Merge tag 's390-6.6-2' of git://git.kernel.org/pub/scm/linux/kernel/git/s390/linux
[platform/kernel/linux-rpi.git] / drivers / dma / tegra20-apb-dma.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * DMA driver for Nvidia's Tegra20 APB DMA controller.
4  *
5  * Copyright (c) 2012-2013, NVIDIA CORPORATION.  All rights reserved.
6  */
7
8 #include <linux/bitops.h>
9 #include <linux/clk.h>
10 #include <linux/delay.h>
11 #include <linux/dmaengine.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/err.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
16 #include <linux/io.h>
17 #include <linux/mm.h>
18 #include <linux/module.h>
19 #include <linux/of.h>
20 #include <linux/of_dma.h>
21 #include <linux/platform_device.h>
22 #include <linux/pm.h>
23 #include <linux/pm_runtime.h>
24 #include <linux/reset.h>
25 #include <linux/slab.h>
26 #include <linux/wait.h>
27
28 #include "dmaengine.h"
29
30 #define CREATE_TRACE_POINTS
31 #include <trace/events/tegra_apb_dma.h>
32
33 #define TEGRA_APBDMA_GENERAL                    0x0
34 #define TEGRA_APBDMA_GENERAL_ENABLE             BIT(31)
35
36 #define TEGRA_APBDMA_CONTROL                    0x010
37 #define TEGRA_APBDMA_IRQ_MASK                   0x01c
38 #define TEGRA_APBDMA_IRQ_MASK_SET               0x020
39
40 /* CSR register */
41 #define TEGRA_APBDMA_CHAN_CSR                   0x00
42 #define TEGRA_APBDMA_CSR_ENB                    BIT(31)
43 #define TEGRA_APBDMA_CSR_IE_EOC                 BIT(30)
44 #define TEGRA_APBDMA_CSR_HOLD                   BIT(29)
45 #define TEGRA_APBDMA_CSR_DIR                    BIT(28)
46 #define TEGRA_APBDMA_CSR_ONCE                   BIT(27)
47 #define TEGRA_APBDMA_CSR_FLOW                   BIT(21)
48 #define TEGRA_APBDMA_CSR_REQ_SEL_SHIFT          16
49 #define TEGRA_APBDMA_CSR_REQ_SEL_MASK           0x1F
50 #define TEGRA_APBDMA_CSR_WCOUNT_MASK            0xFFFC
51
52 /* STATUS register */
53 #define TEGRA_APBDMA_CHAN_STATUS                0x004
54 #define TEGRA_APBDMA_STATUS_BUSY                BIT(31)
55 #define TEGRA_APBDMA_STATUS_ISE_EOC             BIT(30)
56 #define TEGRA_APBDMA_STATUS_HALT                BIT(29)
57 #define TEGRA_APBDMA_STATUS_PING_PONG           BIT(28)
58 #define TEGRA_APBDMA_STATUS_COUNT_SHIFT         2
59 #define TEGRA_APBDMA_STATUS_COUNT_MASK          0xFFFC
60
61 #define TEGRA_APBDMA_CHAN_CSRE                  0x00C
62 #define TEGRA_APBDMA_CHAN_CSRE_PAUSE            BIT(31)
63
64 /* AHB memory address */
65 #define TEGRA_APBDMA_CHAN_AHBPTR                0x010
66
67 /* AHB sequence register */
68 #define TEGRA_APBDMA_CHAN_AHBSEQ                0x14
69 #define TEGRA_APBDMA_AHBSEQ_INTR_ENB            BIT(31)
70 #define TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_8         (0 << 28)
71 #define TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_16        (1 << 28)
72 #define TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_32        (2 << 28)
73 #define TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_64        (3 << 28)
74 #define TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_128       (4 << 28)
75 #define TEGRA_APBDMA_AHBSEQ_DATA_SWAP           BIT(27)
76 #define TEGRA_APBDMA_AHBSEQ_BURST_1             (4 << 24)
77 #define TEGRA_APBDMA_AHBSEQ_BURST_4             (5 << 24)
78 #define TEGRA_APBDMA_AHBSEQ_BURST_8             (6 << 24)
79 #define TEGRA_APBDMA_AHBSEQ_DBL_BUF             BIT(19)
80 #define TEGRA_APBDMA_AHBSEQ_WRAP_SHIFT          16
81 #define TEGRA_APBDMA_AHBSEQ_WRAP_NONE           0
82
83 /* APB address */
84 #define TEGRA_APBDMA_CHAN_APBPTR                0x018
85
86 /* APB sequence register */
87 #define TEGRA_APBDMA_CHAN_APBSEQ                0x01c
88 #define TEGRA_APBDMA_APBSEQ_BUS_WIDTH_8         (0 << 28)
89 #define TEGRA_APBDMA_APBSEQ_BUS_WIDTH_16        (1 << 28)
90 #define TEGRA_APBDMA_APBSEQ_BUS_WIDTH_32        (2 << 28)
91 #define TEGRA_APBDMA_APBSEQ_BUS_WIDTH_64        (3 << 28)
92 #define TEGRA_APBDMA_APBSEQ_BUS_WIDTH_128       (4 << 28)
93 #define TEGRA_APBDMA_APBSEQ_DATA_SWAP           BIT(27)
94 #define TEGRA_APBDMA_APBSEQ_WRAP_WORD_1         (1 << 16)
95
96 /* Tegra148 specific registers */
97 #define TEGRA_APBDMA_CHAN_WCOUNT                0x20
98
99 #define TEGRA_APBDMA_CHAN_WORD_TRANSFER         0x24
100
101 /*
102  * If any burst is in flight and DMA paused then this is the time to complete
103  * on-flight burst and update DMA status register.
104  */
105 #define TEGRA_APBDMA_BURST_COMPLETE_TIME        20
106
107 /* Channel base address offset from APBDMA base address */
108 #define TEGRA_APBDMA_CHANNEL_BASE_ADD_OFFSET    0x1000
109
110 #define TEGRA_APBDMA_SLAVE_ID_INVALID   (TEGRA_APBDMA_CSR_REQ_SEL_MASK + 1)
111
112 struct tegra_dma;
113
114 /*
115  * tegra_dma_chip_data Tegra chip specific DMA data
116  * @nr_channels: Number of channels available in the controller.
117  * @channel_reg_size: Channel register size/stride.
118  * @max_dma_count: Maximum DMA transfer count supported by DMA controller.
119  * @support_channel_pause: Support channel wise pause of dma.
120  * @support_separate_wcount_reg: Support separate word count register.
121  */
122 struct tegra_dma_chip_data {
123         unsigned int nr_channels;
124         unsigned int channel_reg_size;
125         unsigned int max_dma_count;
126         bool support_channel_pause;
127         bool support_separate_wcount_reg;
128 };
129
130 /* DMA channel registers */
131 struct tegra_dma_channel_regs {
132         u32 csr;
133         u32 ahb_ptr;
134         u32 apb_ptr;
135         u32 ahb_seq;
136         u32 apb_seq;
137         u32 wcount;
138 };
139
140 /*
141  * tegra_dma_sg_req: DMA request details to configure hardware. This
142  * contains the details for one transfer to configure DMA hw.
143  * The client's request for data transfer can be broken into multiple
144  * sub-transfer as per requester details and hw support.
145  * This sub transfer get added in the list of transfer and point to Tegra
146  * DMA descriptor which manages the transfer details.
147  */
148 struct tegra_dma_sg_req {
149         struct tegra_dma_channel_regs   ch_regs;
150         unsigned int                    req_len;
151         bool                            configured;
152         bool                            last_sg;
153         struct list_head                node;
154         struct tegra_dma_desc           *dma_desc;
155         unsigned int                    words_xferred;
156 };
157
158 /*
159  * tegra_dma_desc: Tegra DMA descriptors which manages the client requests.
160  * This descriptor keep track of transfer status, callbacks and request
161  * counts etc.
162  */
163 struct tegra_dma_desc {
164         struct dma_async_tx_descriptor  txd;
165         unsigned int                    bytes_requested;
166         unsigned int                    bytes_transferred;
167         enum dma_status                 dma_status;
168         struct list_head                node;
169         struct list_head                tx_list;
170         struct list_head                cb_node;
171         unsigned int                    cb_count;
172 };
173
174 struct tegra_dma_channel;
175
176 typedef void (*dma_isr_handler)(struct tegra_dma_channel *tdc,
177                                 bool to_terminate);
178
179 /* tegra_dma_channel: Channel specific information */
180 struct tegra_dma_channel {
181         struct dma_chan         dma_chan;
182         char                    name[12];
183         bool                    config_init;
184         unsigned int            id;
185         void __iomem            *chan_addr;
186         spinlock_t              lock;
187         bool                    busy;
188         struct tegra_dma        *tdma;
189         bool                    cyclic;
190
191         /* Different lists for managing the requests */
192         struct list_head        free_sg_req;
193         struct list_head        pending_sg_req;
194         struct list_head        free_dma_desc;
195         struct list_head        cb_desc;
196
197         /* ISR handler and tasklet for bottom half of isr handling */
198         dma_isr_handler         isr_handler;
199         struct tasklet_struct   tasklet;
200
201         /* Channel-slave specific configuration */
202         unsigned int slave_id;
203         struct dma_slave_config dma_sconfig;
204         struct tegra_dma_channel_regs channel_reg;
205
206         struct wait_queue_head wq;
207 };
208
209 /* tegra_dma: Tegra DMA specific information */
210 struct tegra_dma {
211         struct dma_device               dma_dev;
212         struct device                   *dev;
213         struct clk                      *dma_clk;
214         struct reset_control            *rst;
215         spinlock_t                      global_lock;
216         void __iomem                    *base_addr;
217         const struct tegra_dma_chip_data *chip_data;
218
219         /*
220          * Counter for managing global pausing of the DMA controller.
221          * Only applicable for devices that don't support individual
222          * channel pausing.
223          */
224         u32                             global_pause_count;
225
226         /* Last member of the structure */
227         struct tegra_dma_channel channels[];
228 };
229
230 static inline void tdma_write(struct tegra_dma *tdma, u32 reg, u32 val)
231 {
232         writel(val, tdma->base_addr + reg);
233 }
234
235 static inline void tdc_write(struct tegra_dma_channel *tdc,
236                              u32 reg, u32 val)
237 {
238         writel(val, tdc->chan_addr + reg);
239 }
240
241 static inline u32 tdc_read(struct tegra_dma_channel *tdc, u32 reg)
242 {
243         return readl(tdc->chan_addr + reg);
244 }
245
246 static inline struct tegra_dma_channel *to_tegra_dma_chan(struct dma_chan *dc)
247 {
248         return container_of(dc, struct tegra_dma_channel, dma_chan);
249 }
250
251 static inline struct tegra_dma_desc *
252 txd_to_tegra_dma_desc(struct dma_async_tx_descriptor *td)
253 {
254         return container_of(td, struct tegra_dma_desc, txd);
255 }
256
257 static inline struct device *tdc2dev(struct tegra_dma_channel *tdc)
258 {
259         return &tdc->dma_chan.dev->device;
260 }
261
262 static dma_cookie_t tegra_dma_tx_submit(struct dma_async_tx_descriptor *tx);
263
264 /* Get DMA desc from free list, if not there then allocate it.  */
265 static struct tegra_dma_desc *tegra_dma_desc_get(struct tegra_dma_channel *tdc)
266 {
267         struct tegra_dma_desc *dma_desc;
268         unsigned long flags;
269
270         spin_lock_irqsave(&tdc->lock, flags);
271
272         /* Do not allocate if desc are waiting for ack */
273         list_for_each_entry(dma_desc, &tdc->free_dma_desc, node) {
274                 if (async_tx_test_ack(&dma_desc->txd) && !dma_desc->cb_count) {
275                         list_del(&dma_desc->node);
276                         spin_unlock_irqrestore(&tdc->lock, flags);
277                         dma_desc->txd.flags = 0;
278                         return dma_desc;
279                 }
280         }
281
282         spin_unlock_irqrestore(&tdc->lock, flags);
283
284         /* Allocate DMA desc */
285         dma_desc = kzalloc(sizeof(*dma_desc), GFP_NOWAIT);
286         if (!dma_desc)
287                 return NULL;
288
289         dma_async_tx_descriptor_init(&dma_desc->txd, &tdc->dma_chan);
290         dma_desc->txd.tx_submit = tegra_dma_tx_submit;
291         dma_desc->txd.flags = 0;
292
293         return dma_desc;
294 }
295
296 static void tegra_dma_desc_put(struct tegra_dma_channel *tdc,
297                                struct tegra_dma_desc *dma_desc)
298 {
299         unsigned long flags;
300
301         spin_lock_irqsave(&tdc->lock, flags);
302         if (!list_empty(&dma_desc->tx_list))
303                 list_splice_init(&dma_desc->tx_list, &tdc->free_sg_req);
304         list_add_tail(&dma_desc->node, &tdc->free_dma_desc);
305         spin_unlock_irqrestore(&tdc->lock, flags);
306 }
307
308 static struct tegra_dma_sg_req *
309 tegra_dma_sg_req_get(struct tegra_dma_channel *tdc)
310 {
311         struct tegra_dma_sg_req *sg_req;
312         unsigned long flags;
313
314         spin_lock_irqsave(&tdc->lock, flags);
315         if (!list_empty(&tdc->free_sg_req)) {
316                 sg_req = list_first_entry(&tdc->free_sg_req, typeof(*sg_req),
317                                           node);
318                 list_del(&sg_req->node);
319                 spin_unlock_irqrestore(&tdc->lock, flags);
320                 return sg_req;
321         }
322         spin_unlock_irqrestore(&tdc->lock, flags);
323
324         sg_req = kzalloc(sizeof(*sg_req), GFP_NOWAIT);
325
326         return sg_req;
327 }
328
329 static int tegra_dma_slave_config(struct dma_chan *dc,
330                                   struct dma_slave_config *sconfig)
331 {
332         struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
333
334         if (!list_empty(&tdc->pending_sg_req)) {
335                 dev_err(tdc2dev(tdc), "Configuration not allowed\n");
336                 return -EBUSY;
337         }
338
339         memcpy(&tdc->dma_sconfig, sconfig, sizeof(*sconfig));
340         tdc->config_init = true;
341
342         return 0;
343 }
344
345 static void tegra_dma_global_pause(struct tegra_dma_channel *tdc,
346                                    bool wait_for_burst_complete)
347 {
348         struct tegra_dma *tdma = tdc->tdma;
349
350         spin_lock(&tdma->global_lock);
351
352         if (tdc->tdma->global_pause_count == 0) {
353                 tdma_write(tdma, TEGRA_APBDMA_GENERAL, 0);
354                 if (wait_for_burst_complete)
355                         udelay(TEGRA_APBDMA_BURST_COMPLETE_TIME);
356         }
357
358         tdc->tdma->global_pause_count++;
359
360         spin_unlock(&tdma->global_lock);
361 }
362
363 static void tegra_dma_global_resume(struct tegra_dma_channel *tdc)
364 {
365         struct tegra_dma *tdma = tdc->tdma;
366
367         spin_lock(&tdma->global_lock);
368
369         if (WARN_ON(tdc->tdma->global_pause_count == 0))
370                 goto out;
371
372         if (--tdc->tdma->global_pause_count == 0)
373                 tdma_write(tdma, TEGRA_APBDMA_GENERAL,
374                            TEGRA_APBDMA_GENERAL_ENABLE);
375
376 out:
377         spin_unlock(&tdma->global_lock);
378 }
379
380 static void tegra_dma_pause(struct tegra_dma_channel *tdc,
381                             bool wait_for_burst_complete)
382 {
383         struct tegra_dma *tdma = tdc->tdma;
384
385         if (tdma->chip_data->support_channel_pause) {
386                 tdc_write(tdc, TEGRA_APBDMA_CHAN_CSRE,
387                           TEGRA_APBDMA_CHAN_CSRE_PAUSE);
388                 if (wait_for_burst_complete)
389                         udelay(TEGRA_APBDMA_BURST_COMPLETE_TIME);
390         } else {
391                 tegra_dma_global_pause(tdc, wait_for_burst_complete);
392         }
393 }
394
395 static void tegra_dma_resume(struct tegra_dma_channel *tdc)
396 {
397         struct tegra_dma *tdma = tdc->tdma;
398
399         if (tdma->chip_data->support_channel_pause)
400                 tdc_write(tdc, TEGRA_APBDMA_CHAN_CSRE, 0);
401         else
402                 tegra_dma_global_resume(tdc);
403 }
404
405 static void tegra_dma_stop(struct tegra_dma_channel *tdc)
406 {
407         u32 csr, status;
408
409         /* Disable interrupts */
410         csr = tdc_read(tdc, TEGRA_APBDMA_CHAN_CSR);
411         csr &= ~TEGRA_APBDMA_CSR_IE_EOC;
412         tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR, csr);
413
414         /* Disable DMA */
415         csr &= ~TEGRA_APBDMA_CSR_ENB;
416         tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR, csr);
417
418         /* Clear interrupt status if it is there */
419         status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
420         if (status & TEGRA_APBDMA_STATUS_ISE_EOC) {
421                 dev_dbg(tdc2dev(tdc), "%s():clearing interrupt\n", __func__);
422                 tdc_write(tdc, TEGRA_APBDMA_CHAN_STATUS, status);
423         }
424         tdc->busy = false;
425 }
426
427 static void tegra_dma_start(struct tegra_dma_channel *tdc,
428                             struct tegra_dma_sg_req *sg_req)
429 {
430         struct tegra_dma_channel_regs *ch_regs = &sg_req->ch_regs;
431
432         tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR, ch_regs->csr);
433         tdc_write(tdc, TEGRA_APBDMA_CHAN_APBSEQ, ch_regs->apb_seq);
434         tdc_write(tdc, TEGRA_APBDMA_CHAN_APBPTR, ch_regs->apb_ptr);
435         tdc_write(tdc, TEGRA_APBDMA_CHAN_AHBSEQ, ch_regs->ahb_seq);
436         tdc_write(tdc, TEGRA_APBDMA_CHAN_AHBPTR, ch_regs->ahb_ptr);
437         if (tdc->tdma->chip_data->support_separate_wcount_reg)
438                 tdc_write(tdc, TEGRA_APBDMA_CHAN_WCOUNT, ch_regs->wcount);
439
440         /* Start DMA */
441         tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR,
442                   ch_regs->csr | TEGRA_APBDMA_CSR_ENB);
443 }
444
445 static void tegra_dma_configure_for_next(struct tegra_dma_channel *tdc,
446                                          struct tegra_dma_sg_req *nsg_req)
447 {
448         unsigned long status;
449
450         /*
451          * The DMA controller reloads the new configuration for next transfer
452          * after last burst of current transfer completes.
453          * If there is no IEC status then this makes sure that last burst
454          * has not be completed. There may be case that last burst is on
455          * flight and so it can complete but because DMA is paused, it
456          * will not generates interrupt as well as not reload the new
457          * configuration.
458          * If there is already IEC status then interrupt handler need to
459          * load new configuration.
460          */
461         tegra_dma_pause(tdc, false);
462         status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
463
464         /*
465          * If interrupt is pending then do nothing as the ISR will handle
466          * the programing for new request.
467          */
468         if (status & TEGRA_APBDMA_STATUS_ISE_EOC) {
469                 dev_err(tdc2dev(tdc),
470                         "Skipping new configuration as interrupt is pending\n");
471                 tegra_dma_resume(tdc);
472                 return;
473         }
474
475         /* Safe to program new configuration */
476         tdc_write(tdc, TEGRA_APBDMA_CHAN_APBPTR, nsg_req->ch_regs.apb_ptr);
477         tdc_write(tdc, TEGRA_APBDMA_CHAN_AHBPTR, nsg_req->ch_regs.ahb_ptr);
478         if (tdc->tdma->chip_data->support_separate_wcount_reg)
479                 tdc_write(tdc, TEGRA_APBDMA_CHAN_WCOUNT,
480                           nsg_req->ch_regs.wcount);
481         tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR,
482                   nsg_req->ch_regs.csr | TEGRA_APBDMA_CSR_ENB);
483         nsg_req->configured = true;
484         nsg_req->words_xferred = 0;
485
486         tegra_dma_resume(tdc);
487 }
488
489 static void tdc_start_head_req(struct tegra_dma_channel *tdc)
490 {
491         struct tegra_dma_sg_req *sg_req;
492
493         sg_req = list_first_entry(&tdc->pending_sg_req, typeof(*sg_req), node);
494         tegra_dma_start(tdc, sg_req);
495         sg_req->configured = true;
496         sg_req->words_xferred = 0;
497         tdc->busy = true;
498 }
499
500 static void tdc_configure_next_head_desc(struct tegra_dma_channel *tdc)
501 {
502         struct tegra_dma_sg_req *hsgreq, *hnsgreq;
503
504         hsgreq = list_first_entry(&tdc->pending_sg_req, typeof(*hsgreq), node);
505         if (!list_is_last(&hsgreq->node, &tdc->pending_sg_req)) {
506                 hnsgreq = list_first_entry(&hsgreq->node, typeof(*hnsgreq),
507                                            node);
508                 tegra_dma_configure_for_next(tdc, hnsgreq);
509         }
510 }
511
512 static inline unsigned int
513 get_current_xferred_count(struct tegra_dma_channel *tdc,
514                           struct tegra_dma_sg_req *sg_req,
515                           unsigned long status)
516 {
517         return sg_req->req_len - (status & TEGRA_APBDMA_STATUS_COUNT_MASK) - 4;
518 }
519
520 static void tegra_dma_abort_all(struct tegra_dma_channel *tdc)
521 {
522         struct tegra_dma_desc *dma_desc;
523         struct tegra_dma_sg_req *sgreq;
524
525         while (!list_empty(&tdc->pending_sg_req)) {
526                 sgreq = list_first_entry(&tdc->pending_sg_req, typeof(*sgreq),
527                                          node);
528                 list_move_tail(&sgreq->node, &tdc->free_sg_req);
529                 if (sgreq->last_sg) {
530                         dma_desc = sgreq->dma_desc;
531                         dma_desc->dma_status = DMA_ERROR;
532                         list_add_tail(&dma_desc->node, &tdc->free_dma_desc);
533
534                         /* Add in cb list if it is not there. */
535                         if (!dma_desc->cb_count)
536                                 list_add_tail(&dma_desc->cb_node,
537                                               &tdc->cb_desc);
538                         dma_desc->cb_count++;
539                 }
540         }
541         tdc->isr_handler = NULL;
542 }
543
544 static bool handle_continuous_head_request(struct tegra_dma_channel *tdc,
545                                            bool to_terminate)
546 {
547         struct tegra_dma_sg_req *hsgreq;
548
549         /*
550          * Check that head req on list should be in flight.
551          * If it is not in flight then abort transfer as
552          * looping of transfer can not continue.
553          */
554         hsgreq = list_first_entry(&tdc->pending_sg_req, typeof(*hsgreq), node);
555         if (!hsgreq->configured) {
556                 tegra_dma_stop(tdc);
557                 pm_runtime_put(tdc->tdma->dev);
558                 dev_err(tdc2dev(tdc), "DMA transfer underflow, aborting DMA\n");
559                 tegra_dma_abort_all(tdc);
560                 return false;
561         }
562
563         /* Configure next request */
564         if (!to_terminate)
565                 tdc_configure_next_head_desc(tdc);
566
567         return true;
568 }
569
570 static void handle_once_dma_done(struct tegra_dma_channel *tdc,
571                                  bool to_terminate)
572 {
573         struct tegra_dma_desc *dma_desc;
574         struct tegra_dma_sg_req *sgreq;
575
576         tdc->busy = false;
577         sgreq = list_first_entry(&tdc->pending_sg_req, typeof(*sgreq), node);
578         dma_desc = sgreq->dma_desc;
579         dma_desc->bytes_transferred += sgreq->req_len;
580
581         list_del(&sgreq->node);
582         if (sgreq->last_sg) {
583                 dma_desc->dma_status = DMA_COMPLETE;
584                 dma_cookie_complete(&dma_desc->txd);
585                 if (!dma_desc->cb_count)
586                         list_add_tail(&dma_desc->cb_node, &tdc->cb_desc);
587                 dma_desc->cb_count++;
588                 list_add_tail(&dma_desc->node, &tdc->free_dma_desc);
589         }
590         list_add_tail(&sgreq->node, &tdc->free_sg_req);
591
592         /* Do not start DMA if it is going to be terminate */
593         if (to_terminate)
594                 return;
595
596         if (list_empty(&tdc->pending_sg_req)) {
597                 pm_runtime_put(tdc->tdma->dev);
598                 return;
599         }
600
601         tdc_start_head_req(tdc);
602 }
603
604 static void handle_cont_sngl_cycle_dma_done(struct tegra_dma_channel *tdc,
605                                             bool to_terminate)
606 {
607         struct tegra_dma_desc *dma_desc;
608         struct tegra_dma_sg_req *sgreq;
609         bool st;
610
611         sgreq = list_first_entry(&tdc->pending_sg_req, typeof(*sgreq), node);
612         dma_desc = sgreq->dma_desc;
613         /* if we dma for long enough the transfer count will wrap */
614         dma_desc->bytes_transferred =
615                 (dma_desc->bytes_transferred + sgreq->req_len) %
616                 dma_desc->bytes_requested;
617
618         /* Callback need to be call */
619         if (!dma_desc->cb_count)
620                 list_add_tail(&dma_desc->cb_node, &tdc->cb_desc);
621         dma_desc->cb_count++;
622
623         sgreq->words_xferred = 0;
624
625         /* If not last req then put at end of pending list */
626         if (!list_is_last(&sgreq->node, &tdc->pending_sg_req)) {
627                 list_move_tail(&sgreq->node, &tdc->pending_sg_req);
628                 sgreq->configured = false;
629                 st = handle_continuous_head_request(tdc, to_terminate);
630                 if (!st)
631                         dma_desc->dma_status = DMA_ERROR;
632         }
633 }
634
635 static void tegra_dma_tasklet(struct tasklet_struct *t)
636 {
637         struct tegra_dma_channel *tdc = from_tasklet(tdc, t, tasklet);
638         struct dmaengine_desc_callback cb;
639         struct tegra_dma_desc *dma_desc;
640         unsigned int cb_count;
641         unsigned long flags;
642
643         spin_lock_irqsave(&tdc->lock, flags);
644         while (!list_empty(&tdc->cb_desc)) {
645                 dma_desc = list_first_entry(&tdc->cb_desc, typeof(*dma_desc),
646                                             cb_node);
647                 list_del(&dma_desc->cb_node);
648                 dmaengine_desc_get_callback(&dma_desc->txd, &cb);
649                 cb_count = dma_desc->cb_count;
650                 dma_desc->cb_count = 0;
651                 trace_tegra_dma_complete_cb(&tdc->dma_chan, cb_count,
652                                             cb.callback);
653                 spin_unlock_irqrestore(&tdc->lock, flags);
654                 while (cb_count--)
655                         dmaengine_desc_callback_invoke(&cb, NULL);
656                 spin_lock_irqsave(&tdc->lock, flags);
657         }
658         spin_unlock_irqrestore(&tdc->lock, flags);
659 }
660
661 static irqreturn_t tegra_dma_isr(int irq, void *dev_id)
662 {
663         struct tegra_dma_channel *tdc = dev_id;
664         u32 status;
665
666         spin_lock(&tdc->lock);
667
668         trace_tegra_dma_isr(&tdc->dma_chan, irq);
669         status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
670         if (status & TEGRA_APBDMA_STATUS_ISE_EOC) {
671                 tdc_write(tdc, TEGRA_APBDMA_CHAN_STATUS, status);
672                 tdc->isr_handler(tdc, false);
673                 tasklet_schedule(&tdc->tasklet);
674                 wake_up_all(&tdc->wq);
675                 spin_unlock(&tdc->lock);
676                 return IRQ_HANDLED;
677         }
678
679         spin_unlock(&tdc->lock);
680         dev_info(tdc2dev(tdc), "Interrupt already served status 0x%08x\n",
681                  status);
682
683         return IRQ_NONE;
684 }
685
686 static dma_cookie_t tegra_dma_tx_submit(struct dma_async_tx_descriptor *txd)
687 {
688         struct tegra_dma_desc *dma_desc = txd_to_tegra_dma_desc(txd);
689         struct tegra_dma_channel *tdc = to_tegra_dma_chan(txd->chan);
690         unsigned long flags;
691         dma_cookie_t cookie;
692
693         spin_lock_irqsave(&tdc->lock, flags);
694         dma_desc->dma_status = DMA_IN_PROGRESS;
695         cookie = dma_cookie_assign(&dma_desc->txd);
696         list_splice_tail_init(&dma_desc->tx_list, &tdc->pending_sg_req);
697         spin_unlock_irqrestore(&tdc->lock, flags);
698
699         return cookie;
700 }
701
702 static void tegra_dma_issue_pending(struct dma_chan *dc)
703 {
704         struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
705         unsigned long flags;
706         int err;
707
708         spin_lock_irqsave(&tdc->lock, flags);
709         if (list_empty(&tdc->pending_sg_req)) {
710                 dev_err(tdc2dev(tdc), "No DMA request\n");
711                 goto end;
712         }
713         if (!tdc->busy) {
714                 err = pm_runtime_resume_and_get(tdc->tdma->dev);
715                 if (err < 0) {
716                         dev_err(tdc2dev(tdc), "Failed to enable DMA\n");
717                         goto end;
718                 }
719
720                 tdc_start_head_req(tdc);
721
722                 /* Continuous single mode: Configure next req */
723                 if (tdc->cyclic) {
724                         /*
725                          * Wait for 1 burst time for configure DMA for
726                          * next transfer.
727                          */
728                         udelay(TEGRA_APBDMA_BURST_COMPLETE_TIME);
729                         tdc_configure_next_head_desc(tdc);
730                 }
731         }
732 end:
733         spin_unlock_irqrestore(&tdc->lock, flags);
734 }
735
736 static int tegra_dma_terminate_all(struct dma_chan *dc)
737 {
738         struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
739         struct tegra_dma_desc *dma_desc;
740         struct tegra_dma_sg_req *sgreq;
741         unsigned long flags;
742         u32 status, wcount;
743         bool was_busy;
744
745         spin_lock_irqsave(&tdc->lock, flags);
746
747         if (!tdc->busy)
748                 goto skip_dma_stop;
749
750         /* Pause DMA before checking the queue status */
751         tegra_dma_pause(tdc, true);
752
753         status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
754         if (status & TEGRA_APBDMA_STATUS_ISE_EOC) {
755                 dev_dbg(tdc2dev(tdc), "%s():handling isr\n", __func__);
756                 tdc->isr_handler(tdc, true);
757                 status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
758         }
759         if (tdc->tdma->chip_data->support_separate_wcount_reg)
760                 wcount = tdc_read(tdc, TEGRA_APBDMA_CHAN_WORD_TRANSFER);
761         else
762                 wcount = status;
763
764         was_busy = tdc->busy;
765         tegra_dma_stop(tdc);
766
767         if (!list_empty(&tdc->pending_sg_req) && was_busy) {
768                 sgreq = list_first_entry(&tdc->pending_sg_req, typeof(*sgreq),
769                                          node);
770                 sgreq->dma_desc->bytes_transferred +=
771                                 get_current_xferred_count(tdc, sgreq, wcount);
772         }
773         tegra_dma_resume(tdc);
774
775         pm_runtime_put(tdc->tdma->dev);
776         wake_up_all(&tdc->wq);
777
778 skip_dma_stop:
779         tegra_dma_abort_all(tdc);
780
781         while (!list_empty(&tdc->cb_desc)) {
782                 dma_desc = list_first_entry(&tdc->cb_desc, typeof(*dma_desc),
783                                             cb_node);
784                 list_del(&dma_desc->cb_node);
785                 dma_desc->cb_count = 0;
786         }
787         spin_unlock_irqrestore(&tdc->lock, flags);
788
789         return 0;
790 }
791
792 static bool tegra_dma_eoc_interrupt_deasserted(struct tegra_dma_channel *tdc)
793 {
794         unsigned long flags;
795         u32 status;
796
797         spin_lock_irqsave(&tdc->lock, flags);
798         status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
799         spin_unlock_irqrestore(&tdc->lock, flags);
800
801         return !(status & TEGRA_APBDMA_STATUS_ISE_EOC);
802 }
803
804 static void tegra_dma_synchronize(struct dma_chan *dc)
805 {
806         struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
807         int err;
808
809         err = pm_runtime_resume_and_get(tdc->tdma->dev);
810         if (err < 0) {
811                 dev_err(tdc2dev(tdc), "Failed to synchronize DMA: %d\n", err);
812                 return;
813         }
814
815         /*
816          * CPU, which handles interrupt, could be busy in
817          * uninterruptible state, in this case sibling CPU
818          * should wait until interrupt is handled.
819          */
820         wait_event(tdc->wq, tegra_dma_eoc_interrupt_deasserted(tdc));
821
822         tasklet_kill(&tdc->tasklet);
823
824         pm_runtime_put(tdc->tdma->dev);
825 }
826
827 static unsigned int tegra_dma_sg_bytes_xferred(struct tegra_dma_channel *tdc,
828                                                struct tegra_dma_sg_req *sg_req)
829 {
830         u32 status, wcount = 0;
831
832         if (!list_is_first(&sg_req->node, &tdc->pending_sg_req))
833                 return 0;
834
835         if (tdc->tdma->chip_data->support_separate_wcount_reg)
836                 wcount = tdc_read(tdc, TEGRA_APBDMA_CHAN_WORD_TRANSFER);
837
838         status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
839
840         if (!tdc->tdma->chip_data->support_separate_wcount_reg)
841                 wcount = status;
842
843         if (status & TEGRA_APBDMA_STATUS_ISE_EOC)
844                 return sg_req->req_len;
845
846         wcount = get_current_xferred_count(tdc, sg_req, wcount);
847
848         if (!wcount) {
849                 /*
850                  * If wcount wasn't ever polled for this SG before, then
851                  * simply assume that transfer hasn't started yet.
852                  *
853                  * Otherwise it's the end of the transfer.
854                  *
855                  * The alternative would be to poll the status register
856                  * until EOC bit is set or wcount goes UP. That's so
857                  * because EOC bit is getting set only after the last
858                  * burst's completion and counter is less than the actual
859                  * transfer size by 4 bytes. The counter value wraps around
860                  * in a cyclic mode before EOC is set(!), so we can't easily
861                  * distinguish start of transfer from its end.
862                  */
863                 if (sg_req->words_xferred)
864                         wcount = sg_req->req_len - 4;
865
866         } else if (wcount < sg_req->words_xferred) {
867                 /*
868                  * This case will never happen for a non-cyclic transfer.
869                  *
870                  * For a cyclic transfer, although it is possible for the
871                  * next transfer to have already started (resetting the word
872                  * count), this case should still not happen because we should
873                  * have detected that the EOC bit is set and hence the transfer
874                  * was completed.
875                  */
876                 WARN_ON_ONCE(1);
877
878                 wcount = sg_req->req_len - 4;
879         } else {
880                 sg_req->words_xferred = wcount;
881         }
882
883         return wcount;
884 }
885
886 static enum dma_status tegra_dma_tx_status(struct dma_chan *dc,
887                                            dma_cookie_t cookie,
888                                            struct dma_tx_state *txstate)
889 {
890         struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
891         struct tegra_dma_desc *dma_desc;
892         struct tegra_dma_sg_req *sg_req;
893         enum dma_status ret;
894         unsigned long flags;
895         unsigned int residual;
896         unsigned int bytes = 0;
897
898         ret = dma_cookie_status(dc, cookie, txstate);
899         if (ret == DMA_COMPLETE)
900                 return ret;
901
902         spin_lock_irqsave(&tdc->lock, flags);
903
904         /* Check on wait_ack desc status */
905         list_for_each_entry(dma_desc, &tdc->free_dma_desc, node) {
906                 if (dma_desc->txd.cookie == cookie) {
907                         ret = dma_desc->dma_status;
908                         goto found;
909                 }
910         }
911
912         /* Check in pending list */
913         list_for_each_entry(sg_req, &tdc->pending_sg_req, node) {
914                 dma_desc = sg_req->dma_desc;
915                 if (dma_desc->txd.cookie == cookie) {
916                         bytes = tegra_dma_sg_bytes_xferred(tdc, sg_req);
917                         ret = dma_desc->dma_status;
918                         goto found;
919                 }
920         }
921
922         dev_dbg(tdc2dev(tdc), "cookie %d not found\n", cookie);
923         dma_desc = NULL;
924
925 found:
926         if (dma_desc && txstate) {
927                 residual = dma_desc->bytes_requested -
928                            ((dma_desc->bytes_transferred + bytes) %
929                             dma_desc->bytes_requested);
930                 dma_set_residue(txstate, residual);
931         }
932
933         trace_tegra_dma_tx_status(&tdc->dma_chan, cookie, txstate);
934         spin_unlock_irqrestore(&tdc->lock, flags);
935
936         return ret;
937 }
938
939 static inline unsigned int get_bus_width(struct tegra_dma_channel *tdc,
940                                          enum dma_slave_buswidth slave_bw)
941 {
942         switch (slave_bw) {
943         case DMA_SLAVE_BUSWIDTH_1_BYTE:
944                 return TEGRA_APBDMA_APBSEQ_BUS_WIDTH_8;
945         case DMA_SLAVE_BUSWIDTH_2_BYTES:
946                 return TEGRA_APBDMA_APBSEQ_BUS_WIDTH_16;
947         case DMA_SLAVE_BUSWIDTH_4_BYTES:
948                 return TEGRA_APBDMA_APBSEQ_BUS_WIDTH_32;
949         case DMA_SLAVE_BUSWIDTH_8_BYTES:
950                 return TEGRA_APBDMA_APBSEQ_BUS_WIDTH_64;
951         default:
952                 dev_warn(tdc2dev(tdc),
953                          "slave bw is not supported, using 32bits\n");
954                 return TEGRA_APBDMA_APBSEQ_BUS_WIDTH_32;
955         }
956 }
957
958 static inline unsigned int get_burst_size(struct tegra_dma_channel *tdc,
959                                           u32 burst_size,
960                                           enum dma_slave_buswidth slave_bw,
961                                           u32 len)
962 {
963         unsigned int burst_byte, burst_ahb_width;
964
965         /*
966          * burst_size from client is in terms of the bus_width.
967          * convert them into AHB memory width which is 4 byte.
968          */
969         burst_byte = burst_size * slave_bw;
970         burst_ahb_width = burst_byte / 4;
971
972         /* If burst size is 0 then calculate the burst size based on length */
973         if (!burst_ahb_width) {
974                 if (len & 0xF)
975                         return TEGRA_APBDMA_AHBSEQ_BURST_1;
976                 else if ((len >> 4) & 0x1)
977                         return TEGRA_APBDMA_AHBSEQ_BURST_4;
978                 else
979                         return TEGRA_APBDMA_AHBSEQ_BURST_8;
980         }
981         if (burst_ahb_width < 4)
982                 return TEGRA_APBDMA_AHBSEQ_BURST_1;
983         else if (burst_ahb_width < 8)
984                 return TEGRA_APBDMA_AHBSEQ_BURST_4;
985         else
986                 return TEGRA_APBDMA_AHBSEQ_BURST_8;
987 }
988
989 static int get_transfer_param(struct tegra_dma_channel *tdc,
990                               enum dma_transfer_direction direction,
991                               u32 *apb_addr,
992                               u32 *apb_seq,
993                               u32 *csr,
994                               unsigned int *burst_size,
995                               enum dma_slave_buswidth *slave_bw)
996 {
997         switch (direction) {
998         case DMA_MEM_TO_DEV:
999                 *apb_addr = tdc->dma_sconfig.dst_addr;
1000                 *apb_seq = get_bus_width(tdc, tdc->dma_sconfig.dst_addr_width);
1001                 *burst_size = tdc->dma_sconfig.dst_maxburst;
1002                 *slave_bw = tdc->dma_sconfig.dst_addr_width;
1003                 *csr = TEGRA_APBDMA_CSR_DIR;
1004                 return 0;
1005
1006         case DMA_DEV_TO_MEM:
1007                 *apb_addr = tdc->dma_sconfig.src_addr;
1008                 *apb_seq = get_bus_width(tdc, tdc->dma_sconfig.src_addr_width);
1009                 *burst_size = tdc->dma_sconfig.src_maxburst;
1010                 *slave_bw = tdc->dma_sconfig.src_addr_width;
1011                 *csr = 0;
1012                 return 0;
1013
1014         default:
1015                 dev_err(tdc2dev(tdc), "DMA direction is not supported\n");
1016                 break;
1017         }
1018
1019         return -EINVAL;
1020 }
1021
1022 static void tegra_dma_prep_wcount(struct tegra_dma_channel *tdc,
1023                                   struct tegra_dma_channel_regs *ch_regs,
1024                                   u32 len)
1025 {
1026         u32 len_field = (len - 4) & 0xFFFC;
1027
1028         if (tdc->tdma->chip_data->support_separate_wcount_reg)
1029                 ch_regs->wcount = len_field;
1030         else
1031                 ch_regs->csr |= len_field;
1032 }
1033
1034 static struct dma_async_tx_descriptor *
1035 tegra_dma_prep_slave_sg(struct dma_chan *dc,
1036                         struct scatterlist *sgl,
1037                         unsigned int sg_len,
1038                         enum dma_transfer_direction direction,
1039                         unsigned long flags,
1040                         void *context)
1041 {
1042         struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
1043         struct tegra_dma_sg_req *sg_req = NULL;
1044         u32 csr, ahb_seq, apb_ptr, apb_seq;
1045         enum dma_slave_buswidth slave_bw;
1046         struct tegra_dma_desc *dma_desc;
1047         struct list_head req_list;
1048         struct scatterlist *sg;
1049         unsigned int burst_size;
1050         unsigned int i;
1051
1052         if (!tdc->config_init) {
1053                 dev_err(tdc2dev(tdc), "DMA channel is not configured\n");
1054                 return NULL;
1055         }
1056         if (sg_len < 1) {
1057                 dev_err(tdc2dev(tdc), "Invalid segment length %d\n", sg_len);
1058                 return NULL;
1059         }
1060
1061         if (get_transfer_param(tdc, direction, &apb_ptr, &apb_seq, &csr,
1062                                &burst_size, &slave_bw) < 0)
1063                 return NULL;
1064
1065         INIT_LIST_HEAD(&req_list);
1066
1067         ahb_seq = TEGRA_APBDMA_AHBSEQ_INTR_ENB;
1068         ahb_seq |= TEGRA_APBDMA_AHBSEQ_WRAP_NONE <<
1069                                         TEGRA_APBDMA_AHBSEQ_WRAP_SHIFT;
1070         ahb_seq |= TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_32;
1071
1072         csr |= TEGRA_APBDMA_CSR_ONCE;
1073
1074         if (tdc->slave_id != TEGRA_APBDMA_SLAVE_ID_INVALID) {
1075                 csr |= TEGRA_APBDMA_CSR_FLOW;
1076                 csr |= tdc->slave_id << TEGRA_APBDMA_CSR_REQ_SEL_SHIFT;
1077         }
1078
1079         if (flags & DMA_PREP_INTERRUPT) {
1080                 csr |= TEGRA_APBDMA_CSR_IE_EOC;
1081         } else {
1082                 WARN_ON_ONCE(1);
1083                 return NULL;
1084         }
1085
1086         apb_seq |= TEGRA_APBDMA_APBSEQ_WRAP_WORD_1;
1087
1088         dma_desc = tegra_dma_desc_get(tdc);
1089         if (!dma_desc) {
1090                 dev_err(tdc2dev(tdc), "DMA descriptors not available\n");
1091                 return NULL;
1092         }
1093         INIT_LIST_HEAD(&dma_desc->tx_list);
1094         INIT_LIST_HEAD(&dma_desc->cb_node);
1095         dma_desc->cb_count = 0;
1096         dma_desc->bytes_requested = 0;
1097         dma_desc->bytes_transferred = 0;
1098         dma_desc->dma_status = DMA_IN_PROGRESS;
1099
1100         /* Make transfer requests */
1101         for_each_sg(sgl, sg, sg_len, i) {
1102                 u32 len, mem;
1103
1104                 mem = sg_dma_address(sg);
1105                 len = sg_dma_len(sg);
1106
1107                 if ((len & 3) || (mem & 3) ||
1108                     len > tdc->tdma->chip_data->max_dma_count) {
1109                         dev_err(tdc2dev(tdc),
1110                                 "DMA length/memory address is not supported\n");
1111                         tegra_dma_desc_put(tdc, dma_desc);
1112                         return NULL;
1113                 }
1114
1115                 sg_req = tegra_dma_sg_req_get(tdc);
1116                 if (!sg_req) {
1117                         dev_err(tdc2dev(tdc), "DMA sg-req not available\n");
1118                         tegra_dma_desc_put(tdc, dma_desc);
1119                         return NULL;
1120                 }
1121
1122                 ahb_seq |= get_burst_size(tdc, burst_size, slave_bw, len);
1123                 dma_desc->bytes_requested += len;
1124
1125                 sg_req->ch_regs.apb_ptr = apb_ptr;
1126                 sg_req->ch_regs.ahb_ptr = mem;
1127                 sg_req->ch_regs.csr = csr;
1128                 tegra_dma_prep_wcount(tdc, &sg_req->ch_regs, len);
1129                 sg_req->ch_regs.apb_seq = apb_seq;
1130                 sg_req->ch_regs.ahb_seq = ahb_seq;
1131                 sg_req->configured = false;
1132                 sg_req->last_sg = false;
1133                 sg_req->dma_desc = dma_desc;
1134                 sg_req->req_len = len;
1135
1136                 list_add_tail(&sg_req->node, &dma_desc->tx_list);
1137         }
1138         sg_req->last_sg = true;
1139         if (flags & DMA_CTRL_ACK)
1140                 dma_desc->txd.flags = DMA_CTRL_ACK;
1141
1142         /*
1143          * Make sure that mode should not be conflicting with currently
1144          * configured mode.
1145          */
1146         if (!tdc->isr_handler) {
1147                 tdc->isr_handler = handle_once_dma_done;
1148                 tdc->cyclic = false;
1149         } else {
1150                 if (tdc->cyclic) {
1151                         dev_err(tdc2dev(tdc), "DMA configured in cyclic mode\n");
1152                         tegra_dma_desc_put(tdc, dma_desc);
1153                         return NULL;
1154                 }
1155         }
1156
1157         return &dma_desc->txd;
1158 }
1159
1160 static struct dma_async_tx_descriptor *
1161 tegra_dma_prep_dma_cyclic(struct dma_chan *dc, dma_addr_t buf_addr,
1162                           size_t buf_len,
1163                           size_t period_len,
1164                           enum dma_transfer_direction direction,
1165                           unsigned long flags)
1166 {
1167         struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
1168         struct tegra_dma_sg_req *sg_req = NULL;
1169         u32 csr, ahb_seq, apb_ptr, apb_seq;
1170         enum dma_slave_buswidth slave_bw;
1171         struct tegra_dma_desc *dma_desc;
1172         dma_addr_t mem = buf_addr;
1173         unsigned int burst_size;
1174         size_t len, remain_len;
1175
1176         if (!buf_len || !period_len) {
1177                 dev_err(tdc2dev(tdc), "Invalid buffer/period len\n");
1178                 return NULL;
1179         }
1180
1181         if (!tdc->config_init) {
1182                 dev_err(tdc2dev(tdc), "DMA slave is not configured\n");
1183                 return NULL;
1184         }
1185
1186         /*
1187          * We allow to take more number of requests till DMA is
1188          * not started. The driver will loop over all requests.
1189          * Once DMA is started then new requests can be queued only after
1190          * terminating the DMA.
1191          */
1192         if (tdc->busy) {
1193                 dev_err(tdc2dev(tdc), "Request not allowed when DMA running\n");
1194                 return NULL;
1195         }
1196
1197         /*
1198          * We only support cycle transfer when buf_len is multiple of
1199          * period_len.
1200          */
1201         if (buf_len % period_len) {
1202                 dev_err(tdc2dev(tdc), "buf_len is not multiple of period_len\n");
1203                 return NULL;
1204         }
1205
1206         len = period_len;
1207         if ((len & 3) || (buf_addr & 3) ||
1208             len > tdc->tdma->chip_data->max_dma_count) {
1209                 dev_err(tdc2dev(tdc), "Req len/mem address is not correct\n");
1210                 return NULL;
1211         }
1212
1213         if (get_transfer_param(tdc, direction, &apb_ptr, &apb_seq, &csr,
1214                                &burst_size, &slave_bw) < 0)
1215                 return NULL;
1216
1217         ahb_seq = TEGRA_APBDMA_AHBSEQ_INTR_ENB;
1218         ahb_seq |= TEGRA_APBDMA_AHBSEQ_WRAP_NONE <<
1219                                         TEGRA_APBDMA_AHBSEQ_WRAP_SHIFT;
1220         ahb_seq |= TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_32;
1221
1222         if (tdc->slave_id != TEGRA_APBDMA_SLAVE_ID_INVALID) {
1223                 csr |= TEGRA_APBDMA_CSR_FLOW;
1224                 csr |= tdc->slave_id << TEGRA_APBDMA_CSR_REQ_SEL_SHIFT;
1225         }
1226
1227         if (flags & DMA_PREP_INTERRUPT) {
1228                 csr |= TEGRA_APBDMA_CSR_IE_EOC;
1229         } else {
1230                 WARN_ON_ONCE(1);
1231                 return NULL;
1232         }
1233
1234         apb_seq |= TEGRA_APBDMA_APBSEQ_WRAP_WORD_1;
1235
1236         dma_desc = tegra_dma_desc_get(tdc);
1237         if (!dma_desc) {
1238                 dev_err(tdc2dev(tdc), "not enough descriptors available\n");
1239                 return NULL;
1240         }
1241
1242         INIT_LIST_HEAD(&dma_desc->tx_list);
1243         INIT_LIST_HEAD(&dma_desc->cb_node);
1244         dma_desc->cb_count = 0;
1245
1246         dma_desc->bytes_transferred = 0;
1247         dma_desc->bytes_requested = buf_len;
1248         remain_len = buf_len;
1249
1250         /* Split transfer equal to period size */
1251         while (remain_len) {
1252                 sg_req = tegra_dma_sg_req_get(tdc);
1253                 if (!sg_req) {
1254                         dev_err(tdc2dev(tdc), "DMA sg-req not available\n");
1255                         tegra_dma_desc_put(tdc, dma_desc);
1256                         return NULL;
1257                 }
1258
1259                 ahb_seq |= get_burst_size(tdc, burst_size, slave_bw, len);
1260                 sg_req->ch_regs.apb_ptr = apb_ptr;
1261                 sg_req->ch_regs.ahb_ptr = mem;
1262                 sg_req->ch_regs.csr = csr;
1263                 tegra_dma_prep_wcount(tdc, &sg_req->ch_regs, len);
1264                 sg_req->ch_regs.apb_seq = apb_seq;
1265                 sg_req->ch_regs.ahb_seq = ahb_seq;
1266                 sg_req->configured = false;
1267                 sg_req->last_sg = false;
1268                 sg_req->dma_desc = dma_desc;
1269                 sg_req->req_len = len;
1270
1271                 list_add_tail(&sg_req->node, &dma_desc->tx_list);
1272                 remain_len -= len;
1273                 mem += len;
1274         }
1275         sg_req->last_sg = true;
1276         if (flags & DMA_CTRL_ACK)
1277                 dma_desc->txd.flags = DMA_CTRL_ACK;
1278
1279         /*
1280          * Make sure that mode should not be conflicting with currently
1281          * configured mode.
1282          */
1283         if (!tdc->isr_handler) {
1284                 tdc->isr_handler = handle_cont_sngl_cycle_dma_done;
1285                 tdc->cyclic = true;
1286         } else {
1287                 if (!tdc->cyclic) {
1288                         dev_err(tdc2dev(tdc), "DMA configuration conflict\n");
1289                         tegra_dma_desc_put(tdc, dma_desc);
1290                         return NULL;
1291                 }
1292         }
1293
1294         return &dma_desc->txd;
1295 }
1296
1297 static int tegra_dma_alloc_chan_resources(struct dma_chan *dc)
1298 {
1299         struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
1300
1301         dma_cookie_init(&tdc->dma_chan);
1302
1303         return 0;
1304 }
1305
1306 static void tegra_dma_free_chan_resources(struct dma_chan *dc)
1307 {
1308         struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
1309         struct tegra_dma_desc *dma_desc;
1310         struct tegra_dma_sg_req *sg_req;
1311         struct list_head dma_desc_list;
1312         struct list_head sg_req_list;
1313
1314         INIT_LIST_HEAD(&dma_desc_list);
1315         INIT_LIST_HEAD(&sg_req_list);
1316
1317         dev_dbg(tdc2dev(tdc), "Freeing channel %d\n", tdc->id);
1318
1319         tegra_dma_terminate_all(dc);
1320         tasklet_kill(&tdc->tasklet);
1321
1322         list_splice_init(&tdc->pending_sg_req, &sg_req_list);
1323         list_splice_init(&tdc->free_sg_req, &sg_req_list);
1324         list_splice_init(&tdc->free_dma_desc, &dma_desc_list);
1325         INIT_LIST_HEAD(&tdc->cb_desc);
1326         tdc->config_init = false;
1327         tdc->isr_handler = NULL;
1328
1329         while (!list_empty(&dma_desc_list)) {
1330                 dma_desc = list_first_entry(&dma_desc_list, typeof(*dma_desc),
1331                                             node);
1332                 list_del(&dma_desc->node);
1333                 kfree(dma_desc);
1334         }
1335
1336         while (!list_empty(&sg_req_list)) {
1337                 sg_req = list_first_entry(&sg_req_list, typeof(*sg_req), node);
1338                 list_del(&sg_req->node);
1339                 kfree(sg_req);
1340         }
1341
1342         tdc->slave_id = TEGRA_APBDMA_SLAVE_ID_INVALID;
1343 }
1344
1345 static struct dma_chan *tegra_dma_of_xlate(struct of_phandle_args *dma_spec,
1346                                            struct of_dma *ofdma)
1347 {
1348         struct tegra_dma *tdma = ofdma->of_dma_data;
1349         struct tegra_dma_channel *tdc;
1350         struct dma_chan *chan;
1351
1352         if (dma_spec->args[0] > TEGRA_APBDMA_CSR_REQ_SEL_MASK) {
1353                 dev_err(tdma->dev, "Invalid slave id: %d\n", dma_spec->args[0]);
1354                 return NULL;
1355         }
1356
1357         chan = dma_get_any_slave_channel(&tdma->dma_dev);
1358         if (!chan)
1359                 return NULL;
1360
1361         tdc = to_tegra_dma_chan(chan);
1362         tdc->slave_id = dma_spec->args[0];
1363
1364         return chan;
1365 }
1366
1367 /* Tegra20 specific DMA controller information */
1368 static const struct tegra_dma_chip_data tegra20_dma_chip_data = {
1369         .nr_channels            = 16,
1370         .channel_reg_size       = 0x20,
1371         .max_dma_count          = 1024UL * 64,
1372         .support_channel_pause  = false,
1373         .support_separate_wcount_reg = false,
1374 };
1375
1376 /* Tegra30 specific DMA controller information */
1377 static const struct tegra_dma_chip_data tegra30_dma_chip_data = {
1378         .nr_channels            = 32,
1379         .channel_reg_size       = 0x20,
1380         .max_dma_count          = 1024UL * 64,
1381         .support_channel_pause  = false,
1382         .support_separate_wcount_reg = false,
1383 };
1384
1385 /* Tegra114 specific DMA controller information */
1386 static const struct tegra_dma_chip_data tegra114_dma_chip_data = {
1387         .nr_channels            = 32,
1388         .channel_reg_size       = 0x20,
1389         .max_dma_count          = 1024UL * 64,
1390         .support_channel_pause  = true,
1391         .support_separate_wcount_reg = false,
1392 };
1393
1394 /* Tegra148 specific DMA controller information */
1395 static const struct tegra_dma_chip_data tegra148_dma_chip_data = {
1396         .nr_channels            = 32,
1397         .channel_reg_size       = 0x40,
1398         .max_dma_count          = 1024UL * 64,
1399         .support_channel_pause  = true,
1400         .support_separate_wcount_reg = true,
1401 };
1402
1403 static int tegra_dma_init_hw(struct tegra_dma *tdma)
1404 {
1405         int err;
1406
1407         err = reset_control_assert(tdma->rst);
1408         if (err) {
1409                 dev_err(tdma->dev, "failed to assert reset: %d\n", err);
1410                 return err;
1411         }
1412
1413         err = clk_enable(tdma->dma_clk);
1414         if (err) {
1415                 dev_err(tdma->dev, "failed to enable clk: %d\n", err);
1416                 return err;
1417         }
1418
1419         /* reset DMA controller */
1420         udelay(2);
1421         reset_control_deassert(tdma->rst);
1422
1423         /* enable global DMA registers */
1424         tdma_write(tdma, TEGRA_APBDMA_GENERAL, TEGRA_APBDMA_GENERAL_ENABLE);
1425         tdma_write(tdma, TEGRA_APBDMA_CONTROL, 0);
1426         tdma_write(tdma, TEGRA_APBDMA_IRQ_MASK_SET, 0xFFFFFFFF);
1427
1428         clk_disable(tdma->dma_clk);
1429
1430         return 0;
1431 }
1432
1433 static int tegra_dma_probe(struct platform_device *pdev)
1434 {
1435         const struct tegra_dma_chip_data *cdata;
1436         struct tegra_dma *tdma;
1437         unsigned int i;
1438         size_t size;
1439         int ret;
1440
1441         cdata = of_device_get_match_data(&pdev->dev);
1442         size = struct_size(tdma, channels, cdata->nr_channels);
1443
1444         tdma = devm_kzalloc(&pdev->dev, size, GFP_KERNEL);
1445         if (!tdma)
1446                 return -ENOMEM;
1447
1448         tdma->dev = &pdev->dev;
1449         tdma->chip_data = cdata;
1450         platform_set_drvdata(pdev, tdma);
1451
1452         tdma->base_addr = devm_platform_ioremap_resource(pdev, 0);
1453         if (IS_ERR(tdma->base_addr))
1454                 return PTR_ERR(tdma->base_addr);
1455
1456         tdma->dma_clk = devm_clk_get(&pdev->dev, NULL);
1457         if (IS_ERR(tdma->dma_clk)) {
1458                 dev_err(&pdev->dev, "Error: Missing controller clock\n");
1459                 return PTR_ERR(tdma->dma_clk);
1460         }
1461
1462         tdma->rst = devm_reset_control_get(&pdev->dev, "dma");
1463         if (IS_ERR(tdma->rst)) {
1464                 dev_err(&pdev->dev, "Error: Missing reset\n");
1465                 return PTR_ERR(tdma->rst);
1466         }
1467
1468         spin_lock_init(&tdma->global_lock);
1469
1470         ret = clk_prepare(tdma->dma_clk);
1471         if (ret)
1472                 return ret;
1473
1474         ret = tegra_dma_init_hw(tdma);
1475         if (ret)
1476                 goto err_clk_unprepare;
1477
1478         pm_runtime_irq_safe(&pdev->dev);
1479         pm_runtime_enable(&pdev->dev);
1480
1481         INIT_LIST_HEAD(&tdma->dma_dev.channels);
1482         for (i = 0; i < cdata->nr_channels; i++) {
1483                 struct tegra_dma_channel *tdc = &tdma->channels[i];
1484                 int irq;
1485
1486                 tdc->chan_addr = tdma->base_addr +
1487                                  TEGRA_APBDMA_CHANNEL_BASE_ADD_OFFSET +
1488                                  (i * cdata->channel_reg_size);
1489
1490                 irq = platform_get_irq(pdev, i);
1491                 if (irq < 0) {
1492                         ret = irq;
1493                         goto err_pm_disable;
1494                 }
1495
1496                 snprintf(tdc->name, sizeof(tdc->name), "apbdma.%d", i);
1497                 ret = devm_request_irq(&pdev->dev, irq, tegra_dma_isr, 0,
1498                                        tdc->name, tdc);
1499                 if (ret) {
1500                         dev_err(&pdev->dev,
1501                                 "request_irq failed with err %d channel %d\n",
1502                                 ret, i);
1503                         goto err_pm_disable;
1504                 }
1505
1506                 tdc->dma_chan.device = &tdma->dma_dev;
1507                 dma_cookie_init(&tdc->dma_chan);
1508                 list_add_tail(&tdc->dma_chan.device_node,
1509                               &tdma->dma_dev.channels);
1510                 tdc->tdma = tdma;
1511                 tdc->id = i;
1512                 tdc->slave_id = TEGRA_APBDMA_SLAVE_ID_INVALID;
1513
1514                 tasklet_setup(&tdc->tasklet, tegra_dma_tasklet);
1515                 spin_lock_init(&tdc->lock);
1516                 init_waitqueue_head(&tdc->wq);
1517
1518                 INIT_LIST_HEAD(&tdc->pending_sg_req);
1519                 INIT_LIST_HEAD(&tdc->free_sg_req);
1520                 INIT_LIST_HEAD(&tdc->free_dma_desc);
1521                 INIT_LIST_HEAD(&tdc->cb_desc);
1522         }
1523
1524         dma_cap_set(DMA_SLAVE, tdma->dma_dev.cap_mask);
1525         dma_cap_set(DMA_PRIVATE, tdma->dma_dev.cap_mask);
1526         dma_cap_set(DMA_CYCLIC, tdma->dma_dev.cap_mask);
1527
1528         tdma->global_pause_count = 0;
1529         tdma->dma_dev.dev = &pdev->dev;
1530         tdma->dma_dev.device_alloc_chan_resources =
1531                                         tegra_dma_alloc_chan_resources;
1532         tdma->dma_dev.device_free_chan_resources =
1533                                         tegra_dma_free_chan_resources;
1534         tdma->dma_dev.device_prep_slave_sg = tegra_dma_prep_slave_sg;
1535         tdma->dma_dev.device_prep_dma_cyclic = tegra_dma_prep_dma_cyclic;
1536         tdma->dma_dev.src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
1537                 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
1538                 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) |
1539                 BIT(DMA_SLAVE_BUSWIDTH_8_BYTES);
1540         tdma->dma_dev.dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
1541                 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
1542                 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) |
1543                 BIT(DMA_SLAVE_BUSWIDTH_8_BYTES);
1544         tdma->dma_dev.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1545         tdma->dma_dev.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1546         tdma->dma_dev.device_config = tegra_dma_slave_config;
1547         tdma->dma_dev.device_terminate_all = tegra_dma_terminate_all;
1548         tdma->dma_dev.device_synchronize = tegra_dma_synchronize;
1549         tdma->dma_dev.device_tx_status = tegra_dma_tx_status;
1550         tdma->dma_dev.device_issue_pending = tegra_dma_issue_pending;
1551
1552         ret = dma_async_device_register(&tdma->dma_dev);
1553         if (ret < 0) {
1554                 dev_err(&pdev->dev,
1555                         "Tegra20 APB DMA driver registration failed %d\n", ret);
1556                 goto err_pm_disable;
1557         }
1558
1559         ret = of_dma_controller_register(pdev->dev.of_node,
1560                                          tegra_dma_of_xlate, tdma);
1561         if (ret < 0) {
1562                 dev_err(&pdev->dev,
1563                         "Tegra20 APB DMA OF registration failed %d\n", ret);
1564                 goto err_unregister_dma_dev;
1565         }
1566
1567         dev_info(&pdev->dev, "Tegra20 APB DMA driver registered %u channels\n",
1568                  cdata->nr_channels);
1569
1570         return 0;
1571
1572 err_unregister_dma_dev:
1573         dma_async_device_unregister(&tdma->dma_dev);
1574
1575 err_pm_disable:
1576         pm_runtime_disable(&pdev->dev);
1577
1578 err_clk_unprepare:
1579         clk_unprepare(tdma->dma_clk);
1580
1581         return ret;
1582 }
1583
1584 static int tegra_dma_remove(struct platform_device *pdev)
1585 {
1586         struct tegra_dma *tdma = platform_get_drvdata(pdev);
1587
1588         of_dma_controller_free(pdev->dev.of_node);
1589         dma_async_device_unregister(&tdma->dma_dev);
1590         pm_runtime_disable(&pdev->dev);
1591         clk_unprepare(tdma->dma_clk);
1592
1593         return 0;
1594 }
1595
1596 static int __maybe_unused tegra_dma_runtime_suspend(struct device *dev)
1597 {
1598         struct tegra_dma *tdma = dev_get_drvdata(dev);
1599
1600         clk_disable(tdma->dma_clk);
1601
1602         return 0;
1603 }
1604
1605 static int __maybe_unused tegra_dma_runtime_resume(struct device *dev)
1606 {
1607         struct tegra_dma *tdma = dev_get_drvdata(dev);
1608
1609         return clk_enable(tdma->dma_clk);
1610 }
1611
1612 static int __maybe_unused tegra_dma_dev_suspend(struct device *dev)
1613 {
1614         struct tegra_dma *tdma = dev_get_drvdata(dev);
1615         unsigned long flags;
1616         unsigned int i;
1617         bool busy;
1618
1619         for (i = 0; i < tdma->chip_data->nr_channels; i++) {
1620                 struct tegra_dma_channel *tdc = &tdma->channels[i];
1621
1622                 tasklet_kill(&tdc->tasklet);
1623
1624                 spin_lock_irqsave(&tdc->lock, flags);
1625                 busy = tdc->busy;
1626                 spin_unlock_irqrestore(&tdc->lock, flags);
1627
1628                 if (busy) {
1629                         dev_err(tdma->dev, "channel %u busy\n", i);
1630                         return -EBUSY;
1631                 }
1632         }
1633
1634         return pm_runtime_force_suspend(dev);
1635 }
1636
1637 static int __maybe_unused tegra_dma_dev_resume(struct device *dev)
1638 {
1639         struct tegra_dma *tdma = dev_get_drvdata(dev);
1640         int err;
1641
1642         err = tegra_dma_init_hw(tdma);
1643         if (err)
1644                 return err;
1645
1646         return pm_runtime_force_resume(dev);
1647 }
1648
1649 static const struct dev_pm_ops tegra_dma_dev_pm_ops = {
1650         SET_RUNTIME_PM_OPS(tegra_dma_runtime_suspend, tegra_dma_runtime_resume,
1651                            NULL)
1652         SET_SYSTEM_SLEEP_PM_OPS(tegra_dma_dev_suspend, tegra_dma_dev_resume)
1653 };
1654
1655 static const struct of_device_id tegra_dma_of_match[] = {
1656         {
1657                 .compatible = "nvidia,tegra148-apbdma",
1658                 .data = &tegra148_dma_chip_data,
1659         }, {
1660                 .compatible = "nvidia,tegra114-apbdma",
1661                 .data = &tegra114_dma_chip_data,
1662         }, {
1663                 .compatible = "nvidia,tegra30-apbdma",
1664                 .data = &tegra30_dma_chip_data,
1665         }, {
1666                 .compatible = "nvidia,tegra20-apbdma",
1667                 .data = &tegra20_dma_chip_data,
1668         }, {
1669         },
1670 };
1671 MODULE_DEVICE_TABLE(of, tegra_dma_of_match);
1672
1673 static struct platform_driver tegra_dmac_driver = {
1674         .driver = {
1675                 .name   = "tegra-apbdma",
1676                 .pm     = &tegra_dma_dev_pm_ops,
1677                 .of_match_table = tegra_dma_of_match,
1678         },
1679         .probe          = tegra_dma_probe,
1680         .remove         = tegra_dma_remove,
1681 };
1682
1683 module_platform_driver(tegra_dmac_driver);
1684
1685 MODULE_DESCRIPTION("NVIDIA Tegra APB DMA Controller driver");
1686 MODULE_AUTHOR("Laxman Dewangan <ldewangan@nvidia.com>");
1687 MODULE_LICENSE("GPL v2");