riscv: linux: vout: fix rgb2hdmi display problem
[platform/kernel/linux-starfive.git] / drivers / dma / tegra20-apb-dma.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * DMA driver for Nvidia's Tegra20 APB DMA controller.
4  *
5  * Copyright (c) 2012-2013, NVIDIA CORPORATION.  All rights reserved.
6  */
7
8 #include <linux/bitops.h>
9 #include <linux/clk.h>
10 #include <linux/delay.h>
11 #include <linux/dmaengine.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/err.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
16 #include <linux/io.h>
17 #include <linux/mm.h>
18 #include <linux/module.h>
19 #include <linux/of.h>
20 #include <linux/of_device.h>
21 #include <linux/of_dma.h>
22 #include <linux/platform_device.h>
23 #include <linux/pm.h>
24 #include <linux/pm_runtime.h>
25 #include <linux/reset.h>
26 #include <linux/slab.h>
27 #include <linux/wait.h>
28
29 #include "dmaengine.h"
30
31 #define CREATE_TRACE_POINTS
32 #include <trace/events/tegra_apb_dma.h>
33
34 #define TEGRA_APBDMA_GENERAL                    0x0
35 #define TEGRA_APBDMA_GENERAL_ENABLE             BIT(31)
36
37 #define TEGRA_APBDMA_CONTROL                    0x010
38 #define TEGRA_APBDMA_IRQ_MASK                   0x01c
39 #define TEGRA_APBDMA_IRQ_MASK_SET               0x020
40
41 /* CSR register */
42 #define TEGRA_APBDMA_CHAN_CSR                   0x00
43 #define TEGRA_APBDMA_CSR_ENB                    BIT(31)
44 #define TEGRA_APBDMA_CSR_IE_EOC                 BIT(30)
45 #define TEGRA_APBDMA_CSR_HOLD                   BIT(29)
46 #define TEGRA_APBDMA_CSR_DIR                    BIT(28)
47 #define TEGRA_APBDMA_CSR_ONCE                   BIT(27)
48 #define TEGRA_APBDMA_CSR_FLOW                   BIT(21)
49 #define TEGRA_APBDMA_CSR_REQ_SEL_SHIFT          16
50 #define TEGRA_APBDMA_CSR_REQ_SEL_MASK           0x1F
51 #define TEGRA_APBDMA_CSR_WCOUNT_MASK            0xFFFC
52
53 /* STATUS register */
54 #define TEGRA_APBDMA_CHAN_STATUS                0x004
55 #define TEGRA_APBDMA_STATUS_BUSY                BIT(31)
56 #define TEGRA_APBDMA_STATUS_ISE_EOC             BIT(30)
57 #define TEGRA_APBDMA_STATUS_HALT                BIT(29)
58 #define TEGRA_APBDMA_STATUS_PING_PONG           BIT(28)
59 #define TEGRA_APBDMA_STATUS_COUNT_SHIFT         2
60 #define TEGRA_APBDMA_STATUS_COUNT_MASK          0xFFFC
61
62 #define TEGRA_APBDMA_CHAN_CSRE                  0x00C
63 #define TEGRA_APBDMA_CHAN_CSRE_PAUSE            BIT(31)
64
65 /* AHB memory address */
66 #define TEGRA_APBDMA_CHAN_AHBPTR                0x010
67
68 /* AHB sequence register */
69 #define TEGRA_APBDMA_CHAN_AHBSEQ                0x14
70 #define TEGRA_APBDMA_AHBSEQ_INTR_ENB            BIT(31)
71 #define TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_8         (0 << 28)
72 #define TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_16        (1 << 28)
73 #define TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_32        (2 << 28)
74 #define TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_64        (3 << 28)
75 #define TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_128       (4 << 28)
76 #define TEGRA_APBDMA_AHBSEQ_DATA_SWAP           BIT(27)
77 #define TEGRA_APBDMA_AHBSEQ_BURST_1             (4 << 24)
78 #define TEGRA_APBDMA_AHBSEQ_BURST_4             (5 << 24)
79 #define TEGRA_APBDMA_AHBSEQ_BURST_8             (6 << 24)
80 #define TEGRA_APBDMA_AHBSEQ_DBL_BUF             BIT(19)
81 #define TEGRA_APBDMA_AHBSEQ_WRAP_SHIFT          16
82 #define TEGRA_APBDMA_AHBSEQ_WRAP_NONE           0
83
84 /* APB address */
85 #define TEGRA_APBDMA_CHAN_APBPTR                0x018
86
87 /* APB sequence register */
88 #define TEGRA_APBDMA_CHAN_APBSEQ                0x01c
89 #define TEGRA_APBDMA_APBSEQ_BUS_WIDTH_8         (0 << 28)
90 #define TEGRA_APBDMA_APBSEQ_BUS_WIDTH_16        (1 << 28)
91 #define TEGRA_APBDMA_APBSEQ_BUS_WIDTH_32        (2 << 28)
92 #define TEGRA_APBDMA_APBSEQ_BUS_WIDTH_64        (3 << 28)
93 #define TEGRA_APBDMA_APBSEQ_BUS_WIDTH_128       (4 << 28)
94 #define TEGRA_APBDMA_APBSEQ_DATA_SWAP           BIT(27)
95 #define TEGRA_APBDMA_APBSEQ_WRAP_WORD_1         (1 << 16)
96
97 /* Tegra148 specific registers */
98 #define TEGRA_APBDMA_CHAN_WCOUNT                0x20
99
100 #define TEGRA_APBDMA_CHAN_WORD_TRANSFER         0x24
101
102 /*
103  * If any burst is in flight and DMA paused then this is the time to complete
104  * on-flight burst and update DMA status register.
105  */
106 #define TEGRA_APBDMA_BURST_COMPLETE_TIME        20
107
108 /* Channel base address offset from APBDMA base address */
109 #define TEGRA_APBDMA_CHANNEL_BASE_ADD_OFFSET    0x1000
110
111 #define TEGRA_APBDMA_SLAVE_ID_INVALID   (TEGRA_APBDMA_CSR_REQ_SEL_MASK + 1)
112
113 struct tegra_dma;
114
115 /*
116  * tegra_dma_chip_data Tegra chip specific DMA data
117  * @nr_channels: Number of channels available in the controller.
118  * @channel_reg_size: Channel register size/stride.
119  * @max_dma_count: Maximum DMA transfer count supported by DMA controller.
120  * @support_channel_pause: Support channel wise pause of dma.
121  * @support_separate_wcount_reg: Support separate word count register.
122  */
123 struct tegra_dma_chip_data {
124         unsigned int nr_channels;
125         unsigned int channel_reg_size;
126         unsigned int max_dma_count;
127         bool support_channel_pause;
128         bool support_separate_wcount_reg;
129 };
130
131 /* DMA channel registers */
132 struct tegra_dma_channel_regs {
133         u32 csr;
134         u32 ahb_ptr;
135         u32 apb_ptr;
136         u32 ahb_seq;
137         u32 apb_seq;
138         u32 wcount;
139 };
140
141 /*
142  * tegra_dma_sg_req: DMA request details to configure hardware. This
143  * contains the details for one transfer to configure DMA hw.
144  * The client's request for data transfer can be broken into multiple
145  * sub-transfer as per requester details and hw support.
146  * This sub transfer get added in the list of transfer and point to Tegra
147  * DMA descriptor which manages the transfer details.
148  */
149 struct tegra_dma_sg_req {
150         struct tegra_dma_channel_regs   ch_regs;
151         unsigned int                    req_len;
152         bool                            configured;
153         bool                            last_sg;
154         struct list_head                node;
155         struct tegra_dma_desc           *dma_desc;
156         unsigned int                    words_xferred;
157 };
158
159 /*
160  * tegra_dma_desc: Tegra DMA descriptors which manages the client requests.
161  * This descriptor keep track of transfer status, callbacks and request
162  * counts etc.
163  */
164 struct tegra_dma_desc {
165         struct dma_async_tx_descriptor  txd;
166         unsigned int                    bytes_requested;
167         unsigned int                    bytes_transferred;
168         enum dma_status                 dma_status;
169         struct list_head                node;
170         struct list_head                tx_list;
171         struct list_head                cb_node;
172         unsigned int                    cb_count;
173 };
174
175 struct tegra_dma_channel;
176
177 typedef void (*dma_isr_handler)(struct tegra_dma_channel *tdc,
178                                 bool to_terminate);
179
180 /* tegra_dma_channel: Channel specific information */
181 struct tegra_dma_channel {
182         struct dma_chan         dma_chan;
183         char                    name[12];
184         bool                    config_init;
185         unsigned int            id;
186         void __iomem            *chan_addr;
187         spinlock_t              lock;
188         bool                    busy;
189         struct tegra_dma        *tdma;
190         bool                    cyclic;
191
192         /* Different lists for managing the requests */
193         struct list_head        free_sg_req;
194         struct list_head        pending_sg_req;
195         struct list_head        free_dma_desc;
196         struct list_head        cb_desc;
197
198         /* ISR handler and tasklet for bottom half of isr handling */
199         dma_isr_handler         isr_handler;
200         struct tasklet_struct   tasklet;
201
202         /* Channel-slave specific configuration */
203         unsigned int slave_id;
204         struct dma_slave_config dma_sconfig;
205         struct tegra_dma_channel_regs channel_reg;
206
207         struct wait_queue_head wq;
208 };
209
210 /* tegra_dma: Tegra DMA specific information */
211 struct tegra_dma {
212         struct dma_device               dma_dev;
213         struct device                   *dev;
214         struct clk                      *dma_clk;
215         struct reset_control            *rst;
216         spinlock_t                      global_lock;
217         void __iomem                    *base_addr;
218         const struct tegra_dma_chip_data *chip_data;
219
220         /*
221          * Counter for managing global pausing of the DMA controller.
222          * Only applicable for devices that don't support individual
223          * channel pausing.
224          */
225         u32                             global_pause_count;
226
227         /* Last member of the structure */
228         struct tegra_dma_channel channels[];
229 };
230
231 static inline void tdma_write(struct tegra_dma *tdma, u32 reg, u32 val)
232 {
233         writel(val, tdma->base_addr + reg);
234 }
235
236 static inline u32 tdma_read(struct tegra_dma *tdma, u32 reg)
237 {
238         return readl(tdma->base_addr + reg);
239 }
240
241 static inline void tdc_write(struct tegra_dma_channel *tdc,
242                              u32 reg, u32 val)
243 {
244         writel(val, tdc->chan_addr + reg);
245 }
246
247 static inline u32 tdc_read(struct tegra_dma_channel *tdc, u32 reg)
248 {
249         return readl(tdc->chan_addr + reg);
250 }
251
252 static inline struct tegra_dma_channel *to_tegra_dma_chan(struct dma_chan *dc)
253 {
254         return container_of(dc, struct tegra_dma_channel, dma_chan);
255 }
256
257 static inline struct tegra_dma_desc *
258 txd_to_tegra_dma_desc(struct dma_async_tx_descriptor *td)
259 {
260         return container_of(td, struct tegra_dma_desc, txd);
261 }
262
263 static inline struct device *tdc2dev(struct tegra_dma_channel *tdc)
264 {
265         return &tdc->dma_chan.dev->device;
266 }
267
268 static dma_cookie_t tegra_dma_tx_submit(struct dma_async_tx_descriptor *tx);
269
270 /* Get DMA desc from free list, if not there then allocate it.  */
271 static struct tegra_dma_desc *tegra_dma_desc_get(struct tegra_dma_channel *tdc)
272 {
273         struct tegra_dma_desc *dma_desc;
274         unsigned long flags;
275
276         spin_lock_irqsave(&tdc->lock, flags);
277
278         /* Do not allocate if desc are waiting for ack */
279         list_for_each_entry(dma_desc, &tdc->free_dma_desc, node) {
280                 if (async_tx_test_ack(&dma_desc->txd) && !dma_desc->cb_count) {
281                         list_del(&dma_desc->node);
282                         spin_unlock_irqrestore(&tdc->lock, flags);
283                         dma_desc->txd.flags = 0;
284                         return dma_desc;
285                 }
286         }
287
288         spin_unlock_irqrestore(&tdc->lock, flags);
289
290         /* Allocate DMA desc */
291         dma_desc = kzalloc(sizeof(*dma_desc), GFP_NOWAIT);
292         if (!dma_desc)
293                 return NULL;
294
295         dma_async_tx_descriptor_init(&dma_desc->txd, &tdc->dma_chan);
296         dma_desc->txd.tx_submit = tegra_dma_tx_submit;
297         dma_desc->txd.flags = 0;
298
299         return dma_desc;
300 }
301
302 static void tegra_dma_desc_put(struct tegra_dma_channel *tdc,
303                                struct tegra_dma_desc *dma_desc)
304 {
305         unsigned long flags;
306
307         spin_lock_irqsave(&tdc->lock, flags);
308         if (!list_empty(&dma_desc->tx_list))
309                 list_splice_init(&dma_desc->tx_list, &tdc->free_sg_req);
310         list_add_tail(&dma_desc->node, &tdc->free_dma_desc);
311         spin_unlock_irqrestore(&tdc->lock, flags);
312 }
313
314 static struct tegra_dma_sg_req *
315 tegra_dma_sg_req_get(struct tegra_dma_channel *tdc)
316 {
317         struct tegra_dma_sg_req *sg_req;
318         unsigned long flags;
319
320         spin_lock_irqsave(&tdc->lock, flags);
321         if (!list_empty(&tdc->free_sg_req)) {
322                 sg_req = list_first_entry(&tdc->free_sg_req, typeof(*sg_req),
323                                           node);
324                 list_del(&sg_req->node);
325                 spin_unlock_irqrestore(&tdc->lock, flags);
326                 return sg_req;
327         }
328         spin_unlock_irqrestore(&tdc->lock, flags);
329
330         sg_req = kzalloc(sizeof(*sg_req), GFP_NOWAIT);
331
332         return sg_req;
333 }
334
335 static int tegra_dma_slave_config(struct dma_chan *dc,
336                                   struct dma_slave_config *sconfig)
337 {
338         struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
339
340         if (!list_empty(&tdc->pending_sg_req)) {
341                 dev_err(tdc2dev(tdc), "Configuration not allowed\n");
342                 return -EBUSY;
343         }
344
345         memcpy(&tdc->dma_sconfig, sconfig, sizeof(*sconfig));
346         if (tdc->slave_id == TEGRA_APBDMA_SLAVE_ID_INVALID &&
347             sconfig->device_fc) {
348                 if (sconfig->slave_id > TEGRA_APBDMA_CSR_REQ_SEL_MASK)
349                         return -EINVAL;
350                 tdc->slave_id = sconfig->slave_id;
351         }
352         tdc->config_init = true;
353
354         return 0;
355 }
356
357 static void tegra_dma_global_pause(struct tegra_dma_channel *tdc,
358                                    bool wait_for_burst_complete)
359 {
360         struct tegra_dma *tdma = tdc->tdma;
361
362         spin_lock(&tdma->global_lock);
363
364         if (tdc->tdma->global_pause_count == 0) {
365                 tdma_write(tdma, TEGRA_APBDMA_GENERAL, 0);
366                 if (wait_for_burst_complete)
367                         udelay(TEGRA_APBDMA_BURST_COMPLETE_TIME);
368         }
369
370         tdc->tdma->global_pause_count++;
371
372         spin_unlock(&tdma->global_lock);
373 }
374
375 static void tegra_dma_global_resume(struct tegra_dma_channel *tdc)
376 {
377         struct tegra_dma *tdma = tdc->tdma;
378
379         spin_lock(&tdma->global_lock);
380
381         if (WARN_ON(tdc->tdma->global_pause_count == 0))
382                 goto out;
383
384         if (--tdc->tdma->global_pause_count == 0)
385                 tdma_write(tdma, TEGRA_APBDMA_GENERAL,
386                            TEGRA_APBDMA_GENERAL_ENABLE);
387
388 out:
389         spin_unlock(&tdma->global_lock);
390 }
391
392 static void tegra_dma_pause(struct tegra_dma_channel *tdc,
393                             bool wait_for_burst_complete)
394 {
395         struct tegra_dma *tdma = tdc->tdma;
396
397         if (tdma->chip_data->support_channel_pause) {
398                 tdc_write(tdc, TEGRA_APBDMA_CHAN_CSRE,
399                           TEGRA_APBDMA_CHAN_CSRE_PAUSE);
400                 if (wait_for_burst_complete)
401                         udelay(TEGRA_APBDMA_BURST_COMPLETE_TIME);
402         } else {
403                 tegra_dma_global_pause(tdc, wait_for_burst_complete);
404         }
405 }
406
407 static void tegra_dma_resume(struct tegra_dma_channel *tdc)
408 {
409         struct tegra_dma *tdma = tdc->tdma;
410
411         if (tdma->chip_data->support_channel_pause)
412                 tdc_write(tdc, TEGRA_APBDMA_CHAN_CSRE, 0);
413         else
414                 tegra_dma_global_resume(tdc);
415 }
416
417 static void tegra_dma_stop(struct tegra_dma_channel *tdc)
418 {
419         u32 csr, status;
420
421         /* Disable interrupts */
422         csr = tdc_read(tdc, TEGRA_APBDMA_CHAN_CSR);
423         csr &= ~TEGRA_APBDMA_CSR_IE_EOC;
424         tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR, csr);
425
426         /* Disable DMA */
427         csr &= ~TEGRA_APBDMA_CSR_ENB;
428         tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR, csr);
429
430         /* Clear interrupt status if it is there */
431         status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
432         if (status & TEGRA_APBDMA_STATUS_ISE_EOC) {
433                 dev_dbg(tdc2dev(tdc), "%s():clearing interrupt\n", __func__);
434                 tdc_write(tdc, TEGRA_APBDMA_CHAN_STATUS, status);
435         }
436         tdc->busy = false;
437 }
438
439 static void tegra_dma_start(struct tegra_dma_channel *tdc,
440                             struct tegra_dma_sg_req *sg_req)
441 {
442         struct tegra_dma_channel_regs *ch_regs = &sg_req->ch_regs;
443
444         tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR, ch_regs->csr);
445         tdc_write(tdc, TEGRA_APBDMA_CHAN_APBSEQ, ch_regs->apb_seq);
446         tdc_write(tdc, TEGRA_APBDMA_CHAN_APBPTR, ch_regs->apb_ptr);
447         tdc_write(tdc, TEGRA_APBDMA_CHAN_AHBSEQ, ch_regs->ahb_seq);
448         tdc_write(tdc, TEGRA_APBDMA_CHAN_AHBPTR, ch_regs->ahb_ptr);
449         if (tdc->tdma->chip_data->support_separate_wcount_reg)
450                 tdc_write(tdc, TEGRA_APBDMA_CHAN_WCOUNT, ch_regs->wcount);
451
452         /* Start DMA */
453         tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR,
454                   ch_regs->csr | TEGRA_APBDMA_CSR_ENB);
455 }
456
457 static void tegra_dma_configure_for_next(struct tegra_dma_channel *tdc,
458                                          struct tegra_dma_sg_req *nsg_req)
459 {
460         unsigned long status;
461
462         /*
463          * The DMA controller reloads the new configuration for next transfer
464          * after last burst of current transfer completes.
465          * If there is no IEC status then this makes sure that last burst
466          * has not be completed. There may be case that last burst is on
467          * flight and so it can complete but because DMA is paused, it
468          * will not generates interrupt as well as not reload the new
469          * configuration.
470          * If there is already IEC status then interrupt handler need to
471          * load new configuration.
472          */
473         tegra_dma_pause(tdc, false);
474         status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
475
476         /*
477          * If interrupt is pending then do nothing as the ISR will handle
478          * the programing for new request.
479          */
480         if (status & TEGRA_APBDMA_STATUS_ISE_EOC) {
481                 dev_err(tdc2dev(tdc),
482                         "Skipping new configuration as interrupt is pending\n");
483                 tegra_dma_resume(tdc);
484                 return;
485         }
486
487         /* Safe to program new configuration */
488         tdc_write(tdc, TEGRA_APBDMA_CHAN_APBPTR, nsg_req->ch_regs.apb_ptr);
489         tdc_write(tdc, TEGRA_APBDMA_CHAN_AHBPTR, nsg_req->ch_regs.ahb_ptr);
490         if (tdc->tdma->chip_data->support_separate_wcount_reg)
491                 tdc_write(tdc, TEGRA_APBDMA_CHAN_WCOUNT,
492                           nsg_req->ch_regs.wcount);
493         tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR,
494                   nsg_req->ch_regs.csr | TEGRA_APBDMA_CSR_ENB);
495         nsg_req->configured = true;
496         nsg_req->words_xferred = 0;
497
498         tegra_dma_resume(tdc);
499 }
500
501 static void tdc_start_head_req(struct tegra_dma_channel *tdc)
502 {
503         struct tegra_dma_sg_req *sg_req;
504
505         sg_req = list_first_entry(&tdc->pending_sg_req, typeof(*sg_req), node);
506         tegra_dma_start(tdc, sg_req);
507         sg_req->configured = true;
508         sg_req->words_xferred = 0;
509         tdc->busy = true;
510 }
511
512 static void tdc_configure_next_head_desc(struct tegra_dma_channel *tdc)
513 {
514         struct tegra_dma_sg_req *hsgreq, *hnsgreq;
515
516         hsgreq = list_first_entry(&tdc->pending_sg_req, typeof(*hsgreq), node);
517         if (!list_is_last(&hsgreq->node, &tdc->pending_sg_req)) {
518                 hnsgreq = list_first_entry(&hsgreq->node, typeof(*hnsgreq),
519                                            node);
520                 tegra_dma_configure_for_next(tdc, hnsgreq);
521         }
522 }
523
524 static inline unsigned int
525 get_current_xferred_count(struct tegra_dma_channel *tdc,
526                           struct tegra_dma_sg_req *sg_req,
527                           unsigned long status)
528 {
529         return sg_req->req_len - (status & TEGRA_APBDMA_STATUS_COUNT_MASK) - 4;
530 }
531
532 static void tegra_dma_abort_all(struct tegra_dma_channel *tdc)
533 {
534         struct tegra_dma_desc *dma_desc;
535         struct tegra_dma_sg_req *sgreq;
536
537         while (!list_empty(&tdc->pending_sg_req)) {
538                 sgreq = list_first_entry(&tdc->pending_sg_req, typeof(*sgreq),
539                                          node);
540                 list_move_tail(&sgreq->node, &tdc->free_sg_req);
541                 if (sgreq->last_sg) {
542                         dma_desc = sgreq->dma_desc;
543                         dma_desc->dma_status = DMA_ERROR;
544                         list_add_tail(&dma_desc->node, &tdc->free_dma_desc);
545
546                         /* Add in cb list if it is not there. */
547                         if (!dma_desc->cb_count)
548                                 list_add_tail(&dma_desc->cb_node,
549                                               &tdc->cb_desc);
550                         dma_desc->cb_count++;
551                 }
552         }
553         tdc->isr_handler = NULL;
554 }
555
556 static bool handle_continuous_head_request(struct tegra_dma_channel *tdc,
557                                            bool to_terminate)
558 {
559         struct tegra_dma_sg_req *hsgreq;
560
561         /*
562          * Check that head req on list should be in flight.
563          * If it is not in flight then abort transfer as
564          * looping of transfer can not continue.
565          */
566         hsgreq = list_first_entry(&tdc->pending_sg_req, typeof(*hsgreq), node);
567         if (!hsgreq->configured) {
568                 tegra_dma_stop(tdc);
569                 pm_runtime_put(tdc->tdma->dev);
570                 dev_err(tdc2dev(tdc), "DMA transfer underflow, aborting DMA\n");
571                 tegra_dma_abort_all(tdc);
572                 return false;
573         }
574
575         /* Configure next request */
576         if (!to_terminate)
577                 tdc_configure_next_head_desc(tdc);
578
579         return true;
580 }
581
582 static void handle_once_dma_done(struct tegra_dma_channel *tdc,
583                                  bool to_terminate)
584 {
585         struct tegra_dma_desc *dma_desc;
586         struct tegra_dma_sg_req *sgreq;
587
588         tdc->busy = false;
589         sgreq = list_first_entry(&tdc->pending_sg_req, typeof(*sgreq), node);
590         dma_desc = sgreq->dma_desc;
591         dma_desc->bytes_transferred += sgreq->req_len;
592
593         list_del(&sgreq->node);
594         if (sgreq->last_sg) {
595                 dma_desc->dma_status = DMA_COMPLETE;
596                 dma_cookie_complete(&dma_desc->txd);
597                 if (!dma_desc->cb_count)
598                         list_add_tail(&dma_desc->cb_node, &tdc->cb_desc);
599                 dma_desc->cb_count++;
600                 list_add_tail(&dma_desc->node, &tdc->free_dma_desc);
601         }
602         list_add_tail(&sgreq->node, &tdc->free_sg_req);
603
604         /* Do not start DMA if it is going to be terminate */
605         if (to_terminate)
606                 return;
607
608         if (list_empty(&tdc->pending_sg_req)) {
609                 pm_runtime_put(tdc->tdma->dev);
610                 return;
611         }
612
613         tdc_start_head_req(tdc);
614 }
615
616 static void handle_cont_sngl_cycle_dma_done(struct tegra_dma_channel *tdc,
617                                             bool to_terminate)
618 {
619         struct tegra_dma_desc *dma_desc;
620         struct tegra_dma_sg_req *sgreq;
621         bool st;
622
623         sgreq = list_first_entry(&tdc->pending_sg_req, typeof(*sgreq), node);
624         dma_desc = sgreq->dma_desc;
625         /* if we dma for long enough the transfer count will wrap */
626         dma_desc->bytes_transferred =
627                 (dma_desc->bytes_transferred + sgreq->req_len) %
628                 dma_desc->bytes_requested;
629
630         /* Callback need to be call */
631         if (!dma_desc->cb_count)
632                 list_add_tail(&dma_desc->cb_node, &tdc->cb_desc);
633         dma_desc->cb_count++;
634
635         sgreq->words_xferred = 0;
636
637         /* If not last req then put at end of pending list */
638         if (!list_is_last(&sgreq->node, &tdc->pending_sg_req)) {
639                 list_move_tail(&sgreq->node, &tdc->pending_sg_req);
640                 sgreq->configured = false;
641                 st = handle_continuous_head_request(tdc, to_terminate);
642                 if (!st)
643                         dma_desc->dma_status = DMA_ERROR;
644         }
645 }
646
647 static void tegra_dma_tasklet(struct tasklet_struct *t)
648 {
649         struct tegra_dma_channel *tdc = from_tasklet(tdc, t, tasklet);
650         struct dmaengine_desc_callback cb;
651         struct tegra_dma_desc *dma_desc;
652         unsigned int cb_count;
653         unsigned long flags;
654
655         spin_lock_irqsave(&tdc->lock, flags);
656         while (!list_empty(&tdc->cb_desc)) {
657                 dma_desc = list_first_entry(&tdc->cb_desc, typeof(*dma_desc),
658                                             cb_node);
659                 list_del(&dma_desc->cb_node);
660                 dmaengine_desc_get_callback(&dma_desc->txd, &cb);
661                 cb_count = dma_desc->cb_count;
662                 dma_desc->cb_count = 0;
663                 trace_tegra_dma_complete_cb(&tdc->dma_chan, cb_count,
664                                             cb.callback);
665                 spin_unlock_irqrestore(&tdc->lock, flags);
666                 while (cb_count--)
667                         dmaengine_desc_callback_invoke(&cb, NULL);
668                 spin_lock_irqsave(&tdc->lock, flags);
669         }
670         spin_unlock_irqrestore(&tdc->lock, flags);
671 }
672
673 static irqreturn_t tegra_dma_isr(int irq, void *dev_id)
674 {
675         struct tegra_dma_channel *tdc = dev_id;
676         u32 status;
677
678         spin_lock(&tdc->lock);
679
680         trace_tegra_dma_isr(&tdc->dma_chan, irq);
681         status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
682         if (status & TEGRA_APBDMA_STATUS_ISE_EOC) {
683                 tdc_write(tdc, TEGRA_APBDMA_CHAN_STATUS, status);
684                 tdc->isr_handler(tdc, false);
685                 tasklet_schedule(&tdc->tasklet);
686                 wake_up_all(&tdc->wq);
687                 spin_unlock(&tdc->lock);
688                 return IRQ_HANDLED;
689         }
690
691         spin_unlock(&tdc->lock);
692         dev_info(tdc2dev(tdc), "Interrupt already served status 0x%08x\n",
693                  status);
694
695         return IRQ_NONE;
696 }
697
698 static dma_cookie_t tegra_dma_tx_submit(struct dma_async_tx_descriptor *txd)
699 {
700         struct tegra_dma_desc *dma_desc = txd_to_tegra_dma_desc(txd);
701         struct tegra_dma_channel *tdc = to_tegra_dma_chan(txd->chan);
702         unsigned long flags;
703         dma_cookie_t cookie;
704
705         spin_lock_irqsave(&tdc->lock, flags);
706         dma_desc->dma_status = DMA_IN_PROGRESS;
707         cookie = dma_cookie_assign(&dma_desc->txd);
708         list_splice_tail_init(&dma_desc->tx_list, &tdc->pending_sg_req);
709         spin_unlock_irqrestore(&tdc->lock, flags);
710
711         return cookie;
712 }
713
714 static void tegra_dma_issue_pending(struct dma_chan *dc)
715 {
716         struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
717         unsigned long flags;
718         int err;
719
720         spin_lock_irqsave(&tdc->lock, flags);
721         if (list_empty(&tdc->pending_sg_req)) {
722                 dev_err(tdc2dev(tdc), "No DMA request\n");
723                 goto end;
724         }
725         if (!tdc->busy) {
726                 err = pm_runtime_resume_and_get(tdc->tdma->dev);
727                 if (err < 0) {
728                         dev_err(tdc2dev(tdc), "Failed to enable DMA\n");
729                         goto end;
730                 }
731
732                 tdc_start_head_req(tdc);
733
734                 /* Continuous single mode: Configure next req */
735                 if (tdc->cyclic) {
736                         /*
737                          * Wait for 1 burst time for configure DMA for
738                          * next transfer.
739                          */
740                         udelay(TEGRA_APBDMA_BURST_COMPLETE_TIME);
741                         tdc_configure_next_head_desc(tdc);
742                 }
743         }
744 end:
745         spin_unlock_irqrestore(&tdc->lock, flags);
746 }
747
748 static int tegra_dma_terminate_all(struct dma_chan *dc)
749 {
750         struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
751         struct tegra_dma_desc *dma_desc;
752         struct tegra_dma_sg_req *sgreq;
753         unsigned long flags;
754         u32 status, wcount;
755         bool was_busy;
756
757         spin_lock_irqsave(&tdc->lock, flags);
758
759         if (!tdc->busy)
760                 goto skip_dma_stop;
761
762         /* Pause DMA before checking the queue status */
763         tegra_dma_pause(tdc, true);
764
765         status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
766         if (status & TEGRA_APBDMA_STATUS_ISE_EOC) {
767                 dev_dbg(tdc2dev(tdc), "%s():handling isr\n", __func__);
768                 tdc->isr_handler(tdc, true);
769                 status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
770         }
771         if (tdc->tdma->chip_data->support_separate_wcount_reg)
772                 wcount = tdc_read(tdc, TEGRA_APBDMA_CHAN_WORD_TRANSFER);
773         else
774                 wcount = status;
775
776         was_busy = tdc->busy;
777         tegra_dma_stop(tdc);
778
779         if (!list_empty(&tdc->pending_sg_req) && was_busy) {
780                 sgreq = list_first_entry(&tdc->pending_sg_req, typeof(*sgreq),
781                                          node);
782                 sgreq->dma_desc->bytes_transferred +=
783                                 get_current_xferred_count(tdc, sgreq, wcount);
784         }
785         tegra_dma_resume(tdc);
786
787         pm_runtime_put(tdc->tdma->dev);
788         wake_up_all(&tdc->wq);
789
790 skip_dma_stop:
791         tegra_dma_abort_all(tdc);
792
793         while (!list_empty(&tdc->cb_desc)) {
794                 dma_desc = list_first_entry(&tdc->cb_desc, typeof(*dma_desc),
795                                             cb_node);
796                 list_del(&dma_desc->cb_node);
797                 dma_desc->cb_count = 0;
798         }
799         spin_unlock_irqrestore(&tdc->lock, flags);
800
801         return 0;
802 }
803
804 static bool tegra_dma_eoc_interrupt_deasserted(struct tegra_dma_channel *tdc)
805 {
806         unsigned long flags;
807         u32 status;
808
809         spin_lock_irqsave(&tdc->lock, flags);
810         status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
811         spin_unlock_irqrestore(&tdc->lock, flags);
812
813         return !(status & TEGRA_APBDMA_STATUS_ISE_EOC);
814 }
815
816 static void tegra_dma_synchronize(struct dma_chan *dc)
817 {
818         struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
819         int err;
820
821         err = pm_runtime_resume_and_get(tdc->tdma->dev);
822         if (err < 0) {
823                 dev_err(tdc2dev(tdc), "Failed to synchronize DMA: %d\n", err);
824                 return;
825         }
826
827         /*
828          * CPU, which handles interrupt, could be busy in
829          * uninterruptible state, in this case sibling CPU
830          * should wait until interrupt is handled.
831          */
832         wait_event(tdc->wq, tegra_dma_eoc_interrupt_deasserted(tdc));
833
834         tasklet_kill(&tdc->tasklet);
835
836         pm_runtime_put(tdc->tdma->dev);
837 }
838
839 static unsigned int tegra_dma_sg_bytes_xferred(struct tegra_dma_channel *tdc,
840                                                struct tegra_dma_sg_req *sg_req)
841 {
842         u32 status, wcount = 0;
843
844         if (!list_is_first(&sg_req->node, &tdc->pending_sg_req))
845                 return 0;
846
847         if (tdc->tdma->chip_data->support_separate_wcount_reg)
848                 wcount = tdc_read(tdc, TEGRA_APBDMA_CHAN_WORD_TRANSFER);
849
850         status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
851
852         if (!tdc->tdma->chip_data->support_separate_wcount_reg)
853                 wcount = status;
854
855         if (status & TEGRA_APBDMA_STATUS_ISE_EOC)
856                 return sg_req->req_len;
857
858         wcount = get_current_xferred_count(tdc, sg_req, wcount);
859
860         if (!wcount) {
861                 /*
862                  * If wcount wasn't ever polled for this SG before, then
863                  * simply assume that transfer hasn't started yet.
864                  *
865                  * Otherwise it's the end of the transfer.
866                  *
867                  * The alternative would be to poll the status register
868                  * until EOC bit is set or wcount goes UP. That's so
869                  * because EOC bit is getting set only after the last
870                  * burst's completion and counter is less than the actual
871                  * transfer size by 4 bytes. The counter value wraps around
872                  * in a cyclic mode before EOC is set(!), so we can't easily
873                  * distinguish start of transfer from its end.
874                  */
875                 if (sg_req->words_xferred)
876                         wcount = sg_req->req_len - 4;
877
878         } else if (wcount < sg_req->words_xferred) {
879                 /*
880                  * This case will never happen for a non-cyclic transfer.
881                  *
882                  * For a cyclic transfer, although it is possible for the
883                  * next transfer to have already started (resetting the word
884                  * count), this case should still not happen because we should
885                  * have detected that the EOC bit is set and hence the transfer
886                  * was completed.
887                  */
888                 WARN_ON_ONCE(1);
889
890                 wcount = sg_req->req_len - 4;
891         } else {
892                 sg_req->words_xferred = wcount;
893         }
894
895         return wcount;
896 }
897
898 static enum dma_status tegra_dma_tx_status(struct dma_chan *dc,
899                                            dma_cookie_t cookie,
900                                            struct dma_tx_state *txstate)
901 {
902         struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
903         struct tegra_dma_desc *dma_desc;
904         struct tegra_dma_sg_req *sg_req;
905         enum dma_status ret;
906         unsigned long flags;
907         unsigned int residual;
908         unsigned int bytes = 0;
909
910         ret = dma_cookie_status(dc, cookie, txstate);
911         if (ret == DMA_COMPLETE)
912                 return ret;
913
914         spin_lock_irqsave(&tdc->lock, flags);
915
916         /* Check on wait_ack desc status */
917         list_for_each_entry(dma_desc, &tdc->free_dma_desc, node) {
918                 if (dma_desc->txd.cookie == cookie) {
919                         ret = dma_desc->dma_status;
920                         goto found;
921                 }
922         }
923
924         /* Check in pending list */
925         list_for_each_entry(sg_req, &tdc->pending_sg_req, node) {
926                 dma_desc = sg_req->dma_desc;
927                 if (dma_desc->txd.cookie == cookie) {
928                         bytes = tegra_dma_sg_bytes_xferred(tdc, sg_req);
929                         ret = dma_desc->dma_status;
930                         goto found;
931                 }
932         }
933
934         dev_dbg(tdc2dev(tdc), "cookie %d not found\n", cookie);
935         dma_desc = NULL;
936
937 found:
938         if (dma_desc && txstate) {
939                 residual = dma_desc->bytes_requested -
940                            ((dma_desc->bytes_transferred + bytes) %
941                             dma_desc->bytes_requested);
942                 dma_set_residue(txstate, residual);
943         }
944
945         trace_tegra_dma_tx_status(&tdc->dma_chan, cookie, txstate);
946         spin_unlock_irqrestore(&tdc->lock, flags);
947
948         return ret;
949 }
950
951 static inline unsigned int get_bus_width(struct tegra_dma_channel *tdc,
952                                          enum dma_slave_buswidth slave_bw)
953 {
954         switch (slave_bw) {
955         case DMA_SLAVE_BUSWIDTH_1_BYTE:
956                 return TEGRA_APBDMA_APBSEQ_BUS_WIDTH_8;
957         case DMA_SLAVE_BUSWIDTH_2_BYTES:
958                 return TEGRA_APBDMA_APBSEQ_BUS_WIDTH_16;
959         case DMA_SLAVE_BUSWIDTH_4_BYTES:
960                 return TEGRA_APBDMA_APBSEQ_BUS_WIDTH_32;
961         case DMA_SLAVE_BUSWIDTH_8_BYTES:
962                 return TEGRA_APBDMA_APBSEQ_BUS_WIDTH_64;
963         default:
964                 dev_warn(tdc2dev(tdc),
965                          "slave bw is not supported, using 32bits\n");
966                 return TEGRA_APBDMA_APBSEQ_BUS_WIDTH_32;
967         }
968 }
969
970 static inline unsigned int get_burst_size(struct tegra_dma_channel *tdc,
971                                           u32 burst_size,
972                                           enum dma_slave_buswidth slave_bw,
973                                           u32 len)
974 {
975         unsigned int burst_byte, burst_ahb_width;
976
977         /*
978          * burst_size from client is in terms of the bus_width.
979          * convert them into AHB memory width which is 4 byte.
980          */
981         burst_byte = burst_size * slave_bw;
982         burst_ahb_width = burst_byte / 4;
983
984         /* If burst size is 0 then calculate the burst size based on length */
985         if (!burst_ahb_width) {
986                 if (len & 0xF)
987                         return TEGRA_APBDMA_AHBSEQ_BURST_1;
988                 else if ((len >> 4) & 0x1)
989                         return TEGRA_APBDMA_AHBSEQ_BURST_4;
990                 else
991                         return TEGRA_APBDMA_AHBSEQ_BURST_8;
992         }
993         if (burst_ahb_width < 4)
994                 return TEGRA_APBDMA_AHBSEQ_BURST_1;
995         else if (burst_ahb_width < 8)
996                 return TEGRA_APBDMA_AHBSEQ_BURST_4;
997         else
998                 return TEGRA_APBDMA_AHBSEQ_BURST_8;
999 }
1000
1001 static int get_transfer_param(struct tegra_dma_channel *tdc,
1002                               enum dma_transfer_direction direction,
1003                               u32 *apb_addr,
1004                               u32 *apb_seq,
1005                               u32 *csr,
1006                               unsigned int *burst_size,
1007                               enum dma_slave_buswidth *slave_bw)
1008 {
1009         switch (direction) {
1010         case DMA_MEM_TO_DEV:
1011                 *apb_addr = tdc->dma_sconfig.dst_addr;
1012                 *apb_seq = get_bus_width(tdc, tdc->dma_sconfig.dst_addr_width);
1013                 *burst_size = tdc->dma_sconfig.dst_maxburst;
1014                 *slave_bw = tdc->dma_sconfig.dst_addr_width;
1015                 *csr = TEGRA_APBDMA_CSR_DIR;
1016                 return 0;
1017
1018         case DMA_DEV_TO_MEM:
1019                 *apb_addr = tdc->dma_sconfig.src_addr;
1020                 *apb_seq = get_bus_width(tdc, tdc->dma_sconfig.src_addr_width);
1021                 *burst_size = tdc->dma_sconfig.src_maxburst;
1022                 *slave_bw = tdc->dma_sconfig.src_addr_width;
1023                 *csr = 0;
1024                 return 0;
1025
1026         default:
1027                 dev_err(tdc2dev(tdc), "DMA direction is not supported\n");
1028                 break;
1029         }
1030
1031         return -EINVAL;
1032 }
1033
1034 static void tegra_dma_prep_wcount(struct tegra_dma_channel *tdc,
1035                                   struct tegra_dma_channel_regs *ch_regs,
1036                                   u32 len)
1037 {
1038         u32 len_field = (len - 4) & 0xFFFC;
1039
1040         if (tdc->tdma->chip_data->support_separate_wcount_reg)
1041                 ch_regs->wcount = len_field;
1042         else
1043                 ch_regs->csr |= len_field;
1044 }
1045
1046 static struct dma_async_tx_descriptor *
1047 tegra_dma_prep_slave_sg(struct dma_chan *dc,
1048                         struct scatterlist *sgl,
1049                         unsigned int sg_len,
1050                         enum dma_transfer_direction direction,
1051                         unsigned long flags,
1052                         void *context)
1053 {
1054         struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
1055         struct tegra_dma_sg_req *sg_req = NULL;
1056         u32 csr, ahb_seq, apb_ptr, apb_seq;
1057         enum dma_slave_buswidth slave_bw;
1058         struct tegra_dma_desc *dma_desc;
1059         struct list_head req_list;
1060         struct scatterlist *sg;
1061         unsigned int burst_size;
1062         unsigned int i;
1063
1064         if (!tdc->config_init) {
1065                 dev_err(tdc2dev(tdc), "DMA channel is not configured\n");
1066                 return NULL;
1067         }
1068         if (sg_len < 1) {
1069                 dev_err(tdc2dev(tdc), "Invalid segment length %d\n", sg_len);
1070                 return NULL;
1071         }
1072
1073         if (get_transfer_param(tdc, direction, &apb_ptr, &apb_seq, &csr,
1074                                &burst_size, &slave_bw) < 0)
1075                 return NULL;
1076
1077         INIT_LIST_HEAD(&req_list);
1078
1079         ahb_seq = TEGRA_APBDMA_AHBSEQ_INTR_ENB;
1080         ahb_seq |= TEGRA_APBDMA_AHBSEQ_WRAP_NONE <<
1081                                         TEGRA_APBDMA_AHBSEQ_WRAP_SHIFT;
1082         ahb_seq |= TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_32;
1083
1084         csr |= TEGRA_APBDMA_CSR_ONCE;
1085
1086         if (tdc->slave_id != TEGRA_APBDMA_SLAVE_ID_INVALID) {
1087                 csr |= TEGRA_APBDMA_CSR_FLOW;
1088                 csr |= tdc->slave_id << TEGRA_APBDMA_CSR_REQ_SEL_SHIFT;
1089         }
1090
1091         if (flags & DMA_PREP_INTERRUPT) {
1092                 csr |= TEGRA_APBDMA_CSR_IE_EOC;
1093         } else {
1094                 WARN_ON_ONCE(1);
1095                 return NULL;
1096         }
1097
1098         apb_seq |= TEGRA_APBDMA_APBSEQ_WRAP_WORD_1;
1099
1100         dma_desc = tegra_dma_desc_get(tdc);
1101         if (!dma_desc) {
1102                 dev_err(tdc2dev(tdc), "DMA descriptors not available\n");
1103                 return NULL;
1104         }
1105         INIT_LIST_HEAD(&dma_desc->tx_list);
1106         INIT_LIST_HEAD(&dma_desc->cb_node);
1107         dma_desc->cb_count = 0;
1108         dma_desc->bytes_requested = 0;
1109         dma_desc->bytes_transferred = 0;
1110         dma_desc->dma_status = DMA_IN_PROGRESS;
1111
1112         /* Make transfer requests */
1113         for_each_sg(sgl, sg, sg_len, i) {
1114                 u32 len, mem;
1115
1116                 mem = sg_dma_address(sg);
1117                 len = sg_dma_len(sg);
1118
1119                 if ((len & 3) || (mem & 3) ||
1120                     len > tdc->tdma->chip_data->max_dma_count) {
1121                         dev_err(tdc2dev(tdc),
1122                                 "DMA length/memory address is not supported\n");
1123                         tegra_dma_desc_put(tdc, dma_desc);
1124                         return NULL;
1125                 }
1126
1127                 sg_req = tegra_dma_sg_req_get(tdc);
1128                 if (!sg_req) {
1129                         dev_err(tdc2dev(tdc), "DMA sg-req not available\n");
1130                         tegra_dma_desc_put(tdc, dma_desc);
1131                         return NULL;
1132                 }
1133
1134                 ahb_seq |= get_burst_size(tdc, burst_size, slave_bw, len);
1135                 dma_desc->bytes_requested += len;
1136
1137                 sg_req->ch_regs.apb_ptr = apb_ptr;
1138                 sg_req->ch_regs.ahb_ptr = mem;
1139                 sg_req->ch_regs.csr = csr;
1140                 tegra_dma_prep_wcount(tdc, &sg_req->ch_regs, len);
1141                 sg_req->ch_regs.apb_seq = apb_seq;
1142                 sg_req->ch_regs.ahb_seq = ahb_seq;
1143                 sg_req->configured = false;
1144                 sg_req->last_sg = false;
1145                 sg_req->dma_desc = dma_desc;
1146                 sg_req->req_len = len;
1147
1148                 list_add_tail(&sg_req->node, &dma_desc->tx_list);
1149         }
1150         sg_req->last_sg = true;
1151         if (flags & DMA_CTRL_ACK)
1152                 dma_desc->txd.flags = DMA_CTRL_ACK;
1153
1154         /*
1155          * Make sure that mode should not be conflicting with currently
1156          * configured mode.
1157          */
1158         if (!tdc->isr_handler) {
1159                 tdc->isr_handler = handle_once_dma_done;
1160                 tdc->cyclic = false;
1161         } else {
1162                 if (tdc->cyclic) {
1163                         dev_err(tdc2dev(tdc), "DMA configured in cyclic mode\n");
1164                         tegra_dma_desc_put(tdc, dma_desc);
1165                         return NULL;
1166                 }
1167         }
1168
1169         return &dma_desc->txd;
1170 }
1171
1172 static struct dma_async_tx_descriptor *
1173 tegra_dma_prep_dma_cyclic(struct dma_chan *dc, dma_addr_t buf_addr,
1174                           size_t buf_len,
1175                           size_t period_len,
1176                           enum dma_transfer_direction direction,
1177                           unsigned long flags)
1178 {
1179         struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
1180         struct tegra_dma_sg_req *sg_req = NULL;
1181         u32 csr, ahb_seq, apb_ptr, apb_seq;
1182         enum dma_slave_buswidth slave_bw;
1183         struct tegra_dma_desc *dma_desc;
1184         dma_addr_t mem = buf_addr;
1185         unsigned int burst_size;
1186         size_t len, remain_len;
1187
1188         if (!buf_len || !period_len) {
1189                 dev_err(tdc2dev(tdc), "Invalid buffer/period len\n");
1190                 return NULL;
1191         }
1192
1193         if (!tdc->config_init) {
1194                 dev_err(tdc2dev(tdc), "DMA slave is not configured\n");
1195                 return NULL;
1196         }
1197
1198         /*
1199          * We allow to take more number of requests till DMA is
1200          * not started. The driver will loop over all requests.
1201          * Once DMA is started then new requests can be queued only after
1202          * terminating the DMA.
1203          */
1204         if (tdc->busy) {
1205                 dev_err(tdc2dev(tdc), "Request not allowed when DMA running\n");
1206                 return NULL;
1207         }
1208
1209         /*
1210          * We only support cycle transfer when buf_len is multiple of
1211          * period_len.
1212          */
1213         if (buf_len % period_len) {
1214                 dev_err(tdc2dev(tdc), "buf_len is not multiple of period_len\n");
1215                 return NULL;
1216         }
1217
1218         len = period_len;
1219         if ((len & 3) || (buf_addr & 3) ||
1220             len > tdc->tdma->chip_data->max_dma_count) {
1221                 dev_err(tdc2dev(tdc), "Req len/mem address is not correct\n");
1222                 return NULL;
1223         }
1224
1225         if (get_transfer_param(tdc, direction, &apb_ptr, &apb_seq, &csr,
1226                                &burst_size, &slave_bw) < 0)
1227                 return NULL;
1228
1229         ahb_seq = TEGRA_APBDMA_AHBSEQ_INTR_ENB;
1230         ahb_seq |= TEGRA_APBDMA_AHBSEQ_WRAP_NONE <<
1231                                         TEGRA_APBDMA_AHBSEQ_WRAP_SHIFT;
1232         ahb_seq |= TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_32;
1233
1234         if (tdc->slave_id != TEGRA_APBDMA_SLAVE_ID_INVALID) {
1235                 csr |= TEGRA_APBDMA_CSR_FLOW;
1236                 csr |= tdc->slave_id << TEGRA_APBDMA_CSR_REQ_SEL_SHIFT;
1237         }
1238
1239         if (flags & DMA_PREP_INTERRUPT) {
1240                 csr |= TEGRA_APBDMA_CSR_IE_EOC;
1241         } else {
1242                 WARN_ON_ONCE(1);
1243                 return NULL;
1244         }
1245
1246         apb_seq |= TEGRA_APBDMA_APBSEQ_WRAP_WORD_1;
1247
1248         dma_desc = tegra_dma_desc_get(tdc);
1249         if (!dma_desc) {
1250                 dev_err(tdc2dev(tdc), "not enough descriptors available\n");
1251                 return NULL;
1252         }
1253
1254         INIT_LIST_HEAD(&dma_desc->tx_list);
1255         INIT_LIST_HEAD(&dma_desc->cb_node);
1256         dma_desc->cb_count = 0;
1257
1258         dma_desc->bytes_transferred = 0;
1259         dma_desc->bytes_requested = buf_len;
1260         remain_len = buf_len;
1261
1262         /* Split transfer equal to period size */
1263         while (remain_len) {
1264                 sg_req = tegra_dma_sg_req_get(tdc);
1265                 if (!sg_req) {
1266                         dev_err(tdc2dev(tdc), "DMA sg-req not available\n");
1267                         tegra_dma_desc_put(tdc, dma_desc);
1268                         return NULL;
1269                 }
1270
1271                 ahb_seq |= get_burst_size(tdc, burst_size, slave_bw, len);
1272                 sg_req->ch_regs.apb_ptr = apb_ptr;
1273                 sg_req->ch_regs.ahb_ptr = mem;
1274                 sg_req->ch_regs.csr = csr;
1275                 tegra_dma_prep_wcount(tdc, &sg_req->ch_regs, len);
1276                 sg_req->ch_regs.apb_seq = apb_seq;
1277                 sg_req->ch_regs.ahb_seq = ahb_seq;
1278                 sg_req->configured = false;
1279                 sg_req->last_sg = false;
1280                 sg_req->dma_desc = dma_desc;
1281                 sg_req->req_len = len;
1282
1283                 list_add_tail(&sg_req->node, &dma_desc->tx_list);
1284                 remain_len -= len;
1285                 mem += len;
1286         }
1287         sg_req->last_sg = true;
1288         if (flags & DMA_CTRL_ACK)
1289                 dma_desc->txd.flags = DMA_CTRL_ACK;
1290
1291         /*
1292          * Make sure that mode should not be conflicting with currently
1293          * configured mode.
1294          */
1295         if (!tdc->isr_handler) {
1296                 tdc->isr_handler = handle_cont_sngl_cycle_dma_done;
1297                 tdc->cyclic = true;
1298         } else {
1299                 if (!tdc->cyclic) {
1300                         dev_err(tdc2dev(tdc), "DMA configuration conflict\n");
1301                         tegra_dma_desc_put(tdc, dma_desc);
1302                         return NULL;
1303                 }
1304         }
1305
1306         return &dma_desc->txd;
1307 }
1308
1309 static int tegra_dma_alloc_chan_resources(struct dma_chan *dc)
1310 {
1311         struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
1312
1313         dma_cookie_init(&tdc->dma_chan);
1314
1315         return 0;
1316 }
1317
1318 static void tegra_dma_free_chan_resources(struct dma_chan *dc)
1319 {
1320         struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
1321         struct tegra_dma_desc *dma_desc;
1322         struct tegra_dma_sg_req *sg_req;
1323         struct list_head dma_desc_list;
1324         struct list_head sg_req_list;
1325
1326         INIT_LIST_HEAD(&dma_desc_list);
1327         INIT_LIST_HEAD(&sg_req_list);
1328
1329         dev_dbg(tdc2dev(tdc), "Freeing channel %d\n", tdc->id);
1330
1331         tegra_dma_terminate_all(dc);
1332         tasklet_kill(&tdc->tasklet);
1333
1334         list_splice_init(&tdc->pending_sg_req, &sg_req_list);
1335         list_splice_init(&tdc->free_sg_req, &sg_req_list);
1336         list_splice_init(&tdc->free_dma_desc, &dma_desc_list);
1337         INIT_LIST_HEAD(&tdc->cb_desc);
1338         tdc->config_init = false;
1339         tdc->isr_handler = NULL;
1340
1341         while (!list_empty(&dma_desc_list)) {
1342                 dma_desc = list_first_entry(&dma_desc_list, typeof(*dma_desc),
1343                                             node);
1344                 list_del(&dma_desc->node);
1345                 kfree(dma_desc);
1346         }
1347
1348         while (!list_empty(&sg_req_list)) {
1349                 sg_req = list_first_entry(&sg_req_list, typeof(*sg_req), node);
1350                 list_del(&sg_req->node);
1351                 kfree(sg_req);
1352         }
1353
1354         tdc->slave_id = TEGRA_APBDMA_SLAVE_ID_INVALID;
1355 }
1356
1357 static struct dma_chan *tegra_dma_of_xlate(struct of_phandle_args *dma_spec,
1358                                            struct of_dma *ofdma)
1359 {
1360         struct tegra_dma *tdma = ofdma->of_dma_data;
1361         struct tegra_dma_channel *tdc;
1362         struct dma_chan *chan;
1363
1364         if (dma_spec->args[0] > TEGRA_APBDMA_CSR_REQ_SEL_MASK) {
1365                 dev_err(tdma->dev, "Invalid slave id: %d\n", dma_spec->args[0]);
1366                 return NULL;
1367         }
1368
1369         chan = dma_get_any_slave_channel(&tdma->dma_dev);
1370         if (!chan)
1371                 return NULL;
1372
1373         tdc = to_tegra_dma_chan(chan);
1374         tdc->slave_id = dma_spec->args[0];
1375
1376         return chan;
1377 }
1378
1379 /* Tegra20 specific DMA controller information */
1380 static const struct tegra_dma_chip_data tegra20_dma_chip_data = {
1381         .nr_channels            = 16,
1382         .channel_reg_size       = 0x20,
1383         .max_dma_count          = 1024UL * 64,
1384         .support_channel_pause  = false,
1385         .support_separate_wcount_reg = false,
1386 };
1387
1388 /* Tegra30 specific DMA controller information */
1389 static const struct tegra_dma_chip_data tegra30_dma_chip_data = {
1390         .nr_channels            = 32,
1391         .channel_reg_size       = 0x20,
1392         .max_dma_count          = 1024UL * 64,
1393         .support_channel_pause  = false,
1394         .support_separate_wcount_reg = false,
1395 };
1396
1397 /* Tegra114 specific DMA controller information */
1398 static const struct tegra_dma_chip_data tegra114_dma_chip_data = {
1399         .nr_channels            = 32,
1400         .channel_reg_size       = 0x20,
1401         .max_dma_count          = 1024UL * 64,
1402         .support_channel_pause  = true,
1403         .support_separate_wcount_reg = false,
1404 };
1405
1406 /* Tegra148 specific DMA controller information */
1407 static const struct tegra_dma_chip_data tegra148_dma_chip_data = {
1408         .nr_channels            = 32,
1409         .channel_reg_size       = 0x40,
1410         .max_dma_count          = 1024UL * 64,
1411         .support_channel_pause  = true,
1412         .support_separate_wcount_reg = true,
1413 };
1414
1415 static int tegra_dma_init_hw(struct tegra_dma *tdma)
1416 {
1417         int err;
1418
1419         err = reset_control_assert(tdma->rst);
1420         if (err) {
1421                 dev_err(tdma->dev, "failed to assert reset: %d\n", err);
1422                 return err;
1423         }
1424
1425         err = clk_enable(tdma->dma_clk);
1426         if (err) {
1427                 dev_err(tdma->dev, "failed to enable clk: %d\n", err);
1428                 return err;
1429         }
1430
1431         /* reset DMA controller */
1432         udelay(2);
1433         reset_control_deassert(tdma->rst);
1434
1435         /* enable global DMA registers */
1436         tdma_write(tdma, TEGRA_APBDMA_GENERAL, TEGRA_APBDMA_GENERAL_ENABLE);
1437         tdma_write(tdma, TEGRA_APBDMA_CONTROL, 0);
1438         tdma_write(tdma, TEGRA_APBDMA_IRQ_MASK_SET, 0xFFFFFFFF);
1439
1440         clk_disable(tdma->dma_clk);
1441
1442         return 0;
1443 }
1444
1445 static int tegra_dma_probe(struct platform_device *pdev)
1446 {
1447         const struct tegra_dma_chip_data *cdata;
1448         struct tegra_dma *tdma;
1449         unsigned int i;
1450         size_t size;
1451         int ret;
1452
1453         cdata = of_device_get_match_data(&pdev->dev);
1454         size = struct_size(tdma, channels, cdata->nr_channels);
1455
1456         tdma = devm_kzalloc(&pdev->dev, size, GFP_KERNEL);
1457         if (!tdma)
1458                 return -ENOMEM;
1459
1460         tdma->dev = &pdev->dev;
1461         tdma->chip_data = cdata;
1462         platform_set_drvdata(pdev, tdma);
1463
1464         tdma->base_addr = devm_platform_ioremap_resource(pdev, 0);
1465         if (IS_ERR(tdma->base_addr))
1466                 return PTR_ERR(tdma->base_addr);
1467
1468         tdma->dma_clk = devm_clk_get(&pdev->dev, NULL);
1469         if (IS_ERR(tdma->dma_clk)) {
1470                 dev_err(&pdev->dev, "Error: Missing controller clock\n");
1471                 return PTR_ERR(tdma->dma_clk);
1472         }
1473
1474         tdma->rst = devm_reset_control_get(&pdev->dev, "dma");
1475         if (IS_ERR(tdma->rst)) {
1476                 dev_err(&pdev->dev, "Error: Missing reset\n");
1477                 return PTR_ERR(tdma->rst);
1478         }
1479
1480         spin_lock_init(&tdma->global_lock);
1481
1482         ret = clk_prepare(tdma->dma_clk);
1483         if (ret)
1484                 return ret;
1485
1486         ret = tegra_dma_init_hw(tdma);
1487         if (ret)
1488                 goto err_clk_unprepare;
1489
1490         pm_runtime_irq_safe(&pdev->dev);
1491         pm_runtime_enable(&pdev->dev);
1492
1493         INIT_LIST_HEAD(&tdma->dma_dev.channels);
1494         for (i = 0; i < cdata->nr_channels; i++) {
1495                 struct tegra_dma_channel *tdc = &tdma->channels[i];
1496                 int irq;
1497
1498                 tdc->chan_addr = tdma->base_addr +
1499                                  TEGRA_APBDMA_CHANNEL_BASE_ADD_OFFSET +
1500                                  (i * cdata->channel_reg_size);
1501
1502                 irq = platform_get_irq(pdev, i);
1503                 if (irq < 0) {
1504                         ret = irq;
1505                         goto err_pm_disable;
1506                 }
1507
1508                 snprintf(tdc->name, sizeof(tdc->name), "apbdma.%d", i);
1509                 ret = devm_request_irq(&pdev->dev, irq, tegra_dma_isr, 0,
1510                                        tdc->name, tdc);
1511                 if (ret) {
1512                         dev_err(&pdev->dev,
1513                                 "request_irq failed with err %d channel %d\n",
1514                                 ret, i);
1515                         goto err_pm_disable;
1516                 }
1517
1518                 tdc->dma_chan.device = &tdma->dma_dev;
1519                 dma_cookie_init(&tdc->dma_chan);
1520                 list_add_tail(&tdc->dma_chan.device_node,
1521                               &tdma->dma_dev.channels);
1522                 tdc->tdma = tdma;
1523                 tdc->id = i;
1524                 tdc->slave_id = TEGRA_APBDMA_SLAVE_ID_INVALID;
1525
1526                 tasklet_setup(&tdc->tasklet, tegra_dma_tasklet);
1527                 spin_lock_init(&tdc->lock);
1528                 init_waitqueue_head(&tdc->wq);
1529
1530                 INIT_LIST_HEAD(&tdc->pending_sg_req);
1531                 INIT_LIST_HEAD(&tdc->free_sg_req);
1532                 INIT_LIST_HEAD(&tdc->free_dma_desc);
1533                 INIT_LIST_HEAD(&tdc->cb_desc);
1534         }
1535
1536         dma_cap_set(DMA_SLAVE, tdma->dma_dev.cap_mask);
1537         dma_cap_set(DMA_PRIVATE, tdma->dma_dev.cap_mask);
1538         dma_cap_set(DMA_CYCLIC, tdma->dma_dev.cap_mask);
1539
1540         tdma->global_pause_count = 0;
1541         tdma->dma_dev.dev = &pdev->dev;
1542         tdma->dma_dev.device_alloc_chan_resources =
1543                                         tegra_dma_alloc_chan_resources;
1544         tdma->dma_dev.device_free_chan_resources =
1545                                         tegra_dma_free_chan_resources;
1546         tdma->dma_dev.device_prep_slave_sg = tegra_dma_prep_slave_sg;
1547         tdma->dma_dev.device_prep_dma_cyclic = tegra_dma_prep_dma_cyclic;
1548         tdma->dma_dev.src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
1549                 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
1550                 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) |
1551                 BIT(DMA_SLAVE_BUSWIDTH_8_BYTES);
1552         tdma->dma_dev.dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
1553                 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
1554                 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) |
1555                 BIT(DMA_SLAVE_BUSWIDTH_8_BYTES);
1556         tdma->dma_dev.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1557         tdma->dma_dev.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1558         tdma->dma_dev.device_config = tegra_dma_slave_config;
1559         tdma->dma_dev.device_terminate_all = tegra_dma_terminate_all;
1560         tdma->dma_dev.device_synchronize = tegra_dma_synchronize;
1561         tdma->dma_dev.device_tx_status = tegra_dma_tx_status;
1562         tdma->dma_dev.device_issue_pending = tegra_dma_issue_pending;
1563
1564         ret = dma_async_device_register(&tdma->dma_dev);
1565         if (ret < 0) {
1566                 dev_err(&pdev->dev,
1567                         "Tegra20 APB DMA driver registration failed %d\n", ret);
1568                 goto err_pm_disable;
1569         }
1570
1571         ret = of_dma_controller_register(pdev->dev.of_node,
1572                                          tegra_dma_of_xlate, tdma);
1573         if (ret < 0) {
1574                 dev_err(&pdev->dev,
1575                         "Tegra20 APB DMA OF registration failed %d\n", ret);
1576                 goto err_unregister_dma_dev;
1577         }
1578
1579         dev_info(&pdev->dev, "Tegra20 APB DMA driver registered %u channels\n",
1580                  cdata->nr_channels);
1581
1582         return 0;
1583
1584 err_unregister_dma_dev:
1585         dma_async_device_unregister(&tdma->dma_dev);
1586
1587 err_pm_disable:
1588         pm_runtime_disable(&pdev->dev);
1589
1590 err_clk_unprepare:
1591         clk_unprepare(tdma->dma_clk);
1592
1593         return ret;
1594 }
1595
1596 static int tegra_dma_remove(struct platform_device *pdev)
1597 {
1598         struct tegra_dma *tdma = platform_get_drvdata(pdev);
1599
1600         of_dma_controller_free(pdev->dev.of_node);
1601         dma_async_device_unregister(&tdma->dma_dev);
1602         pm_runtime_disable(&pdev->dev);
1603         clk_unprepare(tdma->dma_clk);
1604
1605         return 0;
1606 }
1607
1608 static int __maybe_unused tegra_dma_runtime_suspend(struct device *dev)
1609 {
1610         struct tegra_dma *tdma = dev_get_drvdata(dev);
1611
1612         clk_disable(tdma->dma_clk);
1613
1614         return 0;
1615 }
1616
1617 static int __maybe_unused tegra_dma_runtime_resume(struct device *dev)
1618 {
1619         struct tegra_dma *tdma = dev_get_drvdata(dev);
1620
1621         return clk_enable(tdma->dma_clk);
1622 }
1623
1624 static int __maybe_unused tegra_dma_dev_suspend(struct device *dev)
1625 {
1626         struct tegra_dma *tdma = dev_get_drvdata(dev);
1627         unsigned long flags;
1628         unsigned int i;
1629         bool busy;
1630
1631         for (i = 0; i < tdma->chip_data->nr_channels; i++) {
1632                 struct tegra_dma_channel *tdc = &tdma->channels[i];
1633
1634                 tasklet_kill(&tdc->tasklet);
1635
1636                 spin_lock_irqsave(&tdc->lock, flags);
1637                 busy = tdc->busy;
1638                 spin_unlock_irqrestore(&tdc->lock, flags);
1639
1640                 if (busy) {
1641                         dev_err(tdma->dev, "channel %u busy\n", i);
1642                         return -EBUSY;
1643                 }
1644         }
1645
1646         return pm_runtime_force_suspend(dev);
1647 }
1648
1649 static int __maybe_unused tegra_dma_dev_resume(struct device *dev)
1650 {
1651         struct tegra_dma *tdma = dev_get_drvdata(dev);
1652         int err;
1653
1654         err = tegra_dma_init_hw(tdma);
1655         if (err)
1656                 return err;
1657
1658         return pm_runtime_force_resume(dev);
1659 }
1660
1661 static const struct dev_pm_ops tegra_dma_dev_pm_ops = {
1662         SET_RUNTIME_PM_OPS(tegra_dma_runtime_suspend, tegra_dma_runtime_resume,
1663                            NULL)
1664         SET_SYSTEM_SLEEP_PM_OPS(tegra_dma_dev_suspend, tegra_dma_dev_resume)
1665 };
1666
1667 static const struct of_device_id tegra_dma_of_match[] = {
1668         {
1669                 .compatible = "nvidia,tegra148-apbdma",
1670                 .data = &tegra148_dma_chip_data,
1671         }, {
1672                 .compatible = "nvidia,tegra114-apbdma",
1673                 .data = &tegra114_dma_chip_data,
1674         }, {
1675                 .compatible = "nvidia,tegra30-apbdma",
1676                 .data = &tegra30_dma_chip_data,
1677         }, {
1678                 .compatible = "nvidia,tegra20-apbdma",
1679                 .data = &tegra20_dma_chip_data,
1680         }, {
1681         },
1682 };
1683 MODULE_DEVICE_TABLE(of, tegra_dma_of_match);
1684
1685 static struct platform_driver tegra_dmac_driver = {
1686         .driver = {
1687                 .name   = "tegra-apbdma",
1688                 .pm     = &tegra_dma_dev_pm_ops,
1689                 .of_match_table = tegra_dma_of_match,
1690         },
1691         .probe          = tegra_dma_probe,
1692         .remove         = tegra_dma_remove,
1693 };
1694
1695 module_platform_driver(tegra_dmac_driver);
1696
1697 MODULE_DESCRIPTION("NVIDIA Tegra APB DMA Controller driver");
1698 MODULE_AUTHOR("Laxman Dewangan <ldewangan@nvidia.com>");
1699 MODULE_LICENSE("GPL v2");