue to step 2 below.
857 * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
858 * disabled so skip to step 3 below. Otherwise see if the SysAddr is within
859 * the range of relocated addresses (starting at 0x100000000) from the DRAM
860 * hole. If not, skip to step 3 below. Else get the value of the
861 * DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
862 * offset defined by this value from the SysAddr.
864 * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
865 * Base register for node n. To obtain the DramAddr, subtract the base
866 * address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
868 static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
870 struct amd64_pvt *pvt = mci->pvt_info;
871 u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
874 dram_base = get_dram_base(pvt, pvt->mc_node_id);
876 ret = get_dram_hole_info(mci, &hole_base, &hole_offset, &hole_size);
878 if ((sys_addr >= (1ULL << 32)) &&
879 (sys_addr < ((1ULL << 32) + hole_size))) {
880 /* use DHAR to translate SysAddr to DramAddr */
881 dram_addr = sys_addr - hole_offset;
883 edac_dbg(2, "using DHAR to translate SysAddr 0x%lx to DramAddr 0x%lx\n",
884 (unsigned long)sys_addr,
885 (unsigned long)dram_addr);
892 * Translate the SysAddr to a DramAddr as shown near the start of
893 * section 3.4.4 (p. 70). Although sys_addr is a 64-bit value, the k8
894 * only deals with 40-bit values. Therefore we discard bits 63-40 of
895 * sys_addr below. If bit 39 of sys_addr is 1 then the bits we
896 * discard are all 1s. Otherwise the bits we discard are all 0s. See
897 * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
898 * Programmer's Manual Volume 1 Application Programming.
900 dram_addr = (sys_addr & GENMASK_ULL(39, 0)) - dram_base;
902 edac_dbg(2, "using DRAM Base register to translate SysAddr 0x%lx to DramAddr 0x%lx\n",
903 (unsigned long)sys_addr, (unsigned long)dram_addr);
908 * @intlv_en is the value of the IntlvEn field from a DRAM Base register
909 * (section 3.4.4.1). Return the number of bits from a SysAddr that are used
910 * for node interleaving.
912 static int num_node_interleave_bits(unsigned intlv_en)
914 static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
917 BUG_ON(intlv_en > 7);
918 n = intlv_shift_table[intlv_en];
922 /* Translate the DramAddr given by @dram_addr to an InputAddr. */
923 static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
925 struct amd64_pvt *pvt;
932 * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
933 * concerning translating a DramAddr to an InputAddr.
935 intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
936 input_addr = ((dram_addr >> intlv_shift) & GENMASK_ULL(35, 12)) +
939 edac_dbg(2, " Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
940 intlv_shift, (unsigned long)dram_addr,
941 (unsigned long)input_addr);
947 * Translate the SysAddr represented by @sys_addr to an InputAddr. It is
948 * assumed that @sys_addr maps to the node given by mci.
950 static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
955 dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));
957 edac_dbg(2, "SysAddr 0x%lx translates to InputAddr 0x%lx\n",
958 (unsigned long)sys_addr, (unsigned long)input_addr);
963 /* Map the Error address to a PAGE and PAGE OFFSET. */
964 static inline void error_address_to_page_and_offset(u64 error_address,
965 struct err_info *err)
967 err->page = (u32) (error_address >> PAGE_SHIFT);
968 err->offset = ((u32) error_address) & ~PAGE_MASK;
972 * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
973 * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
974 * of a node that detected an ECC memory error. mci represents the node that
975 * the error address maps to (possibly different from the node that detected
976 * the error). Return the number of the csrow that sys_addr maps to, or -1 on
979 static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
983 csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));
986 amd64_mc_err(mci, "Failed to translate InputAddr to csrow for "
987 "address 0x%lx\n", (unsigned long)sys_addr);
991 static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16);
994 * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
997 static unsigned long determine_edac_cap(struct amd64_pvt *pvt)
999 unsigned long edac_cap = EDAC_FLAG_NONE;
1003 u8 i, umc_en_mask = 0, dimm_ecc_en_mask = 0;
1006 if (!(pvt->umc[i].sdp_ctrl & UMC_SDP_INIT))
1009 umc_en_mask |= BIT(i);
1011 /* UMC Configuration bit 12 (DimmEccEn) */
1012 if (pvt->umc[i].umc_cfg & BIT(12))
1013 dimm_ecc_en_mask |= BIT(i);
1016 if (umc_en_mask == dimm_ecc_en_mask)
1017 edac_cap = EDAC_FLAG_SECDED;
1019 bit = (pvt->fam > 0xf || pvt->ext_model >= K8_REV_F)
1023 if (pvt->dclr0 & BIT(bit))
1024 edac_cap = EDAC_FLAG_SECDED;
1030 static void debug_display_dimm_sizes(struct amd64_pvt *, u8);
1032 static void debug_dump_dramcfg_low(struct amd64_pvt *pvt, u32 dclr, int chan)
1034 edac_dbg(1, "F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr);
1036 if (pvt->dram_type == MEM_LRDDR3) {
1037 u32 dcsm = pvt->csels[chan].csmasks[0];
1039 * It's assumed all LRDIMMs in a DCT are going to be of
1040 * same 'type' until proven otherwise. So, use a cs
1041 * value of '0' here to get dcsm value.
1043 edac_dbg(1, " LRDIMM %dx rank multiply\n", (dcsm & 0x3));
1046 edac_dbg(1, "All DIMMs support ECC:%s\n",
1047 (dclr & BIT(19)) ? "yes" : "no");
1050 edac_dbg(1, " PAR/ERR parity: %s\n",
1051 (dclr & BIT(8)) ? "enabled" : "disabled");
1053 if (pvt->fam == 0x10)
1054 edac_dbg(1, " DCT 128bit mode width: %s\n",
1055 (dclr & BIT(11)) ? "128b" : "64b");
1057 edac_dbg(1, " x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n",
1058 (dclr & BIT(12)) ? "yes" : "no",
1059 (dclr & BIT(13)) ? "yes" : "no",
1060 (dclr & BIT(14)) ? "yes" : "no",
1061 (dclr & BIT(15)) ? "yes" : "no");
1064 #define CS_EVEN_PRIMARY BIT(0)
1065 #define CS_ODD_PRIMARY BIT(1)
1066 #define CS_EVEN_SECONDARY BIT(2)
1067 #define CS_ODD_SECONDARY BIT(3)
1068 #define CS_3R_INTERLEAVE BIT(4)
1070 #define CS_EVEN (CS_EVEN_PRIMARY | CS_EVEN_SECONDARY)
1071 #define CS_ODD (CS_ODD_PRIMARY | CS_ODD_SECONDARY)
1073 static int f17_get_cs_mode(int dimm, u8 ctrl, struct amd64_pvt *pvt)
1078 if (csrow_enabled(2 * dimm, ctrl, pvt))
1079 cs_mode |= CS_EVEN_PRIMARY;
1081 if (csrow_enabled(2 * dimm + 1, ctrl, pvt))
1082 cs_mode |= CS_ODD_PRIMARY;
1084 /* Asymmetric dual-rank DIMM support. */
1085 if (csrow_sec_enabled(2 * dimm + 1, ctrl, pvt))
1086 cs_mode |= CS_ODD_SECONDARY;
1089 * 3 Rank inteleaving support.
1090 * There should be only three bases enabled and their two masks should
1093 for_each_chip_select(base, ctrl, pvt)
1094 count += csrow_enabled(base, ctrl, pvt);
1097 pvt->csels[ctrl].csmasks[0] == pvt->csels[ctrl].csmasks[1]) {
1098 edac_dbg(1, "3R interleaving in use.\n");
1099 cs_mode |= CS_3R_INTERLEAVE;
1105 static void debug_display_dimm_sizes_df(struct amd64_pvt *pvt, u8 ctrl)
1107 int dimm, size0, size1, cs0, cs1, cs_mode;
1109 edac_printk(KERN_DEBUG, EDAC_MC, "UMC%d chip selects:\n", ctrl);
1111 for (dimm = 0; dimm < 2; dimm++) {
1115 cs_mode = f17_get_cs_mode(dimm, ctrl, pvt);
1117 size0 = pvt->ops->dbam_to_cs(pvt, ctrl, cs_mode, cs0);
1118 size1 = pvt->ops->dbam_to_cs(pvt, ctrl, cs_mode, cs1);
1120 amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n",
1126 static void __dump_misc_regs_df(struct amd64_pvt *pvt)
1128 struct amd64_umc *umc;
1129 u32 i, tmp, umc_base;
1132 umc_base = get_umc_base(i);
1135 edac_dbg(1, "UMC%d DIMM cfg: 0x%x\n", i, umc->dimm_cfg);
1136 edac_dbg(1, "UMC%d UMC cfg: 0x%x\n", i, umc->umc_cfg);
1137 edac_dbg(1, "UMC%d SDP ctrl: 0x%x\n", i, umc->sdp_ctrl);
1138 edac_dbg(1, "UMC%d ECC ctrl: 0x%x\n", i, umc->ecc_ctrl);
1140 amd_smn_read(pvt->mc_node_id, umc_base + UMCCH_ECC_BAD_SYMBOL, &tmp);
1141 edac_dbg(1, "UMC%d ECC bad symbol: 0x%x\n", i, tmp);
1143 amd_smn_read(pvt->mc_node_id, umc_base + UMCCH_UMC_CAP, &tmp);
1144 edac_dbg(1, "UMC%d UMC cap: 0x%x\n", i, tmp);
1145 edac_dbg(1, "UMC%d UMC cap high: 0x%x\n", i, umc->umc_cap_hi);
1147 edac_dbg(1, "UMC%d ECC capable: %s, ChipKill ECC capable: %s\n",
1148 i, (umc->umc_cap_hi & BIT(30)) ? "yes" : "no",
1149 (umc->umc_cap_hi & BIT(31)) ? "yes" : "no");
1150 edac_dbg(1, "UMC%d All DIMMs support ECC: %s\n",
1151 i, (umc->umc_cfg & BIT(12)) ? "yes" : "no");
1152 edac_dbg(1, "UMC%d x4 DIMMs present: %s\n",
1153 i, (umc->dimm_cfg & BIT(6)) ? "yes" : "no");
1154 edac_dbg(1, "UMC%d x16 DIMMs present: %s\n",
1155 i, (umc->dimm_cfg & BIT(7)) ? "yes" : "no");
1157 if (pvt->dram_type == MEM_LRDDR4) {
1158 amd_smn_read(pvt->mc_node_id, umc_base + UMCCH_ADDR_CFG, &tmp);
1159 edac_dbg(1, "UMC%d LRDIMM %dx rank multiply\n",
1160 i, 1 << ((tmp >> 4) & 0x3));
1163 debug_display_dimm_sizes_df(pvt, i);
1166 edac_dbg(1, "F0x104 (DRAM Hole Address): 0x%08x, base: 0x%08x\n",
1167 pvt->dhar, dhar_base(pvt));
1170 /* Display and decode various NB registers for debug purposes. */
1171 static void __dump_misc_regs(struct amd64_pvt *pvt)
1173 edac_dbg(1, "F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap);
1175 edac_dbg(1, " NB two channel DRAM capable: %s\n",
1176 (pvt->nbcap & NBCAP_DCT_DUAL) ? "yes" : "no");
1178 edac_dbg(1, " ECC capable: %s, ChipKill ECC capable: %s\n",
1179 (pvt->nbcap & NBCAP_SECDED) ? "yes" : "no",
1180 (pvt->nbcap & NBCAP_CHIPKILL) ? "yes" : "no");
1182 debug_dump_dramcfg_low(pvt, pvt->dclr0, 0);
1184 edac_dbg(1, "F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare);
1186 edac_dbg(1, "F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, offset: 0x%08x\n",
1187 pvt->dhar, dhar_base(pvt),
1188 (pvt->fam == 0xf) ? k8_dhar_offset(pvt)
1189 : f10_dhar_offset(pvt));
1191 debug_display_dimm_sizes(pvt, 0);
1193 /* everything below this point is Fam10h and above */
1194 if (pvt->fam == 0xf)
1197 debug_display_dimm_sizes(pvt, 1);
1199 /* Only if NOT ganged does dclr1 have valid info */
1200 if (!dct_ganging_enabled(pvt))
1201 debug_dump_dramcfg_low(pvt, pvt->dclr1, 1);
1204 /* Display and decode various NB registers for debug purposes. */
1205 static void dump_misc_regs(struct amd64_pvt *pvt)
1208 __dump_misc_regs_df(pvt);
1210 __dump_misc_regs(pvt);
1212 edac_dbg(1, " DramHoleValid: %s\n", dhar_valid(pvt) ? "yes" : "no");
1214 amd64_info("using x%u syndromes.\n", pvt->ecc_sym_sz);
1218 * See BKDG, F2x[1,0][5C:40], F2[1,0][6C:60]
1220 static void prep_chip_selects(struct amd64_pvt *pvt)
1222 if (pvt->fam == 0xf && pvt->ext_model < K8_REV_F) {
1223 pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
1224 pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 8;
1225 } else if (pvt->fam == 0x15 && pvt->model == 0x30) {
1226 pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 4;
1227 pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 2;
1228 } else if (pvt->fam >= 0x17) {
1232 pvt->csels[umc].b_cnt = 4;
1233 pvt->csels[umc].m_cnt = 2;
1237 pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
1238 pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 4;
1242 static void read_umc_base_mask(struct amd64_pvt *pvt)
1244 u32 umc_base_reg, umc_base_reg_sec;
1245 u32 umc_mask_reg, umc_mask_reg_sec;
1246 u32 base_reg, base_reg_sec;
1247 u32 mask_reg, mask_reg_sec;
1248 u32 *base, *base_sec;
1249 u32 *mask, *mask_sec;
1253 umc_base_reg = get_umc_base(umc) + UMCCH_BASE_ADDR;
1254 umc_base_reg_sec = get_umc_base(umc) + UMCCH_BASE_ADDR_SEC;
1256 for_each_chip_select(cs, umc, pvt) {
1257 base = &pvt->csels[umc].csbases[cs];
1258 base_sec = &pvt->csels[umc].csbases_sec[cs];
1260 base_reg = umc_base_reg + (cs * 4);
1261 base_reg_sec = umc_base_reg_sec + (cs * 4);
1263 if (!amd_smn_read(pvt->mc_node_id, base_reg, base))
1264 edac_dbg(0, " DCSB%d[%d]=0x%08x reg: 0x%x\n",
1265 umc, cs, *base, base_reg);
1267 if (!amd_smn_read(pvt->mc_node_id, base_reg_sec, base_sec))
1268 edac_dbg(0, " DCSB_SEC%d[%d]=0x%08x reg: 0x%x\n",
1269 umc, cs, *base_sec, base_reg_sec);
1272 umc_mask_reg = get_umc_base(umc) + UMCCH_ADDR_MASK;
1273 umc_mask_reg_sec = get_umc_base(umc) + UMCCH_ADDR_MASK_SEC;
1275 for_each_chip_select_mask(cs, umc, pvt) {
1276 mask = &pvt->csels[umc].csmasks[cs];
1277 mask_sec = &pvt->csels[umc].csmasks_sec[cs];
1279 mask_reg = umc_mask_reg + (cs * 4);
1280 mask_reg_sec = umc_mask_reg_sec + (cs * 4);
1282 if (!amd_smn_read(pvt->mc_node_id, mask_reg, mask))
1283 edac_dbg(0, " DCSM%d[%d]=0x%08x reg: 0x%x\n",
1284 umc, cs, *mask, mask_reg);
1286 if (!amd_smn_read(pvt->mc_node_id, mask_reg_sec, mask_sec))
1287 edac_dbg(0, " DCSM_SEC%d[%d]=0x%08x reg: 0x%x\n",
1288 umc, cs, *mask_sec, mask_reg_sec);
1294 * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask registers
1296 static void read_dct_base_mask(struct amd64_pvt *pvt)
1300 prep_chip_selects(pvt);
1303 return read_umc_base_mask(pvt);
1305 for_each_chip_select(cs, 0, pvt) {
1306 int reg0 = DCSB0 + (cs * 4);
1307 int reg1 = DCSB1 + (cs * 4);
1308 u32 *base0 = &pvt->csels[0].csbases[cs];
1309 u32 *base1 = &pvt->csels[1].csbases[cs];
1311 if (!amd64_read_dct_pci_cfg(pvt, 0, reg0, base0))
1312 edac_dbg(0, " DCSB0[%d]=0x%08x reg: F2x%x\n",
1315 if (pvt->fam == 0xf)
1318 if (!amd64_read_dct_pci_cfg(pvt, 1, reg0, base1))
1319 edac_dbg(0, " DCSB1[%d]=0x%08x reg: F2x%x\n",
1320 cs, *base1, (pvt->fam == 0x10) ? reg1
1324 for_each_chip_select_mask(cs, 0, pvt) {
1325 int reg0 = DCSM0 + (cs * 4);
1326 int reg1 = DCSM1 + (cs * 4);
1327 u32 *mask0 = &pvt->csels[0].csmasks[cs];
1328 u32 *mask1 = &pvt->csels[1].csmasks[cs];
1330 if (!amd64_read_dct_pci_cfg(pvt, 0, reg0, mask0))
1331 edac_dbg(0, " DCSM0[%d]=0x%08x reg: F2x%x\n",
1334 if (pvt->fam == 0xf)
1337 if (!amd64_read_dct_pci_cfg(pvt, 1, reg0, mask1))
1338 edac_dbg(0, " DCSM1[%d]=0x%08x reg: F2x%x\n",
1339 cs, *mask1, (pvt->fam == 0x10) ? reg1
1344 static void determine_memory_type(struct amd64_pvt *pvt)
1346 u32 dram_ctrl, dcsm;
1349 if ((pvt->umc[0].dimm_cfg | pvt->umc[1].dimm_cfg) & BIT(5))
1350 pvt->dram_type = MEM_LRDDR4;
1351 else if ((pvt->umc[0].dimm_cfg | pvt->umc[1].dimm_cfg) & BIT(4))
1352 pvt->dram_type = MEM_RDDR4;
1354 pvt->dram_type = MEM_DDR4;
1360 if (pvt->ext_model >= K8_REV_F)
1363 pvt->dram_type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
1367 if (pvt->dchr0 & DDR3_MODE)
1370 pvt->dram_type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
1374 if (pvt->model < 0x60)
1378 * Model 0x60h needs special handling:
1380 * We use a Chip Select value of '0' to obtain dcsm.
1381 * Theoretically, it is possible to populate LRDIMMs of different
1382 * 'Rank' value on a DCT. But this is not the common case. So,
1383 * it's reasonable to assume all DIMMs are going to be of same
1384 * 'type' until proven otherwise.
1386 amd64_read_dct_pci_cfg(pvt, 0, DRAM_CONTROL, &dram_ctrl);
1387 dcsm = pvt->csels[0].csmasks[0];
1389 if (((dram_ctrl >> 8) & 0x7) == 0x2)
1390 pvt->dram_type = MEM_DDR4;
1391 else if (pvt->dclr0 & BIT(16))
1392 pvt->dram_type = MEM_DDR3;
1393 else if (dcsm & 0x3)
1394 pvt->dram_type = MEM_LRDDR3;
1396 pvt->dram_type = MEM_RDDR3;
1404 WARN(1, KERN_ERR "%s: Family??? 0x%x\n", __func__, pvt->fam);
1405 pvt->dram_type = MEM_EMPTY;
1410 pvt->dram_type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
1413 /* Get the number of DCT channels the memory controller is using. */
1414 static int k8_early_channel_count(struct amd64_pvt *pvt)
1418 if (pvt->ext_model >= K8_REV_F)
1419 /* RevF (NPT) and later */
1420 flag = pvt->dclr0 & WIDTH_128;
1422 /* RevE and earlier */
1423 flag = pvt->dclr0 & REVE_WIDTH_128;
1428 return (flag) ? 2 : 1;
1431 /* On F10h and later ErrAddr is MC4_ADDR[47:1] */
1432 static u64 get_error_address(struct amd64_pvt *pvt, struct mce *m)
1434 u16 mce_nid = topology_die_id(m->extcpu);
1435 struct mem_ctl_info *mci;
1440 mci = edac_mc_find(mce_nid);
1444 pvt = mci->pvt_info;
1446 if (pvt->fam == 0xf) {
1451 addr = m->addr & GENMASK_ULL(end_bit, start_bit);
1454 * Erratum 637 workaround
1456 if (pvt->fam == 0x15) {
1457 u64 cc6_base, tmp_addr;
1461 if ((addr & GENMASK_ULL(47, 24)) >> 24 != 0x00fdf7)
1465 amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_LIM, &tmp);
1466 intlv_en = tmp >> 21 & 0x7;
1468 /* add [47:27] + 3 trailing bits */
1469 cc6_base = (tmp & GENMASK_ULL(20, 0)) << 3;
1471 /* reverse and add DramIntlvEn */
1472 cc6_base |= intlv_en ^ 0x7;
1474 /* pin at [47:24] */
1478 return cc6_base | (addr & GENMASK_ULL(23, 0));
1480 amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_BASE, &tmp);
1483 tmp_addr = (addr & GENMASK_ULL(23, 12)) << __fls(intlv_en + 1);
1485 /* OR DramIntlvSel into bits [14:12] */
1486 tmp_addr |= (tmp & GENMASK_ULL(23, 21)) >> 9;
1488 /* add remaining [11:0] bits from original MC4_ADDR */
1489 tmp_addr |= addr & GENMASK_ULL(11, 0);
1491 return cc6_base | tmp_addr;
1497 static struct pci_dev *pci_get_related_function(unsigned int vendor,
1498 unsigned int device,
1499 struct pci_dev *related)
1501 struct pci_dev *dev = NULL;
1503 while ((dev = pci_get_device(vendor, device, dev))) {
1504 if (pci_domain_nr(dev->bus) == pci_domain_nr(related->bus) &&
1505 (dev->bus->number == related->bus->number) &&
1506 (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
1513 static void read_dram_base_limit_regs(struct amd64_pvt *pvt, unsigned range)
1515 struct amd_northbridge *nb;
1516 struct pci_dev *f1 = NULL;
1517 unsigned int pci_func;
1518 int off = range << 3;
1521 amd64_read_pci_cfg(pvt->F1, DRAM_BASE_LO + off, &pvt->ranges[range].base.lo);
1522 amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_LO + off, &pvt->ranges[range].lim.lo);
1524 if (pvt->fam == 0xf)
1527 if (!dram_rw(pvt, range))
1530 amd64_read_pci_cfg(pvt->F1, DRAM_BASE_HI + off, &pvt->ranges[range].base.hi);
1531 amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_HI + off, &pvt->ranges[range].lim.hi);
1533 /* F15h: factor in CC6 save area by reading dst node's limit reg */
1534 if (pvt->fam != 0x15)
1537 nb = node_to_amd_nb(dram_dst_node(pvt, range));
1541 if (pvt->model == 0x60)
1542 pci_func = PCI_DEVICE_ID_AMD_15H_M60H_NB_F1;
1543 else if (pvt->model == 0x30)
1544 pci_func = PCI_DEVICE_ID_AMD_15H_M30H_NB_F1;
1546 pci_func = PCI_DEVICE_ID_AMD_15H_NB_F1;
1548 f1 = pci_get_related_function(nb->misc->vendor, pci_func, nb->misc);
1552 amd64_read_pci_cfg(f1, DRAM_LOCAL_NODE_LIM, &llim);
1554 pvt->ranges[range].lim.lo &= GENMASK_ULL(15, 0);
1556 /* {[39:27],111b} */
1557 pvt->ranges[range].lim.lo |= ((llim & 0x1fff) << 3 | 0x7) << 16;
1559 pvt->ranges[range].lim.hi &= GENMASK_ULL(7, 0);
1562 pvt->ranges[range].lim.hi |= llim >> 13;
1567 static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
1568 struct err_info *err)
1570 struct amd64_pvt *pvt = mci->pvt_info;
1572 error_address_to_page_and_offset(sys_addr, err);
1575 * Find out which node the error address belongs to. This may be
1576 * different from the node that detected the error.
1578 err->src_mci = find_mc_by_sys_addr(mci, sys_addr);
1579 if (!err->src_mci) {
1580 amd64_mc_err(mci, "failed to map error addr 0x%lx to a node\n",
1581 (unsigned long)sys_addr);
1582 err->err_code = ERR_NODE;
1586 /* Now map the sys_addr to a CSROW */
1587 err->csrow = sys_addr_to_csrow(err->src_mci, sys_addr);
1588 if (err->csrow < 0) {
1589 err->err_code = ERR_CSROW;
1593 /* CHIPKILL enabled */
1594 if (pvt->nbcfg & NBCFG_CHIPKILL) {
1595 err->channel = get_channel_from_ecc_syndrome(mci, err->syndrome);
1596 if (err->channel < 0) {
1598 * Syndrome didn't map, so we don't know which of the
1599 * 2 DIMMs is in error. So we need to ID 'both' of them
1602 amd64_mc_warn(err->src_mci, "unknown syndrome 0x%04x - "
1603 "possible error reporting race\n",
1605 err->err_code = ERR_CHANNEL;
1610 * non-chipkill ecc mode
1612 * The k8 documentation is unclear about how to determine the
1613 * channel number when using non-chipkill memory. This method
1614 * was obtained from email communication with someone at AMD.
1615 * (Wish the email was placed in this comment - norsk)
1617 err->channel = ((sys_addr & BIT(3)) != 0);
1621 static int ddr2_cs_size(unsigned i, bool dct_width)
1627 else if (!(i & 0x1))
1630 shift = (i + 1) >> 1;
1632 return 128 << (shift + !!dct_width);
1635 static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1636 unsigned cs_mode, int cs_mask_nr)
1638 u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;
1640 if (pvt->ext_model >= K8_REV_F) {
1641 WARN_ON(cs_mode > 11);
1642 return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
1644 else if (pvt->ext_model >= K8_REV_D) {
1646 WARN_ON(cs_mode > 10);
1649 * the below calculation, besides trying to win an obfuscated C
1650 * contest, maps cs_mode values to DIMM chip select sizes. The
1653 * cs_mode CS size (mb)
1654 * ======= ============
1667 * Basically, it calculates a value with which to shift the
1668 * smallest CS size of 32MB.
1670 * ddr[23]_cs_size have a similar purpose.
1672 diff = cs_mode/3 + (unsigned)(cs_mode > 5);
1674 return 32 << (cs_mode - diff);
1677 WARN_ON(cs_mode > 6);
1678 return 32 << cs_mode;
1683 * Get the number of DCT channels in use.
1686 * number of Memory Channels in operation
1688 * contents of the DCL0_LOW register
1690 static int f1x_early_channel_count(struct amd64_pvt *pvt)
1692 int i, j, channels = 0;
1694 /* On F10h, if we are in 128 bit mode, then we are using 2 channels */
1695 if (pvt->fam == 0x10 && (pvt->dclr0 & WIDTH_128))
1699 * Need to check if in unganged mode: In such, there are 2 channels,
1700 * but they are not in 128 bit mode and thus the above 'dclr0' status
1703 * Need to check DCT0[0] and DCT1[0] to see if only one of them has
1704 * their CSEnable bit on. If so, then SINGLE DIMM case.
1706 edac_dbg(0, "Data width is not 128 bits - need more decoding\n");
1709 * Check DRAM Bank Address Mapping values for each DIMM to see if there
1710 * is more than just one DIMM present in unganged mode. Need to check
1711 * both controllers since DIMMs can be placed in either one.
1713 for (i = 0; i < 2; i++) {
1714 u32 dbam = (i ? pvt->dbam1 : pvt->dbam0);
1716 for (j = 0; j < 4; j++) {
1717 if (DBAM_DIMM(j, dbam) > 0) {
1727 amd64_info("MCT channel count: %d\n", channels);
1732 static int f17_early_channel_count(struct amd64_pvt *pvt)
1734 int i, channels = 0;
1736 /* SDP Control bit 31 (SdpInit) is clear for unused UMC channels */
1738 channels += !!(pvt->umc[i].sdp_ctrl & UMC_SDP_INIT);
1740 amd64_info("MCT channel count: %d\n", channels);
1745 static int ddr3_cs_size(unsigned i, bool dct_width)
1750 if (i == 0 || i == 3 || i == 4)
1756 else if (!(i & 0x1))
1759 shift = (i + 1) >> 1;
1762 cs_size = (128 * (1 << !!dct_width)) << shift;
1767 static int ddr3_lrdimm_cs_size(unsigned i, unsigned rank_multiply)
1772 if (i < 4 || i == 6)
1776 else if (!(i & 0x1))
1779 shift = (i + 1) >> 1;
1782 cs_size = rank_multiply * (128 << shift);
1787 static int ddr4_cs_size(unsigned i)
1796 /* Min cs_size = 1G */
1797 cs_size = 1024 * (1 << (i >> 1));
1802 static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1803 unsigned cs_mode, int cs_mask_nr)
1805 u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;
1807 WARN_ON(cs_mode > 11);
1809 if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE)
1810 return ddr3_cs_size(cs_mode, dclr & WIDTH_128);
1812 return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
1816 * F15h supports only 64bit DCT interfaces
1818 static int f15_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1819 unsigned cs_mode, int cs_mask_nr)
1821 WARN_ON(cs_mode > 12);
1823 return ddr3_cs_size(cs_mode, false);
1826 /* F15h M60h supports DDR4 mapping as well.. */
1827 static int f15_m60h_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1828 unsigned cs_mode, int cs_mask_nr)
1831 u32 dcsm = pvt->csels[dct].csmasks[cs_mask_nr];
1833 WARN_ON(cs_mode > 12);
1835 if (pvt->dram_type == MEM_DDR4) {
1839 cs_size = ddr4_cs_size(cs_mode);
1840 } else if (pvt->dram_type == MEM_LRDDR3) {
1841 unsigned rank_multiply = dcsm & 0xf;
1843 if (rank_multiply == 3)
1845 cs_size = ddr3_lrdimm_cs_size(cs_mode, rank_multiply);
1847 /* Minimum cs size is 512mb for F15hM60h*/
1851 cs_size = ddr3_cs_size(cs_mode, false);
1858 * F16h and F15h model 30h have only limited cs_modes.
1860 static int f16_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1861 unsigned cs_mode, int cs_mask_nr)
1863 WARN_ON(cs_mode > 12);
1865 if (cs_mode == 6 || cs_mode == 8 ||
1866 cs_mode == 9 || cs_mode == 12)
1869 return ddr3_cs_size(cs_mode, false);
1872 static int f17_addr_mask_to_cs_size(struct amd64_pvt *pvt, u8 umc,
1873 unsigned int cs_mode, int csrow_nr)
1875 u32 addr_mask_orig, addr_mask_deinterleaved;
1876 u32 msb, weight, num_zero_bits;
1879 /* No Chip Selects are enabled. */
1883 /* Requested size of an even CS but none are enabled. */
1884 if (!(cs_mode & CS_EVEN) && !(csrow_nr & 1))
1887 /* Requested size of an odd CS but none are enabled. */
1888 if (!(cs_mode & CS_ODD) && (csrow_nr & 1))
1892 * There is one mask per DIMM, and two Chip Selects per DIMM.
1893 * CS0 and CS1 -> DIMM0
1894 * CS2 and CS3 -> DIMM1
1896 dimm = csrow_nr >> 1;
1898 /* Asymmetric dual-rank DIMM support. */
1899 if ((csrow_nr & 1) && (cs_mode & CS_ODD_SECONDARY))
1900 addr_mask_orig = pvt->csels[umc].csmasks_sec[dimm];
1902 addr_mask_orig = pvt->csels[umc].csmasks[dimm];
1905 * The number of zero bits in the mask is equal to the number of bits
1906 * in a full mask minus the number of bits in the current mask.
1908 * The MSB is the number of bits in the full mask because BIT[0] is
1911 * In the special 3 Rank interleaving case, a single bit is flipped
1912 * without swapping with the most significant bit. This can be handled
1913 * by keeping the MSB where it is and ignoring the single zero bit.
1915 msb = fls(addr_mask_orig) - 1;
1916 weight = hweight_long(addr_mask_orig);
1917 num_zero_bits = msb - weight - !!(cs_mode & CS_3R_INTERLEAVE);
1919 /* Take the number of zero bits off from the top of the mask. */
1920 addr_mask_deinterleaved = GENMASK_ULL(msb - num_zero_bits, 1);
1922 edac_dbg(1, "CS%d DIMM%d AddrMasks:\n", csrow_nr, dimm);
1923 edac_dbg(1, " Original AddrMask: 0x%x\n", addr_mask_orig);
1924 edac_dbg(1, " Deinterleaved AddrMask: 0x%x\n", addr_mask_deinterleaved);
1926 /* Register [31:1] = Address [39:9]. Size is in kBs here. */
1927 size = (addr_mask_deinterleaved >> 2) + 1;
1929 /* Return size in MBs. */
1933 static void read_dram_ctl_register(struct amd64_pvt *pvt)
1936 if (pvt->fam == 0xf)
1939 if (!amd64_read_pci_cfg(pvt->F2, DCT_SEL_LO, &pvt->dct_sel_lo)) {
1940 edac_dbg(0, "F2x110 (DCTSelLow): 0x%08x, High range addrs at: 0x%x\n",
1941 pvt->dct_sel_lo, dct_sel_baseaddr(pvt));
1943 edac_dbg(0, " DCTs operate in %s mode\n",
1944 (dct_ganging_enabled(pvt) ? "ganged" : "unganged"));
1946 if (!dct_ganging_enabled(pvt))
1947 edac_dbg(0, " Address range split per DCT: %s\n",
1948 (dct_high_range_enabled(pvt) ? "yes" : "no"));
1950 edac_dbg(0, " data interleave for ECC: %s, DRAM cleared since last warm reset: %s\n",
1951 (dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"),
1952 (dct_memory_cleared(pvt) ? "yes" : "no"));
1954 edac_dbg(0, " channel interleave: %s, "
1955 "interleave bits selector: 0x%x\n",
1956 (dct_interleave_enabled(pvt) ? "enabled" : "disabled"),
1957 dct_sel_interleave_addr(pvt));
1960 amd64_read_pci_cfg(pvt->F2, DCT_SEL_HI, &pvt->dct_sel_hi);
1964 * Determine channel (DCT) based on the interleaving mode (see F15h M30h BKDG,
1965 * 2.10.12 Memory Interleaving Modes).
1967 static u8 f15_m30h_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
1968 u8 intlv_en, int num_dcts_intlv,
1975 return (u8)(dct_sel);
1977 if (num_dcts_intlv == 2) {
1978 select = (sys_addr >> 8) & 0x3;
1979 channel = select ? 0x3 : 0;
1980 } else if (num_dcts_intlv == 4) {
1981 u8 intlv_addr = dct_sel_interleave_addr(pvt);
1982 switch (intlv_addr) {
1984 channel = (sys_addr >> 8) & 0x3;
1987 channel = (sys_addr >> 9) & 0x3;
1995 * Determine channel (DCT) based on the interleaving mode: F10h BKDG, 2.8.9 Memory
1996 * Interleaving Modes.
1998 static u8 f1x_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
1999 bool hi_range_sel, u8 intlv_en)
2001 u8 dct_sel_high = (pvt->dct_sel_lo >> 1) & 1;
2003 if (dct_ganging_enabled(pvt))
2007 return dct_sel_high;
2010 * see F2x110[DctSelIntLvAddr] - channel interleave mode
2012 if (dct_interleave_enabled(pvt)) {
2013 u8 intlv_addr = dct_sel_interleave_addr(pvt);
2015 /* return DCT select function: 0=DCT0, 1=DCT1 */
2017 return sys_addr >> 6 & 1;
2019 if (intlv_addr & 0x2) {
2020 u8 shift = intlv_addr & 0x1 ? 9 : 6;
2021 u32 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) & 1;
2023 return ((sys_addr >> shift) & 1) ^ temp;
2026 if (intlv_addr & 0x4) {
2027 u8 shift = intlv_addr & 0x1 ? 9 : 8;
2029 return (sys_addr >> shift) & 1;
2032 return (sys_addr >> (12 + hweight8(intlv_en))) & 1;
2035 if (dct_high_range_enabled(pvt))
2036 return ~dct_sel_high & 1;
2041 /* Convert the sys_addr to the normalized DCT address */
2042 static u64 f1x_get_norm_dct_addr(struct amd64_pvt *pvt, u8 range,
2043 u64 sys_addr, bool hi_rng,
2044 u32 dct_sel_base_addr)
2047 u64 dram_base = get_dram_base(pvt, range);
2048 u64 hole_off = f10_dhar_offset(pvt);
2049 u64 dct_sel_base_off = (u64)(pvt->dct_sel_hi & 0xFFFFFC00) << 16;
2054 * base address of high range is below 4Gb
2055 * (bits [47:27] at [31:11])
2056 * DRAM address space on this DCT is hoisted above 4Gb &&
2059 * remove hole offset from sys_addr
2061 * remove high range offset from sys_addr
2063 if ((!(dct_sel_base_addr >> 16) ||
2064 dct_sel_base_addr < dhar_base(pvt)) &&
2066 (sys_addr >= BIT_64(32)))
2067 chan_off = hole_off;
2069 chan_off = dct_sel_base_off;
2073 * we have a valid hole &&
2078 * remove dram base to normalize to DCT address
2080 if (dhar_valid(pvt) && (sys_addr >= BIT_64(32)))
2081 chan_off = hole_off;
2083 chan_off = dram_base;
2086 return (sys_addr & GENMASK_ULL(47,6)) - (chan_off & GENMASK_ULL(47,23));
2090 * checks if the csrow passed in is marked as SPARED, if so returns the new
2093 static int f10_process_possible_spare(struct amd64_pvt *pvt, u8 dct, int csrow)
2097 if (online_spare_swap_done(pvt, dct) &&
2098 csrow == online_spare_bad_dramcs(pvt, dct)) {
2100 for_each_chip_select(tmp_cs, dct, pvt) {
2101 if (chip_select_base(tmp_cs, dct, pvt) & 0x2) {
2111 * Iterate over the DRAM DCT "base" and "mask" registers looking for a
2112 * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
2115 * -EINVAL: NOT FOUND
2116 * 0..csrow = Chip-Select Row
2118 static int f1x_lookup_addr_in_dct(u64 in_addr, u8 nid, u8 dct)
2120 struct mem_ctl_info *mci;
2121 struct amd64_pvt *pvt;
2122 u64 cs_base, cs_mask;
2123 int cs_found = -EINVAL;
2126 mci = edac_mc_find(nid);
2130 pvt = mci->pvt_info;
2132 edac_dbg(1, "input addr: 0x%llx, DCT: %d\n", in_addr, dct);
2134 for_each_chip_select(csrow, dct, pvt) {
2135 if (!csrow_enabled(csrow, dct, pvt))
2138 get_cs_base_and_mask(pvt, csrow, dct, &cs_base, &cs_mask);
2140 edac_dbg(1, " CSROW=%d CSBase=0x%llx CSMask=0x%llx\n",
2141 csrow, cs_base, cs_mask);
2145 edac_dbg(1, " (InputAddr & ~CSMask)=0x%llx (CSBase & ~CSMask)=0x%llx\n",
2146 (in_addr & cs_mask), (cs_base & cs_mask));
2148 if ((in_addr & cs_mask) == (cs_base & cs_mask)) {
2149 if (pvt->fam == 0x15 && pvt->model >= 0x30) {
2153 cs_found = f10_process_possible_spare(pvt, dct, csrow);
2155 edac_dbg(1, " MATCH csrow=%d\n", cs_found);
2163 * See F2x10C. Non-interleaved graphics framebuffer memory under the 16G is
2164 * swapped with a region located at the bottom of memory so that the GPU can use
2165 * the interleaved region and thus two channels.
2167 static u64 f1x_swap_interleaved_region(struct amd64_pvt *pvt, u64 sys_addr)
2169 u32 swap_reg, swap_base, swap_limit, rgn_size, tmp_addr;
2171 if (pvt->fam == 0x10) {
2172 /* only revC3 and revE have that feature */
2173 if (pvt->model < 4 || (pvt->model < 0xa && pvt->stepping < 3))
2177 amd64_read_pci_cfg(pvt->F2, SWAP_INTLV_REG, &swap_reg);
2179 if (!(swap_reg & 0x1))
2182 swap_base = (swap_reg >> 3) & 0x7f;
2183 swap_limit = (swap_reg >> 11) & 0x7f;
2184 rgn_size = (swap_reg >> 20) & 0x7f;
2185 tmp_addr = sys_addr >> 27;
2187 if (!(sys_addr >> 34) &&
2188 (((tmp_addr >= swap_base) &&
2189 (tmp_addr <= swap_limit)) ||
2190 (tmp_addr < rgn_size)))
2191 return sys_addr ^ (u64)swap_base << 27;
2196 /* For a given @dram_range, check if @sys_addr falls within it. */
2197 static int f1x_match_to_this_node(struct amd64_pvt *pvt, unsigned range,
2198 u64 sys_addr, int *chan_sel)
2200 int cs_found = -EINVAL;
2204 bool high_range = false;
2206 u8 node_id = dram_dst_node(pvt, range);
2207 u8 intlv_en = dram_intlv_en(pvt, range);
2208 u32 intlv_sel = dram_intlv_sel(pvt, range);
2210 edac_dbg(1, "(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
2211 range, sys_addr, get_dram_limit(pvt, range));
2213 if (dhar_valid(pvt) &&
2214 dhar_base(pvt) <= sys_addr &&
2215 sys_addr < BIT_64(32)) {
2216 amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n",
2221 if (intlv_en && (intlv_sel != ((sys_addr >> 12) & intlv_en)))
2224 sys_addr = f1x_swap_interleaved_region(pvt, sys_addr);
2226 dct_sel_base = dct_sel_baseaddr(pvt);
2229 * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
2230 * select between DCT0 and DCT1.
2232 if (dct_high_range_enabled(pvt) &&
2233 !dct_ganging_enabled(pvt) &&
2234 ((sys_addr >> 27) >= (dct_sel_base >> 11)))
2237 channel = f1x_determine_channel(pvt, sys_addr, high_range, intlv_en);
2239 chan_addr = f1x_get_norm_dct_addr(pvt, range, sys_addr,
2240 high_range, dct_sel_base);
2242 /* Remove node interleaving, see F1x120 */
2244 chan_addr = ((chan_addr >> (12 + hweight8(intlv_en))) << 12) |
2245 (chan_addr & 0xfff);
2247 /* remove channel interleave */
2248 if (dct_interleave_enabled(pvt) &&
2249 !dct_high_range_enabled(pvt) &&
2250 !dct_ganging_enabled(pvt)) {
2252 if (dct_sel_interleave_addr(pvt) != 1) {
2253 if (dct_sel_interleave_addr(pvt) == 0x3)
2255 chan_addr = ((chan_addr >> 10) << 9) |
2256 (chan_addr & 0x1ff);
2258 /* A[6] or hash 6 */
2259 chan_addr = ((chan_addr >> 7) << 6) |
2263 chan_addr = ((chan_addr >> 13) << 12) |
2264 (chan_addr & 0xfff);
2267 edac_dbg(1, " Normalized DCT addr: 0x%llx\n", chan_addr);
2269 cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, channel);
2272 *chan_sel = channel;
2277 static int f15_m30h_match_to_this_node(struct amd64_pvt *pvt, unsigned range,
2278 u64 sys_addr, int *chan_sel)
2280 int cs_found = -EINVAL;
2281 int num_dcts_intlv = 0;
2282 u64 chan_addr, chan_offset;
2283 u64 dct_base, dct_limit;
2284 u32 dct_cont_base_reg, dct_cont_limit_reg, tmp;
2285 u8 channel, alias_channel, leg_mmio_hole, dct_sel, dct_offset_en;
2287 u64 dhar_offset = f10_dhar_offset(pvt);
2288 u8 intlv_addr = dct_sel_interleave_addr(pvt);
2289 u8 node_id = dram_dst_node(pvt, range);
2290 u8 intlv_en = dram_intlv_en(pvt, range);
2292 amd64_read_pci_cfg(pvt->F1, DRAM_CONT_BASE, &dct_cont_base_reg);
2293 amd64_read_pci_cfg(pvt->F1, DRAM_CONT_LIMIT, &dct_cont_limit_reg);
2295 dct_offset_en = (u8) ((dct_cont_base_reg >> 3) & BIT(0));
2296 dct_sel = (u8) ((dct_cont_base_reg >> 4) & 0x7);
2298 edac_dbg(1, "(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
2299 range, sys_addr, get_dram_limit(pvt, range));
2301 if (!(get_dram_base(pvt, range) <= sys_addr) &&
2302 !(get_dram_limit(pvt, range) >= sys_addr))
2305 if (dhar_valid(pvt) &&
2306 dhar_base(pvt) <= sys_addr &&
2307 sys_addr < BIT_64(32)) {
2308 amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n",
2313 /* Verify sys_addr is within DCT Range. */
2314 dct_base = (u64) dct_sel_baseaddr(pvt);
2315 dct_limit = (dct_cont_limit_reg >> 11) & 0x1FFF;
2317 if (!(dct_cont_base_reg & BIT(0)) &&
2318 !(dct_base <= (sys_addr >> 27) &&
2319 dct_limit >= (sys_addr >> 27)))
2322 /* Verify number of dct's that participate in channel interleaving. */
2323 num_dcts_intlv = (int) hweight8(intlv_en);
2325 if (!(num_dcts_intlv % 2 == 0) || (num_dcts_intlv > 4))
2328 if (pvt->model >= 0x60)
2329 channel = f1x_determine_channel(pvt, sys_addr, false, intlv_en);
2331 channel = f15_m30h_determine_channel(pvt, sys_addr, intlv_en,
2332 num_dcts_intlv, dct_sel);
2334 /* Verify we stay within the MAX number of channels allowed */
2338 leg_mmio_hole = (u8) (dct_cont_base_reg >> 1 & BIT(0));
2340 /* Get normalized DCT addr */
2341 if (leg_mmio_hole && (sys_addr >= BIT_64(32)))
2342 chan_offset = dhar_offset;
2344 chan_offset = dct_base << 27;
2346 chan_addr = sys_addr - chan_offset;
2348 /* remove channel interleave */
2349 if (num_dcts_intlv == 2) {
2350 if (intlv_addr == 0x4)
2351 chan_addr = ((chan_addr >> 9) << 8) |
2353 else if (intlv_addr == 0x5)
2354 chan_addr = ((chan_addr >> 10) << 9) |
2355 (chan_addr & 0x1ff);
2359 } else if (num_dcts_intlv == 4) {
2360 if (intlv_addr == 0x4)
2361 chan_addr = ((chan_addr >> 10) << 8) |
2363 else if (intlv_addr == 0x5)
2364 chan_addr = ((chan_addr >> 11) << 9) |
2365 (chan_addr & 0x1ff);
2370 if (dct_offset_en) {
2371 amd64_read_pci_cfg(pvt->F1,
2372 DRAM_CONT_HIGH_OFF + (int) channel * 4,
2374 chan_addr += (u64) ((tmp >> 11) & 0xfff) << 27;
2377 f15h_select_dct(pvt, channel);
2379 edac_dbg(1, " Normalized DCT addr: 0x%llx\n", chan_addr);
2383 * if channel = 3, then alias it to 1. This is because, in F15 M30h,
2384 * there is support for 4 DCT's, but only 2 are currently functional.
2385 * They are DCT0 and DCT3. But we have read all registers of DCT3 into
2386 * pvt->csels[1]. So we need to use '1' here to get correct info.
2387 * Refer F15 M30h BKDG Section 2.10 and 2.10.3 for clarifications.
2389 alias_channel = (channel == 3) ? 1 : channel;
2391 cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, alias_channel);
2394 *chan_sel = alias_channel;
2399 static int f1x_translate_sysaddr_to_cs(struct amd64_pvt *pvt,
2403 int cs_found = -EINVAL;
2406 for (range = 0; range < DRAM_RANGES; range++) {
2407 if (!dram_rw(pvt, range))
2410 if (pvt->fam == 0x15 && pvt->model >= 0x30)
2411 cs_found = f15_m30h_match_to_this_node(pvt, range,
2415 else if ((get_dram_base(pvt, range) <= sys_addr) &&
2416 (get_dram_limit(pvt, range) >= sys_addr)) {
2417 cs_found = f1x_match_to_this_node(pvt, range,
2418 sys_addr, chan_sel);
2427 * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps
2428 * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW).
2430 * The @sys_addr is usually an error address received from the hardware
2433 static void f1x_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
2434 struct err_info *err)
2436 struct amd64_pvt *pvt = mci->pvt_info;
2438 error_address_to_page_and_offset(sys_addr, err);
2440 err->csrow = f1x_translate_sysaddr_to_cs(pvt, sys_addr, &err->channel);
2441 if (err->csrow < 0) {
2442 err->err_code = ERR_CSROW;
2447 * We need the syndromes for channel detection only when we're
2448 * ganged. Otherwise @chan should already contain the channel at
2451 if (dct_ganging_enabled(pvt))
2452 err->channel = get_channel_from_ecc_syndrome(mci, err->syndrome);
2456 * debug routine to display the memory sizes of all logical DIMMs and its
2459 static void debug_display_dimm_sizes(struct amd64_pvt *pvt, u8 ctrl)
2461 int dimm, size0, size1;
2462 u32 *dcsb = ctrl ? pvt->csels[1].csbases : pvt->csels[0].csbases;
2463 u32 dbam = ctrl ? pvt->dbam1 : pvt->dbam0;
2465 if (pvt->fam == 0xf) {
2466 /* K8 families < revF not supported yet */
2467 if (pvt->ext_model < K8_REV_F)
2473 if (pvt->fam == 0x10) {
2474 dbam = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->dbam1
2476 dcsb = (ctrl && !dct_ganging_enabled(pvt)) ?
2477 pvt->csels[1].csbases :
2478 pvt->csels[0].csbases;
2481 dcsb = pvt->csels[1].csbases;
2483 edac_dbg(1, "F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n",
2486 edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl);
2488 /* Dump memory sizes for DIMM and its CSROWs */
2489 for (dimm = 0; dimm < 4; dimm++) {
2492 if (dcsb[dimm*2] & DCSB_CS_ENABLE)
2494 * For F15m60h, we need multiplier for LRDIMM cs_size
2495 * calculation. We pass dimm value to the dbam_to_cs
2496 * mapper so we can find the multiplier from the
2497 * corresponding DCSM.
2499 size0 = pvt->ops->dbam_to_cs(pvt, ctrl,
2500 DBAM_DIMM(dimm, dbam),
2504 if (dcsb[dimm*2 + 1] & DCSB_CS_ENABLE)
2505 size1 = pvt->ops->dbam_to_cs(pvt, ctrl,
2506 DBAM_DIMM(dimm, dbam),
2509 amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n",
2511 dimm * 2 + 1, size1);
2515 static struct amd64_family_type family_types[] = {
2518 .f1_id = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
2519 .f2_id = PCI_DEVICE_ID_AMD_K8_NB_MEMCTL,
2522 .early_channel_count = k8_early_channel_count,
2523 .map_sysaddr_to_csrow = k8_map_sysaddr_to_csrow,
2524 .dbam_to_cs = k8_dbam_to_chip_select,
2529 .f1_id = PCI_DEVICE_ID_AMD_10H_NB_MAP,
2530 .f2_id = PCI_DEVICE_ID_AMD_10H_NB_DRAM,
2533 .early_channel_count = f1x_early_channel_count,
2534 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
2535 .dbam_to_cs = f10_dbam_to_chip_select,
2540 .f1_id = PCI_DEVICE_ID_AMD_15H_NB_F1,
2541 .f2_id = PCI_DEVICE_ID_AMD_15H_NB_F2,
2544 .early_channel_count = f1x_early_channel_count,
2545 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
2546 .dbam_to_cs = f15_dbam_to_chip_select,
2550 .ctl_name = "F15h_M30h",
2551 .f1_id = PCI_DEVICE_ID_AMD_15H_M30H_NB_F1,
2552 .f2_id = PCI_DEVICE_ID_AMD_15H_M30H_NB_F2,
2555 .early_channel_count = f1x_early_channel_count,
2556 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
2557 .dbam_to_cs = f16_dbam_to_chip_select,
2561 .ctl_name = "F15h_M60h",
2562 .f1_id = PCI_DEVICE_ID_AMD_15H_M60H_NB_F1,
2563 .f2_id = PCI_DEVICE_ID_AMD_15H_M60H_NB_F2,
2566 .early_channel_count = f1x_early_channel_count,
2567 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
2568 .dbam_to_cs = f15_m60h_dbam_to_chip_select,
2573 .f1_id = PCI_DEVICE_ID_AMD_16H_NB_F1,
2574 .f2_id = PCI_DEVICE_ID_AMD_16H_NB_F2,
2577 .early_channel_count = f1x_early_channel_count,
2578 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
2579 .dbam_to_cs = f16_dbam_to_chip_select,
2583 .ctl_name = "F16h_M30h",
2584 .f1_id = PCI_DEVICE_ID_AMD_16H_M30H_NB_F1,
2585 .f2_id = PCI_DEVICE_ID_AMD_16H_M30H_NB_F2,
2588 .early_channel_count = f1x_early_channel_count,
2589 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
2590 .dbam_to_cs = f16_dbam_to_chip_select,
2595 .f0_id = PCI_DEVICE_ID_AMD_17H_DF_F0,
2596 .f6_id = PCI_DEVICE_ID_AMD_17H_DF_F6,
2599 .early_channel_count = f17_early_channel_count,
2600 .dbam_to_cs = f17_addr_mask_to_cs_size,
2604 .ctl_name = "F17h_M10h",
2605 .f0_id = PCI_DEVICE_ID_AMD_17H_M10H_DF_F0,
2606 .f6_id = PCI_DEVICE_ID_AMD_17H_M10H_DF_F6,
2609 .early_channel_count = f17_early_channel_count,
2610 .dbam_to_cs = f17_addr_mask_to_cs_size,
2614 .ctl_name = "F17h_M30h",
2615 .f0_id = PCI_DEVICE_ID_AMD_17H_M30H_DF_F0,
2616 .f6_id = PCI_DEVICE_ID_AMD_17H_M30H_DF_F6,
2619 .early_channel_count = f17_early_channel_count,
2620 .dbam_to_cs = f17_addr_mask_to_cs_size,
2624 .ctl_name = "F17h_M60h",
2625 .f0_id = PCI_DEVICE_ID_AMD_17H_M60H_DF_F0,
2626 .f6_id = PCI_DEVICE_ID_AMD_17H_M60H_DF_F6,
2629 .early_channel_count = f17_early_channel_count,
2630 .dbam_to_cs = f17_addr_mask_to_cs_size,
2634 .ctl_name = "F17h_M70h",
2635 .f0_id = PCI_DEVICE_ID_AMD_17H_M70H_DF_F0,
2636 .f6_id = PCI_DEVICE_ID_AMD_17H_M70H_DF_F6,
2639 .early_channel_count = f17_early_channel_count,
2640 .dbam_to_cs = f17_addr_mask_to_cs_size,
2645 .f0_id = PCI_DEVICE_ID_AMD_19H_DF_F0,
2646 .f6_id = PCI_DEVICE_ID_AMD_19H_DF_F6,
2649 .early_channel_count = f17_early_channel_count,
2650 .dbam_to_cs = f17_addr_mask_to_cs_size,
2656 * These are tables of eigenvectors (one per line) which can be used for the
2657 * construction of the syndrome tables. The modified syndrome search algorithm
2658 * uses those to find the symbol in error and thus the DIMM.
2660 * Algorithm courtesy of Ross LaFetra from AMD.
2662 static const u16 x4_vectors[] = {
2663 0x2f57, 0x1afe, 0x66cc, 0xdd88,
2664 0x11eb, 0x3396, 0x7f4c, 0xeac8,
2665 0x0001, 0x0002, 0x0004, 0x0008,
2666 0x1013, 0x3032, 0x4044, 0x8088,
2667 0x106b, 0x30d6, 0x70fc, 0xe0a8,
2668 0x4857, 0xc4fe, 0x13cc, 0x3288,
2669 0x1ac5, 0x2f4a, 0x5394, 0xa1e8,
2670 0x1f39, 0x251e, 0xbd6c, 0x6bd8,
2671 0x15c1, 0x2a42, 0x89ac, 0x4758,
2672 0x2b03, 0x1602, 0x4f0c, 0xca08,
2673 0x1f07, 0x3a0e, 0x6b04, 0xbd08,
2674 0x8ba7, 0x465e, 0x244c, 0x1cc8,
2675 0x2b87, 0x164e, 0x642c, 0xdc18,
2676 0x40b9, 0x80de, 0x1094, 0x20e8,
2677 0x27db, 0x1eb6, 0x9dac, 0x7b58,
2678 0x11c1, 0x2242, 0x84ac, 0x4c58,
2679 0x1be5, 0x2d7a, 0x5e34, 0xa718,
2680 0x4b39, 0x8d1e, 0x14b4, 0x28d8,
2681 0x4c97, 0xc87e, 0x11fc, 0x33a8,
2682 0x8e97, 0x497e, 0x2ffc, 0x1aa8,
2683 0x16b3, 0x3d62, 0x4f34, 0x8518,
2684 0x1e2f, 0x391a, 0x5cac, 0xf858,
2685 0x1d9f, 0x3b7a, 0x572c, 0xfe18,
2686 0x15f5, 0x2a5a, 0x5264, 0xa3b8,
2687 0x1dbb, 0x3b66, 0x715c, 0xe3f8,
2688 0x4397, 0xc27e, 0x17fc, 0x3ea8,
2689 0x1617, 0x3d3e, 0x6464, 0xb8b8,
2690 0x23ff, 0x12aa, 0xab6c, 0x56d8,
2691 0x2dfb, 0x1ba6, 0x913c, 0x7328,
2692 0x185d, 0x2ca6, 0x7914, 0x9e28,
2693 0x171b, 0x3e36, 0x7d7c, 0xebe8,
2694 0x4199, 0x82ee, 0x19f4, 0x2e58,
2695 0x4807, 0xc40e, 0x130c, 0x3208,
2696 0x1905, 0x2e0a, 0x5804, 0xac08,
2697 0x213f, 0x132a, 0xadfc, 0x5ba8,
2698 0x19a9, 0x2efe, 0xb5cc, 0x6f88,
2701 static const u16 x8_vectors[] = {
2702 0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480,
2703 0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80,
2704 0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80,
2705 0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80,
2706 0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780,
2707 0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080,
2708 0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080,
2709 0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080,
2710 0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80,
2711 0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580,
2712 0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880,
2713 0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280,
2714 0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180,
2715 0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580,
2716 0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280,
2717 0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180,
2718 0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080,
2719 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
2720 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000,
2723 static int decode_syndrome(u16 syndrome, const u16 *vectors, unsigned num_vecs,
2726 unsigned int i, err_sym;
2728 for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) {
2730 unsigned v_idx = err_sym * v_dim;
2731 unsigned v_end = (err_sym + 1) * v_dim;
2733 /* walk over all 16 bits of the syndrome */
2734 for (i = 1; i < (1U << 16); i <<= 1) {
2736 /* if bit is set in that eigenvector... */
2737 if (v_idx < v_end && vectors[v_idx] & i) {
2738 u16 ev_comp = vectors[v_idx++];
2740 /* ... and bit set in the modified syndrome, */
2750 /* can't get to zero, move to next symbol */
2755 edac_dbg(0, "syndrome(%x) not found\n", syndrome);
2759 static int map_err_sym_to_channel(int err_sym, int sym_size)
2770 return err_sym >> 4;
2775 /* imaginary bits not in a DIMM */
2777 WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n",
2785 return err_sym >> 3;
2790 static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome)
2792 struct amd64_pvt *pvt = mci->pvt_info;
2795 if (pvt->ecc_sym_sz == 8)
2796 err_sym = decode_syndrome(syndrome, x8_vectors,
2797 ARRAY_SIZE(x8_vectors),
2799 else if (pvt->ecc_sym_sz == 4)
2800 err_sym = decode_syndrome(syndrome, x4_vectors,
2801 ARRAY_SIZE(x4_vectors),
2804 amd64_warn("Illegal syndrome type: %u\n", pvt->ecc_sym_sz);
2808 return map_err_sym_to_channel(err_sym, pvt->ecc_sym_sz);
2811 static void __log_ecc_error(struct mem_ctl_info *mci, struct err_info *err,
2814 enum hw_event_mc_err_type err_type;
2818 err_type = HW_EVENT_ERR_CORRECTED;
2819 else if (ecc_type == 1)
2820 err_type = HW_EVENT_ERR_UNCORRECTED;
2821 else if (ecc_type == 3)
2822 err_type = HW_EVENT_ERR_DEFERRED;
2824 WARN(1, "Something is rotten in the state of Denmark.\n");
2828 switch (err->err_code) {
2833 string = "Failed to map error addr to a node";
2836 string = "Failed to map error addr to a csrow";
2839 string = "Unknown syndrome - possible error reporting race";
2842 string = "MCA_SYND not valid - unknown syndrome and csrow";
2845 string = "Cannot decode normalized address";
2848 string = "WTF error";
2852 edac_mc_handle_error(err_type, mci, 1,
2853 err->page, err->offset, err->syndrome,
2854 err->csrow, err->channel, -1,
2858 static inline void decode_bus_error(int node_id, struct mce *m)
2860 struct mem_ctl_info *mci;
2861 struct amd64_pvt *pvt;
2862 u8 ecc_type = (m->status >> 45) & 0x3;
2863 u8 xec = XEC(m->status, 0x1f);
2864 u16 ec = EC(m->status);
2866 struct err_info err;
2868 mci = edac_mc_find(node_id);
2872 pvt = mci->pvt_info;
2874 /* Bail out early if this was an 'observed' error */
2875 if (PP(ec) == NBSL_PP_OBS)
2878 /* Do only ECC errors */
2879 if (xec && xec != F10_NBSL_EXT_ERR_ECC)
2882 memset(&err, 0, sizeof(err));
2884 sys_addr = get_error_address(pvt, m);
2887 err.syndrome = extract_syndrome(m->status);
2889 pvt->ops->map_sysaddr_to_csrow(mci, sys_addr, &err);
2891 __log_ecc_error(mci, &err, ecc_type);
2895 * To find the UMC channel represented by this bank we need to match on its
2896 * instance_id. The instance_id of a bank is held in the lower 32 bits of its
2899 * Currently, we can derive the channel number by looking at the 6th nibble in
2900 * the instance_id. For example, instance_id=0xYXXXXX where Y is the channel
2903 static int find_umc_channel(struct mce *m)
2905 return (m->ipid & GENMASK(31, 0)) >> 20;
2908 static void decode_umc_error(int node_id, struct mce *m)
2910 u8 ecc_type = (m->status >> 45) & 0x3;
2911 struct mem_ctl_info *mci;
2912 struct amd64_pvt *pvt;
2913 struct err_info err;
2916 mci = edac_mc_find(node_id);
2920 pvt = mci->pvt_info;
2922 memset(&err, 0, sizeof(err));
2924 if (m->status & MCI_STATUS_DEFERRED)
2927 err.channel = find_umc_channel(m);
2929 if (!(m->status & MCI_STATUS_SYNDV)) {
2930 err.err_code = ERR_SYND;
2934 if (ecc_type == 2) {
2935 u8 length = (m->synd >> 18) & 0x3f;
2938 err.syndrome = (m->synd >> 32) & GENMASK(length - 1, 0);
2940 err.err_code = ERR_CHANNEL;
2943 err.csrow = m->synd & 0x7;
2945 if (umc_normaddr_to_sysaddr(m->addr, pvt->mc_node_id, err.channel, &sys_addr)) {
2946 err.err_code = ERR_NORM_ADDR;
2950 error_address_to_page_and_offset(sys_addr, &err);
2953 __log_ecc_error(mci, &err, ecc_type);
2957 * Use pvt->F3 which contains the F3 CPU PCI device to get the related
2958 * F1 (AddrMap) and F2 (Dct) devices. Return negative value on error.
2959 * Reserve F0 and F6 on systems with a UMC.
2962 reserve_mc_sibling_devs(struct amd64_pvt *pvt, u16 pci_id1, u16 pci_id2)
2965 pvt->F0 = pci_get_related_function(pvt->F3->vendor, pci_id1, pvt->F3);
2967 edac_dbg(1, "F0 not found, device 0x%x\n", pci_id1);
2971 pvt->F6 = pci_get_related_function(pvt->F3->vendor, pci_id2, pvt->F3);
2973 pci_dev_put(pvt->F0);
2976 edac_dbg(1, "F6 not found: device 0x%x\n", pci_id2);
2981 pci_ctl_dev = &pvt->F0->dev;
2983 edac_dbg(1, "F0: %s\n", pci_name(pvt->F0));
2984 edac_dbg(1, "F3: %s\n", pci_name(pvt->F3));
2985 edac_dbg(1, "F6: %s\n", pci_name(pvt->F6));
2990 /* Reserve the ADDRESS MAP Device */
2991 pvt->F1 = pci_get_related_function(pvt->F3->vendor, pci_id1, pvt->F3);
2993 edac_dbg(1, "F1 not found: device 0x%x\n", pci_id1);
2997 /* Reserve the DCT Device */
2998 pvt->F2 = pci_get_related_function(pvt->F3->vendor, pci_id2, pvt->F3);
3000 pci_dev_put(pvt->F1);
3003 edac_dbg(1, "F2 not found: device 0x%x\n", pci_id2);
3008 pci_ctl_dev = &pvt->F2->dev;
3010 edac_dbg(1, "F1: %s\n", pci_name(pvt->F1));
3011 edac_dbg(1, "F2: %s\n", pci_name(pvt->F2));
3012 edac_dbg(1, "F3: %s\n", pci_name(pvt->F3));
3017 static void free_mc_sibling_devs(struct amd64_pvt *pvt)
3020 pci_dev_put(pvt->F0);
3021 pci_dev_put(pvt->F6);
3023 pci_dev_put(pvt->F1);
3024 pci_dev_put(pvt->F2);
3028 static void determine_ecc_sym_sz(struct amd64_pvt *pvt)
3030 pvt->ecc_sym_sz = 4;
3036 /* Check enabled channels only: */
3037 if (pvt->umc[i].sdp_ctrl & UMC_SDP_INIT) {
3038 if (pvt->umc[i].ecc_ctrl & BIT(9)) {
3039 pvt->ecc_sym_sz = 16;
3041 } else if (pvt->umc[i].ecc_ctrl & BIT(7)) {
3042 pvt->ecc_sym_sz = 8;
3047 } else if (pvt->fam >= 0x10) {
3050 amd64_read_pci_cfg(pvt->F3, EXT_NB_MCA_CFG, &tmp);
3051 /* F16h has only DCT0, so no need to read dbam1. */
3052 if (pvt->fam != 0x16)
3053 amd64_read_dct_pci_cfg(pvt, 1, DBAM0, &pvt->dbam1);
3055 /* F10h, revD and later can do x8 ECC too. */
3056 if ((pvt->fam > 0x10 || pvt->model > 7) && tmp & BIT(25))
3057 pvt->ecc_sym_sz = 8;
3062 * Retrieve the hardware registers of the memory controller.
3064 static void __read_mc_regs_df(struct amd64_pvt *pvt)
3066 u8 nid = pvt->mc_node_id;
3067 struct amd64_umc *umc;
3070 /* Read registers from each UMC */
3073 umc_base = get_umc_base(i);
3076 amd_smn_read(nid, umc_base + UMCCH_DIMM_CFG, &umc->dimm_cfg);
3077 amd_smn_read(nid, umc_base + UMCCH_UMC_CFG, &umc->umc_cfg);
3078 amd_smn_read(nid, umc_base + UMCCH_SDP_CTRL, &umc->sdp_ctrl);
3079 amd_smn_read(nid, umc_base + UMCCH_ECC_CTRL, &umc->ecc_ctrl);
3080 amd_smn_read(nid, umc_base + UMCCH_UMC_CAP_HI, &umc->umc_cap_hi);
3085 * Retrieve the hardware registers of the memory controller (this includes the
3086 * 'Address Map' and 'Misc' device regs)
3088 static void read_mc_regs(struct amd64_pvt *pvt)
3094 * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
3095 * those are Read-As-Zero.
3097 rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem);
3098 edac_dbg(0, " TOP_MEM: 0x%016llx\n", pvt->top_mem);
3100 /* Check first whether TOP_MEM2 is enabled: */
3101 rdmsrl(MSR_AMD64_SYSCFG, msr_val);
3102 if (msr_val & BIT(21)) {
3103 rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2);
3104 edac_dbg(0, " TOP_MEM2: 0x%016llx\n", pvt->top_mem2);
3106 edac_dbg(0, " TOP_MEM2 disabled\n");
3110 __read_mc_regs_df(pvt);
3111 amd64_read_pci_cfg(pvt->F0, DF_DHAR, &pvt->dhar);
3116 amd64_read_pci_cfg(pvt->F3, NBCAP, &pvt->nbcap);
3118 read_dram_ctl_register(pvt);
3120 for (range = 0; range < DRAM_RANGES; range++) {
3123 /* read settings for this DRAM range */
3124 read_dram_base_limit_regs(pvt, range);
3126 rw = dram_rw(pvt, range);
3130 edac_dbg(1, " DRAM range[%d], base: 0x%016llx; limit: 0x%016llx\n",
3132 get_dram_base(pvt, range),
3133 get_dram_limit(pvt, range));
3135 edac_dbg(1, " IntlvEn=%s; Range access: %s%s IntlvSel=%d DstNode=%d\n",
3136 dram_intlv_en(pvt, range) ? "Enabled" : "Disabled",
3137 (rw & 0x1) ? "R" : "-",
3138 (rw & 0x2) ? "W" : "-",
3139 dram_intlv_sel(pvt, range),
3140 dram_dst_node(pvt, range));
3143 amd64_read_pci_cfg(pvt->F1, DHAR, &pvt->dhar);
3144 amd64_read_dct_pci_cfg(pvt, 0, DBAM0, &pvt->dbam0);
3146 amd64_read_pci_cfg(pvt->F3, F10_ONLINE_SPARE, &pvt->online_spare);
3148 amd64_read_dct_pci_cfg(pvt, 0, DCLR0, &pvt->dclr0);
3149 amd64_read_dct_pci_cfg(pvt, 0, DCHR0, &pvt->dchr0);
3151 if (!dct_ganging_enabled(pvt)) {
3152 amd64_read_dct_pci_cfg(pvt, 1, DCLR0, &pvt->dclr1);
3153 amd64_read_dct_pci_cfg(pvt, 1, DCHR0, &pvt->dchr1);
3157 read_dct_base_mask(pvt);
3159 determine_memory_type(pvt);
3160 edac_dbg(1, " DIMM type: %s\n", edac_mem_types[pvt->dram_type]);
3162 determine_ecc_sym_sz(pvt);
3166 * NOTE: CPU Revision Dependent code
3169 * @csrow_nr ChipSelect Row Number (0..NUM_CHIPSELECTS-1)
3170 * k8 private pointer to -->
3171 * DRAM Bank Address mapping register
3173 * DCL register where dual_channel_active is
3175 * The DBAM register consists of 4 sets of 4 bits each definitions:
3178 * 0-3 CSROWs 0 and 1
3179 * 4-7 CSROWs 2 and 3
3180 * 8-11 CSROWs 4 and 5
3181 * 12-15 CSROWs 6 and 7
3183 * Values range from: 0 to 15
3184 * The meaning of the values depends on CPU revision and dual-channel state,
3185 * see relevant BKDG more info.
3187 * The memory controller provides for total of only 8 CSROWs in its current
3188 * architecture. Each "pair" of CSROWs normally represents just one DIMM in
3189 * single channel or two (2) DIMMs in dual channel mode.
3191 * The following code logic collapses the various tables for CSROW based on CPU
3195 * The number of PAGE_SIZE pages on the specified CSROW number it
3199 static u32 get_csrow_nr_pages(struct amd64_pvt *pvt, u8 dct, int csrow_nr_orig)
3201 u32 dbam = dct ? pvt->dbam1 : pvt->dbam0;
3202 int csrow_nr = csrow_nr_orig;
3203 u32 cs_mode, nr_pages;
3207 cs_mode = DBAM_DIMM(csrow_nr, dbam);
3209 cs_mode = f17_get_cs_mode(csrow_nr >> 1, dct, pvt);
3212 nr_pages = pvt->ops->dbam_to_cs(pvt, dct, cs_mode, csrow_nr);
3213 nr_pages <<= 20 - PAGE_SHIFT;
3215 edac_dbg(0, "csrow: %d, channel: %d, DBAM idx: %d\n",
3216 csrow_nr_orig, dct, cs_mode);
3217 edac_dbg(0, "nr_pages/channel: %u\n", nr_pages);
3222 static int init_csrows_df(struct mem_ctl_info *mci)
3224 struct amd64_pvt *pvt = mci->pvt_info;
3225 enum edac_type edac_mode = EDAC_NONE;
3226 enum dev_type dev_type = DEV_UNKNOWN;
3227 struct dimm_info *dimm;
3231 if (mci->edac_ctl_cap & EDAC_FLAG_S16ECD16ED) {
3232 edac_mode = EDAC_S16ECD16ED;
3234 } else if (mci->edac_ctl_cap & EDAC_FLAG_S8ECD8ED) {
3235 edac_mode = EDAC_S8ECD8ED;
3237 } else if (mci->edac_ctl_cap & EDAC_FLAG_S4ECD4ED) {
3238 edac_mode = EDAC_S4ECD4ED;
3240 } else if (mci->edac_ctl_cap & EDAC_FLAG_SECDED) {
3241 edac_mode = EDAC_SECDED;
3245 for_each_chip_select(cs, umc, pvt) {
3246 if (!csrow_enabled(cs, umc, pvt))
3250 dimm = mci->csrows[cs]->channels[umc]->dimm;
3252 edac_dbg(1, "MC node: %d, csrow: %d\n",
3253 pvt->mc_node_id, cs);
3255 dimm->nr_pages = get_csrow_nr_pages(pvt, umc, cs);
3256 dimm->mtype = pvt->dram_type;
3257 dimm->edac_mode = edac_mode;
3258 dimm->dtype = dev_type;
3267 * Initialize the array of csrow attribute instances, based on the values
3268 * from pci config hardware registers.
3270 static int init_csrows(struct mem_ctl_info *mci)
3272 struct amd64_pvt *pvt = mci->pvt_info;
3273 enum edac_type edac_mode = EDAC_NONE;
3274 struct csrow_info *csrow;
3275 struct dimm_info *dimm;
3276 int i, j, empty = 1;
3281 return init_csrows_df(mci);
3283 amd64_read_pci_cfg(pvt->F3, NBCFG, &val);
3287 edac_dbg(0, "node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n",
3288 pvt->mc_node_id, val,
3289 !!(val & NBCFG_CHIPKILL), !!(val & NBCFG_ECC_ENABLE));
3292 * We iterate over DCT0 here but we look at DCT1 in parallel, if needed.
3294 for_each_chip_select(i, 0, pvt) {
3295 bool row_dct0 = !!csrow_enabled(i, 0, pvt);
3296 bool row_dct1 = false;
3298 if (pvt->fam != 0xf)
3299 row_dct1 = !!csrow_enabled(i, 1, pvt);
3301 if (!row_dct0 && !row_dct1)
3304 csrow = mci->csrows[i];
3307 edac_dbg(1, "MC node: %d, csrow: %d\n",
3308 pvt->mc_node_id, i);
3311 nr_pages = get_csrow_nr_pages(pvt, 0, i);
3312 csrow->channels[0]->dimm->nr_pages = nr_pages;
3315 /* K8 has only one DCT */
3316 if (pvt->fam != 0xf && row_dct1) {
3317 int row_dct1_pages = get_csrow_nr_pages(pvt, 1, i);
3319 csrow->channels[1]->dimm->nr_pages = row_dct1_pages;
3320 nr_pages += row_dct1_pages;
3323 edac_dbg(1, "Total csrow%d pages: %u\n", i, nr_pages);
3325 /* Determine DIMM ECC mode: */
3326 if (pvt->nbcfg & NBCFG_ECC_ENABLE) {
3327 edac_mode = (pvt->nbcfg & NBCFG_CHIPKILL)
3332 for (j = 0; j < pvt->channel_count; j++) {
3333 dimm = csrow->channels[j]->dimm;
3334 dimm->mtype = pvt->dram_type;
3335 dimm->edac_mode = edac_mode;
3343 /* get all cores on this DCT */
3344 static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, u16 nid)
3348 for_each_online_cpu(cpu)
3349 if (topology_die_id(cpu) == nid)
3350 cpumask_set_cpu(cpu, mask);
3353 /* check MCG_CTL on all the cpus on this node */
3354 static bool nb_mce_bank_enabled_on_node(u16 nid)
3360 if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
3361 amd64_warn("%s: Error allocating mask\n", __func__);
3365 get_cpus_on_this_dct_cpumask(mask, nid);
3367 rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs);
3369 for_each_cpu(cpu, mask) {
3370 struct msr *reg = per_cpu_ptr(msrs, cpu);
3371 nbe = reg->l & MSR_MCGCTL_NBE;
3373 edac_dbg(0, "core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
3375 (nbe ? "enabled" : "disabled"));
3383 free_cpumask_var(mask);
3387 static int toggle_ecc_err_reporting(struct ecc_settings *s, u16 nid, bool on)
3389 cpumask_var_t cmask;
3392 if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) {
3393 amd64_warn("%s: error allocating mask\n", __func__);
3397 get_cpus_on_this_dct_cpumask(cmask, nid);
3399 rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
3401 for_each_cpu(cpu, cmask) {
3403 struct msr *reg = per_cpu_ptr(msrs, cpu);
3406 if (reg->l & MSR_MCGCTL_NBE)
3407 s->flags.nb_mce_enable = 1;
3409 reg->l |= MSR_MCGCTL_NBE;
3412 * Turn off NB MCE reporting only when it was off before
3414 if (!s->flags.nb_mce_enable)
3415 reg->l &= ~MSR_MCGCTL_NBE;
3418 wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
3420 free_cpumask_var(cmask);
3425 static bool enable_ecc_error_reporting(struct ecc_settings *s, u16 nid,
3429 u32 value, mask = 0x3; /* UECC/CECC enable */
3431 if (toggle_ecc_err_reporting(s, nid, ON)) {
3432 amd64_warn("Error enabling ECC reporting over MCGCTL!\n");
3436 amd64_read_pci_cfg(F3, NBCTL, &value);
3438 s->old_nbctl = value & mask;
3439 s->nbctl_valid = true;
3442 amd64_write_pci_cfg(F3, NBCTL, value);
3444 amd64_read_pci_cfg(F3, NBCFG, &value);
3446 edac_dbg(0, "1: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
3447 nid, value, !!(value & NBCFG_ECC_ENABLE));
3449 if (!(value & NBCFG_ECC_ENABLE)) {
3450 amd64_warn("DRAM ECC disabled on this node, enabling...\n");
3452 s->flags.nb_ecc_prev = 0;
3454 /* Attempt to turn on DRAM ECC Enable */
3455 value |= NBCFG_ECC_ENABLE;
3456 amd64_write_pci_cfg(F3, NBCFG, value);
3458 amd64_read_pci_cfg(F3, NBCFG, &value);
3460 if (!(value & NBCFG_ECC_ENABLE)) {
3461 amd64_warn("Hardware rejected DRAM ECC enable,"
3462 "check memory DIMM configuration.\n");
3465 amd64_info("Hardware accepted DRAM ECC Enable\n");
3468 s->flags.nb_ecc_prev = 1;
3471 edac_dbg(0, "2: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
3472 nid, value, !!(value & NBCFG_ECC_ENABLE));
3477 static void restore_ecc_error_reporting(struct ecc_settings *s, u16 nid,
3480 u32 value, mask = 0x3; /* UECC/CECC enable */
3482 if (!s->nbctl_valid)
3485 amd64_read_pci_cfg(F3, NBCTL, &value);
3487 value |= s->old_nbctl;
3489 amd64_write_pci_cfg(F3, NBCTL, value);
3491 /* restore previous BIOS DRAM ECC "off" setting we force-enabled */
3492 if (!s->flags.nb_ecc_prev) {
3493 amd64_read_pci_cfg(F3, NBCFG, &value);
3494 value &= ~NBCFG_ECC_ENABLE;
3495 amd64_write_pci_cfg(F3, NBCFG, value);
3498 /* restore the NB Enable MCGCTL bit */
3499 if (toggle_ecc_err_reporting(s, nid, OFF))
3500 amd64_warn("Error restoring NB MCGCTL settings!\n");
3503 static bool ecc_enabled(struct amd64_pvt *pvt)
3505 u16 nid = pvt->mc_node_id;
3506 bool nb_mce_en = false;
3510 if (boot_cpu_data.x86 >= 0x17) {
3511 u8 umc_en_mask = 0, ecc_en_mask = 0;
3512 struct amd64_umc *umc;
3517 /* Only check enabled UMCs. */
3518 if (!(umc->sdp_ctrl & UMC_SDP_INIT))
3521 umc_en_mask |= BIT(i);
3523 if (umc->umc_cap_hi & UMC_ECC_ENABLED)
3524 ecc_en_mask |= BIT(i);
3527 /* Check whether at least one UMC is enabled: */
3529 ecc_en = umc_en_mask == ecc_en_mask;
3531 edac_dbg(0, "Node %d: No enabled UMCs.\n", nid);
3533 /* Assume UMC MCA banks are enabled. */
3536 amd64_read_pci_cfg(pvt->F3, NBCFG, &value);
3538 ecc_en = !!(value & NBCFG_ECC_ENABLE);
3540 nb_mce_en = nb_mce_bank_enabled_on_node(nid);
3542 edac_dbg(0, "NB MCE bank disabled, set MSR 0x%08x[4] on node %d to enable.\n",
3543 MSR_IA32_MCG_CTL, nid);
3546 edac_dbg(3, "Node %d: DRAM ECC %s.\n", nid, (ecc_en ? "enabled" : "disabled"));
3548 if (!ecc_en || !nb_mce_en)
3555 f17h_determine_edac_ctl_cap(struct mem_ctl_info *mci, struct amd64_pvt *pvt)
3557 u8 i, ecc_en = 1, cpk_en = 1, dev_x4 = 1, dev_x16 = 1;
3560 if (pvt->umc[i].sdp_ctrl & UMC_SDP_INIT) {
3561 ecc_en &= !!(pvt->umc[i].umc_cap_hi & UMC_ECC_ENABLED);
3562 cpk_en &= !!(pvt->umc[i].umc_cap_hi & UMC_ECC_CHIPKILL_CAP);
3564 dev_x4 &= !!(pvt->umc[i].dimm_cfg & BIT(6));
3565 dev_x16 &= !!(pvt->umc[i].dimm_cfg & BIT(7));
3569 /* Set chipkill only if ECC is enabled: */
3571 mci->edac_ctl_cap |= EDAC_FLAG_SECDED;
3577 mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
3579 mci->edac_ctl_cap |= EDAC_FLAG_S16ECD16ED;
3581 mci->edac_ctl_cap |= EDAC_FLAG_S8ECD8ED;
3585 static void setup_mci_misc_attrs(struct mem_ctl_info *mci)
3587 struct amd64_pvt *pvt = mci->pvt_info;
3589 mci->mtype_cap = MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
3590 mci->edac_ctl_cap = EDAC_FLAG_NONE;
3593 f17h_determine_edac_ctl_cap(mci, pvt);
3595 if (pvt->nbcap & NBCAP_SECDED)
3596 mci->edac_ctl_cap |= EDAC_FLAG_SECDED;
3598 if (pvt->nbcap & NBCAP_CHIPKILL)
3599 mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
3602 mci->edac_cap = determine_edac_cap(pvt);
3603 mci->mod_name = EDAC_MOD_STR;
3604 mci->ctl_name = fam_type->ctl_name;
3605 mci->dev_name = pci_name(pvt->F3);
3606 mci->ctl_page_to_phys = NULL;
3608 /* memory scrubber interface */
3609 mci->set_sdram_scrub_rate = set_scrub_rate;
3610 mci->get_sdram_scrub_rate = get_scrub_rate;
3614 * returns a pointer to the family descriptor on success, NULL otherwise.
3616 static struct amd64_family_type *per_family_init(struct amd64_pvt *pvt)
3618 pvt->ext_model = boot_cpu_data.x86_model >> 4;
3619 pvt->stepping = boot_cpu_data.x86_stepping;
3620 pvt->model = boot_cpu_data.x86_model;
3621 pvt->fam = boot_cpu_data.x86;
3625 fam_type = &family_types[K8_CPUS];
3626 pvt->ops = &family_types[K8_CPUS].ops;
3630 fam_type = &family_types[F10_CPUS];
3631 pvt->ops = &family_types[F10_CPUS].ops;
3635 if (pvt->model == 0x30) {
3636 fam_type = &family_types[F15_M30H_CPUS];
3637 pvt->ops = &family_types[F15_M30H_CPUS].ops;
3639 } else if (pvt->model == 0x60) {
3640 fam_type = &family_types[F15_M60H_CPUS];
3641 pvt->ops = &family_types[F15_M60H_CPUS].ops;
3643 /* Richland is only client */
3644 } else if (pvt->model == 0x13) {
3647 fam_type = &family_types[F15_CPUS];
3648 pvt->ops = &family_types[F15_CPUS].ops;
3653 if (pvt->model == 0x30) {
3654 fam_type = &family_types[F16_M30H_CPUS];
3655 pvt->ops = &family_types[F16_M30H_CPUS].ops;
3658 fam_type = &family_types[F16_CPUS];
3659 pvt->ops = &family_types[F16_CPUS].ops;
3663 if (pvt->model >= 0x10 && pvt->model <= 0x2f) {
3664 fam_type = &family_types[F17_M10H_CPUS];
3665 pvt->ops = &family_types[F17_M10H_CPUS].ops;
3667 } else if (pvt->model >= 0x30 && pvt->model <= 0x3f) {
3668 fam_type = &family_types[F17_M30H_CPUS];
3669 pvt->ops = &family_types[F17_M30H_CPUS].ops;
3671 } else if (pvt->model >= 0x60 && pvt->model <= 0x6f) {
3672 fam_type = &family_types[F17_M60H_CPUS];
3673 pvt->ops = &family_types[F17_M60H_CPUS].ops;
3675 } else if (pvt->model >= 0x70 && pvt->model <= 0x7f) {
3676 fam_type = &family_types[F17_M70H_CPUS];
3677 pvt->ops = &family_types[F17_M70H_CPUS].ops;
3682 fam_type = &family_types[F17_CPUS];
3683 pvt->ops = &family_types[F17_CPUS].ops;
3685 if (pvt->fam == 0x18)
3686 family_types[F17_CPUS].ctl_name = "F18h";
3690 if (pvt->model >= 0x20 && pvt->model <= 0x2f) {
3691 fam_type = &family_types[F17_M70H_CPUS];
3692 pvt->ops = &family_types[F17_M70H_CPUS].ops;
3693 fam_type->ctl_name = "F19h_M20h";
3696 fam_type = &family_types[F19_CPUS];
3697 pvt->ops = &family_types[F19_CPUS].ops;
3698 family_types[F19_CPUS].ctl_name = "F19h";
3702 amd64_err("Unsupported family!\n");
3709 static const struct attribute_group *amd64_edac_attr_groups[] = {
3710 #ifdef CONFIG_EDAC_DEBUG
3717 static int hw_info_get(struct amd64_pvt *pvt)
3719 u16 pci_id1, pci_id2;
3722 if (pvt->fam >= 0x17) {
3723 pvt->umc = kcalloc(fam_type->max_mcs, sizeof(struct amd64_umc), GFP_KERNEL);
3727 pci_id1 = fam_type->f0_id;
3728 pci_id2 = fam_type->f6_id;
3730 pci_id1 = fam_type->f1_id;
3731 pci_id2 = fam_type->f2_id;
3734 ret = reserve_mc_sibling_devs(pvt, pci_id1, pci_id2);
3743 static void hw_info_put(struct amd64_pvt *pvt)
3745 if (pvt->F0 || pvt->F1)
3746 free_mc_sibling_devs(pvt);
3751 static int init_one_instance(struct amd64_pvt *pvt)
3753 struct mem_ctl_info *mci = NULL;
3754 struct edac_mc_layer layers[2];
3758 * We need to determine how many memory channels there are. Then use
3759 * that information for calculating the size of the dynamic instance
3760 * tables in the 'mci' structure.
3762 pvt->channel_count = pvt->ops->early_channel_count(pvt);
3763 if (pvt->channel_count < 0)
3767 layers[0].type = EDAC_MC_LAYER_CHIP_SELECT;
3768 layers[0].size = pvt->csels[0].b_cnt;
3769 layers[0].is_virt_csrow = true;
3770 layers[1].type = EDAC_MC_LAYER_CHANNEL;
3773 * Always allocate two channels since we can have setups with DIMMs on
3774 * only one channel. Also, this simplifies handling later for the price
3775 * of a couple of KBs tops.
3777 layers[1].size = fam_type->max_mcs;
3778 layers[1].is_virt_csrow = false;
3780 mci = edac_mc_alloc(pvt->mc_node_id, ARRAY_SIZE(layers), layers, 0);
3784 mci->pvt_info = pvt;
3785 mci->pdev = &pvt->F3->dev;
3787 setup_mci_misc_attrs(mci);
3789 if (init_csrows(mci))
3790 mci->edac_cap = EDAC_FLAG_NONE;
3793 if (edac_mc_add_mc_with_groups(mci, amd64_edac_attr_groups)) {
3794 edac_dbg(1, "failed edac_mc_add_mc()\n");
3802 static bool instance_has_memory(struct amd64_pvt *pvt)
3804 bool cs_enabled = false;
3805 int cs = 0, dct = 0;
3807 for (dct = 0; dct < fam_type->max_mcs; dct++) {
3808 for_each_chip_select(cs, dct, pvt)
3809 cs_enabled |= csrow_enabled(cs, dct, pvt);
3815 static int probe_one_instance(unsigned int nid)
3817 struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
3818 struct amd64_pvt *pvt = NULL;
3819 struct ecc_settings *s;
3823 s = kzalloc(sizeof(struct ecc_settings), GFP_KERNEL);
3829 pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
3833 pvt->mc_node_id = nid;
3837 fam_type = per_family_init(pvt);
3841 ret = hw_info_get(pvt);
3846 if (!instance_has_memory(pvt)) {
3847 amd64_info("Node %d: No DIMMs detected.\n", nid);
3851 if (!ecc_enabled(pvt)) {
3854 if (!ecc_enable_override)
3857 if (boot_cpu_data.x86 >= 0x17) {
3858 amd64_warn("Forcing ECC on is not recommended on newer systems. Please enable ECC in BIOS.");
3861 amd64_warn("Forcing ECC on!\n");
3863 if (!enable_ecc_error_reporting(s, nid, F3))
3867 ret = init_one_instance(pvt);
3869 amd64_err("Error probing instance: %d\n", nid);
3871 if (boot_cpu_data.x86 < 0x17)
3872 restore_ecc_error_reporting(s, nid, F3);
3877 amd64_info("%s %sdetected (node %d).\n", fam_type->ctl_name,
3879 (pvt->ext_model >= K8_REV_F ? "revF or later "
3880 : "revE or earlier ")
3881 : ""), pvt->mc_node_id);
3883 dump_misc_regs(pvt);
3893 ecc_stngs[nid] = NULL;
3899 static void remove_one_instance(unsigned int nid)
3901 struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
3902 struct ecc_settings *s = ecc_stngs[nid];
3903 struct mem_ctl_info *mci;
3904 struct amd64_pvt *pvt;
3906 /* Remove from EDAC CORE tracking list */
3907 mci = edac_mc_del_mc(&F3->dev);
3911 pvt = mci->pvt_info;
3913 restore_ecc_error_reporting(s, nid, F3);
3915 kfree(ecc_stngs[nid]);
3916 ecc_stngs[nid] = NULL;
3918 /* Free the EDAC CORE resources */
3919 mci->pvt_info = NULL;
3926 static void setup_pci_device(void)
3931 pci_ctl = edac_pci_create_generic_ctl(pci_ctl_dev, EDAC_MOD_STR);
3933 pr_warn("%s(): Unable to create PCI control\n", __func__);
3934 pr_warn("%s(): PCI error report via EDAC not set\n", __func__);
3938 static const struct x86_cpu_id amd64_cpuids[] = {
3939 X86_MATCH_VENDOR_FAM(AMD, 0x0F, NULL),
3940 X86_MATCH_VENDOR_FAM(AMD, 0x10, NULL),
3941 X86_MATCH_VENDOR_FAM(AMD, 0x15, NULL),
3942 X86_MATCH_VENDOR_FAM(AMD, 0x16, NULL),
3943 X86_MATCH_VENDOR_FAM(AMD, 0x17, NULL),
3944 X86_MATCH_VENDOR_FAM(HYGON, 0x18, NULL),
3945 X86_MATCH_VENDOR_FAM(AMD, 0x19, NULL),
3948 MODULE_DEVICE_TABLE(x86cpu, amd64_cpuids);
3950 static int __init amd64_edac_init(void)
3956 owner = edac_get_owner();
3957 if (owner && strncmp(owner, EDAC_MOD_STR, sizeof(EDAC_MOD_STR)))
3960 if (!x86_match_cpu(amd64_cpuids))
3963 if (amd_cache_northbridges() < 0)
3969 ecc_stngs = kcalloc(amd_nb_num(), sizeof(ecc_stngs[0]), GFP_KERNEL);
3973 msrs = msrs_alloc();
3977 for (i = 0; i < amd_nb_num(); i++) {
3978 err = probe_one_instance(i);
3980 /* unwind properly */
3982 remove_one_instance(i);
3988 if (!edac_has_mcs()) {
3993 /* register stuff with EDAC MCE */
3994 if (boot_cpu_data.x86 >= 0x17)
3995 amd_register_ecc_decoder(decode_umc_error);
3997 amd_register_ecc_decoder(decode_bus_error);
4001 #ifdef CONFIG_X86_32
4002 amd64_err("%s on 32-bit is unsupported. USE AT YOUR OWN RISK!\n", EDAC_MOD_STR);
4005 printk(KERN_INFO "AMD64 EDAC driver v%s\n", EDAC_AMD64_VERSION);
4022 static void __exit amd64_edac_exit(void)
4027 edac_pci_release_generic_ctl(pci_ctl);
4029 /* unregister from EDAC MCE */
4030 if (boot_cpu_data.x86 >= 0x17)
4031 amd_unregister_ecc_decoder(decode_umc_error);
4033 amd_unregister_ecc_decoder(decode_bus_error);
4035 for (i = 0; i < amd_nb_num(); i++)
4036 remove_one_instance(i);
4047 module_init(amd64_edac_init);
4048 module_exit(amd64_edac_exit);
4050 MODULE_LICENSE("GPL");
4051 MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
4052 "Dave Peterson, Thayne Harbaugh");
4053 MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
4054 EDAC_AMD64_VERSION);
4056 module_param(edac_op_state, int, 0444);
4057 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");