1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * Copyright (C) 2014 Emilio López
4 * Emilio López <emilio@elopez.com.ar>
7 #include <linux/bitmap.h>
8 #include <linux/bitops.h>
10 #include <linux/dma-mapping.h>
11 #include <linux/dmaengine.h>
12 #include <linux/dmapool.h>
13 #include <linux/interrupt.h>
14 #include <linux/module.h>
15 #include <linux/of_dma.h>
16 #include <linux/platform_device.h>
17 #include <linux/slab.h>
18 #include <linux/spinlock.h>
22 /** Common macros to normal and dedicated DMA registers **/
24 #define SUN4I_DMA_CFG_LOADING BIT(31)
25 #define SUN4I_DMA_CFG_DST_DATA_WIDTH(width) ((width) << 25)
26 #define SUN4I_DMA_CFG_DST_BURST_LENGTH(len) ((len) << 23)
27 #define SUN4I_DMA_CFG_DST_ADDR_MODE(mode) ((mode) << 21)
28 #define SUN4I_DMA_CFG_DST_DRQ_TYPE(type) ((type) << 16)
29 #define SUN4I_DMA_CFG_SRC_DATA_WIDTH(width) ((width) << 9)
30 #define SUN4I_DMA_CFG_SRC_BURST_LENGTH(len) ((len) << 7)
31 #define SUN4I_DMA_CFG_SRC_ADDR_MODE(mode) ((mode) << 5)
32 #define SUN4I_DMA_CFG_SRC_DRQ_TYPE(type) (type)
34 /** Normal DMA register values **/
36 /* Normal DMA source/destination data request type values */
37 #define SUN4I_NDMA_DRQ_TYPE_SDRAM 0x16
38 #define SUN4I_NDMA_DRQ_TYPE_LIMIT (0x1F + 1)
40 /** Normal DMA register layout **/
42 /* Dedicated DMA source/destination address mode values */
43 #define SUN4I_NDMA_ADDR_MODE_LINEAR 0
44 #define SUN4I_NDMA_ADDR_MODE_IO 1
46 /* Normal DMA configuration register layout */
47 #define SUN4I_NDMA_CFG_CONT_MODE BIT(30)
48 #define SUN4I_NDMA_CFG_WAIT_STATE(n) ((n) << 27)
49 #define SUN4I_NDMA_CFG_DST_NON_SECURE BIT(22)
50 #define SUN4I_NDMA_CFG_BYTE_COUNT_MODE_REMAIN BIT(15)
51 #define SUN4I_NDMA_CFG_SRC_NON_SECURE BIT(6)
53 /** Dedicated DMA register values **/
55 /* Dedicated DMA source/destination address mode values */
56 #define SUN4I_DDMA_ADDR_MODE_LINEAR 0
57 #define SUN4I_DDMA_ADDR_MODE_IO 1
58 #define SUN4I_DDMA_ADDR_MODE_HORIZONTAL_PAGE 2
59 #define SUN4I_DDMA_ADDR_MODE_VERTICAL_PAGE 3
61 /* Dedicated DMA source/destination data request type values */
62 #define SUN4I_DDMA_DRQ_TYPE_SDRAM 0x1
63 #define SUN4I_DDMA_DRQ_TYPE_LIMIT (0x1F + 1)
65 /** Dedicated DMA register layout **/
67 /* Dedicated DMA configuration register layout */
68 #define SUN4I_DDMA_CFG_BUSY BIT(30)
69 #define SUN4I_DDMA_CFG_CONT_MODE BIT(29)
70 #define SUN4I_DDMA_CFG_DST_NON_SECURE BIT(28)
71 #define SUN4I_DDMA_CFG_BYTE_COUNT_MODE_REMAIN BIT(15)
72 #define SUN4I_DDMA_CFG_SRC_NON_SECURE BIT(12)
74 /* Dedicated DMA parameter register layout */
75 #define SUN4I_DDMA_PARA_DST_DATA_BLK_SIZE(n) (((n) - 1) << 24)
76 #define SUN4I_DDMA_PARA_DST_WAIT_CYCLES(n) (((n) - 1) << 16)
77 #define SUN4I_DDMA_PARA_SRC_DATA_BLK_SIZE(n) (((n) - 1) << 8)
78 #define SUN4I_DDMA_PARA_SRC_WAIT_CYCLES(n) (((n) - 1) << 0)
80 /** DMA register offsets **/
82 /* General register offsets */
83 #define SUN4I_DMA_IRQ_ENABLE_REG 0x0
84 #define SUN4I_DMA_IRQ_PENDING_STATUS_REG 0x4
86 /* Normal DMA register offsets */
87 #define SUN4I_NDMA_CHANNEL_REG_BASE(n) (0x100 + (n) * 0x20)
88 #define SUN4I_NDMA_CFG_REG 0x0
89 #define SUN4I_NDMA_SRC_ADDR_REG 0x4
90 #define SUN4I_NDMA_DST_ADDR_REG 0x8
91 #define SUN4I_NDMA_BYTE_COUNT_REG 0xC
93 /* Dedicated DMA register offsets */
94 #define SUN4I_DDMA_CHANNEL_REG_BASE(n) (0x300 + (n) * 0x20)
95 #define SUN4I_DDMA_CFG_REG 0x0
96 #define SUN4I_DDMA_SRC_ADDR_REG 0x4
97 #define SUN4I_DDMA_DST_ADDR_REG 0x8
98 #define SUN4I_DDMA_BYTE_COUNT_REG 0xC
99 #define SUN4I_DDMA_PARA_REG 0x18
104 * Normal DMA has 8 channels, and Dedicated DMA has another 8, so
105 * that's 16 channels. As for endpoints, there's 29 and 21
106 * respectively. Given that the Normal DMA endpoints (other than
107 * SDRAM) can be used as tx/rx, we need 78 vchans in total
109 #define SUN4I_NDMA_NR_MAX_CHANNELS 8
110 #define SUN4I_DDMA_NR_MAX_CHANNELS 8
111 #define SUN4I_DMA_NR_MAX_CHANNELS \
112 (SUN4I_NDMA_NR_MAX_CHANNELS + SUN4I_DDMA_NR_MAX_CHANNELS)
113 #define SUN4I_NDMA_NR_MAX_VCHANS (29 * 2 - 1)
114 #define SUN4I_DDMA_NR_MAX_VCHANS 21
115 #define SUN4I_DMA_NR_MAX_VCHANS \
116 (SUN4I_NDMA_NR_MAX_VCHANS + SUN4I_DDMA_NR_MAX_VCHANS)
118 /* This set of SUN4I_DDMA timing parameters were found experimentally while
119 * working with the SPI driver and seem to make it behave correctly */
120 #define SUN4I_DDMA_MAGIC_SPI_PARAMETERS \
121 (SUN4I_DDMA_PARA_DST_DATA_BLK_SIZE(1) | \
122 SUN4I_DDMA_PARA_SRC_DATA_BLK_SIZE(1) | \
123 SUN4I_DDMA_PARA_DST_WAIT_CYCLES(2) | \
124 SUN4I_DDMA_PARA_SRC_WAIT_CYCLES(2))
127 * Normal DMA supports individual transfers (segments) up to 128k.
128 * Dedicated DMA supports transfers up to 16M. We can only report
129 * one size limit, so we have to use the smaller value.
131 #define SUN4I_NDMA_MAX_SEG_SIZE SZ_128K
132 #define SUN4I_DDMA_MAX_SEG_SIZE SZ_16M
133 #define SUN4I_DMA_MAX_SEG_SIZE SUN4I_NDMA_MAX_SEG_SIZE
135 struct sun4i_dma_pchan {
136 /* Register base of channel */
138 /* vchan currently being serviced */
139 struct sun4i_dma_vchan *vchan;
140 /* Is this a dedicated pchan? */
144 struct sun4i_dma_vchan {
145 struct virt_dma_chan vc;
146 struct dma_slave_config cfg;
147 struct sun4i_dma_pchan *pchan;
148 struct sun4i_dma_promise *processing;
149 struct sun4i_dma_contract *contract;
154 struct sun4i_dma_promise {
160 struct list_head list;
163 /* A contract is a set of promises */
164 struct sun4i_dma_contract {
165 struct virt_dma_desc vd;
166 struct list_head demands;
167 struct list_head completed_demands;
169 bool use_half_int : 1;
172 struct sun4i_dma_dev {
173 DECLARE_BITMAP(pchans_used, SUN4I_DMA_NR_MAX_CHANNELS);
174 struct dma_device slave;
175 struct sun4i_dma_pchan *pchans;
176 struct sun4i_dma_vchan *vchans;
183 static struct sun4i_dma_dev *to_sun4i_dma_dev(struct dma_device *dev)
185 return container_of(dev, struct sun4i_dma_dev, slave);
188 static struct sun4i_dma_vchan *to_sun4i_dma_vchan(struct dma_chan *chan)
190 return container_of(chan, struct sun4i_dma_vchan, vc.chan);
193 static struct sun4i_dma_contract *to_sun4i_dma_contract(struct virt_dma_desc *vd)
195 return container_of(vd, struct sun4i_dma_contract, vd);
198 static struct device *chan2dev(struct dma_chan *chan)
200 return &chan->dev->device;
203 static int convert_burst(u32 maxburst)
208 /* 1 -> 0, 4 -> 1, 8 -> 2 */
209 return (maxburst >> 2);
212 static int convert_buswidth(enum dma_slave_buswidth addr_width)
214 if (addr_width > DMA_SLAVE_BUSWIDTH_4_BYTES)
217 /* 8 (1 byte) -> 0, 16 (2 bytes) -> 1, 32 (4 bytes) -> 2 */
218 return (addr_width >> 1);
221 static void sun4i_dma_free_chan_resources(struct dma_chan *chan)
223 struct sun4i_dma_vchan *vchan = to_sun4i_dma_vchan(chan);
225 vchan_free_chan_resources(&vchan->vc);
228 static struct sun4i_dma_pchan *find_and_use_pchan(struct sun4i_dma_dev *priv,
229 struct sun4i_dma_vchan *vchan)
231 struct sun4i_dma_pchan *pchan = NULL, *pchans = priv->pchans;
236 * pchans 0-SUN4I_NDMA_NR_MAX_CHANNELS are normal, and
237 * SUN4I_NDMA_NR_MAX_CHANNELS+ are dedicated ones
239 if (vchan->is_dedicated) {
240 i = SUN4I_NDMA_NR_MAX_CHANNELS;
241 max = SUN4I_DMA_NR_MAX_CHANNELS;
244 max = SUN4I_NDMA_NR_MAX_CHANNELS;
247 spin_lock_irqsave(&priv->lock, flags);
248 for_each_clear_bit_from(i, priv->pchans_used, max) {
250 pchan->vchan = vchan;
251 set_bit(i, priv->pchans_used);
254 spin_unlock_irqrestore(&priv->lock, flags);
259 static void release_pchan(struct sun4i_dma_dev *priv,
260 struct sun4i_dma_pchan *pchan)
263 int nr = pchan - priv->pchans;
265 spin_lock_irqsave(&priv->lock, flags);
268 clear_bit(nr, priv->pchans_used);
270 spin_unlock_irqrestore(&priv->lock, flags);
273 static void configure_pchan(struct sun4i_dma_pchan *pchan,
274 struct sun4i_dma_promise *d)
277 * Configure addresses and misc parameters depending on type
278 * SUN4I_DDMA has an extra field with timing parameters
280 if (pchan->is_dedicated) {
281 writel_relaxed(d->src, pchan->base + SUN4I_DDMA_SRC_ADDR_REG);
282 writel_relaxed(d->dst, pchan->base + SUN4I_DDMA_DST_ADDR_REG);
283 writel_relaxed(d->len, pchan->base + SUN4I_DDMA_BYTE_COUNT_REG);
284 writel_relaxed(d->para, pchan->base + SUN4I_DDMA_PARA_REG);
285 writel_relaxed(d->cfg, pchan->base + SUN4I_DDMA_CFG_REG);
287 writel_relaxed(d->src, pchan->base + SUN4I_NDMA_SRC_ADDR_REG);
288 writel_relaxed(d->dst, pchan->base + SUN4I_NDMA_DST_ADDR_REG);
289 writel_relaxed(d->len, pchan->base + SUN4I_NDMA_BYTE_COUNT_REG);
290 writel_relaxed(d->cfg, pchan->base + SUN4I_NDMA_CFG_REG);
294 static void set_pchan_interrupt(struct sun4i_dma_dev *priv,
295 struct sun4i_dma_pchan *pchan,
299 int pchan_number = pchan - priv->pchans;
302 spin_lock_irqsave(&priv->lock, flags);
304 reg = readl_relaxed(priv->base + SUN4I_DMA_IRQ_ENABLE_REG);
307 reg |= BIT(pchan_number * 2);
309 reg &= ~BIT(pchan_number * 2);
312 reg |= BIT(pchan_number * 2 + 1);
314 reg &= ~BIT(pchan_number * 2 + 1);
316 writel_relaxed(reg, priv->base + SUN4I_DMA_IRQ_ENABLE_REG);
318 spin_unlock_irqrestore(&priv->lock, flags);
322 * Execute pending operations on a vchan
324 * When given a vchan, this function will try to acquire a suitable
325 * pchan and, if successful, will configure it to fulfill a promise
326 * from the next pending contract.
328 * This function must be called with &vchan->vc.lock held.
330 static int __execute_vchan_pending(struct sun4i_dma_dev *priv,
331 struct sun4i_dma_vchan *vchan)
333 struct sun4i_dma_promise *promise = NULL;
334 struct sun4i_dma_contract *contract = NULL;
335 struct sun4i_dma_pchan *pchan;
336 struct virt_dma_desc *vd;
339 lockdep_assert_held(&vchan->vc.lock);
341 /* We need a pchan to do anything, so secure one if available */
342 pchan = find_and_use_pchan(priv, vchan);
347 * Channel endpoints must not be repeated, so if this vchan
348 * has already submitted some work, we can't do anything else
350 if (vchan->processing) {
351 dev_dbg(chan2dev(&vchan->vc.chan),
352 "processing something to this endpoint already\n");
358 /* Figure out which contract we're working with today */
359 vd = vchan_next_desc(&vchan->vc);
361 dev_dbg(chan2dev(&vchan->vc.chan),
362 "No pending contract found");
367 contract = to_sun4i_dma_contract(vd);
368 if (list_empty(&contract->demands)) {
369 /* The contract has been completed so mark it as such */
370 list_del(&contract->vd.node);
371 vchan_cookie_complete(&contract->vd);
372 dev_dbg(chan2dev(&vchan->vc.chan),
373 "Empty contract found and marked complete");
375 } while (list_empty(&contract->demands));
377 /* Now find out what we need to do */
378 promise = list_first_entry(&contract->demands,
379 struct sun4i_dma_promise, list);
380 vchan->processing = promise;
382 /* ... and make it reality */
384 vchan->contract = contract;
385 vchan->pchan = pchan;
386 set_pchan_interrupt(priv, pchan, contract->use_half_int, 1);
387 configure_pchan(pchan, promise);
393 release_pchan(priv, pchan);
397 static int sanitize_config(struct dma_slave_config *sconfig,
398 enum dma_transfer_direction direction)
402 if ((sconfig->dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) ||
403 !sconfig->dst_maxburst)
406 if (sconfig->src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
407 sconfig->src_addr_width = sconfig->dst_addr_width;
409 if (!sconfig->src_maxburst)
410 sconfig->src_maxburst = sconfig->dst_maxburst;
415 if ((sconfig->src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) ||
416 !sconfig->src_maxburst)
419 if (sconfig->dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
420 sconfig->dst_addr_width = sconfig->src_addr_width;
422 if (!sconfig->dst_maxburst)
423 sconfig->dst_maxburst = sconfig->src_maxburst;
434 * Generate a promise, to be used in a normal DMA contract.
436 * A NDMA promise contains all the information required to program the
437 * normal part of the DMA Engine and get data copied. A non-executed
438 * promise will live in the demands list on a contract. Once it has been
439 * completed, it will be moved to the completed demands list for later freeing.
440 * All linked promises will be freed when the corresponding contract is freed
442 static struct sun4i_dma_promise *
443 generate_ndma_promise(struct dma_chan *chan, dma_addr_t src, dma_addr_t dest,
444 size_t len, struct dma_slave_config *sconfig,
445 enum dma_transfer_direction direction)
447 struct sun4i_dma_promise *promise;
450 ret = sanitize_config(sconfig, direction);
454 promise = kzalloc(sizeof(*promise), GFP_NOWAIT);
461 promise->cfg = SUN4I_DMA_CFG_LOADING |
462 SUN4I_NDMA_CFG_BYTE_COUNT_MODE_REMAIN;
464 dev_dbg(chan2dev(chan),
465 "src burst %d, dst burst %d, src buswidth %d, dst buswidth %d",
466 sconfig->src_maxburst, sconfig->dst_maxburst,
467 sconfig->src_addr_width, sconfig->dst_addr_width);
470 ret = convert_burst(sconfig->src_maxburst);
473 promise->cfg |= SUN4I_DMA_CFG_SRC_BURST_LENGTH(ret);
475 /* Destination burst */
476 ret = convert_burst(sconfig->dst_maxburst);
479 promise->cfg |= SUN4I_DMA_CFG_DST_BURST_LENGTH(ret);
481 /* Source bus width */
482 ret = convert_buswidth(sconfig->src_addr_width);
485 promise->cfg |= SUN4I_DMA_CFG_SRC_DATA_WIDTH(ret);
487 /* Destination bus width */
488 ret = convert_buswidth(sconfig->dst_addr_width);
491 promise->cfg |= SUN4I_DMA_CFG_DST_DATA_WIDTH(ret);
501 * Generate a promise, to be used in a dedicated DMA contract.
503 * A DDMA promise contains all the information required to program the
504 * Dedicated part of the DMA Engine and get data copied. A non-executed
505 * promise will live in the demands list on a contract. Once it has been
506 * completed, it will be moved to the completed demands list for later freeing.
507 * All linked promises will be freed when the corresponding contract is freed
509 static struct sun4i_dma_promise *
510 generate_ddma_promise(struct dma_chan *chan, dma_addr_t src, dma_addr_t dest,
511 size_t len, struct dma_slave_config *sconfig)
513 struct sun4i_dma_promise *promise;
516 promise = kzalloc(sizeof(*promise), GFP_NOWAIT);
523 promise->cfg = SUN4I_DMA_CFG_LOADING |
524 SUN4I_DDMA_CFG_BYTE_COUNT_MODE_REMAIN;
527 ret = convert_burst(sconfig->src_maxburst);
530 promise->cfg |= SUN4I_DMA_CFG_SRC_BURST_LENGTH(ret);
532 /* Destination burst */
533 ret = convert_burst(sconfig->dst_maxburst);
536 promise->cfg |= SUN4I_DMA_CFG_DST_BURST_LENGTH(ret);
538 /* Source bus width */
539 ret = convert_buswidth(sconfig->src_addr_width);
542 promise->cfg |= SUN4I_DMA_CFG_SRC_DATA_WIDTH(ret);
544 /* Destination bus width */
545 ret = convert_buswidth(sconfig->dst_addr_width);
548 promise->cfg |= SUN4I_DMA_CFG_DST_DATA_WIDTH(ret);
558 * Generate a contract
560 * Contracts function as DMA descriptors. As our hardware does not support
561 * linked lists, we need to implement SG via software. We use a contract
562 * to hold all the pieces of the request and process them serially one
563 * after another. Each piece is represented as a promise.
565 static struct sun4i_dma_contract *generate_dma_contract(void)
567 struct sun4i_dma_contract *contract;
569 contract = kzalloc(sizeof(*contract), GFP_NOWAIT);
573 INIT_LIST_HEAD(&contract->demands);
574 INIT_LIST_HEAD(&contract->completed_demands);
580 * Get next promise on a cyclic transfer
582 * Cyclic contracts contain a series of promises which are executed on a
583 * loop. This function returns the next promise from a cyclic contract,
584 * so it can be programmed into the hardware.
586 static struct sun4i_dma_promise *
587 get_next_cyclic_promise(struct sun4i_dma_contract *contract)
589 struct sun4i_dma_promise *promise;
591 promise = list_first_entry_or_null(&contract->demands,
592 struct sun4i_dma_promise, list);
594 list_splice_init(&contract->completed_demands,
596 promise = list_first_entry(&contract->demands,
597 struct sun4i_dma_promise, list);
604 * Free a contract and all its associated promises
606 static void sun4i_dma_free_contract(struct virt_dma_desc *vd)
608 struct sun4i_dma_contract *contract = to_sun4i_dma_contract(vd);
609 struct sun4i_dma_promise *promise, *tmp;
611 /* Free all the demands and completed demands */
612 list_for_each_entry_safe(promise, tmp, &contract->demands, list)
615 list_for_each_entry_safe(promise, tmp, &contract->completed_demands, list)
621 static struct dma_async_tx_descriptor *
622 sun4i_dma_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest,
623 dma_addr_t src, size_t len, unsigned long flags)
625 struct sun4i_dma_vchan *vchan = to_sun4i_dma_vchan(chan);
626 struct dma_slave_config *sconfig = &vchan->cfg;
627 struct sun4i_dma_promise *promise;
628 struct sun4i_dma_contract *contract;
630 contract = generate_dma_contract();
635 * We can only do the copy to bus aligned addresses, so
636 * choose the best one so we get decent performance. We also
637 * maximize the burst size for this same reason.
639 sconfig->src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
640 sconfig->dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
641 sconfig->src_maxburst = 8;
642 sconfig->dst_maxburst = 8;
644 if (vchan->is_dedicated)
645 promise = generate_ddma_promise(chan, src, dest, len, sconfig);
647 promise = generate_ndma_promise(chan, src, dest, len, sconfig,
655 /* Configure memcpy mode */
656 if (vchan->is_dedicated) {
657 promise->cfg |= SUN4I_DMA_CFG_SRC_DRQ_TYPE(SUN4I_DDMA_DRQ_TYPE_SDRAM) |
658 SUN4I_DMA_CFG_DST_DRQ_TYPE(SUN4I_DDMA_DRQ_TYPE_SDRAM);
660 promise->cfg |= SUN4I_DMA_CFG_SRC_DRQ_TYPE(SUN4I_NDMA_DRQ_TYPE_SDRAM) |
661 SUN4I_DMA_CFG_DST_DRQ_TYPE(SUN4I_NDMA_DRQ_TYPE_SDRAM);
664 /* Fill the contract with our only promise */
665 list_add_tail(&promise->list, &contract->demands);
667 /* And add it to the vchan */
668 return vchan_tx_prep(&vchan->vc, &contract->vd, flags);
671 static struct dma_async_tx_descriptor *
672 sun4i_dma_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t buf, size_t len,
673 size_t period_len, enum dma_transfer_direction dir,
676 struct sun4i_dma_vchan *vchan = to_sun4i_dma_vchan(chan);
677 struct dma_slave_config *sconfig = &vchan->cfg;
678 struct sun4i_dma_promise *promise;
679 struct sun4i_dma_contract *contract;
680 dma_addr_t src, dest;
682 int nr_periods, offset, plength, i;
683 u8 ram_type, io_mode, linear_mode;
685 if (!is_slave_direction(dir)) {
686 dev_err(chan2dev(chan), "Invalid DMA direction\n");
690 contract = generate_dma_contract();
694 contract->is_cyclic = 1;
696 if (vchan->is_dedicated) {
697 io_mode = SUN4I_DDMA_ADDR_MODE_IO;
698 linear_mode = SUN4I_DDMA_ADDR_MODE_LINEAR;
699 ram_type = SUN4I_DDMA_DRQ_TYPE_SDRAM;
701 io_mode = SUN4I_NDMA_ADDR_MODE_IO;
702 linear_mode = SUN4I_NDMA_ADDR_MODE_LINEAR;
703 ram_type = SUN4I_NDMA_DRQ_TYPE_SDRAM;
706 if (dir == DMA_MEM_TO_DEV) {
708 dest = sconfig->dst_addr;
709 endpoints = SUN4I_DMA_CFG_DST_DRQ_TYPE(vchan->endpoint) |
710 SUN4I_DMA_CFG_DST_ADDR_MODE(io_mode) |
711 SUN4I_DMA_CFG_SRC_DRQ_TYPE(ram_type) |
712 SUN4I_DMA_CFG_SRC_ADDR_MODE(linear_mode);
714 src = sconfig->src_addr;
716 endpoints = SUN4I_DMA_CFG_DST_DRQ_TYPE(ram_type) |
717 SUN4I_DMA_CFG_DST_ADDR_MODE(linear_mode) |
718 SUN4I_DMA_CFG_SRC_DRQ_TYPE(vchan->endpoint) |
719 SUN4I_DMA_CFG_SRC_ADDR_MODE(io_mode);
723 * We will be using half done interrupts to make two periods
724 * out of a promise, so we need to program the DMA engine less
729 * The engine can interrupt on half-transfer, so we can use
730 * this feature to program the engine half as often as if we
731 * didn't use it (keep in mind the hardware doesn't support
734 * Say you have a set of periods (| marks the start/end, I for
735 * interrupt, P for programming the engine to do a new
736 * transfer), the easy but slow way would be to do
738 * |---|---|---|---| (periods / promises)
741 * Using half transfer interrupts you can do
743 * |-------|-------| (promises as configured on hw)
744 * |---|---|---|---| (periods)
747 * Which requires half the engine programming for the same
750 * This only works if two periods fit in a single promise. That will
751 * always be the case for dedicated DMA, where the hardware has a much
752 * larger maximum transfer size than advertised to clients.
754 if (vchan->is_dedicated || period_len <= SUN4I_NDMA_MAX_SEG_SIZE / 2) {
756 contract->use_half_int = 1;
759 nr_periods = DIV_ROUND_UP(len, period_len);
760 for (i = 0; i < nr_periods; i++) {
761 /* Calculate the offset in the buffer and the length needed */
762 offset = i * period_len;
763 plength = min((len - offset), period_len);
764 if (dir == DMA_MEM_TO_DEV)
769 /* Make the promise */
770 if (vchan->is_dedicated)
771 promise = generate_ddma_promise(chan, src, dest,
774 promise = generate_ndma_promise(chan, src, dest,
775 plength, sconfig, dir);
778 /* TODO: should we free everything? */
781 promise->cfg |= endpoints;
783 /* Then add it to the contract */
784 list_add_tail(&promise->list, &contract->demands);
787 /* And add it to the vchan */
788 return vchan_tx_prep(&vchan->vc, &contract->vd, flags);
791 static struct dma_async_tx_descriptor *
792 sun4i_dma_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
793 unsigned int sg_len, enum dma_transfer_direction dir,
794 unsigned long flags, void *context)
796 struct sun4i_dma_vchan *vchan = to_sun4i_dma_vchan(chan);
797 struct dma_slave_config *sconfig = &vchan->cfg;
798 struct sun4i_dma_promise *promise;
799 struct sun4i_dma_contract *contract;
800 u8 ram_type, io_mode, linear_mode;
801 struct scatterlist *sg;
802 dma_addr_t srcaddr, dstaddr;
809 if (!is_slave_direction(dir)) {
810 dev_err(chan2dev(chan), "Invalid DMA direction\n");
814 contract = generate_dma_contract();
818 if (vchan->is_dedicated) {
819 io_mode = SUN4I_DDMA_ADDR_MODE_IO;
820 linear_mode = SUN4I_DDMA_ADDR_MODE_LINEAR;
821 ram_type = SUN4I_DDMA_DRQ_TYPE_SDRAM;
823 io_mode = SUN4I_NDMA_ADDR_MODE_IO;
824 linear_mode = SUN4I_NDMA_ADDR_MODE_LINEAR;
825 ram_type = SUN4I_NDMA_DRQ_TYPE_SDRAM;
828 if (dir == DMA_MEM_TO_DEV)
829 endpoints = SUN4I_DMA_CFG_DST_DRQ_TYPE(vchan->endpoint) |
830 SUN4I_DMA_CFG_DST_ADDR_MODE(io_mode) |
831 SUN4I_DMA_CFG_SRC_DRQ_TYPE(ram_type) |
832 SUN4I_DMA_CFG_SRC_ADDR_MODE(linear_mode);
834 endpoints = SUN4I_DMA_CFG_DST_DRQ_TYPE(ram_type) |
835 SUN4I_DMA_CFG_DST_ADDR_MODE(linear_mode) |
836 SUN4I_DMA_CFG_SRC_DRQ_TYPE(vchan->endpoint) |
837 SUN4I_DMA_CFG_SRC_ADDR_MODE(io_mode);
839 for_each_sg(sgl, sg, sg_len, i) {
840 /* Figure out addresses */
841 if (dir == DMA_MEM_TO_DEV) {
842 srcaddr = sg_dma_address(sg);
843 dstaddr = sconfig->dst_addr;
845 srcaddr = sconfig->src_addr;
846 dstaddr = sg_dma_address(sg);
850 * These are the magic DMA engine timings that keep SPI going.
851 * I haven't seen any interface on DMAEngine to configure
852 * timings, and so far they seem to work for everything we
853 * support, so I've kept them here. I don't know if other
854 * devices need different timings because, as usual, we only
855 * have the "para" bitfield meanings, but no comment on what
856 * the values should be when doing a certain operation :|
858 para = SUN4I_DDMA_MAGIC_SPI_PARAMETERS;
860 /* And make a suitable promise */
861 if (vchan->is_dedicated)
862 promise = generate_ddma_promise(chan, srcaddr, dstaddr,
866 promise = generate_ndma_promise(chan, srcaddr, dstaddr,
871 return NULL; /* TODO: should we free everything? */
873 promise->cfg |= endpoints;
874 promise->para = para;
876 /* Then add it to the contract */
877 list_add_tail(&promise->list, &contract->demands);
881 * Once we've got all the promises ready, add the contract
882 * to the pending list on the vchan
884 return vchan_tx_prep(&vchan->vc, &contract->vd, flags);
887 static int sun4i_dma_terminate_all(struct dma_chan *chan)
889 struct sun4i_dma_dev *priv = to_sun4i_dma_dev(chan->device);
890 struct sun4i_dma_vchan *vchan = to_sun4i_dma_vchan(chan);
891 struct sun4i_dma_pchan *pchan = vchan->pchan;
895 spin_lock_irqsave(&vchan->vc.lock, flags);
896 vchan_get_all_descriptors(&vchan->vc, &head);
897 spin_unlock_irqrestore(&vchan->vc.lock, flags);
900 * Clearing the configuration register will halt the pchan. Interrupts
901 * may still trigger, so don't forget to disable them.
904 if (pchan->is_dedicated)
905 writel(0, pchan->base + SUN4I_DDMA_CFG_REG);
907 writel(0, pchan->base + SUN4I_NDMA_CFG_REG);
908 set_pchan_interrupt(priv, pchan, 0, 0);
909 release_pchan(priv, pchan);
912 spin_lock_irqsave(&vchan->vc.lock, flags);
913 /* Clear these so the vchan is usable again */
914 vchan->processing = NULL;
916 spin_unlock_irqrestore(&vchan->vc.lock, flags);
918 vchan_dma_desc_free_list(&vchan->vc, &head);
923 static int sun4i_dma_config(struct dma_chan *chan,
924 struct dma_slave_config *config)
926 struct sun4i_dma_vchan *vchan = to_sun4i_dma_vchan(chan);
928 memcpy(&vchan->cfg, config, sizeof(*config));
933 static struct dma_chan *sun4i_dma_of_xlate(struct of_phandle_args *dma_spec,
934 struct of_dma *ofdma)
936 struct sun4i_dma_dev *priv = ofdma->of_dma_data;
937 struct sun4i_dma_vchan *vchan;
938 struct dma_chan *chan;
939 u8 is_dedicated = dma_spec->args[0];
940 u8 endpoint = dma_spec->args[1];
942 /* Check if type is Normal or Dedicated */
943 if (is_dedicated != 0 && is_dedicated != 1)
946 /* Make sure the endpoint looks sane */
947 if ((is_dedicated && endpoint >= SUN4I_DDMA_DRQ_TYPE_LIMIT) ||
948 (!is_dedicated && endpoint >= SUN4I_NDMA_DRQ_TYPE_LIMIT))
951 chan = dma_get_any_slave_channel(&priv->slave);
955 /* Assign the endpoint to the vchan */
956 vchan = to_sun4i_dma_vchan(chan);
957 vchan->is_dedicated = is_dedicated;
958 vchan->endpoint = endpoint;
963 static enum dma_status sun4i_dma_tx_status(struct dma_chan *chan,
965 struct dma_tx_state *state)
967 struct sun4i_dma_vchan *vchan = to_sun4i_dma_vchan(chan);
968 struct sun4i_dma_pchan *pchan = vchan->pchan;
969 struct sun4i_dma_contract *contract;
970 struct sun4i_dma_promise *promise;
971 struct virt_dma_desc *vd;
976 ret = dma_cookie_status(chan, cookie, state);
977 if (!state || (ret == DMA_COMPLETE))
980 spin_lock_irqsave(&vchan->vc.lock, flags);
981 vd = vchan_find_desc(&vchan->vc, cookie);
984 contract = to_sun4i_dma_contract(vd);
986 list_for_each_entry(promise, &contract->demands, list)
987 bytes += promise->len;
990 * The hardware is configured to return the remaining byte
991 * quantity. If possible, replace the first listed element's
992 * full size with the actual remaining amount
994 promise = list_first_entry_or_null(&contract->demands,
995 struct sun4i_dma_promise, list);
996 if (promise && pchan) {
997 bytes -= promise->len;
998 if (pchan->is_dedicated)
999 bytes += readl(pchan->base + SUN4I_DDMA_BYTE_COUNT_REG);
1001 bytes += readl(pchan->base + SUN4I_NDMA_BYTE_COUNT_REG);
1006 dma_set_residue(state, bytes);
1007 spin_unlock_irqrestore(&vchan->vc.lock, flags);
1012 static void sun4i_dma_issue_pending(struct dma_chan *chan)
1014 struct sun4i_dma_dev *priv = to_sun4i_dma_dev(chan->device);
1015 struct sun4i_dma_vchan *vchan = to_sun4i_dma_vchan(chan);
1016 unsigned long flags;
1018 spin_lock_irqsave(&vchan->vc.lock, flags);
1021 * If there are pending transactions for this vchan, push one of
1022 * them into the engine to get the ball rolling.
1024 if (vchan_issue_pending(&vchan->vc))
1025 __execute_vchan_pending(priv, vchan);
1027 spin_unlock_irqrestore(&vchan->vc.lock, flags);
1030 static irqreturn_t sun4i_dma_interrupt(int irq, void *dev_id)
1032 struct sun4i_dma_dev *priv = dev_id;
1033 struct sun4i_dma_pchan *pchans = priv->pchans, *pchan;
1034 struct sun4i_dma_vchan *vchan;
1035 struct sun4i_dma_contract *contract;
1036 struct sun4i_dma_promise *promise;
1037 unsigned long pendirq, irqs, disableirqs;
1038 int bit, i, free_room, allow_mitigation = 1;
1040 pendirq = readl_relaxed(priv->base + SUN4I_DMA_IRQ_PENDING_STATUS_REG);
1047 for_each_set_bit(bit, &pendirq, 32) {
1048 pchan = &pchans[bit >> 1];
1049 vchan = pchan->vchan;
1050 if (!vchan) /* a terminated channel may still interrupt */
1052 contract = vchan->contract;
1055 * Disable the IRQ and free the pchan if it's an end
1056 * interrupt (odd bit)
1059 spin_lock(&vchan->vc.lock);
1062 * Move the promise into the completed list now that
1063 * we're done with it
1065 list_move_tail(&vchan->processing->list,
1066 &contract->completed_demands);
1069 * Cyclic DMA transfers are special:
1070 * - There's always something we can dispatch
1071 * - We need to run the callback
1072 * - Latency is very important, as this is used by audio
1073 * We therefore just cycle through the list and dispatch
1074 * whatever we have here, reusing the pchan. There's
1075 * no need to run the thread after this.
1077 * For non-cyclic transfers we need to look around,
1078 * so we can program some more work, or notify the
1079 * client that their transfers have been completed.
1081 if (contract->is_cyclic) {
1082 promise = get_next_cyclic_promise(contract);
1083 vchan->processing = promise;
1084 configure_pchan(pchan, promise);
1085 vchan_cyclic_callback(&contract->vd);
1087 vchan->processing = NULL;
1088 vchan->pchan = NULL;
1091 disableirqs |= BIT(bit);
1092 release_pchan(priv, pchan);
1095 spin_unlock(&vchan->vc.lock);
1097 /* Half done interrupt */
1098 if (contract->is_cyclic)
1099 vchan_cyclic_callback(&contract->vd);
1101 disableirqs |= BIT(bit);
1105 /* Disable the IRQs for events we handled */
1106 spin_lock(&priv->lock);
1107 irqs = readl_relaxed(priv->base + SUN4I_DMA_IRQ_ENABLE_REG);
1108 writel_relaxed(irqs & ~disableirqs,
1109 priv->base + SUN4I_DMA_IRQ_ENABLE_REG);
1110 spin_unlock(&priv->lock);
1112 /* Writing 1 to the pending field will clear the pending interrupt */
1113 writel_relaxed(pendirq, priv->base + SUN4I_DMA_IRQ_PENDING_STATUS_REG);
1116 * If a pchan was freed, we may be able to schedule something else,
1117 * so have a look around
1120 for (i = 0; i < SUN4I_DMA_NR_MAX_VCHANS; i++) {
1121 vchan = &priv->vchans[i];
1122 spin_lock(&vchan->vc.lock);
1123 __execute_vchan_pending(priv, vchan);
1124 spin_unlock(&vchan->vc.lock);
1129 * Handle newer interrupts if some showed up, but only do it once
1130 * to avoid a too long a loop
1132 if (allow_mitigation) {
1133 pendirq = readl_relaxed(priv->base +
1134 SUN4I_DMA_IRQ_PENDING_STATUS_REG);
1136 allow_mitigation = 0;
1137 goto handle_pending;
1144 static int sun4i_dma_probe(struct platform_device *pdev)
1146 struct sun4i_dma_dev *priv;
1147 struct resource *res;
1150 priv = devm_kzalloc(&pdev->dev, sizeof(*priv), GFP_KERNEL);
1154 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1155 priv->base = devm_ioremap_resource(&pdev->dev, res);
1156 if (IS_ERR(priv->base))
1157 return PTR_ERR(priv->base);
1159 priv->irq = platform_get_irq(pdev, 0);
1163 priv->clk = devm_clk_get(&pdev->dev, NULL);
1164 if (IS_ERR(priv->clk)) {
1165 dev_err(&pdev->dev, "No clock specified\n");
1166 return PTR_ERR(priv->clk);
1169 platform_set_drvdata(pdev, priv);
1170 spin_lock_init(&priv->lock);
1172 dma_set_max_seg_size(&pdev->dev, SUN4I_DMA_MAX_SEG_SIZE);
1174 dma_cap_zero(priv->slave.cap_mask);
1175 dma_cap_set(DMA_PRIVATE, priv->slave.cap_mask);
1176 dma_cap_set(DMA_MEMCPY, priv->slave.cap_mask);
1177 dma_cap_set(DMA_CYCLIC, priv->slave.cap_mask);
1178 dma_cap_set(DMA_SLAVE, priv->slave.cap_mask);
1180 INIT_LIST_HEAD(&priv->slave.channels);
1181 priv->slave.device_free_chan_resources = sun4i_dma_free_chan_resources;
1182 priv->slave.device_tx_status = sun4i_dma_tx_status;
1183 priv->slave.device_issue_pending = sun4i_dma_issue_pending;
1184 priv->slave.device_prep_slave_sg = sun4i_dma_prep_slave_sg;
1185 priv->slave.device_prep_dma_memcpy = sun4i_dma_prep_dma_memcpy;
1186 priv->slave.device_prep_dma_cyclic = sun4i_dma_prep_dma_cyclic;
1187 priv->slave.device_config = sun4i_dma_config;
1188 priv->slave.device_terminate_all = sun4i_dma_terminate_all;
1189 priv->slave.copy_align = 2;
1190 priv->slave.src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
1191 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
1192 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
1193 priv->slave.dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
1194 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
1195 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
1196 priv->slave.directions = BIT(DMA_DEV_TO_MEM) |
1197 BIT(DMA_MEM_TO_DEV);
1198 priv->slave.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1200 priv->slave.dev = &pdev->dev;
1202 priv->pchans = devm_kcalloc(&pdev->dev, SUN4I_DMA_NR_MAX_CHANNELS,
1203 sizeof(struct sun4i_dma_pchan), GFP_KERNEL);
1204 priv->vchans = devm_kcalloc(&pdev->dev, SUN4I_DMA_NR_MAX_VCHANS,
1205 sizeof(struct sun4i_dma_vchan), GFP_KERNEL);
1206 if (!priv->vchans || !priv->pchans)
1210 * [0..SUN4I_NDMA_NR_MAX_CHANNELS) are normal pchans, and
1211 * [SUN4I_NDMA_NR_MAX_CHANNELS..SUN4I_DMA_NR_MAX_CHANNELS) are
1214 for (i = 0; i < SUN4I_NDMA_NR_MAX_CHANNELS; i++)
1215 priv->pchans[i].base = priv->base +
1216 SUN4I_NDMA_CHANNEL_REG_BASE(i);
1218 for (j = 0; i < SUN4I_DMA_NR_MAX_CHANNELS; i++, j++) {
1219 priv->pchans[i].base = priv->base +
1220 SUN4I_DDMA_CHANNEL_REG_BASE(j);
1221 priv->pchans[i].is_dedicated = 1;
1224 for (i = 0; i < SUN4I_DMA_NR_MAX_VCHANS; i++) {
1225 struct sun4i_dma_vchan *vchan = &priv->vchans[i];
1227 spin_lock_init(&vchan->vc.lock);
1228 vchan->vc.desc_free = sun4i_dma_free_contract;
1229 vchan_init(&vchan->vc, &priv->slave);
1232 ret = clk_prepare_enable(priv->clk);
1234 dev_err(&pdev->dev, "Couldn't enable the clock\n");
1239 * Make sure the IRQs are all disabled and accounted for. The bootloader
1240 * likes to leave these dirty
1242 writel(0, priv->base + SUN4I_DMA_IRQ_ENABLE_REG);
1243 writel(0xFFFFFFFF, priv->base + SUN4I_DMA_IRQ_PENDING_STATUS_REG);
1245 ret = devm_request_irq(&pdev->dev, priv->irq, sun4i_dma_interrupt,
1246 0, dev_name(&pdev->dev), priv);
1248 dev_err(&pdev->dev, "Cannot request IRQ\n");
1249 goto err_clk_disable;
1252 ret = dma_async_device_register(&priv->slave);
1254 dev_warn(&pdev->dev, "Failed to register DMA engine device\n");
1255 goto err_clk_disable;
1258 ret = of_dma_controller_register(pdev->dev.of_node, sun4i_dma_of_xlate,
1261 dev_err(&pdev->dev, "of_dma_controller_register failed\n");
1262 goto err_dma_unregister;
1265 dev_dbg(&pdev->dev, "Successfully probed SUN4I_DMA\n");
1270 dma_async_device_unregister(&priv->slave);
1272 clk_disable_unprepare(priv->clk);
1276 static int sun4i_dma_remove(struct platform_device *pdev)
1278 struct sun4i_dma_dev *priv = platform_get_drvdata(pdev);
1280 /* Disable IRQ so no more work is scheduled */
1281 disable_irq(priv->irq);
1283 of_dma_controller_free(pdev->dev.of_node);
1284 dma_async_device_unregister(&priv->slave);
1286 clk_disable_unprepare(priv->clk);
1291 static const struct of_device_id sun4i_dma_match[] = {
1292 { .compatible = "allwinner,sun4i-a10-dma" },
1295 MODULE_DEVICE_TABLE(of, sun4i_dma_match);
1297 static struct platform_driver sun4i_dma_driver = {
1298 .probe = sun4i_dma_probe,
1299 .remove = sun4i_dma_remove,
1301 .name = "sun4i-dma",
1302 .of_match_table = sun4i_dma_match,
1306 module_platform_driver(sun4i_dma_driver);
1308 MODULE_DESCRIPTION("Allwinner A10 Dedicated DMA Controller Driver");
1309 MODULE_AUTHOR("Emilio López <emilio@elopez.com.ar>");
1310 MODULE_LICENSE("GPL");