Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
[platform/kernel/linux-rpi.git] / drivers / dma / uniphier-xdmac.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * External DMA controller driver for UniPhier SoCs
4  * Copyright 2019 Socionext Inc.
5  * Author: Kunihiko Hayashi <hayashi.kunihiko@socionext.com>
6  */
7
8 #include <linux/bitops.h>
9 #include <linux/bitfield.h>
10 #include <linux/iopoll.h>
11 #include <linux/module.h>
12 #include <linux/of.h>
13 #include <linux/of_dma.h>
14 #include <linux/platform_device.h>
15 #include <linux/slab.h>
16
17 #include "dmaengine.h"
18 #include "virt-dma.h"
19
20 #define XDMAC_CH_WIDTH          0x100
21
22 #define XDMAC_TFA               0x08
23 #define XDMAC_TFA_MCNT_MASK     GENMASK(23, 16)
24 #define XDMAC_TFA_MASK          GENMASK(5, 0)
25 #define XDMAC_SADM              0x10
26 #define XDMAC_SADM_STW_MASK     GENMASK(25, 24)
27 #define XDMAC_SADM_SAM          BIT(4)
28 #define XDMAC_SADM_SAM_FIXED    XDMAC_SADM_SAM
29 #define XDMAC_SADM_SAM_INC      0
30 #define XDMAC_DADM              0x14
31 #define XDMAC_DADM_DTW_MASK     XDMAC_SADM_STW_MASK
32 #define XDMAC_DADM_DAM          XDMAC_SADM_SAM
33 #define XDMAC_DADM_DAM_FIXED    XDMAC_SADM_SAM_FIXED
34 #define XDMAC_DADM_DAM_INC      XDMAC_SADM_SAM_INC
35 #define XDMAC_EXSAD             0x18
36 #define XDMAC_EXDAD             0x1c
37 #define XDMAC_SAD               0x20
38 #define XDMAC_DAD               0x24
39 #define XDMAC_ITS               0x28
40 #define XDMAC_ITS_MASK          GENMASK(25, 0)
41 #define XDMAC_TNUM              0x2c
42 #define XDMAC_TNUM_MASK         GENMASK(15, 0)
43 #define XDMAC_TSS               0x30
44 #define XDMAC_TSS_REQ           BIT(0)
45 #define XDMAC_IEN               0x34
46 #define XDMAC_IEN_ERRIEN        BIT(1)
47 #define XDMAC_IEN_ENDIEN        BIT(0)
48 #define XDMAC_STAT              0x40
49 #define XDMAC_STAT_TENF         BIT(0)
50 #define XDMAC_IR                0x44
51 #define XDMAC_IR_ERRF           BIT(1)
52 #define XDMAC_IR_ENDF           BIT(0)
53 #define XDMAC_ID                0x48
54 #define XDMAC_ID_ERRIDF         BIT(1)
55 #define XDMAC_ID_ENDIDF         BIT(0)
56
57 #define XDMAC_MAX_CHANS         16
58 #define XDMAC_INTERVAL_CLKS     20
59 #define XDMAC_MAX_WORDS         XDMAC_TNUM_MASK
60
61 /* cut lower bit for maintain alignment of maximum transfer size */
62 #define XDMAC_MAX_WORD_SIZE     (XDMAC_ITS_MASK & ~GENMASK(3, 0))
63
64 #define UNIPHIER_XDMAC_BUSWIDTHS \
65         (BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
66          BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
67          BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) | \
68          BIT(DMA_SLAVE_BUSWIDTH_8_BYTES))
69
70 struct uniphier_xdmac_desc_node {
71         dma_addr_t src;
72         dma_addr_t dst;
73         u32 burst_size;
74         u32 nr_burst;
75 };
76
77 struct uniphier_xdmac_desc {
78         struct virt_dma_desc vd;
79
80         unsigned int nr_node;
81         unsigned int cur_node;
82         enum dma_transfer_direction dir;
83         struct uniphier_xdmac_desc_node nodes[];
84 };
85
86 struct uniphier_xdmac_chan {
87         struct virt_dma_chan vc;
88         struct uniphier_xdmac_device *xdev;
89         struct uniphier_xdmac_desc *xd;
90         void __iomem *reg_ch_base;
91         struct dma_slave_config sconfig;
92         int id;
93         unsigned int req_factor;
94 };
95
96 struct uniphier_xdmac_device {
97         struct dma_device ddev;
98         void __iomem *reg_base;
99         int nr_chans;
100         struct uniphier_xdmac_chan channels[];
101 };
102
103 static struct uniphier_xdmac_chan *
104 to_uniphier_xdmac_chan(struct virt_dma_chan *vc)
105 {
106         return container_of(vc, struct uniphier_xdmac_chan, vc);
107 }
108
109 static struct uniphier_xdmac_desc *
110 to_uniphier_xdmac_desc(struct virt_dma_desc *vd)
111 {
112         return container_of(vd, struct uniphier_xdmac_desc, vd);
113 }
114
115 /* xc->vc.lock must be held by caller */
116 static struct uniphier_xdmac_desc *
117 uniphier_xdmac_next_desc(struct uniphier_xdmac_chan *xc)
118 {
119         struct virt_dma_desc *vd;
120
121         vd = vchan_next_desc(&xc->vc);
122         if (!vd)
123                 return NULL;
124
125         list_del(&vd->node);
126
127         return to_uniphier_xdmac_desc(vd);
128 }
129
130 /* xc->vc.lock must be held by caller */
131 static void uniphier_xdmac_chan_start(struct uniphier_xdmac_chan *xc,
132                                       struct uniphier_xdmac_desc *xd)
133 {
134         u32 src_mode, src_width;
135         u32 dst_mode, dst_width;
136         dma_addr_t src_addr, dst_addr;
137         u32 val, its, tnum;
138         enum dma_slave_buswidth buswidth;
139
140         src_addr = xd->nodes[xd->cur_node].src;
141         dst_addr = xd->nodes[xd->cur_node].dst;
142         its      = xd->nodes[xd->cur_node].burst_size;
143         tnum     = xd->nodes[xd->cur_node].nr_burst;
144
145         /*
146          * The width of MEM side must be 4 or 8 bytes, that does not
147          * affect that of DEV side and transfer size.
148          */
149         if (xd->dir == DMA_DEV_TO_MEM) {
150                 src_mode = XDMAC_SADM_SAM_FIXED;
151                 buswidth = xc->sconfig.src_addr_width;
152         } else {
153                 src_mode = XDMAC_SADM_SAM_INC;
154                 buswidth = DMA_SLAVE_BUSWIDTH_8_BYTES;
155         }
156         src_width = FIELD_PREP(XDMAC_SADM_STW_MASK, __ffs(buswidth));
157
158         if (xd->dir == DMA_MEM_TO_DEV) {
159                 dst_mode = XDMAC_DADM_DAM_FIXED;
160                 buswidth = xc->sconfig.dst_addr_width;
161         } else {
162                 dst_mode = XDMAC_DADM_DAM_INC;
163                 buswidth = DMA_SLAVE_BUSWIDTH_8_BYTES;
164         }
165         dst_width = FIELD_PREP(XDMAC_DADM_DTW_MASK, __ffs(buswidth));
166
167         /* setup transfer factor */
168         val = FIELD_PREP(XDMAC_TFA_MCNT_MASK, XDMAC_INTERVAL_CLKS);
169         val |= FIELD_PREP(XDMAC_TFA_MASK, xc->req_factor);
170         writel(val, xc->reg_ch_base + XDMAC_TFA);
171
172         /* setup the channel */
173         writel(lower_32_bits(src_addr), xc->reg_ch_base + XDMAC_SAD);
174         writel(upper_32_bits(src_addr), xc->reg_ch_base + XDMAC_EXSAD);
175
176         writel(lower_32_bits(dst_addr), xc->reg_ch_base + XDMAC_DAD);
177         writel(upper_32_bits(dst_addr), xc->reg_ch_base + XDMAC_EXDAD);
178
179         src_mode |= src_width;
180         dst_mode |= dst_width;
181         writel(src_mode, xc->reg_ch_base + XDMAC_SADM);
182         writel(dst_mode, xc->reg_ch_base + XDMAC_DADM);
183
184         writel(its, xc->reg_ch_base + XDMAC_ITS);
185         writel(tnum, xc->reg_ch_base + XDMAC_TNUM);
186
187         /* enable interrupt */
188         writel(XDMAC_IEN_ENDIEN | XDMAC_IEN_ERRIEN,
189                xc->reg_ch_base + XDMAC_IEN);
190
191         /* start XDMAC */
192         val = readl(xc->reg_ch_base + XDMAC_TSS);
193         val |= XDMAC_TSS_REQ;
194         writel(val, xc->reg_ch_base + XDMAC_TSS);
195 }
196
197 /* xc->vc.lock must be held by caller */
198 static int uniphier_xdmac_chan_stop(struct uniphier_xdmac_chan *xc)
199 {
200         u32 val;
201
202         /* disable interrupt */
203         val = readl(xc->reg_ch_base + XDMAC_IEN);
204         val &= ~(XDMAC_IEN_ENDIEN | XDMAC_IEN_ERRIEN);
205         writel(val, xc->reg_ch_base + XDMAC_IEN);
206
207         /* stop XDMAC */
208         val = readl(xc->reg_ch_base + XDMAC_TSS);
209         val &= ~XDMAC_TSS_REQ;
210         writel(0, xc->reg_ch_base + XDMAC_TSS);
211
212         /* wait until transfer is stopped */
213         return readl_poll_timeout_atomic(xc->reg_ch_base + XDMAC_STAT, val,
214                                          !(val & XDMAC_STAT_TENF), 100, 1000);
215 }
216
217 /* xc->vc.lock must be held by caller */
218 static void uniphier_xdmac_start(struct uniphier_xdmac_chan *xc)
219 {
220         struct uniphier_xdmac_desc *xd;
221
222         xd = uniphier_xdmac_next_desc(xc);
223         if (xd)
224                 uniphier_xdmac_chan_start(xc, xd);
225
226         /* set desc to chan regardless of xd is null */
227         xc->xd = xd;
228 }
229
230 static void uniphier_xdmac_chan_irq(struct uniphier_xdmac_chan *xc)
231 {
232         u32 stat;
233         int ret;
234
235         spin_lock(&xc->vc.lock);
236
237         stat = readl(xc->reg_ch_base + XDMAC_ID);
238
239         if (stat & XDMAC_ID_ERRIDF) {
240                 ret = uniphier_xdmac_chan_stop(xc);
241                 if (ret)
242                         dev_err(xc->xdev->ddev.dev,
243                                 "DMA transfer error with aborting issue\n");
244                 else
245                         dev_err(xc->xdev->ddev.dev,
246                                 "DMA transfer error\n");
247
248         } else if ((stat & XDMAC_ID_ENDIDF) && xc->xd) {
249                 xc->xd->cur_node++;
250                 if (xc->xd->cur_node >= xc->xd->nr_node) {
251                         vchan_cookie_complete(&xc->xd->vd);
252                         uniphier_xdmac_start(xc);
253                 } else {
254                         uniphier_xdmac_chan_start(xc, xc->xd);
255                 }
256         }
257
258         /* write bits to clear */
259         writel(stat, xc->reg_ch_base + XDMAC_IR);
260
261         spin_unlock(&xc->vc.lock);
262 }
263
264 static irqreturn_t uniphier_xdmac_irq_handler(int irq, void *dev_id)
265 {
266         struct uniphier_xdmac_device *xdev = dev_id;
267         int i;
268
269         for (i = 0; i < xdev->nr_chans; i++)
270                 uniphier_xdmac_chan_irq(&xdev->channels[i]);
271
272         return IRQ_HANDLED;
273 }
274
275 static void uniphier_xdmac_free_chan_resources(struct dma_chan *chan)
276 {
277         vchan_free_chan_resources(to_virt_chan(chan));
278 }
279
280 static struct dma_async_tx_descriptor *
281 uniphier_xdmac_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dst,
282                                dma_addr_t src, size_t len, unsigned long flags)
283 {
284         struct virt_dma_chan *vc = to_virt_chan(chan);
285         struct uniphier_xdmac_desc *xd;
286         unsigned int nr;
287         size_t burst_size, tlen;
288         int i;
289
290         if (len > XDMAC_MAX_WORD_SIZE * XDMAC_MAX_WORDS)
291                 return NULL;
292
293         nr = 1 + len / XDMAC_MAX_WORD_SIZE;
294
295         xd = kzalloc(struct_size(xd, nodes, nr), GFP_NOWAIT);
296         if (!xd)
297                 return NULL;
298
299         for (i = 0; i < nr; i++) {
300                 burst_size = min_t(size_t, len, XDMAC_MAX_WORD_SIZE);
301                 xd->nodes[i].src = src;
302                 xd->nodes[i].dst = dst;
303                 xd->nodes[i].burst_size = burst_size;
304                 xd->nodes[i].nr_burst = len / burst_size;
305                 tlen = rounddown(len, burst_size);
306                 src += tlen;
307                 dst += tlen;
308                 len -= tlen;
309         }
310
311         xd->dir = DMA_MEM_TO_MEM;
312         xd->nr_node = nr;
313         xd->cur_node = 0;
314
315         return vchan_tx_prep(vc, &xd->vd, flags);
316 }
317
318 static struct dma_async_tx_descriptor *
319 uniphier_xdmac_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
320                              unsigned int sg_len,
321                              enum dma_transfer_direction direction,
322                              unsigned long flags, void *context)
323 {
324         struct virt_dma_chan *vc = to_virt_chan(chan);
325         struct uniphier_xdmac_chan *xc = to_uniphier_xdmac_chan(vc);
326         struct uniphier_xdmac_desc *xd;
327         struct scatterlist *sg;
328         enum dma_slave_buswidth buswidth;
329         u32 maxburst;
330         int i;
331
332         if (!is_slave_direction(direction))
333                 return NULL;
334
335         if (direction == DMA_DEV_TO_MEM) {
336                 buswidth = xc->sconfig.src_addr_width;
337                 maxburst = xc->sconfig.src_maxburst;
338         } else {
339                 buswidth = xc->sconfig.dst_addr_width;
340                 maxburst = xc->sconfig.dst_maxburst;
341         }
342
343         if (!maxburst)
344                 maxburst = 1;
345         if (maxburst > xc->xdev->ddev.max_burst) {
346                 dev_err(xc->xdev->ddev.dev,
347                         "Exceed maximum number of burst words\n");
348                 return NULL;
349         }
350
351         xd = kzalloc(struct_size(xd, nodes, sg_len), GFP_NOWAIT);
352         if (!xd)
353                 return NULL;
354
355         for_each_sg(sgl, sg, sg_len, i) {
356                 xd->nodes[i].src = (direction == DMA_DEV_TO_MEM)
357                         ? xc->sconfig.src_addr : sg_dma_address(sg);
358                 xd->nodes[i].dst = (direction == DMA_MEM_TO_DEV)
359                         ? xc->sconfig.dst_addr : sg_dma_address(sg);
360                 xd->nodes[i].burst_size = maxburst * buswidth;
361                 xd->nodes[i].nr_burst =
362                         sg_dma_len(sg) / xd->nodes[i].burst_size;
363
364                 /*
365                  * Currently transfer that size doesn't align the unit size
366                  * (the number of burst words * bus-width) is not allowed,
367                  * because the driver does not support the way to transfer
368                  * residue size. As a matter of fact, in order to transfer
369                  * arbitrary size, 'src_maxburst' or 'dst_maxburst' of
370                  * dma_slave_config must be 1.
371                  */
372                 if (sg_dma_len(sg) % xd->nodes[i].burst_size) {
373                         dev_err(xc->xdev->ddev.dev,
374                                 "Unaligned transfer size: %d", sg_dma_len(sg));
375                         kfree(xd);
376                         return NULL;
377                 }
378
379                 if (xd->nodes[i].nr_burst > XDMAC_MAX_WORDS) {
380                         dev_err(xc->xdev->ddev.dev,
381                                 "Exceed maximum transfer size");
382                         kfree(xd);
383                         return NULL;
384                 }
385         }
386
387         xd->dir = direction;
388         xd->nr_node = sg_len;
389         xd->cur_node = 0;
390
391         return vchan_tx_prep(vc, &xd->vd, flags);
392 }
393
394 static int uniphier_xdmac_slave_config(struct dma_chan *chan,
395                                        struct dma_slave_config *config)
396 {
397         struct virt_dma_chan *vc = to_virt_chan(chan);
398         struct uniphier_xdmac_chan *xc = to_uniphier_xdmac_chan(vc);
399
400         memcpy(&xc->sconfig, config, sizeof(*config));
401
402         return 0;
403 }
404
405 static int uniphier_xdmac_terminate_all(struct dma_chan *chan)
406 {
407         struct virt_dma_chan *vc = to_virt_chan(chan);
408         struct uniphier_xdmac_chan *xc = to_uniphier_xdmac_chan(vc);
409         unsigned long flags;
410         int ret = 0;
411         LIST_HEAD(head);
412
413         spin_lock_irqsave(&vc->lock, flags);
414
415         if (xc->xd) {
416                 vchan_terminate_vdesc(&xc->xd->vd);
417                 xc->xd = NULL;
418                 ret = uniphier_xdmac_chan_stop(xc);
419         }
420
421         vchan_get_all_descriptors(vc, &head);
422
423         spin_unlock_irqrestore(&vc->lock, flags);
424
425         vchan_dma_desc_free_list(vc, &head);
426
427         return ret;
428 }
429
430 static void uniphier_xdmac_synchronize(struct dma_chan *chan)
431 {
432         vchan_synchronize(to_virt_chan(chan));
433 }
434
435 static void uniphier_xdmac_issue_pending(struct dma_chan *chan)
436 {
437         struct virt_dma_chan *vc = to_virt_chan(chan);
438         struct uniphier_xdmac_chan *xc = to_uniphier_xdmac_chan(vc);
439         unsigned long flags;
440
441         spin_lock_irqsave(&vc->lock, flags);
442
443         if (vchan_issue_pending(vc) && !xc->xd)
444                 uniphier_xdmac_start(xc);
445
446         spin_unlock_irqrestore(&vc->lock, flags);
447 }
448
449 static void uniphier_xdmac_desc_free(struct virt_dma_desc *vd)
450 {
451         kfree(to_uniphier_xdmac_desc(vd));
452 }
453
454 static void uniphier_xdmac_chan_init(struct uniphier_xdmac_device *xdev,
455                                      int ch)
456 {
457         struct uniphier_xdmac_chan *xc = &xdev->channels[ch];
458
459         xc->xdev = xdev;
460         xc->reg_ch_base = xdev->reg_base + XDMAC_CH_WIDTH * ch;
461         xc->vc.desc_free = uniphier_xdmac_desc_free;
462
463         vchan_init(&xc->vc, &xdev->ddev);
464 }
465
466 static struct dma_chan *of_dma_uniphier_xlate(struct of_phandle_args *dma_spec,
467                                               struct of_dma *ofdma)
468 {
469         struct uniphier_xdmac_device *xdev = ofdma->of_dma_data;
470         int chan_id = dma_spec->args[0];
471
472         if (chan_id >= xdev->nr_chans)
473                 return NULL;
474
475         xdev->channels[chan_id].id = chan_id;
476         xdev->channels[chan_id].req_factor = dma_spec->args[1];
477
478         return dma_get_slave_channel(&xdev->channels[chan_id].vc.chan);
479 }
480
481 static int uniphier_xdmac_probe(struct platform_device *pdev)
482 {
483         struct uniphier_xdmac_device *xdev;
484         struct device *dev = &pdev->dev;
485         struct dma_device *ddev;
486         int irq;
487         int nr_chans;
488         int i, ret;
489
490         if (of_property_read_u32(dev->of_node, "dma-channels", &nr_chans))
491                 return -EINVAL;
492         if (nr_chans > XDMAC_MAX_CHANS)
493                 nr_chans = XDMAC_MAX_CHANS;
494
495         xdev = devm_kzalloc(dev, struct_size(xdev, channels, nr_chans),
496                             GFP_KERNEL);
497         if (!xdev)
498                 return -ENOMEM;
499
500         xdev->nr_chans = nr_chans;
501         xdev->reg_base = devm_platform_ioremap_resource(pdev, 0);
502         if (IS_ERR(xdev->reg_base))
503                 return PTR_ERR(xdev->reg_base);
504
505         ddev = &xdev->ddev;
506         ddev->dev = dev;
507         dma_cap_zero(ddev->cap_mask);
508         dma_cap_set(DMA_MEMCPY, ddev->cap_mask);
509         dma_cap_set(DMA_SLAVE, ddev->cap_mask);
510         ddev->src_addr_widths = UNIPHIER_XDMAC_BUSWIDTHS;
511         ddev->dst_addr_widths = UNIPHIER_XDMAC_BUSWIDTHS;
512         ddev->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV) |
513                            BIT(DMA_MEM_TO_MEM);
514         ddev->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
515         ddev->max_burst = XDMAC_MAX_WORDS;
516         ddev->device_free_chan_resources = uniphier_xdmac_free_chan_resources;
517         ddev->device_prep_dma_memcpy = uniphier_xdmac_prep_dma_memcpy;
518         ddev->device_prep_slave_sg = uniphier_xdmac_prep_slave_sg;
519         ddev->device_config = uniphier_xdmac_slave_config;
520         ddev->device_terminate_all = uniphier_xdmac_terminate_all;
521         ddev->device_synchronize = uniphier_xdmac_synchronize;
522         ddev->device_tx_status = dma_cookie_status;
523         ddev->device_issue_pending = uniphier_xdmac_issue_pending;
524         INIT_LIST_HEAD(&ddev->channels);
525
526         for (i = 0; i < nr_chans; i++)
527                 uniphier_xdmac_chan_init(xdev, i);
528
529         irq = platform_get_irq(pdev, 0);
530         if (irq < 0)
531                 return irq;
532
533         ret = devm_request_irq(dev, irq, uniphier_xdmac_irq_handler,
534                                IRQF_SHARED, "xdmac", xdev);
535         if (ret) {
536                 dev_err(dev, "Failed to request IRQ\n");
537                 return ret;
538         }
539
540         ret = dma_async_device_register(ddev);
541         if (ret) {
542                 dev_err(dev, "Failed to register XDMA device\n");
543                 return ret;
544         }
545
546         ret = of_dma_controller_register(dev->of_node,
547                                          of_dma_uniphier_xlate, xdev);
548         if (ret) {
549                 dev_err(dev, "Failed to register XDMA controller\n");
550                 goto out_unregister_dmac;
551         }
552
553         platform_set_drvdata(pdev, xdev);
554
555         dev_info(&pdev->dev, "UniPhier XDMAC driver (%d channels)\n",
556                  nr_chans);
557
558         return 0;
559
560 out_unregister_dmac:
561         dma_async_device_unregister(ddev);
562
563         return ret;
564 }
565
566 static int uniphier_xdmac_remove(struct platform_device *pdev)
567 {
568         struct uniphier_xdmac_device *xdev = platform_get_drvdata(pdev);
569         struct dma_device *ddev = &xdev->ddev;
570         struct dma_chan *chan;
571         int ret;
572
573         /*
574          * Before reaching here, almost all descriptors have been freed by the
575          * ->device_free_chan_resources() hook. However, each channel might
576          * be still holding one descriptor that was on-flight at that moment.
577          * Terminate it to make sure this hardware is no longer running. Then,
578          * free the channel resources once again to avoid memory leak.
579          */
580         list_for_each_entry(chan, &ddev->channels, device_node) {
581                 ret = dmaengine_terminate_sync(chan);
582                 if (ret)
583                         return ret;
584                 uniphier_xdmac_free_chan_resources(chan);
585         }
586
587         of_dma_controller_free(pdev->dev.of_node);
588         dma_async_device_unregister(ddev);
589
590         return 0;
591 }
592
593 static const struct of_device_id uniphier_xdmac_match[] = {
594         { .compatible = "socionext,uniphier-xdmac" },
595         { /* sentinel */ }
596 };
597 MODULE_DEVICE_TABLE(of, uniphier_xdmac_match);
598
599 static struct platform_driver uniphier_xdmac_driver = {
600         .probe = uniphier_xdmac_probe,
601         .remove = uniphier_xdmac_remove,
602         .driver = {
603                 .name = "uniphier-xdmac",
604                 .of_match_table = uniphier_xdmac_match,
605         },
606 };
607 module_platform_driver(uniphier_xdmac_driver);
608
609 MODULE_AUTHOR("Kunihiko Hayashi <hayashi.kunihiko@socionext.com>");
610 MODULE_DESCRIPTION("UniPhier external DMA controller driver");
611 MODULE_LICENSE("GPL v2");