1 // SPDX-License-Identifier: GPL-2.0-only
3 * Framework for buffer objects that can be shared across devices/subsystems.
5 * Copyright(C) 2011 Linaro Limited. All rights reserved.
6 * Author: Sumit Semwal <sumit.semwal@ti.com>
8 * Many thanks to linaro-mm-sig list, and specially
9 * Arnd Bergmann <arnd@arndb.de>, Rob Clark <rob@ti.com> and
10 * Daniel Vetter <daniel@ffwll.ch> for their support in creation and
11 * refining of this idea.
15 #include <linux/slab.h>
16 #include <linux/dma-buf.h>
17 #include <linux/dma-fence.h>
18 #include <linux/anon_inodes.h>
19 #include <linux/export.h>
20 #include <linux/debugfs.h>
21 #include <linux/module.h>
22 #include <linux/seq_file.h>
23 #include <linux/sync_file.h>
24 #include <linux/poll.h>
25 #include <linux/dma-resv.h>
27 #include <linux/mount.h>
28 #include <linux/pseudo_fs.h>
30 #include <uapi/linux/dma-buf.h>
31 #include <uapi/linux/magic.h>
33 #include "dma-buf-sysfs-stats.h"
35 static inline int is_dma_buf_file(struct file *);
38 struct list_head head;
42 static struct dma_buf_list db_list;
44 static char *dmabuffs_dname(struct dentry *dentry, char *buffer, int buflen)
46 struct dma_buf *dmabuf;
47 char name[DMA_BUF_NAME_LEN];
50 dmabuf = dentry->d_fsdata;
51 spin_lock(&dmabuf->name_lock);
53 ret = strlcpy(name, dmabuf->name, DMA_BUF_NAME_LEN);
54 spin_unlock(&dmabuf->name_lock);
56 return dynamic_dname(buffer, buflen, "/%s:%s",
57 dentry->d_name.name, ret > 0 ? name : "");
60 static void dma_buf_release(struct dentry *dentry)
62 struct dma_buf *dmabuf;
64 dmabuf = dentry->d_fsdata;
65 if (unlikely(!dmabuf))
68 BUG_ON(dmabuf->vmapping_counter);
71 * If you hit this BUG() it could mean:
72 * * There's a file reference imbalance in dma_buf_poll / dma_buf_poll_cb or somewhere else
73 * * dmabuf->cb_in/out.active are non-0 despite no pending fence callback
75 BUG_ON(dmabuf->cb_in.active || dmabuf->cb_out.active);
77 dma_buf_stats_teardown(dmabuf);
78 dmabuf->ops->release(dmabuf);
80 if (dmabuf->resv == (struct dma_resv *)&dmabuf[1])
81 dma_resv_fini(dmabuf->resv);
83 WARN_ON(!list_empty(&dmabuf->attachments));
84 module_put(dmabuf->owner);
89 static int dma_buf_file_release(struct inode *inode, struct file *file)
91 struct dma_buf *dmabuf;
93 if (!is_dma_buf_file(file))
96 dmabuf = file->private_data;
98 mutex_lock(&db_list.lock);
99 list_del(&dmabuf->list_node);
100 mutex_unlock(&db_list.lock);
105 static const struct dentry_operations dma_buf_dentry_ops = {
106 .d_dname = dmabuffs_dname,
107 .d_release = dma_buf_release,
110 static struct vfsmount *dma_buf_mnt;
112 static int dma_buf_fs_init_context(struct fs_context *fc)
114 struct pseudo_fs_context *ctx;
116 ctx = init_pseudo(fc, DMA_BUF_MAGIC);
119 ctx->dops = &dma_buf_dentry_ops;
123 static struct file_system_type dma_buf_fs_type = {
125 .init_fs_context = dma_buf_fs_init_context,
126 .kill_sb = kill_anon_super,
129 static int dma_buf_mmap_internal(struct file *file, struct vm_area_struct *vma)
131 struct dma_buf *dmabuf;
133 if (!is_dma_buf_file(file))
136 dmabuf = file->private_data;
138 /* check if buffer supports mmap */
139 if (!dmabuf->ops->mmap)
142 /* check for overflowing the buffer's size */
143 if (vma->vm_pgoff + vma_pages(vma) >
144 dmabuf->size >> PAGE_SHIFT)
147 return dmabuf->ops->mmap(dmabuf, vma);
150 static loff_t dma_buf_llseek(struct file *file, loff_t offset, int whence)
152 struct dma_buf *dmabuf;
155 if (!is_dma_buf_file(file))
158 dmabuf = file->private_data;
160 /* only support discovering the end of the buffer,
161 but also allow SEEK_SET to maintain the idiomatic
162 SEEK_END(0), SEEK_CUR(0) pattern */
163 if (whence == SEEK_END)
165 else if (whence == SEEK_SET)
173 return base + offset;
177 * DOC: implicit fence polling
179 * To support cross-device and cross-driver synchronization of buffer access
180 * implicit fences (represented internally in the kernel with &struct dma_fence)
181 * can be attached to a &dma_buf. The glue for that and a few related things are
182 * provided in the &dma_resv structure.
184 * Userspace can query the state of these implicitly tracked fences using poll()
185 * and related system calls:
187 * - Checking for EPOLLIN, i.e. read access, can be use to query the state of the
188 * most recent write or exclusive fence.
190 * - Checking for EPOLLOUT, i.e. write access, can be used to query the state of
191 * all attached fences, shared and exclusive ones.
193 * Note that this only signals the completion of the respective fences, i.e. the
194 * DMA transfers are complete. Cache flushing and any other necessary
195 * preparations before CPU access can begin still need to happen.
197 * As an alternative to poll(), the set of fences on DMA buffer can be
198 * exported as a &sync_file using &dma_buf_sync_file_export.
201 static void dma_buf_poll_cb(struct dma_fence *fence, struct dma_fence_cb *cb)
203 struct dma_buf_poll_cb_t *dcb = (struct dma_buf_poll_cb_t *)cb;
204 struct dma_buf *dmabuf = container_of(dcb->poll, struct dma_buf, poll);
207 spin_lock_irqsave(&dcb->poll->lock, flags);
208 wake_up_locked_poll(dcb->poll, dcb->active);
210 spin_unlock_irqrestore(&dcb->poll->lock, flags);
211 dma_fence_put(fence);
212 /* Paired with get_file in dma_buf_poll */
216 static bool dma_buf_poll_add_cb(struct dma_resv *resv, bool write,
217 struct dma_buf_poll_cb_t *dcb)
219 struct dma_resv_iter cursor;
220 struct dma_fence *fence;
223 dma_resv_for_each_fence(&cursor, resv, dma_resv_usage_rw(write),
225 dma_fence_get(fence);
226 r = dma_fence_add_callback(fence, &dcb->cb, dma_buf_poll_cb);
229 dma_fence_put(fence);
235 static __poll_t dma_buf_poll(struct file *file, poll_table *poll)
237 struct dma_buf *dmabuf;
238 struct dma_resv *resv;
241 dmabuf = file->private_data;
242 if (!dmabuf || !dmabuf->resv)
247 poll_wait(file, &dmabuf->poll, poll);
249 events = poll_requested_events(poll) & (EPOLLIN | EPOLLOUT);
253 dma_resv_lock(resv, NULL);
255 if (events & EPOLLOUT) {
256 struct dma_buf_poll_cb_t *dcb = &dmabuf->cb_out;
258 /* Check that callback isn't busy */
259 spin_lock_irq(&dmabuf->poll.lock);
263 dcb->active = EPOLLOUT;
264 spin_unlock_irq(&dmabuf->poll.lock);
266 if (events & EPOLLOUT) {
267 /* Paired with fput in dma_buf_poll_cb */
268 get_file(dmabuf->file);
270 if (!dma_buf_poll_add_cb(resv, true, dcb))
271 /* No callback queued, wake up any other waiters */
272 dma_buf_poll_cb(NULL, &dcb->cb);
278 if (events & EPOLLIN) {
279 struct dma_buf_poll_cb_t *dcb = &dmabuf->cb_in;
281 /* Check that callback isn't busy */
282 spin_lock_irq(&dmabuf->poll.lock);
286 dcb->active = EPOLLIN;
287 spin_unlock_irq(&dmabuf->poll.lock);
289 if (events & EPOLLIN) {
290 /* Paired with fput in dma_buf_poll_cb */
291 get_file(dmabuf->file);
293 if (!dma_buf_poll_add_cb(resv, false, dcb))
294 /* No callback queued, wake up any other waiters */
295 dma_buf_poll_cb(NULL, &dcb->cb);
301 dma_resv_unlock(resv);
306 * dma_buf_set_name - Set a name to a specific dma_buf to track the usage.
307 * It could support changing the name of the dma-buf if the same
308 * piece of memory is used for multiple purpose between different devices.
310 * @dmabuf: [in] dmabuf buffer that will be renamed.
311 * @buf: [in] A piece of userspace memory that contains the name of
314 * Returns 0 on success. If the dma-buf buffer is already attached to
315 * devices, return -EBUSY.
318 static long dma_buf_set_name(struct dma_buf *dmabuf, const char __user *buf)
320 char *name = strndup_user(buf, DMA_BUF_NAME_LEN);
323 return PTR_ERR(name);
325 spin_lock(&dmabuf->name_lock);
328 spin_unlock(&dmabuf->name_lock);
333 #if IS_ENABLED(CONFIG_SYNC_FILE)
334 static long dma_buf_export_sync_file(struct dma_buf *dmabuf,
335 void __user *user_data)
337 struct dma_buf_export_sync_file arg;
338 enum dma_resv_usage usage;
339 struct dma_fence *fence = NULL;
340 struct sync_file *sync_file;
343 if (copy_from_user(&arg, user_data, sizeof(arg)))
346 if (arg.flags & ~DMA_BUF_SYNC_RW)
349 if ((arg.flags & DMA_BUF_SYNC_RW) == 0)
352 fd = get_unused_fd_flags(O_CLOEXEC);
356 usage = dma_resv_usage_rw(arg.flags & DMA_BUF_SYNC_WRITE);
357 ret = dma_resv_get_singleton(dmabuf->resv, usage, &fence);
362 fence = dma_fence_get_stub();
364 sync_file = sync_file_create(fence);
366 dma_fence_put(fence);
374 if (copy_to_user(user_data, &arg, sizeof(arg))) {
379 fd_install(fd, sync_file->file);
384 fput(sync_file->file);
390 static long dma_buf_import_sync_file(struct dma_buf *dmabuf,
391 const void __user *user_data)
393 struct dma_buf_import_sync_file arg;
394 struct dma_fence *fence;
395 enum dma_resv_usage usage;
398 if (copy_from_user(&arg, user_data, sizeof(arg)))
401 if (arg.flags & ~DMA_BUF_SYNC_RW)
404 if ((arg.flags & DMA_BUF_SYNC_RW) == 0)
407 fence = sync_file_get_fence(arg.fd);
411 usage = (arg.flags & DMA_BUF_SYNC_WRITE) ? DMA_RESV_USAGE_WRITE :
414 dma_resv_lock(dmabuf->resv, NULL);
416 ret = dma_resv_reserve_fences(dmabuf->resv, 1);
418 dma_resv_add_fence(dmabuf->resv, fence, usage);
420 dma_resv_unlock(dmabuf->resv);
422 dma_fence_put(fence);
428 static long dma_buf_ioctl(struct file *file,
429 unsigned int cmd, unsigned long arg)
431 struct dma_buf *dmabuf;
432 struct dma_buf_sync sync;
433 enum dma_data_direction direction;
436 dmabuf = file->private_data;
439 case DMA_BUF_IOCTL_SYNC:
440 if (copy_from_user(&sync, (void __user *) arg, sizeof(sync)))
443 if (sync.flags & ~DMA_BUF_SYNC_VALID_FLAGS_MASK)
446 switch (sync.flags & DMA_BUF_SYNC_RW) {
447 case DMA_BUF_SYNC_READ:
448 direction = DMA_FROM_DEVICE;
450 case DMA_BUF_SYNC_WRITE:
451 direction = DMA_TO_DEVICE;
453 case DMA_BUF_SYNC_RW:
454 direction = DMA_BIDIRECTIONAL;
460 if (sync.flags & DMA_BUF_SYNC_END)
461 ret = dma_buf_end_cpu_access(dmabuf, direction);
463 ret = dma_buf_begin_cpu_access(dmabuf, direction);
467 case DMA_BUF_SET_NAME_A:
468 case DMA_BUF_SET_NAME_B:
469 return dma_buf_set_name(dmabuf, (const char __user *)arg);
471 #if IS_ENABLED(CONFIG_SYNC_FILE)
472 case DMA_BUF_IOCTL_EXPORT_SYNC_FILE:
473 return dma_buf_export_sync_file(dmabuf, (void __user *)arg);
474 case DMA_BUF_IOCTL_IMPORT_SYNC_FILE:
475 return dma_buf_import_sync_file(dmabuf, (const void __user *)arg);
483 static void dma_buf_show_fdinfo(struct seq_file *m, struct file *file)
485 struct dma_buf *dmabuf = file->private_data;
487 seq_printf(m, "size:\t%zu\n", dmabuf->size);
488 /* Don't count the temporary reference taken inside procfs seq_show */
489 seq_printf(m, "count:\t%ld\n", file_count(dmabuf->file) - 1);
490 seq_printf(m, "exp_name:\t%s\n", dmabuf->exp_name);
491 spin_lock(&dmabuf->name_lock);
493 seq_printf(m, "name:\t%s\n", dmabuf->name);
494 spin_unlock(&dmabuf->name_lock);
497 static const struct file_operations dma_buf_fops = {
498 .release = dma_buf_file_release,
499 .mmap = dma_buf_mmap_internal,
500 .llseek = dma_buf_llseek,
501 .poll = dma_buf_poll,
502 .unlocked_ioctl = dma_buf_ioctl,
503 .compat_ioctl = compat_ptr_ioctl,
504 .show_fdinfo = dma_buf_show_fdinfo,
508 * is_dma_buf_file - Check if struct file* is associated with dma_buf
510 static inline int is_dma_buf_file(struct file *file)
512 return file->f_op == &dma_buf_fops;
515 static struct file *dma_buf_getfile(struct dma_buf *dmabuf, int flags)
517 static atomic64_t dmabuf_inode = ATOMIC64_INIT(0);
519 struct inode *inode = alloc_anon_inode(dma_buf_mnt->mnt_sb);
522 return ERR_CAST(inode);
524 inode->i_size = dmabuf->size;
525 inode_set_bytes(inode, dmabuf->size);
528 * The ->i_ino acquired from get_next_ino() is not unique thus
529 * not suitable for using it as dentry name by dmabuf stats.
530 * Override ->i_ino with the unique and dmabuffs specific
533 inode->i_ino = atomic64_add_return(1, &dmabuf_inode);
534 flags &= O_ACCMODE | O_NONBLOCK;
535 file = alloc_file_pseudo(inode, dma_buf_mnt, "dmabuf",
536 flags, &dma_buf_fops);
539 file->private_data = dmabuf;
540 file->f_path.dentry->d_fsdata = dmabuf;
550 * DOC: dma buf device access
552 * For device DMA access to a shared DMA buffer the usual sequence of operations
555 * 1. The exporter defines his exporter instance using
556 * DEFINE_DMA_BUF_EXPORT_INFO() and calls dma_buf_export() to wrap a private
557 * buffer object into a &dma_buf. It then exports that &dma_buf to userspace
558 * as a file descriptor by calling dma_buf_fd().
560 * 2. Userspace passes this file-descriptors to all drivers it wants this buffer
561 * to share with: First the file descriptor is converted to a &dma_buf using
562 * dma_buf_get(). Then the buffer is attached to the device using
565 * Up to this stage the exporter is still free to migrate or reallocate the
568 * 3. Once the buffer is attached to all devices userspace can initiate DMA
569 * access to the shared buffer. In the kernel this is done by calling
570 * dma_buf_map_attachment() and dma_buf_unmap_attachment().
572 * 4. Once a driver is done with a shared buffer it needs to call
573 * dma_buf_detach() (after cleaning up any mappings) and then release the
574 * reference acquired with dma_buf_get() by calling dma_buf_put().
576 * For the detailed semantics exporters are expected to implement see
581 * dma_buf_export - Creates a new dma_buf, and associates an anon file
582 * with this buffer, so it can be exported.
583 * Also connect the allocator specific data and ops to the buffer.
584 * Additionally, provide a name string for exporter; useful in debugging.
586 * @exp_info: [in] holds all the export related information provided
587 * by the exporter. see &struct dma_buf_export_info
588 * for further details.
590 * Returns, on success, a newly created struct dma_buf object, which wraps the
591 * supplied private data and operations for struct dma_buf_ops. On either
592 * missing ops, or error in allocating struct dma_buf, will return negative
595 * For most cases the easiest way to create @exp_info is through the
596 * %DEFINE_DMA_BUF_EXPORT_INFO macro.
598 struct dma_buf *dma_buf_export(const struct dma_buf_export_info *exp_info)
600 struct dma_buf *dmabuf;
601 struct dma_resv *resv = exp_info->resv;
603 size_t alloc_size = sizeof(struct dma_buf);
607 alloc_size += sizeof(struct dma_resv);
609 /* prevent &dma_buf[1] == dma_buf->resv */
612 if (WARN_ON(!exp_info->priv
614 || !exp_info->ops->map_dma_buf
615 || !exp_info->ops->unmap_dma_buf
616 || !exp_info->ops->release)) {
617 return ERR_PTR(-EINVAL);
620 if (WARN_ON(exp_info->ops->cache_sgt_mapping &&
621 (exp_info->ops->pin || exp_info->ops->unpin)))
622 return ERR_PTR(-EINVAL);
624 if (WARN_ON(!exp_info->ops->pin != !exp_info->ops->unpin))
625 return ERR_PTR(-EINVAL);
627 if (!try_module_get(exp_info->owner))
628 return ERR_PTR(-ENOENT);
630 dmabuf = kzalloc(alloc_size, GFP_KERNEL);
636 dmabuf->priv = exp_info->priv;
637 dmabuf->ops = exp_info->ops;
638 dmabuf->size = exp_info->size;
639 dmabuf->exp_name = exp_info->exp_name;
640 dmabuf->owner = exp_info->owner;
641 spin_lock_init(&dmabuf->name_lock);
642 init_waitqueue_head(&dmabuf->poll);
643 dmabuf->cb_in.poll = dmabuf->cb_out.poll = &dmabuf->poll;
644 dmabuf->cb_in.active = dmabuf->cb_out.active = 0;
647 resv = (struct dma_resv *)&dmabuf[1];
652 file = dma_buf_getfile(dmabuf, exp_info->flags);
660 mutex_init(&dmabuf->lock);
661 INIT_LIST_HEAD(&dmabuf->attachments);
663 mutex_lock(&db_list.lock);
664 list_add(&dmabuf->list_node, &db_list.head);
665 mutex_unlock(&db_list.lock);
667 ret = dma_buf_stats_setup(dmabuf);
675 * Set file->f_path.dentry->d_fsdata to NULL so that when
676 * dma_buf_release() gets invoked by dentry_ops, it exits
677 * early before calling the release() dma_buf op.
679 file->f_path.dentry->d_fsdata = NULL;
684 module_put(exp_info->owner);
687 EXPORT_SYMBOL_NS_GPL(dma_buf_export, DMA_BUF);
690 * dma_buf_fd - returns a file descriptor for the given struct dma_buf
691 * @dmabuf: [in] pointer to dma_buf for which fd is required.
692 * @flags: [in] flags to give to fd
694 * On success, returns an associated 'fd'. Else, returns error.
696 int dma_buf_fd(struct dma_buf *dmabuf, int flags)
700 if (!dmabuf || !dmabuf->file)
703 fd = get_unused_fd_flags(flags);
707 fd_install(fd, dmabuf->file);
711 EXPORT_SYMBOL_NS_GPL(dma_buf_fd, DMA_BUF);
714 * dma_buf_get - returns the struct dma_buf related to an fd
715 * @fd: [in] fd associated with the struct dma_buf to be returned
717 * On success, returns the struct dma_buf associated with an fd; uses
718 * file's refcounting done by fget to increase refcount. returns ERR_PTR
721 struct dma_buf *dma_buf_get(int fd)
728 return ERR_PTR(-EBADF);
730 if (!is_dma_buf_file(file)) {
732 return ERR_PTR(-EINVAL);
735 return file->private_data;
737 EXPORT_SYMBOL_NS_GPL(dma_buf_get, DMA_BUF);
740 * dma_buf_put - decreases refcount of the buffer
741 * @dmabuf: [in] buffer to reduce refcount of
743 * Uses file's refcounting done implicitly by fput().
745 * If, as a result of this call, the refcount becomes 0, the 'release' file
746 * operation related to this fd is called. It calls &dma_buf_ops.release vfunc
747 * in turn, and frees the memory allocated for dmabuf when exported.
749 void dma_buf_put(struct dma_buf *dmabuf)
751 if (WARN_ON(!dmabuf || !dmabuf->file))
756 EXPORT_SYMBOL_NS_GPL(dma_buf_put, DMA_BUF);
758 static void mangle_sg_table(struct sg_table *sg_table)
760 #ifdef CONFIG_DMABUF_DEBUG
762 struct scatterlist *sg;
764 /* To catch abuse of the underlying struct page by importers mix
765 * up the bits, but take care to preserve the low SG_ bits to
766 * not corrupt the sgt. The mixing is undone in __unmap_dma_buf
767 * before passing the sgt back to the exporter. */
768 for_each_sgtable_sg(sg_table, sg, i)
769 sg->page_link ^= ~0xffUL;
773 static struct sg_table * __map_dma_buf(struct dma_buf_attachment *attach,
774 enum dma_data_direction direction)
776 struct sg_table *sg_table;
779 sg_table = attach->dmabuf->ops->map_dma_buf(attach, direction);
780 if (IS_ERR_OR_NULL(sg_table))
783 if (!dma_buf_attachment_is_dynamic(attach)) {
784 ret = dma_resv_wait_timeout(attach->dmabuf->resv,
785 DMA_RESV_USAGE_KERNEL, true,
786 MAX_SCHEDULE_TIMEOUT);
788 attach->dmabuf->ops->unmap_dma_buf(attach, sg_table,
794 mangle_sg_table(sg_table);
799 * dma_buf_dynamic_attach - Add the device to dma_buf's attachments list
800 * @dmabuf: [in] buffer to attach device to.
801 * @dev: [in] device to be attached.
802 * @importer_ops: [in] importer operations for the attachment
803 * @importer_priv: [in] importer private pointer for the attachment
805 * Returns struct dma_buf_attachment pointer for this attachment. Attachments
806 * must be cleaned up by calling dma_buf_detach().
808 * Optionally this calls &dma_buf_ops.attach to allow device-specific attach
813 * A pointer to newly created &dma_buf_attachment on success, or a negative
814 * error code wrapped into a pointer on failure.
816 * Note that this can fail if the backing storage of @dmabuf is in a place not
817 * accessible to @dev, and cannot be moved to a more suitable place. This is
818 * indicated with the error code -EBUSY.
820 struct dma_buf_attachment *
821 dma_buf_dynamic_attach(struct dma_buf *dmabuf, struct device *dev,
822 const struct dma_buf_attach_ops *importer_ops,
825 struct dma_buf_attachment *attach;
828 if (WARN_ON(!dmabuf || !dev))
829 return ERR_PTR(-EINVAL);
831 if (WARN_ON(importer_ops && !importer_ops->move_notify))
832 return ERR_PTR(-EINVAL);
834 attach = kzalloc(sizeof(*attach), GFP_KERNEL);
836 return ERR_PTR(-ENOMEM);
839 attach->dmabuf = dmabuf;
841 attach->peer2peer = importer_ops->allow_peer2peer;
842 attach->importer_ops = importer_ops;
843 attach->importer_priv = importer_priv;
845 if (dmabuf->ops->attach) {
846 ret = dmabuf->ops->attach(dmabuf, attach);
850 dma_resv_lock(dmabuf->resv, NULL);
851 list_add(&attach->node, &dmabuf->attachments);
852 dma_resv_unlock(dmabuf->resv);
854 /* When either the importer or the exporter can't handle dynamic
855 * mappings we cache the mapping here to avoid issues with the
856 * reservation object lock.
858 if (dma_buf_attachment_is_dynamic(attach) !=
859 dma_buf_is_dynamic(dmabuf)) {
860 struct sg_table *sgt;
862 if (dma_buf_is_dynamic(attach->dmabuf)) {
863 dma_resv_lock(attach->dmabuf->resv, NULL);
864 ret = dmabuf->ops->pin(attach);
869 sgt = __map_dma_buf(attach, DMA_BIDIRECTIONAL);
871 sgt = ERR_PTR(-ENOMEM);
876 if (dma_buf_is_dynamic(attach->dmabuf))
877 dma_resv_unlock(attach->dmabuf->resv);
879 attach->dir = DMA_BIDIRECTIONAL;
889 if (dma_buf_is_dynamic(attach->dmabuf))
890 dmabuf->ops->unpin(attach);
893 if (dma_buf_is_dynamic(attach->dmabuf))
894 dma_resv_unlock(attach->dmabuf->resv);
896 dma_buf_detach(dmabuf, attach);
899 EXPORT_SYMBOL_NS_GPL(dma_buf_dynamic_attach, DMA_BUF);
902 * dma_buf_attach - Wrapper for dma_buf_dynamic_attach
903 * @dmabuf: [in] buffer to attach device to.
904 * @dev: [in] device to be attached.
906 * Wrapper to call dma_buf_dynamic_attach() for drivers which still use a static
909 struct dma_buf_attachment *dma_buf_attach(struct dma_buf *dmabuf,
912 return dma_buf_dynamic_attach(dmabuf, dev, NULL, NULL);
914 EXPORT_SYMBOL_NS_GPL(dma_buf_attach, DMA_BUF);
916 static void __unmap_dma_buf(struct dma_buf_attachment *attach,
917 struct sg_table *sg_table,
918 enum dma_data_direction direction)
920 /* uses XOR, hence this unmangles */
921 mangle_sg_table(sg_table);
923 attach->dmabuf->ops->unmap_dma_buf(attach, sg_table, direction);
927 * dma_buf_detach - Remove the given attachment from dmabuf's attachments list
928 * @dmabuf: [in] buffer to detach from.
929 * @attach: [in] attachment to be detached; is free'd after this call.
931 * Clean up a device attachment obtained by calling dma_buf_attach().
933 * Optionally this calls &dma_buf_ops.detach for device-specific detach.
935 void dma_buf_detach(struct dma_buf *dmabuf, struct dma_buf_attachment *attach)
937 if (WARN_ON(!dmabuf || !attach))
941 if (dma_buf_is_dynamic(attach->dmabuf))
942 dma_resv_lock(attach->dmabuf->resv, NULL);
944 __unmap_dma_buf(attach, attach->sgt, attach->dir);
946 if (dma_buf_is_dynamic(attach->dmabuf)) {
947 dmabuf->ops->unpin(attach);
948 dma_resv_unlock(attach->dmabuf->resv);
952 dma_resv_lock(dmabuf->resv, NULL);
953 list_del(&attach->node);
954 dma_resv_unlock(dmabuf->resv);
955 if (dmabuf->ops->detach)
956 dmabuf->ops->detach(dmabuf, attach);
960 EXPORT_SYMBOL_NS_GPL(dma_buf_detach, DMA_BUF);
963 * dma_buf_pin - Lock down the DMA-buf
964 * @attach: [in] attachment which should be pinned
966 * Only dynamic importers (who set up @attach with dma_buf_dynamic_attach()) may
967 * call this, and only for limited use cases like scanout and not for temporary
968 * pin operations. It is not permitted to allow userspace to pin arbitrary
969 * amounts of buffers through this interface.
971 * Buffers must be unpinned by calling dma_buf_unpin().
974 * 0 on success, negative error code on failure.
976 int dma_buf_pin(struct dma_buf_attachment *attach)
978 struct dma_buf *dmabuf = attach->dmabuf;
981 WARN_ON(!dma_buf_attachment_is_dynamic(attach));
983 dma_resv_assert_held(dmabuf->resv);
985 if (dmabuf->ops->pin)
986 ret = dmabuf->ops->pin(attach);
990 EXPORT_SYMBOL_NS_GPL(dma_buf_pin, DMA_BUF);
993 * dma_buf_unpin - Unpin a DMA-buf
994 * @attach: [in] attachment which should be unpinned
996 * This unpins a buffer pinned by dma_buf_pin() and allows the exporter to move
997 * any mapping of @attach again and inform the importer through
998 * &dma_buf_attach_ops.move_notify.
1000 void dma_buf_unpin(struct dma_buf_attachment *attach)
1002 struct dma_buf *dmabuf = attach->dmabuf;
1004 WARN_ON(!dma_buf_attachment_is_dynamic(attach));
1006 dma_resv_assert_held(dmabuf->resv);
1008 if (dmabuf->ops->unpin)
1009 dmabuf->ops->unpin(attach);
1011 EXPORT_SYMBOL_NS_GPL(dma_buf_unpin, DMA_BUF);
1014 * dma_buf_map_attachment - Returns the scatterlist table of the attachment;
1015 * mapped into _device_ address space. Is a wrapper for map_dma_buf() of the
1017 * @attach: [in] attachment whose scatterlist is to be returned
1018 * @direction: [in] direction of DMA transfer
1020 * Returns sg_table containing the scatterlist to be returned; returns ERR_PTR
1021 * on error. May return -EINTR if it is interrupted by a signal.
1023 * On success, the DMA addresses and lengths in the returned scatterlist are
1024 * PAGE_SIZE aligned.
1026 * A mapping must be unmapped by using dma_buf_unmap_attachment(). Note that
1027 * the underlying backing storage is pinned for as long as a mapping exists,
1028 * therefore users/importers should not hold onto a mapping for undue amounts of
1031 * Important: Dynamic importers must wait for the exclusive fence of the struct
1032 * dma_resv attached to the DMA-BUF first.
1034 struct sg_table *dma_buf_map_attachment(struct dma_buf_attachment *attach,
1035 enum dma_data_direction direction)
1037 struct sg_table *sg_table;
1042 if (WARN_ON(!attach || !attach->dmabuf))
1043 return ERR_PTR(-EINVAL);
1045 if (dma_buf_attachment_is_dynamic(attach))
1046 dma_resv_assert_held(attach->dmabuf->resv);
1050 * Two mappings with different directions for the same
1051 * attachment are not allowed.
1053 if (attach->dir != direction &&
1054 attach->dir != DMA_BIDIRECTIONAL)
1055 return ERR_PTR(-EBUSY);
1060 if (dma_buf_is_dynamic(attach->dmabuf)) {
1061 dma_resv_assert_held(attach->dmabuf->resv);
1062 if (!IS_ENABLED(CONFIG_DMABUF_MOVE_NOTIFY)) {
1063 r = attach->dmabuf->ops->pin(attach);
1069 sg_table = __map_dma_buf(attach, direction);
1071 sg_table = ERR_PTR(-ENOMEM);
1073 if (IS_ERR(sg_table) && dma_buf_is_dynamic(attach->dmabuf) &&
1074 !IS_ENABLED(CONFIG_DMABUF_MOVE_NOTIFY))
1075 attach->dmabuf->ops->unpin(attach);
1077 if (!IS_ERR(sg_table) && attach->dmabuf->ops->cache_sgt_mapping) {
1078 attach->sgt = sg_table;
1079 attach->dir = direction;
1082 #ifdef CONFIG_DMA_API_DEBUG
1083 if (!IS_ERR(sg_table)) {
1084 struct scatterlist *sg;
1089 for_each_sgtable_dma_sg(sg_table, sg, i) {
1090 addr = sg_dma_address(sg);
1091 len = sg_dma_len(sg);
1092 if (!PAGE_ALIGNED(addr) || !PAGE_ALIGNED(len)) {
1093 pr_debug("%s: addr %llx or len %x is not page aligned!\n",
1094 __func__, addr, len);
1098 #endif /* CONFIG_DMA_API_DEBUG */
1101 EXPORT_SYMBOL_NS_GPL(dma_buf_map_attachment, DMA_BUF);
1104 * dma_buf_unmap_attachment - unmaps and decreases usecount of the buffer;might
1105 * deallocate the scatterlist associated. Is a wrapper for unmap_dma_buf() of
1107 * @attach: [in] attachment to unmap buffer from
1108 * @sg_table: [in] scatterlist info of the buffer to unmap
1109 * @direction: [in] direction of DMA transfer
1111 * This unmaps a DMA mapping for @attached obtained by dma_buf_map_attachment().
1113 void dma_buf_unmap_attachment(struct dma_buf_attachment *attach,
1114 struct sg_table *sg_table,
1115 enum dma_data_direction direction)
1119 if (WARN_ON(!attach || !attach->dmabuf || !sg_table))
1122 if (dma_buf_attachment_is_dynamic(attach))
1123 dma_resv_assert_held(attach->dmabuf->resv);
1125 if (attach->sgt == sg_table)
1128 if (dma_buf_is_dynamic(attach->dmabuf))
1129 dma_resv_assert_held(attach->dmabuf->resv);
1131 __unmap_dma_buf(attach, sg_table, direction);
1133 if (dma_buf_is_dynamic(attach->dmabuf) &&
1134 !IS_ENABLED(CONFIG_DMABUF_MOVE_NOTIFY))
1135 dma_buf_unpin(attach);
1137 EXPORT_SYMBOL_NS_GPL(dma_buf_unmap_attachment, DMA_BUF);
1140 * dma_buf_move_notify - notify attachments that DMA-buf is moving
1142 * @dmabuf: [in] buffer which is moving
1144 * Informs all attachmenst that they need to destroy and recreated all their
1147 void dma_buf_move_notify(struct dma_buf *dmabuf)
1149 struct dma_buf_attachment *attach;
1151 dma_resv_assert_held(dmabuf->resv);
1153 list_for_each_entry(attach, &dmabuf->attachments, node)
1154 if (attach->importer_ops)
1155 attach->importer_ops->move_notify(attach);
1157 EXPORT_SYMBOL_NS_GPL(dma_buf_move_notify, DMA_BUF);
1162 * There are mutliple reasons for supporting CPU access to a dma buffer object:
1164 * - Fallback operations in the kernel, for example when a device is connected
1165 * over USB and the kernel needs to shuffle the data around first before
1166 * sending it away. Cache coherency is handled by braketing any transactions
1167 * with calls to dma_buf_begin_cpu_access() and dma_buf_end_cpu_access()
1170 * Since for most kernel internal dma-buf accesses need the entire buffer, a
1171 * vmap interface is introduced. Note that on very old 32-bit architectures
1172 * vmalloc space might be limited and result in vmap calls failing.
1176 * void \*dma_buf_vmap(struct dma_buf \*dmabuf, struct iosys_map \*map)
1177 * void dma_buf_vunmap(struct dma_buf \*dmabuf, struct iosys_map \*map)
1179 * The vmap call can fail if there is no vmap support in the exporter, or if
1180 * it runs out of vmalloc space. Note that the dma-buf layer keeps a reference
1181 * count for all vmap access and calls down into the exporter's vmap function
1182 * only when no vmapping exists, and only unmaps it once. Protection against
1183 * concurrent vmap/vunmap calls is provided by taking the &dma_buf.lock mutex.
1185 * - For full compatibility on the importer side with existing userspace
1186 * interfaces, which might already support mmap'ing buffers. This is needed in
1187 * many processing pipelines (e.g. feeding a software rendered image into a
1188 * hardware pipeline, thumbnail creation, snapshots, ...). Also, Android's ION
1189 * framework already supported this and for DMA buffer file descriptors to
1190 * replace ION buffers mmap support was needed.
1192 * There is no special interfaces, userspace simply calls mmap on the dma-buf
1193 * fd. But like for CPU access there's a need to braket the actual access,
1194 * which is handled by the ioctl (DMA_BUF_IOCTL_SYNC). Note that
1195 * DMA_BUF_IOCTL_SYNC can fail with -EAGAIN or -EINTR, in which case it must
1198 * Some systems might need some sort of cache coherency management e.g. when
1199 * CPU and GPU domains are being accessed through dma-buf at the same time.
1200 * To circumvent this problem there are begin/end coherency markers, that
1201 * forward directly to existing dma-buf device drivers vfunc hooks. Userspace
1202 * can make use of those markers through the DMA_BUF_IOCTL_SYNC ioctl. The
1203 * sequence would be used like following:
1206 * - for each drawing/upload cycle in CPU 1. SYNC_START ioctl, 2. read/write
1207 * to mmap area 3. SYNC_END ioctl. This can be repeated as often as you
1208 * want (with the new data being consumed by say the GPU or the scanout
1210 * - munmap once you don't need the buffer any more
1212 * For correctness and optimal performance, it is always required to use
1213 * SYNC_START and SYNC_END before and after, respectively, when accessing the
1214 * mapped address. Userspace cannot rely on coherent access, even when there
1215 * are systems where it just works without calling these ioctls.
1217 * - And as a CPU fallback in userspace processing pipelines.
1219 * Similar to the motivation for kernel cpu access it is again important that
1220 * the userspace code of a given importing subsystem can use the same
1221 * interfaces with a imported dma-buf buffer object as with a native buffer
1222 * object. This is especially important for drm where the userspace part of
1223 * contemporary OpenGL, X, and other drivers is huge, and reworking them to
1224 * use a different way to mmap a buffer rather invasive.
1226 * The assumption in the current dma-buf interfaces is that redirecting the
1227 * initial mmap is all that's needed. A survey of some of the existing
1228 * subsystems shows that no driver seems to do any nefarious thing like
1229 * syncing up with outstanding asynchronous processing on the device or
1230 * allocating special resources at fault time. So hopefully this is good
1231 * enough, since adding interfaces to intercept pagefaults and allow pte
1232 * shootdowns would increase the complexity quite a bit.
1236 * int dma_buf_mmap(struct dma_buf \*, struct vm_area_struct \*,
1239 * If the importing subsystem simply provides a special-purpose mmap call to
1240 * set up a mapping in userspace, calling do_mmap with &dma_buf.file will
1241 * equally achieve that for a dma-buf object.
1244 static int __dma_buf_begin_cpu_access(struct dma_buf *dmabuf,
1245 enum dma_data_direction direction)
1247 bool write = (direction == DMA_BIDIRECTIONAL ||
1248 direction == DMA_TO_DEVICE);
1249 struct dma_resv *resv = dmabuf->resv;
1252 /* Wait on any implicit rendering fences */
1253 ret = dma_resv_wait_timeout(resv, dma_resv_usage_rw(write),
1254 true, MAX_SCHEDULE_TIMEOUT);
1262 * dma_buf_begin_cpu_access - Must be called before accessing a dma_buf from the
1263 * cpu in the kernel context. Calls begin_cpu_access to allow exporter-specific
1264 * preparations. Coherency is only guaranteed in the specified range for the
1265 * specified access direction.
1266 * @dmabuf: [in] buffer to prepare cpu access for.
1267 * @direction: [in] length of range for cpu access.
1269 * After the cpu access is complete the caller should call
1270 * dma_buf_end_cpu_access(). Only when cpu access is braketed by both calls is
1271 * it guaranteed to be coherent with other DMA access.
1273 * This function will also wait for any DMA transactions tracked through
1274 * implicit synchronization in &dma_buf.resv. For DMA transactions with explicit
1275 * synchronization this function will only ensure cache coherency, callers must
1276 * ensure synchronization with such DMA transactions on their own.
1278 * Can return negative error values, returns 0 on success.
1280 int dma_buf_begin_cpu_access(struct dma_buf *dmabuf,
1281 enum dma_data_direction direction)
1285 if (WARN_ON(!dmabuf))
1288 might_lock(&dmabuf->resv->lock.base);
1290 if (dmabuf->ops->begin_cpu_access)
1291 ret = dmabuf->ops->begin_cpu_access(dmabuf, direction);
1293 /* Ensure that all fences are waited upon - but we first allow
1294 * the native handler the chance to do so more efficiently if it
1295 * chooses. A double invocation here will be reasonably cheap no-op.
1298 ret = __dma_buf_begin_cpu_access(dmabuf, direction);
1302 EXPORT_SYMBOL_NS_GPL(dma_buf_begin_cpu_access, DMA_BUF);
1305 * dma_buf_end_cpu_access - Must be called after accessing a dma_buf from the
1306 * cpu in the kernel context. Calls end_cpu_access to allow exporter-specific
1307 * actions. Coherency is only guaranteed in the specified range for the
1308 * specified access direction.
1309 * @dmabuf: [in] buffer to complete cpu access for.
1310 * @direction: [in] length of range for cpu access.
1312 * This terminates CPU access started with dma_buf_begin_cpu_access().
1314 * Can return negative error values, returns 0 on success.
1316 int dma_buf_end_cpu_access(struct dma_buf *dmabuf,
1317 enum dma_data_direction direction)
1323 might_lock(&dmabuf->resv->lock.base);
1325 if (dmabuf->ops->end_cpu_access)
1326 ret = dmabuf->ops->end_cpu_access(dmabuf, direction);
1330 EXPORT_SYMBOL_NS_GPL(dma_buf_end_cpu_access, DMA_BUF);
1334 * dma_buf_mmap - Setup up a userspace mmap with the given vma
1335 * @dmabuf: [in] buffer that should back the vma
1336 * @vma: [in] vma for the mmap
1337 * @pgoff: [in] offset in pages where this mmap should start within the
1340 * This function adjusts the passed in vma so that it points at the file of the
1341 * dma_buf operation. It also adjusts the starting pgoff and does bounds
1342 * checking on the size of the vma. Then it calls the exporters mmap function to
1343 * set up the mapping.
1345 * Can return negative error values, returns 0 on success.
1347 int dma_buf_mmap(struct dma_buf *dmabuf, struct vm_area_struct *vma,
1348 unsigned long pgoff)
1350 if (WARN_ON(!dmabuf || !vma))
1353 /* check if buffer supports mmap */
1354 if (!dmabuf->ops->mmap)
1357 /* check for offset overflow */
1358 if (pgoff + vma_pages(vma) < pgoff)
1361 /* check for overflowing the buffer's size */
1362 if (pgoff + vma_pages(vma) >
1363 dmabuf->size >> PAGE_SHIFT)
1366 /* readjust the vma */
1367 vma_set_file(vma, dmabuf->file);
1368 vma->vm_pgoff = pgoff;
1370 return dmabuf->ops->mmap(dmabuf, vma);
1372 EXPORT_SYMBOL_NS_GPL(dma_buf_mmap, DMA_BUF);
1375 * dma_buf_vmap - Create virtual mapping for the buffer object into kernel
1376 * address space. Same restrictions as for vmap and friends apply.
1377 * @dmabuf: [in] buffer to vmap
1378 * @map: [out] returns the vmap pointer
1380 * This call may fail due to lack of virtual mapping address space.
1381 * These calls are optional in drivers. The intended use for them
1382 * is for mapping objects linear in kernel space for high use objects.
1384 * To ensure coherency users must call dma_buf_begin_cpu_access() and
1385 * dma_buf_end_cpu_access() around any cpu access performed through this
1388 * Returns 0 on success, or a negative errno code otherwise.
1390 int dma_buf_vmap(struct dma_buf *dmabuf, struct iosys_map *map)
1392 struct iosys_map ptr;
1395 iosys_map_clear(map);
1397 if (WARN_ON(!dmabuf))
1400 if (!dmabuf->ops->vmap)
1403 mutex_lock(&dmabuf->lock);
1404 if (dmabuf->vmapping_counter) {
1405 dmabuf->vmapping_counter++;
1406 BUG_ON(iosys_map_is_null(&dmabuf->vmap_ptr));
1407 *map = dmabuf->vmap_ptr;
1411 BUG_ON(iosys_map_is_set(&dmabuf->vmap_ptr));
1413 ret = dmabuf->ops->vmap(dmabuf, &ptr);
1414 if (WARN_ON_ONCE(ret))
1417 dmabuf->vmap_ptr = ptr;
1418 dmabuf->vmapping_counter = 1;
1420 *map = dmabuf->vmap_ptr;
1423 mutex_unlock(&dmabuf->lock);
1426 EXPORT_SYMBOL_NS_GPL(dma_buf_vmap, DMA_BUF);
1429 * dma_buf_vunmap - Unmap a vmap obtained by dma_buf_vmap.
1430 * @dmabuf: [in] buffer to vunmap
1431 * @map: [in] vmap pointer to vunmap
1433 void dma_buf_vunmap(struct dma_buf *dmabuf, struct iosys_map *map)
1435 if (WARN_ON(!dmabuf))
1438 BUG_ON(iosys_map_is_null(&dmabuf->vmap_ptr));
1439 BUG_ON(dmabuf->vmapping_counter == 0);
1440 BUG_ON(!iosys_map_is_equal(&dmabuf->vmap_ptr, map));
1442 mutex_lock(&dmabuf->lock);
1443 if (--dmabuf->vmapping_counter == 0) {
1444 if (dmabuf->ops->vunmap)
1445 dmabuf->ops->vunmap(dmabuf, map);
1446 iosys_map_clear(&dmabuf->vmap_ptr);
1448 mutex_unlock(&dmabuf->lock);
1450 EXPORT_SYMBOL_NS_GPL(dma_buf_vunmap, DMA_BUF);
1452 #ifdef CONFIG_DEBUG_FS
1453 static int dma_buf_debug_show(struct seq_file *s, void *unused)
1455 struct dma_buf *buf_obj;
1456 struct dma_buf_attachment *attach_obj;
1457 int count = 0, attach_count;
1461 ret = mutex_lock_interruptible(&db_list.lock);
1466 seq_puts(s, "\nDma-buf Objects:\n");
1467 seq_printf(s, "%-8s\t%-8s\t%-8s\t%-8s\texp_name\t%-8s\tname\n",
1468 "size", "flags", "mode", "count", "ino");
1470 list_for_each_entry(buf_obj, &db_list.head, list_node) {
1472 ret = dma_resv_lock_interruptible(buf_obj->resv, NULL);
1477 spin_lock(&buf_obj->name_lock);
1478 seq_printf(s, "%08zu\t%08x\t%08x\t%08ld\t%s\t%08lu\t%s\n",
1480 buf_obj->file->f_flags, buf_obj->file->f_mode,
1481 file_count(buf_obj->file),
1483 file_inode(buf_obj->file)->i_ino,
1484 buf_obj->name ?: "<none>");
1485 spin_unlock(&buf_obj->name_lock);
1487 dma_resv_describe(buf_obj->resv, s);
1489 seq_puts(s, "\tAttached Devices:\n");
1492 list_for_each_entry(attach_obj, &buf_obj->attachments, node) {
1493 seq_printf(s, "\t%s\n", dev_name(attach_obj->dev));
1496 dma_resv_unlock(buf_obj->resv);
1498 seq_printf(s, "Total %d devices attached\n\n",
1502 size += buf_obj->size;
1505 seq_printf(s, "\nTotal %d objects, %zu bytes\n", count, size);
1507 mutex_unlock(&db_list.lock);
1511 mutex_unlock(&db_list.lock);
1515 DEFINE_SHOW_ATTRIBUTE(dma_buf_debug);
1517 static struct dentry *dma_buf_debugfs_dir;
1519 static int dma_buf_init_debugfs(void)
1524 d = debugfs_create_dir("dma_buf", NULL);
1528 dma_buf_debugfs_dir = d;
1530 d = debugfs_create_file("bufinfo", S_IRUGO, dma_buf_debugfs_dir,
1531 NULL, &dma_buf_debug_fops);
1533 pr_debug("dma_buf: debugfs: failed to create node bufinfo\n");
1534 debugfs_remove_recursive(dma_buf_debugfs_dir);
1535 dma_buf_debugfs_dir = NULL;
1542 static void dma_buf_uninit_debugfs(void)
1544 debugfs_remove_recursive(dma_buf_debugfs_dir);
1547 static inline int dma_buf_init_debugfs(void)
1551 static inline void dma_buf_uninit_debugfs(void)
1556 static int __init dma_buf_init(void)
1560 ret = dma_buf_init_sysfs_statistics();
1564 dma_buf_mnt = kern_mount(&dma_buf_fs_type);
1565 if (IS_ERR(dma_buf_mnt))
1566 return PTR_ERR(dma_buf_mnt);
1568 mutex_init(&db_list.lock);
1569 INIT_LIST_HEAD(&db_list.head);
1570 dma_buf_init_debugfs();
1573 subsys_initcall(dma_buf_init);
1575 static void __exit dma_buf_deinit(void)
1577 dma_buf_uninit_debugfs();
1578 kern_unmount(dma_buf_mnt);
1579 dma_buf_uninit_sysfs_statistics();
1581 __exitcall(dma_buf_deinit);