1 // SPDX-License-Identifier: GPL-2.0-only
3 * Framework for buffer objects that can be shared across devices/subsystems.
5 * Copyright(C) 2011 Linaro Limited. All rights reserved.
6 * Author: Sumit Semwal <sumit.semwal@ti.com>
8 * Many thanks to linaro-mm-sig list, and specially
9 * Arnd Bergmann <arnd@arndb.de>, Rob Clark <rob@ti.com> and
10 * Daniel Vetter <daniel@ffwll.ch> for their support in creation and
11 * refining of this idea.
15 #include <linux/slab.h>
16 #include <linux/dma-buf.h>
17 #include <linux/dma-fence.h>
18 #include <linux/dma-fence-unwrap.h>
19 #include <linux/anon_inodes.h>
20 #include <linux/export.h>
21 #include <linux/debugfs.h>
22 #include <linux/module.h>
23 #include <linux/seq_file.h>
24 #include <linux/sync_file.h>
25 #include <linux/poll.h>
26 #include <linux/dma-resv.h>
28 #include <linux/mount.h>
29 #include <linux/pseudo_fs.h>
31 #include <uapi/linux/dma-buf.h>
32 #include <uapi/linux/magic.h>
34 #include "dma-buf-sysfs-stats.h"
36 static inline int is_dma_buf_file(struct file *);
39 struct list_head head;
43 static struct dma_buf_list db_list;
45 static char *dmabuffs_dname(struct dentry *dentry, char *buffer, int buflen)
47 struct dma_buf *dmabuf;
48 char name[DMA_BUF_NAME_LEN];
51 dmabuf = dentry->d_fsdata;
52 spin_lock(&dmabuf->name_lock);
54 ret = strlcpy(name, dmabuf->name, DMA_BUF_NAME_LEN);
55 spin_unlock(&dmabuf->name_lock);
57 return dynamic_dname(buffer, buflen, "/%s:%s",
58 dentry->d_name.name, ret > 0 ? name : "");
61 static void dma_buf_release(struct dentry *dentry)
63 struct dma_buf *dmabuf;
65 dmabuf = dentry->d_fsdata;
66 if (unlikely(!dmabuf))
69 BUG_ON(dmabuf->vmapping_counter);
72 * If you hit this BUG() it could mean:
73 * * There's a file reference imbalance in dma_buf_poll / dma_buf_poll_cb or somewhere else
74 * * dmabuf->cb_in/out.active are non-0 despite no pending fence callback
76 BUG_ON(dmabuf->cb_in.active || dmabuf->cb_out.active);
78 dma_buf_stats_teardown(dmabuf);
79 dmabuf->ops->release(dmabuf);
81 if (dmabuf->resv == (struct dma_resv *)&dmabuf[1])
82 dma_resv_fini(dmabuf->resv);
84 WARN_ON(!list_empty(&dmabuf->attachments));
85 module_put(dmabuf->owner);
90 static int dma_buf_file_release(struct inode *inode, struct file *file)
92 struct dma_buf *dmabuf;
94 if (!is_dma_buf_file(file))
97 dmabuf = file->private_data;
99 mutex_lock(&db_list.lock);
100 list_del(&dmabuf->list_node);
101 mutex_unlock(&db_list.lock);
107 static const struct dentry_operations dma_buf_dentry_ops = {
108 .d_dname = dmabuffs_dname,
109 .d_release = dma_buf_release,
112 static struct vfsmount *dma_buf_mnt;
114 static int dma_buf_fs_init_context(struct fs_context *fc)
116 struct pseudo_fs_context *ctx;
118 ctx = init_pseudo(fc, DMA_BUF_MAGIC);
121 ctx->dops = &dma_buf_dentry_ops;
125 static struct file_system_type dma_buf_fs_type = {
127 .init_fs_context = dma_buf_fs_init_context,
128 .kill_sb = kill_anon_super,
131 static int dma_buf_mmap_internal(struct file *file, struct vm_area_struct *vma)
133 struct dma_buf *dmabuf;
135 if (!is_dma_buf_file(file))
138 dmabuf = file->private_data;
140 /* check if buffer supports mmap */
141 if (!dmabuf->ops->mmap)
144 /* check for overflowing the buffer's size */
145 if (vma->vm_pgoff + vma_pages(vma) >
146 dmabuf->size >> PAGE_SHIFT)
149 return dmabuf->ops->mmap(dmabuf, vma);
152 static loff_t dma_buf_llseek(struct file *file, loff_t offset, int whence)
154 struct dma_buf *dmabuf;
157 if (!is_dma_buf_file(file))
160 dmabuf = file->private_data;
162 /* only support discovering the end of the buffer,
163 but also allow SEEK_SET to maintain the idiomatic
164 SEEK_END(0), SEEK_CUR(0) pattern */
165 if (whence == SEEK_END)
167 else if (whence == SEEK_SET)
175 return base + offset;
179 * DOC: implicit fence polling
181 * To support cross-device and cross-driver synchronization of buffer access
182 * implicit fences (represented internally in the kernel with &struct dma_fence)
183 * can be attached to a &dma_buf. The glue for that and a few related things are
184 * provided in the &dma_resv structure.
186 * Userspace can query the state of these implicitly tracked fences using poll()
187 * and related system calls:
189 * - Checking for EPOLLIN, i.e. read access, can be use to query the state of the
190 * most recent write or exclusive fence.
192 * - Checking for EPOLLOUT, i.e. write access, can be used to query the state of
193 * all attached fences, shared and exclusive ones.
195 * Note that this only signals the completion of the respective fences, i.e. the
196 * DMA transfers are complete. Cache flushing and any other necessary
197 * preparations before CPU access can begin still need to happen.
199 * As an alternative to poll(), the set of fences on DMA buffer can be
200 * exported as a &sync_file using &dma_buf_sync_file_export.
203 static void dma_buf_poll_cb(struct dma_fence *fence, struct dma_fence_cb *cb)
205 struct dma_buf_poll_cb_t *dcb = (struct dma_buf_poll_cb_t *)cb;
206 struct dma_buf *dmabuf = container_of(dcb->poll, struct dma_buf, poll);
209 spin_lock_irqsave(&dcb->poll->lock, flags);
210 wake_up_locked_poll(dcb->poll, dcb->active);
212 spin_unlock_irqrestore(&dcb->poll->lock, flags);
213 dma_fence_put(fence);
214 /* Paired with get_file in dma_buf_poll */
218 static bool dma_buf_poll_add_cb(struct dma_resv *resv, bool write,
219 struct dma_buf_poll_cb_t *dcb)
221 struct dma_resv_iter cursor;
222 struct dma_fence *fence;
225 dma_resv_for_each_fence(&cursor, resv, dma_resv_usage_rw(write),
227 dma_fence_get(fence);
228 r = dma_fence_add_callback(fence, &dcb->cb, dma_buf_poll_cb);
231 dma_fence_put(fence);
237 static __poll_t dma_buf_poll(struct file *file, poll_table *poll)
239 struct dma_buf *dmabuf;
240 struct dma_resv *resv;
243 dmabuf = file->private_data;
244 if (!dmabuf || !dmabuf->resv)
249 poll_wait(file, &dmabuf->poll, poll);
251 events = poll_requested_events(poll) & (EPOLLIN | EPOLLOUT);
255 dma_resv_lock(resv, NULL);
257 if (events & EPOLLOUT) {
258 struct dma_buf_poll_cb_t *dcb = &dmabuf->cb_out;
260 /* Check that callback isn't busy */
261 spin_lock_irq(&dmabuf->poll.lock);
265 dcb->active = EPOLLOUT;
266 spin_unlock_irq(&dmabuf->poll.lock);
268 if (events & EPOLLOUT) {
269 /* Paired with fput in dma_buf_poll_cb */
270 get_file(dmabuf->file);
272 if (!dma_buf_poll_add_cb(resv, true, dcb))
273 /* No callback queued, wake up any other waiters */
274 dma_buf_poll_cb(NULL, &dcb->cb);
280 if (events & EPOLLIN) {
281 struct dma_buf_poll_cb_t *dcb = &dmabuf->cb_in;
283 /* Check that callback isn't busy */
284 spin_lock_irq(&dmabuf->poll.lock);
288 dcb->active = EPOLLIN;
289 spin_unlock_irq(&dmabuf->poll.lock);
291 if (events & EPOLLIN) {
292 /* Paired with fput in dma_buf_poll_cb */
293 get_file(dmabuf->file);
295 if (!dma_buf_poll_add_cb(resv, false, dcb))
296 /* No callback queued, wake up any other waiters */
297 dma_buf_poll_cb(NULL, &dcb->cb);
303 dma_resv_unlock(resv);
308 * dma_buf_set_name - Set a name to a specific dma_buf to track the usage.
309 * It could support changing the name of the dma-buf if the same
310 * piece of memory is used for multiple purpose between different devices.
312 * @dmabuf: [in] dmabuf buffer that will be renamed.
313 * @buf: [in] A piece of userspace memory that contains the name of
316 * Returns 0 on success. If the dma-buf buffer is already attached to
317 * devices, return -EBUSY.
320 static long dma_buf_set_name(struct dma_buf *dmabuf, const char __user *buf)
322 char *name = strndup_user(buf, DMA_BUF_NAME_LEN);
325 return PTR_ERR(name);
327 spin_lock(&dmabuf->name_lock);
330 spin_unlock(&dmabuf->name_lock);
335 #if IS_ENABLED(CONFIG_SYNC_FILE)
336 static long dma_buf_export_sync_file(struct dma_buf *dmabuf,
337 void __user *user_data)
339 struct dma_buf_export_sync_file arg;
340 enum dma_resv_usage usage;
341 struct dma_fence *fence = NULL;
342 struct sync_file *sync_file;
345 if (copy_from_user(&arg, user_data, sizeof(arg)))
348 if (arg.flags & ~DMA_BUF_SYNC_RW)
351 if ((arg.flags & DMA_BUF_SYNC_RW) == 0)
354 fd = get_unused_fd_flags(O_CLOEXEC);
358 usage = dma_resv_usage_rw(arg.flags & DMA_BUF_SYNC_WRITE);
359 ret = dma_resv_get_singleton(dmabuf->resv, usage, &fence);
364 fence = dma_fence_get_stub();
366 sync_file = sync_file_create(fence);
368 dma_fence_put(fence);
376 if (copy_to_user(user_data, &arg, sizeof(arg))) {
381 fd_install(fd, sync_file->file);
386 fput(sync_file->file);
392 static long dma_buf_import_sync_file(struct dma_buf *dmabuf,
393 const void __user *user_data)
395 struct dma_buf_import_sync_file arg;
396 struct dma_fence *fence, *f;
397 enum dma_resv_usage usage;
398 struct dma_fence_unwrap iter;
399 unsigned int num_fences;
402 if (copy_from_user(&arg, user_data, sizeof(arg)))
405 if (arg.flags & ~DMA_BUF_SYNC_RW)
408 if ((arg.flags & DMA_BUF_SYNC_RW) == 0)
411 fence = sync_file_get_fence(arg.fd);
415 usage = (arg.flags & DMA_BUF_SYNC_WRITE) ? DMA_RESV_USAGE_WRITE :
419 dma_fence_unwrap_for_each(f, &iter, fence)
422 if (num_fences > 0) {
423 dma_resv_lock(dmabuf->resv, NULL);
425 ret = dma_resv_reserve_fences(dmabuf->resv, num_fences);
427 dma_fence_unwrap_for_each(f, &iter, fence)
428 dma_resv_add_fence(dmabuf->resv, f, usage);
431 dma_resv_unlock(dmabuf->resv);
434 dma_fence_put(fence);
440 static long dma_buf_ioctl(struct file *file,
441 unsigned int cmd, unsigned long arg)
443 struct dma_buf *dmabuf;
444 struct dma_buf_sync sync;
445 enum dma_data_direction direction;
448 dmabuf = file->private_data;
451 case DMA_BUF_IOCTL_SYNC:
452 if (copy_from_user(&sync, (void __user *) arg, sizeof(sync)))
455 if (sync.flags & ~DMA_BUF_SYNC_VALID_FLAGS_MASK)
458 switch (sync.flags & DMA_BUF_SYNC_RW) {
459 case DMA_BUF_SYNC_READ:
460 direction = DMA_FROM_DEVICE;
462 case DMA_BUF_SYNC_WRITE:
463 direction = DMA_TO_DEVICE;
465 case DMA_BUF_SYNC_RW:
466 direction = DMA_BIDIRECTIONAL;
472 if (sync.flags & DMA_BUF_SYNC_END)
473 ret = dma_buf_end_cpu_access(dmabuf, direction);
475 ret = dma_buf_begin_cpu_access(dmabuf, direction);
479 case DMA_BUF_SET_NAME_A:
480 case DMA_BUF_SET_NAME_B:
481 return dma_buf_set_name(dmabuf, (const char __user *)arg);
483 #if IS_ENABLED(CONFIG_SYNC_FILE)
484 case DMA_BUF_IOCTL_EXPORT_SYNC_FILE:
485 return dma_buf_export_sync_file(dmabuf, (void __user *)arg);
486 case DMA_BUF_IOCTL_IMPORT_SYNC_FILE:
487 return dma_buf_import_sync_file(dmabuf, (const void __user *)arg);
495 static void dma_buf_show_fdinfo(struct seq_file *m, struct file *file)
497 struct dma_buf *dmabuf = file->private_data;
499 seq_printf(m, "size:\t%zu\n", dmabuf->size);
500 /* Don't count the temporary reference taken inside procfs seq_show */
501 seq_printf(m, "count:\t%ld\n", file_count(dmabuf->file) - 1);
502 seq_printf(m, "exp_name:\t%s\n", dmabuf->exp_name);
503 spin_lock(&dmabuf->name_lock);
505 seq_printf(m, "name:\t%s\n", dmabuf->name);
506 spin_unlock(&dmabuf->name_lock);
509 static const struct file_operations dma_buf_fops = {
510 .release = dma_buf_file_release,
511 .mmap = dma_buf_mmap_internal,
512 .llseek = dma_buf_llseek,
513 .poll = dma_buf_poll,
514 .unlocked_ioctl = dma_buf_ioctl,
515 .compat_ioctl = compat_ptr_ioctl,
516 .show_fdinfo = dma_buf_show_fdinfo,
520 * is_dma_buf_file - Check if struct file* is associated with dma_buf
522 static inline int is_dma_buf_file(struct file *file)
524 return file->f_op == &dma_buf_fops;
527 static struct file *dma_buf_getfile(size_t size, int flags)
529 static atomic64_t dmabuf_inode = ATOMIC64_INIT(0);
530 struct inode *inode = alloc_anon_inode(dma_buf_mnt->mnt_sb);
534 return ERR_CAST(inode);
536 inode->i_size = size;
537 inode_set_bytes(inode, size);
540 * The ->i_ino acquired from get_next_ino() is not unique thus
541 * not suitable for using it as dentry name by dmabuf stats.
542 * Override ->i_ino with the unique and dmabuffs specific
545 inode->i_ino = atomic64_add_return(1, &dmabuf_inode);
546 flags &= O_ACCMODE | O_NONBLOCK;
547 file = alloc_file_pseudo(inode, dma_buf_mnt, "dmabuf",
548 flags, &dma_buf_fops);
560 * DOC: dma buf device access
562 * For device DMA access to a shared DMA buffer the usual sequence of operations
565 * 1. The exporter defines his exporter instance using
566 * DEFINE_DMA_BUF_EXPORT_INFO() and calls dma_buf_export() to wrap a private
567 * buffer object into a &dma_buf. It then exports that &dma_buf to userspace
568 * as a file descriptor by calling dma_buf_fd().
570 * 2. Userspace passes this file-descriptors to all drivers it wants this buffer
571 * to share with: First the file descriptor is converted to a &dma_buf using
572 * dma_buf_get(). Then the buffer is attached to the device using
575 * Up to this stage the exporter is still free to migrate or reallocate the
578 * 3. Once the buffer is attached to all devices userspace can initiate DMA
579 * access to the shared buffer. In the kernel this is done by calling
580 * dma_buf_map_attachment() and dma_buf_unmap_attachment().
582 * 4. Once a driver is done with a shared buffer it needs to call
583 * dma_buf_detach() (after cleaning up any mappings) and then release the
584 * reference acquired with dma_buf_get() by calling dma_buf_put().
586 * For the detailed semantics exporters are expected to implement see
591 * dma_buf_export - Creates a new dma_buf, and associates an anon file
592 * with this buffer, so it can be exported.
593 * Also connect the allocator specific data and ops to the buffer.
594 * Additionally, provide a name string for exporter; useful in debugging.
596 * @exp_info: [in] holds all the export related information provided
597 * by the exporter. see &struct dma_buf_export_info
598 * for further details.
600 * Returns, on success, a newly created struct dma_buf object, which wraps the
601 * supplied private data and operations for struct dma_buf_ops. On either
602 * missing ops, or error in allocating struct dma_buf, will return negative
605 * For most cases the easiest way to create @exp_info is through the
606 * %DEFINE_DMA_BUF_EXPORT_INFO macro.
608 struct dma_buf *dma_buf_export(const struct dma_buf_export_info *exp_info)
610 struct dma_buf *dmabuf;
611 struct dma_resv *resv = exp_info->resv;
613 size_t alloc_size = sizeof(struct dma_buf);
616 if (WARN_ON(!exp_info->priv || !exp_info->ops
617 || !exp_info->ops->map_dma_buf
618 || !exp_info->ops->unmap_dma_buf
619 || !exp_info->ops->release))
620 return ERR_PTR(-EINVAL);
622 if (WARN_ON(exp_info->ops->cache_sgt_mapping &&
623 (exp_info->ops->pin || exp_info->ops->unpin)))
624 return ERR_PTR(-EINVAL);
626 if (WARN_ON(!exp_info->ops->pin != !exp_info->ops->unpin))
627 return ERR_PTR(-EINVAL);
629 if (!try_module_get(exp_info->owner))
630 return ERR_PTR(-ENOENT);
632 file = dma_buf_getfile(exp_info->size, exp_info->flags);
639 alloc_size += sizeof(struct dma_resv);
641 /* prevent &dma_buf[1] == dma_buf->resv */
643 dmabuf = kzalloc(alloc_size, GFP_KERNEL);
649 dmabuf->priv = exp_info->priv;
650 dmabuf->ops = exp_info->ops;
651 dmabuf->size = exp_info->size;
652 dmabuf->exp_name = exp_info->exp_name;
653 dmabuf->owner = exp_info->owner;
654 spin_lock_init(&dmabuf->name_lock);
655 init_waitqueue_head(&dmabuf->poll);
656 dmabuf->cb_in.poll = dmabuf->cb_out.poll = &dmabuf->poll;
657 dmabuf->cb_in.active = dmabuf->cb_out.active = 0;
658 INIT_LIST_HEAD(&dmabuf->attachments);
661 dmabuf->resv = (struct dma_resv *)&dmabuf[1];
662 dma_resv_init(dmabuf->resv);
667 ret = dma_buf_stats_setup(dmabuf, file);
671 file->private_data = dmabuf;
672 file->f_path.dentry->d_fsdata = dmabuf;
675 mutex_lock(&db_list.lock);
676 list_add(&dmabuf->list_node, &db_list.head);
677 mutex_unlock(&db_list.lock);
683 dma_resv_fini(dmabuf->resv);
688 module_put(exp_info->owner);
691 EXPORT_SYMBOL_NS_GPL(dma_buf_export, DMA_BUF);
694 * dma_buf_fd - returns a file descriptor for the given struct dma_buf
695 * @dmabuf: [in] pointer to dma_buf for which fd is required.
696 * @flags: [in] flags to give to fd
698 * On success, returns an associated 'fd'. Else, returns error.
700 int dma_buf_fd(struct dma_buf *dmabuf, int flags)
704 if (!dmabuf || !dmabuf->file)
707 fd = get_unused_fd_flags(flags);
711 fd_install(fd, dmabuf->file);
715 EXPORT_SYMBOL_NS_GPL(dma_buf_fd, DMA_BUF);
718 * dma_buf_get - returns the struct dma_buf related to an fd
719 * @fd: [in] fd associated with the struct dma_buf to be returned
721 * On success, returns the struct dma_buf associated with an fd; uses
722 * file's refcounting done by fget to increase refcount. returns ERR_PTR
725 struct dma_buf *dma_buf_get(int fd)
732 return ERR_PTR(-EBADF);
734 if (!is_dma_buf_file(file)) {
736 return ERR_PTR(-EINVAL);
739 return file->private_data;
741 EXPORT_SYMBOL_NS_GPL(dma_buf_get, DMA_BUF);
744 * dma_buf_put - decreases refcount of the buffer
745 * @dmabuf: [in] buffer to reduce refcount of
747 * Uses file's refcounting done implicitly by fput().
749 * If, as a result of this call, the refcount becomes 0, the 'release' file
750 * operation related to this fd is called. It calls &dma_buf_ops.release vfunc
751 * in turn, and frees the memory allocated for dmabuf when exported.
753 void dma_buf_put(struct dma_buf *dmabuf)
755 if (WARN_ON(!dmabuf || !dmabuf->file))
760 EXPORT_SYMBOL_NS_GPL(dma_buf_put, DMA_BUF);
762 static void mangle_sg_table(struct sg_table *sg_table)
764 #ifdef CONFIG_DMABUF_DEBUG
766 struct scatterlist *sg;
768 /* To catch abuse of the underlying struct page by importers mix
769 * up the bits, but take care to preserve the low SG_ bits to
770 * not corrupt the sgt. The mixing is undone in __unmap_dma_buf
771 * before passing the sgt back to the exporter. */
772 for_each_sgtable_sg(sg_table, sg, i)
773 sg->page_link ^= ~0xffUL;
777 static struct sg_table * __map_dma_buf(struct dma_buf_attachment *attach,
778 enum dma_data_direction direction)
780 struct sg_table *sg_table;
783 sg_table = attach->dmabuf->ops->map_dma_buf(attach, direction);
784 if (IS_ERR_OR_NULL(sg_table))
787 if (!dma_buf_attachment_is_dynamic(attach)) {
788 ret = dma_resv_wait_timeout(attach->dmabuf->resv,
789 DMA_RESV_USAGE_KERNEL, true,
790 MAX_SCHEDULE_TIMEOUT);
792 attach->dmabuf->ops->unmap_dma_buf(attach, sg_table,
798 mangle_sg_table(sg_table);
803 * DOC: locking convention
805 * In order to avoid deadlock situations between dma-buf exports and importers,
806 * all dma-buf API users must follow the common dma-buf locking convention.
808 * Convention for importers
810 * 1. Importers must hold the dma-buf reservation lock when calling these
815 * - dma_buf_map_attachment()
816 * - dma_buf_unmap_attachment()
820 * 2. Importers must not hold the dma-buf reservation lock when calling these
824 * - dma_buf_dynamic_attach()
831 * - dma_buf_begin_cpu_access()
832 * - dma_buf_end_cpu_access()
833 * - dma_buf_map_attachment_unlocked()
834 * - dma_buf_unmap_attachment_unlocked()
835 * - dma_buf_vmap_unlocked()
836 * - dma_buf_vunmap_unlocked()
838 * Convention for exporters
840 * 1. These &dma_buf_ops callbacks are invoked with unlocked dma-buf
841 * reservation and exporter can take the lock:
843 * - &dma_buf_ops.attach()
844 * - &dma_buf_ops.detach()
845 * - &dma_buf_ops.release()
846 * - &dma_buf_ops.begin_cpu_access()
847 * - &dma_buf_ops.end_cpu_access()
848 * - &dma_buf_ops.mmap()
850 * 2. These &dma_buf_ops callbacks are invoked with locked dma-buf
851 * reservation and exporter can't take the lock:
853 * - &dma_buf_ops.pin()
854 * - &dma_buf_ops.unpin()
855 * - &dma_buf_ops.map_dma_buf()
856 * - &dma_buf_ops.unmap_dma_buf()
857 * - &dma_buf_ops.vmap()
858 * - &dma_buf_ops.vunmap()
860 * 3. Exporters must hold the dma-buf reservation lock when calling these
863 * - dma_buf_move_notify()
867 * dma_buf_dynamic_attach - Add the device to dma_buf's attachments list
868 * @dmabuf: [in] buffer to attach device to.
869 * @dev: [in] device to be attached.
870 * @importer_ops: [in] importer operations for the attachment
871 * @importer_priv: [in] importer private pointer for the attachment
873 * Returns struct dma_buf_attachment pointer for this attachment. Attachments
874 * must be cleaned up by calling dma_buf_detach().
876 * Optionally this calls &dma_buf_ops.attach to allow device-specific attach
881 * A pointer to newly created &dma_buf_attachment on success, or a negative
882 * error code wrapped into a pointer on failure.
884 * Note that this can fail if the backing storage of @dmabuf is in a place not
885 * accessible to @dev, and cannot be moved to a more suitable place. This is
886 * indicated with the error code -EBUSY.
888 struct dma_buf_attachment *
889 dma_buf_dynamic_attach(struct dma_buf *dmabuf, struct device *dev,
890 const struct dma_buf_attach_ops *importer_ops,
893 struct dma_buf_attachment *attach;
896 if (WARN_ON(!dmabuf || !dev))
897 return ERR_PTR(-EINVAL);
899 if (WARN_ON(importer_ops && !importer_ops->move_notify))
900 return ERR_PTR(-EINVAL);
902 attach = kzalloc(sizeof(*attach), GFP_KERNEL);
904 return ERR_PTR(-ENOMEM);
907 attach->dmabuf = dmabuf;
909 attach->peer2peer = importer_ops->allow_peer2peer;
910 attach->importer_ops = importer_ops;
911 attach->importer_priv = importer_priv;
913 if (dmabuf->ops->attach) {
914 ret = dmabuf->ops->attach(dmabuf, attach);
918 dma_resv_lock(dmabuf->resv, NULL);
919 list_add(&attach->node, &dmabuf->attachments);
920 dma_resv_unlock(dmabuf->resv);
922 /* When either the importer or the exporter can't handle dynamic
923 * mappings we cache the mapping here to avoid issues with the
924 * reservation object lock.
926 if (dma_buf_attachment_is_dynamic(attach) !=
927 dma_buf_is_dynamic(dmabuf)) {
928 struct sg_table *sgt;
930 dma_resv_lock(attach->dmabuf->resv, NULL);
931 if (dma_buf_is_dynamic(attach->dmabuf)) {
932 ret = dmabuf->ops->pin(attach);
937 sgt = __map_dma_buf(attach, DMA_BIDIRECTIONAL);
939 sgt = ERR_PTR(-ENOMEM);
944 dma_resv_unlock(attach->dmabuf->resv);
946 attach->dir = DMA_BIDIRECTIONAL;
956 if (dma_buf_is_dynamic(attach->dmabuf))
957 dmabuf->ops->unpin(attach);
960 dma_resv_unlock(attach->dmabuf->resv);
962 dma_buf_detach(dmabuf, attach);
965 EXPORT_SYMBOL_NS_GPL(dma_buf_dynamic_attach, DMA_BUF);
968 * dma_buf_attach - Wrapper for dma_buf_dynamic_attach
969 * @dmabuf: [in] buffer to attach device to.
970 * @dev: [in] device to be attached.
972 * Wrapper to call dma_buf_dynamic_attach() for drivers which still use a static
975 struct dma_buf_attachment *dma_buf_attach(struct dma_buf *dmabuf,
978 return dma_buf_dynamic_attach(dmabuf, dev, NULL, NULL);
980 EXPORT_SYMBOL_NS_GPL(dma_buf_attach, DMA_BUF);
982 static void __unmap_dma_buf(struct dma_buf_attachment *attach,
983 struct sg_table *sg_table,
984 enum dma_data_direction direction)
986 /* uses XOR, hence this unmangles */
987 mangle_sg_table(sg_table);
989 attach->dmabuf->ops->unmap_dma_buf(attach, sg_table, direction);
993 * dma_buf_detach - Remove the given attachment from dmabuf's attachments list
994 * @dmabuf: [in] buffer to detach from.
995 * @attach: [in] attachment to be detached; is free'd after this call.
997 * Clean up a device attachment obtained by calling dma_buf_attach().
999 * Optionally this calls &dma_buf_ops.detach for device-specific detach.
1001 void dma_buf_detach(struct dma_buf *dmabuf, struct dma_buf_attachment *attach)
1003 if (WARN_ON(!dmabuf || !attach || dmabuf != attach->dmabuf))
1006 dma_resv_lock(dmabuf->resv, NULL);
1010 __unmap_dma_buf(attach, attach->sgt, attach->dir);
1012 if (dma_buf_is_dynamic(attach->dmabuf))
1013 dmabuf->ops->unpin(attach);
1015 list_del(&attach->node);
1017 dma_resv_unlock(dmabuf->resv);
1019 if (dmabuf->ops->detach)
1020 dmabuf->ops->detach(dmabuf, attach);
1024 EXPORT_SYMBOL_NS_GPL(dma_buf_detach, DMA_BUF);
1027 * dma_buf_pin - Lock down the DMA-buf
1028 * @attach: [in] attachment which should be pinned
1030 * Only dynamic importers (who set up @attach with dma_buf_dynamic_attach()) may
1031 * call this, and only for limited use cases like scanout and not for temporary
1032 * pin operations. It is not permitted to allow userspace to pin arbitrary
1033 * amounts of buffers through this interface.
1035 * Buffers must be unpinned by calling dma_buf_unpin().
1038 * 0 on success, negative error code on failure.
1040 int dma_buf_pin(struct dma_buf_attachment *attach)
1042 struct dma_buf *dmabuf = attach->dmabuf;
1045 WARN_ON(!dma_buf_attachment_is_dynamic(attach));
1047 dma_resv_assert_held(dmabuf->resv);
1049 if (dmabuf->ops->pin)
1050 ret = dmabuf->ops->pin(attach);
1054 EXPORT_SYMBOL_NS_GPL(dma_buf_pin, DMA_BUF);
1057 * dma_buf_unpin - Unpin a DMA-buf
1058 * @attach: [in] attachment which should be unpinned
1060 * This unpins a buffer pinned by dma_buf_pin() and allows the exporter to move
1061 * any mapping of @attach again and inform the importer through
1062 * &dma_buf_attach_ops.move_notify.
1064 void dma_buf_unpin(struct dma_buf_attachment *attach)
1066 struct dma_buf *dmabuf = attach->dmabuf;
1068 WARN_ON(!dma_buf_attachment_is_dynamic(attach));
1070 dma_resv_assert_held(dmabuf->resv);
1072 if (dmabuf->ops->unpin)
1073 dmabuf->ops->unpin(attach);
1075 EXPORT_SYMBOL_NS_GPL(dma_buf_unpin, DMA_BUF);
1078 * dma_buf_map_attachment - Returns the scatterlist table of the attachment;
1079 * mapped into _device_ address space. Is a wrapper for map_dma_buf() of the
1081 * @attach: [in] attachment whose scatterlist is to be returned
1082 * @direction: [in] direction of DMA transfer
1084 * Returns sg_table containing the scatterlist to be returned; returns ERR_PTR
1085 * on error. May return -EINTR if it is interrupted by a signal.
1087 * On success, the DMA addresses and lengths in the returned scatterlist are
1088 * PAGE_SIZE aligned.
1090 * A mapping must be unmapped by using dma_buf_unmap_attachment(). Note that
1091 * the underlying backing storage is pinned for as long as a mapping exists,
1092 * therefore users/importers should not hold onto a mapping for undue amounts of
1095 * Important: Dynamic importers must wait for the exclusive fence of the struct
1096 * dma_resv attached to the DMA-BUF first.
1098 struct sg_table *dma_buf_map_attachment(struct dma_buf_attachment *attach,
1099 enum dma_data_direction direction)
1101 struct sg_table *sg_table;
1106 if (WARN_ON(!attach || !attach->dmabuf))
1107 return ERR_PTR(-EINVAL);
1109 dma_resv_assert_held(attach->dmabuf->resv);
1113 * Two mappings with different directions for the same
1114 * attachment are not allowed.
1116 if (attach->dir != direction &&
1117 attach->dir != DMA_BIDIRECTIONAL)
1118 return ERR_PTR(-EBUSY);
1123 if (dma_buf_is_dynamic(attach->dmabuf)) {
1124 if (!IS_ENABLED(CONFIG_DMABUF_MOVE_NOTIFY)) {
1125 r = attach->dmabuf->ops->pin(attach);
1131 sg_table = __map_dma_buf(attach, direction);
1133 sg_table = ERR_PTR(-ENOMEM);
1135 if (IS_ERR(sg_table) && dma_buf_is_dynamic(attach->dmabuf) &&
1136 !IS_ENABLED(CONFIG_DMABUF_MOVE_NOTIFY))
1137 attach->dmabuf->ops->unpin(attach);
1139 if (!IS_ERR(sg_table) && attach->dmabuf->ops->cache_sgt_mapping) {
1140 attach->sgt = sg_table;
1141 attach->dir = direction;
1144 #ifdef CONFIG_DMA_API_DEBUG
1145 if (!IS_ERR(sg_table)) {
1146 struct scatterlist *sg;
1151 for_each_sgtable_dma_sg(sg_table, sg, i) {
1152 addr = sg_dma_address(sg);
1153 len = sg_dma_len(sg);
1154 if (!PAGE_ALIGNED(addr) || !PAGE_ALIGNED(len)) {
1155 pr_debug("%s: addr %llx or len %x is not page aligned!\n",
1156 __func__, addr, len);
1160 #endif /* CONFIG_DMA_API_DEBUG */
1163 EXPORT_SYMBOL_NS_GPL(dma_buf_map_attachment, DMA_BUF);
1166 * dma_buf_map_attachment_unlocked - Returns the scatterlist table of the attachment;
1167 * mapped into _device_ address space. Is a wrapper for map_dma_buf() of the
1169 * @attach: [in] attachment whose scatterlist is to be returned
1170 * @direction: [in] direction of DMA transfer
1172 * Unlocked variant of dma_buf_map_attachment().
1175 dma_buf_map_attachment_unlocked(struct dma_buf_attachment *attach,
1176 enum dma_data_direction direction)
1178 struct sg_table *sg_table;
1182 if (WARN_ON(!attach || !attach->dmabuf))
1183 return ERR_PTR(-EINVAL);
1185 dma_resv_lock(attach->dmabuf->resv, NULL);
1186 sg_table = dma_buf_map_attachment(attach, direction);
1187 dma_resv_unlock(attach->dmabuf->resv);
1191 EXPORT_SYMBOL_NS_GPL(dma_buf_map_attachment_unlocked, DMA_BUF);
1194 * dma_buf_unmap_attachment - unmaps and decreases usecount of the buffer;might
1195 * deallocate the scatterlist associated. Is a wrapper for unmap_dma_buf() of
1197 * @attach: [in] attachment to unmap buffer from
1198 * @sg_table: [in] scatterlist info of the buffer to unmap
1199 * @direction: [in] direction of DMA transfer
1201 * This unmaps a DMA mapping for @attached obtained by dma_buf_map_attachment().
1203 void dma_buf_unmap_attachment(struct dma_buf_attachment *attach,
1204 struct sg_table *sg_table,
1205 enum dma_data_direction direction)
1209 if (WARN_ON(!attach || !attach->dmabuf || !sg_table))
1212 dma_resv_assert_held(attach->dmabuf->resv);
1214 if (attach->sgt == sg_table)
1217 __unmap_dma_buf(attach, sg_table, direction);
1219 if (dma_buf_is_dynamic(attach->dmabuf) &&
1220 !IS_ENABLED(CONFIG_DMABUF_MOVE_NOTIFY))
1221 dma_buf_unpin(attach);
1223 EXPORT_SYMBOL_NS_GPL(dma_buf_unmap_attachment, DMA_BUF);
1226 * dma_buf_unmap_attachment_unlocked - unmaps and decreases usecount of the buffer;might
1227 * deallocate the scatterlist associated. Is a wrapper for unmap_dma_buf() of
1229 * @attach: [in] attachment to unmap buffer from
1230 * @sg_table: [in] scatterlist info of the buffer to unmap
1231 * @direction: [in] direction of DMA transfer
1233 * Unlocked variant of dma_buf_unmap_attachment().
1235 void dma_buf_unmap_attachment_unlocked(struct dma_buf_attachment *attach,
1236 struct sg_table *sg_table,
1237 enum dma_data_direction direction)
1241 if (WARN_ON(!attach || !attach->dmabuf || !sg_table))
1244 dma_resv_lock(attach->dmabuf->resv, NULL);
1245 dma_buf_unmap_attachment(attach, sg_table, direction);
1246 dma_resv_unlock(attach->dmabuf->resv);
1248 EXPORT_SYMBOL_NS_GPL(dma_buf_unmap_attachment_unlocked, DMA_BUF);
1251 * dma_buf_move_notify - notify attachments that DMA-buf is moving
1253 * @dmabuf: [in] buffer which is moving
1255 * Informs all attachments that they need to destroy and recreate all their
1258 void dma_buf_move_notify(struct dma_buf *dmabuf)
1260 struct dma_buf_attachment *attach;
1262 dma_resv_assert_held(dmabuf->resv);
1264 list_for_each_entry(attach, &dmabuf->attachments, node)
1265 if (attach->importer_ops)
1266 attach->importer_ops->move_notify(attach);
1268 EXPORT_SYMBOL_NS_GPL(dma_buf_move_notify, DMA_BUF);
1273 * There are multiple reasons for supporting CPU access to a dma buffer object:
1275 * - Fallback operations in the kernel, for example when a device is connected
1276 * over USB and the kernel needs to shuffle the data around first before
1277 * sending it away. Cache coherency is handled by bracketing any transactions
1278 * with calls to dma_buf_begin_cpu_access() and dma_buf_end_cpu_access()
1281 * Since for most kernel internal dma-buf accesses need the entire buffer, a
1282 * vmap interface is introduced. Note that on very old 32-bit architectures
1283 * vmalloc space might be limited and result in vmap calls failing.
1287 * void \*dma_buf_vmap(struct dma_buf \*dmabuf, struct iosys_map \*map)
1288 * void dma_buf_vunmap(struct dma_buf \*dmabuf, struct iosys_map \*map)
1290 * The vmap call can fail if there is no vmap support in the exporter, or if
1291 * it runs out of vmalloc space. Note that the dma-buf layer keeps a reference
1292 * count for all vmap access and calls down into the exporter's vmap function
1293 * only when no vmapping exists, and only unmaps it once. Protection against
1294 * concurrent vmap/vunmap calls is provided by taking the &dma_buf.lock mutex.
1296 * - For full compatibility on the importer side with existing userspace
1297 * interfaces, which might already support mmap'ing buffers. This is needed in
1298 * many processing pipelines (e.g. feeding a software rendered image into a
1299 * hardware pipeline, thumbnail creation, snapshots, ...). Also, Android's ION
1300 * framework already supported this and for DMA buffer file descriptors to
1301 * replace ION buffers mmap support was needed.
1303 * There is no special interfaces, userspace simply calls mmap on the dma-buf
1304 * fd. But like for CPU access there's a need to bracket the actual access,
1305 * which is handled by the ioctl (DMA_BUF_IOCTL_SYNC). Note that
1306 * DMA_BUF_IOCTL_SYNC can fail with -EAGAIN or -EINTR, in which case it must
1309 * Some systems might need some sort of cache coherency management e.g. when
1310 * CPU and GPU domains are being accessed through dma-buf at the same time.
1311 * To circumvent this problem there are begin/end coherency markers, that
1312 * forward directly to existing dma-buf device drivers vfunc hooks. Userspace
1313 * can make use of those markers through the DMA_BUF_IOCTL_SYNC ioctl. The
1314 * sequence would be used like following:
1317 * - for each drawing/upload cycle in CPU 1. SYNC_START ioctl, 2. read/write
1318 * to mmap area 3. SYNC_END ioctl. This can be repeated as often as you
1319 * want (with the new data being consumed by say the GPU or the scanout
1321 * - munmap once you don't need the buffer any more
1323 * For correctness and optimal performance, it is always required to use
1324 * SYNC_START and SYNC_END before and after, respectively, when accessing the
1325 * mapped address. Userspace cannot rely on coherent access, even when there
1326 * are systems where it just works without calling these ioctls.
1328 * - And as a CPU fallback in userspace processing pipelines.
1330 * Similar to the motivation for kernel cpu access it is again important that
1331 * the userspace code of a given importing subsystem can use the same
1332 * interfaces with a imported dma-buf buffer object as with a native buffer
1333 * object. This is especially important for drm where the userspace part of
1334 * contemporary OpenGL, X, and other drivers is huge, and reworking them to
1335 * use a different way to mmap a buffer rather invasive.
1337 * The assumption in the current dma-buf interfaces is that redirecting the
1338 * initial mmap is all that's needed. A survey of some of the existing
1339 * subsystems shows that no driver seems to do any nefarious thing like
1340 * syncing up with outstanding asynchronous processing on the device or
1341 * allocating special resources at fault time. So hopefully this is good
1342 * enough, since adding interfaces to intercept pagefaults and allow pte
1343 * shootdowns would increase the complexity quite a bit.
1347 * int dma_buf_mmap(struct dma_buf \*, struct vm_area_struct \*,
1350 * If the importing subsystem simply provides a special-purpose mmap call to
1351 * set up a mapping in userspace, calling do_mmap with &dma_buf.file will
1352 * equally achieve that for a dma-buf object.
1355 static int __dma_buf_begin_cpu_access(struct dma_buf *dmabuf,
1356 enum dma_data_direction direction)
1358 bool write = (direction == DMA_BIDIRECTIONAL ||
1359 direction == DMA_TO_DEVICE);
1360 struct dma_resv *resv = dmabuf->resv;
1363 /* Wait on any implicit rendering fences */
1364 ret = dma_resv_wait_timeout(resv, dma_resv_usage_rw(write),
1365 true, MAX_SCHEDULE_TIMEOUT);
1373 * dma_buf_begin_cpu_access - Must be called before accessing a dma_buf from the
1374 * cpu in the kernel context. Calls begin_cpu_access to allow exporter-specific
1375 * preparations. Coherency is only guaranteed in the specified range for the
1376 * specified access direction.
1377 * @dmabuf: [in] buffer to prepare cpu access for.
1378 * @direction: [in] direction of access.
1380 * After the cpu access is complete the caller should call
1381 * dma_buf_end_cpu_access(). Only when cpu access is bracketed by both calls is
1382 * it guaranteed to be coherent with other DMA access.
1384 * This function will also wait for any DMA transactions tracked through
1385 * implicit synchronization in &dma_buf.resv. For DMA transactions with explicit
1386 * synchronization this function will only ensure cache coherency, callers must
1387 * ensure synchronization with such DMA transactions on their own.
1389 * Can return negative error values, returns 0 on success.
1391 int dma_buf_begin_cpu_access(struct dma_buf *dmabuf,
1392 enum dma_data_direction direction)
1396 if (WARN_ON(!dmabuf))
1399 might_lock(&dmabuf->resv->lock.base);
1401 if (dmabuf->ops->begin_cpu_access)
1402 ret = dmabuf->ops->begin_cpu_access(dmabuf, direction);
1404 /* Ensure that all fences are waited upon - but we first allow
1405 * the native handler the chance to do so more efficiently if it
1406 * chooses. A double invocation here will be reasonably cheap no-op.
1409 ret = __dma_buf_begin_cpu_access(dmabuf, direction);
1413 EXPORT_SYMBOL_NS_GPL(dma_buf_begin_cpu_access, DMA_BUF);
1416 * dma_buf_end_cpu_access - Must be called after accessing a dma_buf from the
1417 * cpu in the kernel context. Calls end_cpu_access to allow exporter-specific
1418 * actions. Coherency is only guaranteed in the specified range for the
1419 * specified access direction.
1420 * @dmabuf: [in] buffer to complete cpu access for.
1421 * @direction: [in] direction of access.
1423 * This terminates CPU access started with dma_buf_begin_cpu_access().
1425 * Can return negative error values, returns 0 on success.
1427 int dma_buf_end_cpu_access(struct dma_buf *dmabuf,
1428 enum dma_data_direction direction)
1434 might_lock(&dmabuf->resv->lock.base);
1436 if (dmabuf->ops->end_cpu_access)
1437 ret = dmabuf->ops->end_cpu_access(dmabuf, direction);
1441 EXPORT_SYMBOL_NS_GPL(dma_buf_end_cpu_access, DMA_BUF);
1445 * dma_buf_mmap - Setup up a userspace mmap with the given vma
1446 * @dmabuf: [in] buffer that should back the vma
1447 * @vma: [in] vma for the mmap
1448 * @pgoff: [in] offset in pages where this mmap should start within the
1451 * This function adjusts the passed in vma so that it points at the file of the
1452 * dma_buf operation. It also adjusts the starting pgoff and does bounds
1453 * checking on the size of the vma. Then it calls the exporters mmap function to
1454 * set up the mapping.
1456 * Can return negative error values, returns 0 on success.
1458 int dma_buf_mmap(struct dma_buf *dmabuf, struct vm_area_struct *vma,
1459 unsigned long pgoff)
1461 if (WARN_ON(!dmabuf || !vma))
1464 /* check if buffer supports mmap */
1465 if (!dmabuf->ops->mmap)
1468 /* check for offset overflow */
1469 if (pgoff + vma_pages(vma) < pgoff)
1472 /* check for overflowing the buffer's size */
1473 if (pgoff + vma_pages(vma) >
1474 dmabuf->size >> PAGE_SHIFT)
1477 /* readjust the vma */
1478 vma_set_file(vma, dmabuf->file);
1479 vma->vm_pgoff = pgoff;
1481 return dmabuf->ops->mmap(dmabuf, vma);
1483 EXPORT_SYMBOL_NS_GPL(dma_buf_mmap, DMA_BUF);
1486 * dma_buf_vmap - Create virtual mapping for the buffer object into kernel
1487 * address space. Same restrictions as for vmap and friends apply.
1488 * @dmabuf: [in] buffer to vmap
1489 * @map: [out] returns the vmap pointer
1491 * This call may fail due to lack of virtual mapping address space.
1492 * These calls are optional in drivers. The intended use for them
1493 * is for mapping objects linear in kernel space for high use objects.
1495 * To ensure coherency users must call dma_buf_begin_cpu_access() and
1496 * dma_buf_end_cpu_access() around any cpu access performed through this
1499 * Returns 0 on success, or a negative errno code otherwise.
1501 int dma_buf_vmap(struct dma_buf *dmabuf, struct iosys_map *map)
1503 struct iosys_map ptr;
1506 iosys_map_clear(map);
1508 if (WARN_ON(!dmabuf))
1511 dma_resv_assert_held(dmabuf->resv);
1513 if (!dmabuf->ops->vmap)
1516 if (dmabuf->vmapping_counter) {
1517 dmabuf->vmapping_counter++;
1518 BUG_ON(iosys_map_is_null(&dmabuf->vmap_ptr));
1519 *map = dmabuf->vmap_ptr;
1523 BUG_ON(iosys_map_is_set(&dmabuf->vmap_ptr));
1525 ret = dmabuf->ops->vmap(dmabuf, &ptr);
1526 if (WARN_ON_ONCE(ret))
1529 dmabuf->vmap_ptr = ptr;
1530 dmabuf->vmapping_counter = 1;
1532 *map = dmabuf->vmap_ptr;
1536 EXPORT_SYMBOL_NS_GPL(dma_buf_vmap, DMA_BUF);
1539 * dma_buf_vmap_unlocked - Create virtual mapping for the buffer object into kernel
1540 * address space. Same restrictions as for vmap and friends apply.
1541 * @dmabuf: [in] buffer to vmap
1542 * @map: [out] returns the vmap pointer
1544 * Unlocked version of dma_buf_vmap()
1546 * Returns 0 on success, or a negative errno code otherwise.
1548 int dma_buf_vmap_unlocked(struct dma_buf *dmabuf, struct iosys_map *map)
1552 iosys_map_clear(map);
1554 if (WARN_ON(!dmabuf))
1557 dma_resv_lock(dmabuf->resv, NULL);
1558 ret = dma_buf_vmap(dmabuf, map);
1559 dma_resv_unlock(dmabuf->resv);
1563 EXPORT_SYMBOL_NS_GPL(dma_buf_vmap_unlocked, DMA_BUF);
1566 * dma_buf_vunmap - Unmap a vmap obtained by dma_buf_vmap.
1567 * @dmabuf: [in] buffer to vunmap
1568 * @map: [in] vmap pointer to vunmap
1570 void dma_buf_vunmap(struct dma_buf *dmabuf, struct iosys_map *map)
1572 if (WARN_ON(!dmabuf))
1575 dma_resv_assert_held(dmabuf->resv);
1577 BUG_ON(iosys_map_is_null(&dmabuf->vmap_ptr));
1578 BUG_ON(dmabuf->vmapping_counter == 0);
1579 BUG_ON(!iosys_map_is_equal(&dmabuf->vmap_ptr, map));
1581 if (--dmabuf->vmapping_counter == 0) {
1582 if (dmabuf->ops->vunmap)
1583 dmabuf->ops->vunmap(dmabuf, map);
1584 iosys_map_clear(&dmabuf->vmap_ptr);
1587 EXPORT_SYMBOL_NS_GPL(dma_buf_vunmap, DMA_BUF);
1590 * dma_buf_vunmap_unlocked - Unmap a vmap obtained by dma_buf_vmap.
1591 * @dmabuf: [in] buffer to vunmap
1592 * @map: [in] vmap pointer to vunmap
1594 void dma_buf_vunmap_unlocked(struct dma_buf *dmabuf, struct iosys_map *map)
1596 if (WARN_ON(!dmabuf))
1599 dma_resv_lock(dmabuf->resv, NULL);
1600 dma_buf_vunmap(dmabuf, map);
1601 dma_resv_unlock(dmabuf->resv);
1603 EXPORT_SYMBOL_NS_GPL(dma_buf_vunmap_unlocked, DMA_BUF);
1605 #ifdef CONFIG_DEBUG_FS
1606 static int dma_buf_debug_show(struct seq_file *s, void *unused)
1608 struct dma_buf *buf_obj;
1609 struct dma_buf_attachment *attach_obj;
1610 int count = 0, attach_count;
1614 ret = mutex_lock_interruptible(&db_list.lock);
1619 seq_puts(s, "\nDma-buf Objects:\n");
1620 seq_printf(s, "%-8s\t%-8s\t%-8s\t%-8s\texp_name\t%-8s\tname\n",
1621 "size", "flags", "mode", "count", "ino");
1623 list_for_each_entry(buf_obj, &db_list.head, list_node) {
1625 ret = dma_resv_lock_interruptible(buf_obj->resv, NULL);
1630 spin_lock(&buf_obj->name_lock);
1631 seq_printf(s, "%08zu\t%08x\t%08x\t%08ld\t%s\t%08lu\t%s\n",
1633 buf_obj->file->f_flags, buf_obj->file->f_mode,
1634 file_count(buf_obj->file),
1636 file_inode(buf_obj->file)->i_ino,
1637 buf_obj->name ?: "<none>");
1638 spin_unlock(&buf_obj->name_lock);
1640 dma_resv_describe(buf_obj->resv, s);
1642 seq_puts(s, "\tAttached Devices:\n");
1645 list_for_each_entry(attach_obj, &buf_obj->attachments, node) {
1646 seq_printf(s, "\t%s\n", dev_name(attach_obj->dev));
1649 dma_resv_unlock(buf_obj->resv);
1651 seq_printf(s, "Total %d devices attached\n\n",
1655 size += buf_obj->size;
1658 seq_printf(s, "\nTotal %d objects, %zu bytes\n", count, size);
1660 mutex_unlock(&db_list.lock);
1664 mutex_unlock(&db_list.lock);
1668 DEFINE_SHOW_ATTRIBUTE(dma_buf_debug);
1670 static struct dentry *dma_buf_debugfs_dir;
1672 static int dma_buf_init_debugfs(void)
1677 d = debugfs_create_dir("dma_buf", NULL);
1681 dma_buf_debugfs_dir = d;
1683 d = debugfs_create_file("bufinfo", S_IRUGO, dma_buf_debugfs_dir,
1684 NULL, &dma_buf_debug_fops);
1686 pr_debug("dma_buf: debugfs: failed to create node bufinfo\n");
1687 debugfs_remove_recursive(dma_buf_debugfs_dir);
1688 dma_buf_debugfs_dir = NULL;
1695 static void dma_buf_uninit_debugfs(void)
1697 debugfs_remove_recursive(dma_buf_debugfs_dir);
1700 static inline int dma_buf_init_debugfs(void)
1704 static inline void dma_buf_uninit_debugfs(void)
1709 static int __init dma_buf_init(void)
1713 ret = dma_buf_init_sysfs_statistics();
1717 dma_buf_mnt = kern_mount(&dma_buf_fs_type);
1718 if (IS_ERR(dma_buf_mnt))
1719 return PTR_ERR(dma_buf_mnt);
1721 mutex_init(&db_list.lock);
1722 INIT_LIST_HEAD(&db_list.head);
1723 dma_buf_init_debugfs();
1726 subsys_initcall(dma_buf_init);
1728 static void __exit dma_buf_deinit(void)
1730 dma_buf_uninit_debugfs();
1731 kern_unmount(dma_buf_mnt);
1732 dma_buf_uninit_sysfs_statistics();
1734 __exitcall(dma_buf_deinit);