dmaengine: idxd: set DMA_INTERRUPT cap bit
[platform/kernel/linux-rpi.git] / drivers / dma / sun4i-dma.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2014 Emilio López
4  * Emilio López <emilio@elopez.com.ar>
5  */
6
7 #include <linux/bitmap.h>
8 #include <linux/bitops.h>
9 #include <linux/clk.h>
10 #include <linux/dmaengine.h>
11 #include <linux/dmapool.h>
12 #include <linux/interrupt.h>
13 #include <linux/module.h>
14 #include <linux/of_dma.h>
15 #include <linux/platform_device.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18
19 #include "virt-dma.h"
20
21 /** Common macros to normal and dedicated DMA registers **/
22
23 #define SUN4I_DMA_CFG_LOADING                   BIT(31)
24 #define SUN4I_DMA_CFG_DST_DATA_WIDTH(width)     ((width) << 25)
25 #define SUN4I_DMA_CFG_DST_BURST_LENGTH(len)     ((len) << 23)
26 #define SUN4I_DMA_CFG_DST_ADDR_MODE(mode)       ((mode) << 21)
27 #define SUN4I_DMA_CFG_DST_DRQ_TYPE(type)        ((type) << 16)
28 #define SUN4I_DMA_CFG_SRC_DATA_WIDTH(width)     ((width) << 9)
29 #define SUN4I_DMA_CFG_SRC_BURST_LENGTH(len)     ((len) << 7)
30 #define SUN4I_DMA_CFG_SRC_ADDR_MODE(mode)       ((mode) << 5)
31 #define SUN4I_DMA_CFG_SRC_DRQ_TYPE(type)        (type)
32
33 /** Normal DMA register values **/
34
35 /* Normal DMA source/destination data request type values */
36 #define SUN4I_NDMA_DRQ_TYPE_SDRAM               0x16
37 #define SUN4I_NDMA_DRQ_TYPE_LIMIT               (0x1F + 1)
38
39 /** Normal DMA register layout **/
40
41 /* Dedicated DMA source/destination address mode values */
42 #define SUN4I_NDMA_ADDR_MODE_LINEAR             0
43 #define SUN4I_NDMA_ADDR_MODE_IO                 1
44
45 /* Normal DMA configuration register layout */
46 #define SUN4I_NDMA_CFG_CONT_MODE                BIT(30)
47 #define SUN4I_NDMA_CFG_WAIT_STATE(n)            ((n) << 27)
48 #define SUN4I_NDMA_CFG_DST_NON_SECURE           BIT(22)
49 #define SUN4I_NDMA_CFG_BYTE_COUNT_MODE_REMAIN   BIT(15)
50 #define SUN4I_NDMA_CFG_SRC_NON_SECURE           BIT(6)
51
52 /** Dedicated DMA register values **/
53
54 /* Dedicated DMA source/destination address mode values */
55 #define SUN4I_DDMA_ADDR_MODE_LINEAR             0
56 #define SUN4I_DDMA_ADDR_MODE_IO                 1
57 #define SUN4I_DDMA_ADDR_MODE_HORIZONTAL_PAGE    2
58 #define SUN4I_DDMA_ADDR_MODE_VERTICAL_PAGE      3
59
60 /* Dedicated DMA source/destination data request type values */
61 #define SUN4I_DDMA_DRQ_TYPE_SDRAM               0x1
62 #define SUN4I_DDMA_DRQ_TYPE_LIMIT               (0x1F + 1)
63
64 /** Dedicated DMA register layout **/
65
66 /* Dedicated DMA configuration register layout */
67 #define SUN4I_DDMA_CFG_BUSY                     BIT(30)
68 #define SUN4I_DDMA_CFG_CONT_MODE                BIT(29)
69 #define SUN4I_DDMA_CFG_DST_NON_SECURE           BIT(28)
70 #define SUN4I_DDMA_CFG_BYTE_COUNT_MODE_REMAIN   BIT(15)
71 #define SUN4I_DDMA_CFG_SRC_NON_SECURE           BIT(12)
72
73 /* Dedicated DMA parameter register layout */
74 #define SUN4I_DDMA_PARA_DST_DATA_BLK_SIZE(n)    (((n) - 1) << 24)
75 #define SUN4I_DDMA_PARA_DST_WAIT_CYCLES(n)      (((n) - 1) << 16)
76 #define SUN4I_DDMA_PARA_SRC_DATA_BLK_SIZE(n)    (((n) - 1) << 8)
77 #define SUN4I_DDMA_PARA_SRC_WAIT_CYCLES(n)      (((n) - 1) << 0)
78
79 /** DMA register offsets **/
80
81 /* General register offsets */
82 #define SUN4I_DMA_IRQ_ENABLE_REG                0x0
83 #define SUN4I_DMA_IRQ_PENDING_STATUS_REG        0x4
84
85 /* Normal DMA register offsets */
86 #define SUN4I_NDMA_CHANNEL_REG_BASE(n)          (0x100 + (n) * 0x20)
87 #define SUN4I_NDMA_CFG_REG                      0x0
88 #define SUN4I_NDMA_SRC_ADDR_REG                 0x4
89 #define SUN4I_NDMA_DST_ADDR_REG         0x8
90 #define SUN4I_NDMA_BYTE_COUNT_REG               0xC
91
92 /* Dedicated DMA register offsets */
93 #define SUN4I_DDMA_CHANNEL_REG_BASE(n)          (0x300 + (n) * 0x20)
94 #define SUN4I_DDMA_CFG_REG                      0x0
95 #define SUN4I_DDMA_SRC_ADDR_REG                 0x4
96 #define SUN4I_DDMA_DST_ADDR_REG         0x8
97 #define SUN4I_DDMA_BYTE_COUNT_REG               0xC
98 #define SUN4I_DDMA_PARA_REG                     0x18
99
100 /** DMA Driver **/
101
102 /*
103  * Normal DMA has 8 channels, and Dedicated DMA has another 8, so
104  * that's 16 channels. As for endpoints, there's 29 and 21
105  * respectively. Given that the Normal DMA endpoints (other than
106  * SDRAM) can be used as tx/rx, we need 78 vchans in total
107  */
108 #define SUN4I_NDMA_NR_MAX_CHANNELS      8
109 #define SUN4I_DDMA_NR_MAX_CHANNELS      8
110 #define SUN4I_DMA_NR_MAX_CHANNELS                                       \
111         (SUN4I_NDMA_NR_MAX_CHANNELS + SUN4I_DDMA_NR_MAX_CHANNELS)
112 #define SUN4I_NDMA_NR_MAX_VCHANS        (29 * 2 - 1)
113 #define SUN4I_DDMA_NR_MAX_VCHANS        21
114 #define SUN4I_DMA_NR_MAX_VCHANS                                         \
115         (SUN4I_NDMA_NR_MAX_VCHANS + SUN4I_DDMA_NR_MAX_VCHANS)
116
117 /* This set of SUN4I_DDMA timing parameters were found experimentally while
118  * working with the SPI driver and seem to make it behave correctly */
119 #define SUN4I_DDMA_MAGIC_SPI_PARAMETERS \
120         (SUN4I_DDMA_PARA_DST_DATA_BLK_SIZE(1) |                 \
121          SUN4I_DDMA_PARA_SRC_DATA_BLK_SIZE(1) |                         \
122          SUN4I_DDMA_PARA_DST_WAIT_CYCLES(2) |                           \
123          SUN4I_DDMA_PARA_SRC_WAIT_CYCLES(2))
124
125 struct sun4i_dma_pchan {
126         /* Register base of channel */
127         void __iomem                    *base;
128         /* vchan currently being serviced */
129         struct sun4i_dma_vchan          *vchan;
130         /* Is this a dedicated pchan? */
131         int                             is_dedicated;
132 };
133
134 struct sun4i_dma_vchan {
135         struct virt_dma_chan            vc;
136         struct dma_slave_config         cfg;
137         struct sun4i_dma_pchan          *pchan;
138         struct sun4i_dma_promise        *processing;
139         struct sun4i_dma_contract       *contract;
140         u8                              endpoint;
141         int                             is_dedicated;
142 };
143
144 struct sun4i_dma_promise {
145         u32                             cfg;
146         u32                             para;
147         dma_addr_t                      src;
148         dma_addr_t                      dst;
149         size_t                          len;
150         struct list_head                list;
151 };
152
153 /* A contract is a set of promises */
154 struct sun4i_dma_contract {
155         struct virt_dma_desc            vd;
156         struct list_head                demands;
157         struct list_head                completed_demands;
158         int                             is_cyclic;
159 };
160
161 struct sun4i_dma_dev {
162         DECLARE_BITMAP(pchans_used, SUN4I_DMA_NR_MAX_CHANNELS);
163         struct dma_device               slave;
164         struct sun4i_dma_pchan          *pchans;
165         struct sun4i_dma_vchan          *vchans;
166         void __iomem                    *base;
167         struct clk                      *clk;
168         int                             irq;
169         spinlock_t                      lock;
170 };
171
172 static struct sun4i_dma_dev *to_sun4i_dma_dev(struct dma_device *dev)
173 {
174         return container_of(dev, struct sun4i_dma_dev, slave);
175 }
176
177 static struct sun4i_dma_vchan *to_sun4i_dma_vchan(struct dma_chan *chan)
178 {
179         return container_of(chan, struct sun4i_dma_vchan, vc.chan);
180 }
181
182 static struct sun4i_dma_contract *to_sun4i_dma_contract(struct virt_dma_desc *vd)
183 {
184         return container_of(vd, struct sun4i_dma_contract, vd);
185 }
186
187 static struct device *chan2dev(struct dma_chan *chan)
188 {
189         return &chan->dev->device;
190 }
191
192 static int convert_burst(u32 maxburst)
193 {
194         if (maxburst > 8)
195                 return -EINVAL;
196
197         /* 1 -> 0, 4 -> 1, 8 -> 2 */
198         return (maxburst >> 2);
199 }
200
201 static int convert_buswidth(enum dma_slave_buswidth addr_width)
202 {
203         if (addr_width > DMA_SLAVE_BUSWIDTH_4_BYTES)
204                 return -EINVAL;
205
206         /* 8 (1 byte) -> 0, 16 (2 bytes) -> 1, 32 (4 bytes) -> 2 */
207         return (addr_width >> 1);
208 }
209
210 static void sun4i_dma_free_chan_resources(struct dma_chan *chan)
211 {
212         struct sun4i_dma_vchan *vchan = to_sun4i_dma_vchan(chan);
213
214         vchan_free_chan_resources(&vchan->vc);
215 }
216
217 static struct sun4i_dma_pchan *find_and_use_pchan(struct sun4i_dma_dev *priv,
218                                                   struct sun4i_dma_vchan *vchan)
219 {
220         struct sun4i_dma_pchan *pchan = NULL, *pchans = priv->pchans;
221         unsigned long flags;
222         int i, max;
223
224         /*
225          * pchans 0-SUN4I_NDMA_NR_MAX_CHANNELS are normal, and
226          * SUN4I_NDMA_NR_MAX_CHANNELS+ are dedicated ones
227          */
228         if (vchan->is_dedicated) {
229                 i = SUN4I_NDMA_NR_MAX_CHANNELS;
230                 max = SUN4I_DMA_NR_MAX_CHANNELS;
231         } else {
232                 i = 0;
233                 max = SUN4I_NDMA_NR_MAX_CHANNELS;
234         }
235
236         spin_lock_irqsave(&priv->lock, flags);
237         for_each_clear_bit_from(i, priv->pchans_used, max) {
238                 pchan = &pchans[i];
239                 pchan->vchan = vchan;
240                 set_bit(i, priv->pchans_used);
241                 break;
242         }
243         spin_unlock_irqrestore(&priv->lock, flags);
244
245         return pchan;
246 }
247
248 static void release_pchan(struct sun4i_dma_dev *priv,
249                           struct sun4i_dma_pchan *pchan)
250 {
251         unsigned long flags;
252         int nr = pchan - priv->pchans;
253
254         spin_lock_irqsave(&priv->lock, flags);
255
256         pchan->vchan = NULL;
257         clear_bit(nr, priv->pchans_used);
258
259         spin_unlock_irqrestore(&priv->lock, flags);
260 }
261
262 static void configure_pchan(struct sun4i_dma_pchan *pchan,
263                             struct sun4i_dma_promise *d)
264 {
265         /*
266          * Configure addresses and misc parameters depending on type
267          * SUN4I_DDMA has an extra field with timing parameters
268          */
269         if (pchan->is_dedicated) {
270                 writel_relaxed(d->src, pchan->base + SUN4I_DDMA_SRC_ADDR_REG);
271                 writel_relaxed(d->dst, pchan->base + SUN4I_DDMA_DST_ADDR_REG);
272                 writel_relaxed(d->len, pchan->base + SUN4I_DDMA_BYTE_COUNT_REG);
273                 writel_relaxed(d->para, pchan->base + SUN4I_DDMA_PARA_REG);
274                 writel_relaxed(d->cfg, pchan->base + SUN4I_DDMA_CFG_REG);
275         } else {
276                 writel_relaxed(d->src, pchan->base + SUN4I_NDMA_SRC_ADDR_REG);
277                 writel_relaxed(d->dst, pchan->base + SUN4I_NDMA_DST_ADDR_REG);
278                 writel_relaxed(d->len, pchan->base + SUN4I_NDMA_BYTE_COUNT_REG);
279                 writel_relaxed(d->cfg, pchan->base + SUN4I_NDMA_CFG_REG);
280         }
281 }
282
283 static void set_pchan_interrupt(struct sun4i_dma_dev *priv,
284                                 struct sun4i_dma_pchan *pchan,
285                                 int half, int end)
286 {
287         u32 reg;
288         int pchan_number = pchan - priv->pchans;
289         unsigned long flags;
290
291         spin_lock_irqsave(&priv->lock, flags);
292
293         reg = readl_relaxed(priv->base + SUN4I_DMA_IRQ_ENABLE_REG);
294
295         if (half)
296                 reg |= BIT(pchan_number * 2);
297         else
298                 reg &= ~BIT(pchan_number * 2);
299
300         if (end)
301                 reg |= BIT(pchan_number * 2 + 1);
302         else
303                 reg &= ~BIT(pchan_number * 2 + 1);
304
305         writel_relaxed(reg, priv->base + SUN4I_DMA_IRQ_ENABLE_REG);
306
307         spin_unlock_irqrestore(&priv->lock, flags);
308 }
309
310 /*
311  * Execute pending operations on a vchan
312  *
313  * When given a vchan, this function will try to acquire a suitable
314  * pchan and, if successful, will configure it to fulfill a promise
315  * from the next pending contract.
316  *
317  * This function must be called with &vchan->vc.lock held.
318  */
319 static int __execute_vchan_pending(struct sun4i_dma_dev *priv,
320                                    struct sun4i_dma_vchan *vchan)
321 {
322         struct sun4i_dma_promise *promise = NULL;
323         struct sun4i_dma_contract *contract = NULL;
324         struct sun4i_dma_pchan *pchan;
325         struct virt_dma_desc *vd;
326         int ret;
327
328         lockdep_assert_held(&vchan->vc.lock);
329
330         /* We need a pchan to do anything, so secure one if available */
331         pchan = find_and_use_pchan(priv, vchan);
332         if (!pchan)
333                 return -EBUSY;
334
335         /*
336          * Channel endpoints must not be repeated, so if this vchan
337          * has already submitted some work, we can't do anything else
338          */
339         if (vchan->processing) {
340                 dev_dbg(chan2dev(&vchan->vc.chan),
341                         "processing something to this endpoint already\n");
342                 ret = -EBUSY;
343                 goto release_pchan;
344         }
345
346         do {
347                 /* Figure out which contract we're working with today */
348                 vd = vchan_next_desc(&vchan->vc);
349                 if (!vd) {
350                         dev_dbg(chan2dev(&vchan->vc.chan),
351                                 "No pending contract found");
352                         ret = 0;
353                         goto release_pchan;
354                 }
355
356                 contract = to_sun4i_dma_contract(vd);
357                 if (list_empty(&contract->demands)) {
358                         /* The contract has been completed so mark it as such */
359                         list_del(&contract->vd.node);
360                         vchan_cookie_complete(&contract->vd);
361                         dev_dbg(chan2dev(&vchan->vc.chan),
362                                 "Empty contract found and marked complete");
363                 }
364         } while (list_empty(&contract->demands));
365
366         /* Now find out what we need to do */
367         promise = list_first_entry(&contract->demands,
368                                    struct sun4i_dma_promise, list);
369         vchan->processing = promise;
370
371         /* ... and make it reality */
372         if (promise) {
373                 vchan->contract = contract;
374                 vchan->pchan = pchan;
375                 set_pchan_interrupt(priv, pchan, contract->is_cyclic, 1);
376                 configure_pchan(pchan, promise);
377         }
378
379         return 0;
380
381 release_pchan:
382         release_pchan(priv, pchan);
383         return ret;
384 }
385
386 static int sanitize_config(struct dma_slave_config *sconfig,
387                            enum dma_transfer_direction direction)
388 {
389         switch (direction) {
390         case DMA_MEM_TO_DEV:
391                 if ((sconfig->dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) ||
392                     !sconfig->dst_maxburst)
393                         return -EINVAL;
394
395                 if (sconfig->src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
396                         sconfig->src_addr_width = sconfig->dst_addr_width;
397
398                 if (!sconfig->src_maxburst)
399                         sconfig->src_maxburst = sconfig->dst_maxburst;
400
401                 break;
402
403         case DMA_DEV_TO_MEM:
404                 if ((sconfig->src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) ||
405                     !sconfig->src_maxburst)
406                         return -EINVAL;
407
408                 if (sconfig->dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
409                         sconfig->dst_addr_width = sconfig->src_addr_width;
410
411                 if (!sconfig->dst_maxburst)
412                         sconfig->dst_maxburst = sconfig->src_maxburst;
413
414                 break;
415         default:
416                 return 0;
417         }
418
419         return 0;
420 }
421
422 /*
423  * Generate a promise, to be used in a normal DMA contract.
424  *
425  * A NDMA promise contains all the information required to program the
426  * normal part of the DMA Engine and get data copied. A non-executed
427  * promise will live in the demands list on a contract. Once it has been
428  * completed, it will be moved to the completed demands list for later freeing.
429  * All linked promises will be freed when the corresponding contract is freed
430  */
431 static struct sun4i_dma_promise *
432 generate_ndma_promise(struct dma_chan *chan, dma_addr_t src, dma_addr_t dest,
433                       size_t len, struct dma_slave_config *sconfig,
434                       enum dma_transfer_direction direction)
435 {
436         struct sun4i_dma_promise *promise;
437         int ret;
438
439         ret = sanitize_config(sconfig, direction);
440         if (ret)
441                 return NULL;
442
443         promise = kzalloc(sizeof(*promise), GFP_NOWAIT);
444         if (!promise)
445                 return NULL;
446
447         promise->src = src;
448         promise->dst = dest;
449         promise->len = len;
450         promise->cfg = SUN4I_DMA_CFG_LOADING |
451                 SUN4I_NDMA_CFG_BYTE_COUNT_MODE_REMAIN;
452
453         dev_dbg(chan2dev(chan),
454                 "src burst %d, dst burst %d, src buswidth %d, dst buswidth %d",
455                 sconfig->src_maxburst, sconfig->dst_maxburst,
456                 sconfig->src_addr_width, sconfig->dst_addr_width);
457
458         /* Source burst */
459         ret = convert_burst(sconfig->src_maxburst);
460         if (ret < 0)
461                 goto fail;
462         promise->cfg |= SUN4I_DMA_CFG_SRC_BURST_LENGTH(ret);
463
464         /* Destination burst */
465         ret = convert_burst(sconfig->dst_maxburst);
466         if (ret < 0)
467                 goto fail;
468         promise->cfg |= SUN4I_DMA_CFG_DST_BURST_LENGTH(ret);
469
470         /* Source bus width */
471         ret = convert_buswidth(sconfig->src_addr_width);
472         if (ret < 0)
473                 goto fail;
474         promise->cfg |= SUN4I_DMA_CFG_SRC_DATA_WIDTH(ret);
475
476         /* Destination bus width */
477         ret = convert_buswidth(sconfig->dst_addr_width);
478         if (ret < 0)
479                 goto fail;
480         promise->cfg |= SUN4I_DMA_CFG_DST_DATA_WIDTH(ret);
481
482         return promise;
483
484 fail:
485         kfree(promise);
486         return NULL;
487 }
488
489 /*
490  * Generate a promise, to be used in a dedicated DMA contract.
491  *
492  * A DDMA promise contains all the information required to program the
493  * Dedicated part of the DMA Engine and get data copied. A non-executed
494  * promise will live in the demands list on a contract. Once it has been
495  * completed, it will be moved to the completed demands list for later freeing.
496  * All linked promises will be freed when the corresponding contract is freed
497  */
498 static struct sun4i_dma_promise *
499 generate_ddma_promise(struct dma_chan *chan, dma_addr_t src, dma_addr_t dest,
500                       size_t len, struct dma_slave_config *sconfig)
501 {
502         struct sun4i_dma_promise *promise;
503         int ret;
504
505         promise = kzalloc(sizeof(*promise), GFP_NOWAIT);
506         if (!promise)
507                 return NULL;
508
509         promise->src = src;
510         promise->dst = dest;
511         promise->len = len;
512         promise->cfg = SUN4I_DMA_CFG_LOADING |
513                 SUN4I_DDMA_CFG_BYTE_COUNT_MODE_REMAIN;
514
515         /* Source burst */
516         ret = convert_burst(sconfig->src_maxburst);
517         if (ret < 0)
518                 goto fail;
519         promise->cfg |= SUN4I_DMA_CFG_SRC_BURST_LENGTH(ret);
520
521         /* Destination burst */
522         ret = convert_burst(sconfig->dst_maxburst);
523         if (ret < 0)
524                 goto fail;
525         promise->cfg |= SUN4I_DMA_CFG_DST_BURST_LENGTH(ret);
526
527         /* Source bus width */
528         ret = convert_buswidth(sconfig->src_addr_width);
529         if (ret < 0)
530                 goto fail;
531         promise->cfg |= SUN4I_DMA_CFG_SRC_DATA_WIDTH(ret);
532
533         /* Destination bus width */
534         ret = convert_buswidth(sconfig->dst_addr_width);
535         if (ret < 0)
536                 goto fail;
537         promise->cfg |= SUN4I_DMA_CFG_DST_DATA_WIDTH(ret);
538
539         return promise;
540
541 fail:
542         kfree(promise);
543         return NULL;
544 }
545
546 /*
547  * Generate a contract
548  *
549  * Contracts function as DMA descriptors. As our hardware does not support
550  * linked lists, we need to implement SG via software. We use a contract
551  * to hold all the pieces of the request and process them serially one
552  * after another. Each piece is represented as a promise.
553  */
554 static struct sun4i_dma_contract *generate_dma_contract(void)
555 {
556         struct sun4i_dma_contract *contract;
557
558         contract = kzalloc(sizeof(*contract), GFP_NOWAIT);
559         if (!contract)
560                 return NULL;
561
562         INIT_LIST_HEAD(&contract->demands);
563         INIT_LIST_HEAD(&contract->completed_demands);
564
565         return contract;
566 }
567
568 /*
569  * Get next promise on a cyclic transfer
570  *
571  * Cyclic contracts contain a series of promises which are executed on a
572  * loop. This function returns the next promise from a cyclic contract,
573  * so it can be programmed into the hardware.
574  */
575 static struct sun4i_dma_promise *
576 get_next_cyclic_promise(struct sun4i_dma_contract *contract)
577 {
578         struct sun4i_dma_promise *promise;
579
580         promise = list_first_entry_or_null(&contract->demands,
581                                            struct sun4i_dma_promise, list);
582         if (!promise) {
583                 list_splice_init(&contract->completed_demands,
584                                  &contract->demands);
585                 promise = list_first_entry(&contract->demands,
586                                            struct sun4i_dma_promise, list);
587         }
588
589         return promise;
590 }
591
592 /*
593  * Free a contract and all its associated promises
594  */
595 static void sun4i_dma_free_contract(struct virt_dma_desc *vd)
596 {
597         struct sun4i_dma_contract *contract = to_sun4i_dma_contract(vd);
598         struct sun4i_dma_promise *promise, *tmp;
599
600         /* Free all the demands and completed demands */
601         list_for_each_entry_safe(promise, tmp, &contract->demands, list)
602                 kfree(promise);
603
604         list_for_each_entry_safe(promise, tmp, &contract->completed_demands, list)
605                 kfree(promise);
606
607         kfree(contract);
608 }
609
610 static struct dma_async_tx_descriptor *
611 sun4i_dma_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest,
612                           dma_addr_t src, size_t len, unsigned long flags)
613 {
614         struct sun4i_dma_vchan *vchan = to_sun4i_dma_vchan(chan);
615         struct dma_slave_config *sconfig = &vchan->cfg;
616         struct sun4i_dma_promise *promise;
617         struct sun4i_dma_contract *contract;
618
619         contract = generate_dma_contract();
620         if (!contract)
621                 return NULL;
622
623         /*
624          * We can only do the copy to bus aligned addresses, so
625          * choose the best one so we get decent performance. We also
626          * maximize the burst size for this same reason.
627          */
628         sconfig->src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
629         sconfig->dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
630         sconfig->src_maxburst = 8;
631         sconfig->dst_maxburst = 8;
632
633         if (vchan->is_dedicated)
634                 promise = generate_ddma_promise(chan, src, dest, len, sconfig);
635         else
636                 promise = generate_ndma_promise(chan, src, dest, len, sconfig,
637                                                 DMA_MEM_TO_MEM);
638
639         if (!promise) {
640                 kfree(contract);
641                 return NULL;
642         }
643
644         /* Configure memcpy mode */
645         if (vchan->is_dedicated) {
646                 promise->cfg |= SUN4I_DMA_CFG_SRC_DRQ_TYPE(SUN4I_DDMA_DRQ_TYPE_SDRAM) |
647                                 SUN4I_DMA_CFG_DST_DRQ_TYPE(SUN4I_DDMA_DRQ_TYPE_SDRAM);
648         } else {
649                 promise->cfg |= SUN4I_DMA_CFG_SRC_DRQ_TYPE(SUN4I_NDMA_DRQ_TYPE_SDRAM) |
650                                 SUN4I_DMA_CFG_DST_DRQ_TYPE(SUN4I_NDMA_DRQ_TYPE_SDRAM);
651         }
652
653         /* Fill the contract with our only promise */
654         list_add_tail(&promise->list, &contract->demands);
655
656         /* And add it to the vchan */
657         return vchan_tx_prep(&vchan->vc, &contract->vd, flags);
658 }
659
660 static struct dma_async_tx_descriptor *
661 sun4i_dma_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t buf, size_t len,
662                           size_t period_len, enum dma_transfer_direction dir,
663                           unsigned long flags)
664 {
665         struct sun4i_dma_vchan *vchan = to_sun4i_dma_vchan(chan);
666         struct dma_slave_config *sconfig = &vchan->cfg;
667         struct sun4i_dma_promise *promise;
668         struct sun4i_dma_contract *contract;
669         dma_addr_t src, dest;
670         u32 endpoints;
671         int nr_periods, offset, plength, i;
672         u8 ram_type, io_mode, linear_mode;
673
674         if (!is_slave_direction(dir)) {
675                 dev_err(chan2dev(chan), "Invalid DMA direction\n");
676                 return NULL;
677         }
678
679         contract = generate_dma_contract();
680         if (!contract)
681                 return NULL;
682
683         contract->is_cyclic = 1;
684
685         if (vchan->is_dedicated) {
686                 io_mode = SUN4I_DDMA_ADDR_MODE_IO;
687                 linear_mode = SUN4I_DDMA_ADDR_MODE_LINEAR;
688                 ram_type = SUN4I_DDMA_DRQ_TYPE_SDRAM;
689         } else {
690                 io_mode = SUN4I_NDMA_ADDR_MODE_IO;
691                 linear_mode = SUN4I_NDMA_ADDR_MODE_LINEAR;
692                 ram_type = SUN4I_NDMA_DRQ_TYPE_SDRAM;
693         }
694
695         if (dir == DMA_MEM_TO_DEV) {
696                 src = buf;
697                 dest = sconfig->dst_addr;
698                 endpoints = SUN4I_DMA_CFG_DST_DRQ_TYPE(vchan->endpoint) |
699                             SUN4I_DMA_CFG_DST_ADDR_MODE(io_mode) |
700                             SUN4I_DMA_CFG_SRC_DRQ_TYPE(ram_type) |
701                             SUN4I_DMA_CFG_SRC_ADDR_MODE(linear_mode);
702         } else {
703                 src = sconfig->src_addr;
704                 dest = buf;
705                 endpoints = SUN4I_DMA_CFG_DST_DRQ_TYPE(ram_type) |
706                             SUN4I_DMA_CFG_DST_ADDR_MODE(linear_mode) |
707                             SUN4I_DMA_CFG_SRC_DRQ_TYPE(vchan->endpoint) |
708                             SUN4I_DMA_CFG_SRC_ADDR_MODE(io_mode);
709         }
710
711         /*
712          * We will be using half done interrupts to make two periods
713          * out of a promise, so we need to program the DMA engine less
714          * often
715          */
716
717         /*
718          * The engine can interrupt on half-transfer, so we can use
719          * this feature to program the engine half as often as if we
720          * didn't use it (keep in mind the hardware doesn't support
721          * linked lists).
722          *
723          * Say you have a set of periods (| marks the start/end, I for
724          * interrupt, P for programming the engine to do a new
725          * transfer), the easy but slow way would be to do
726          *
727          *  |---|---|---|---| (periods / promises)
728          *  P  I,P I,P I,P  I
729          *
730          * Using half transfer interrupts you can do
731          *
732          *  |-------|-------| (promises as configured on hw)
733          *  |---|---|---|---| (periods)
734          *  P   I  I,P  I   I
735          *
736          * Which requires half the engine programming for the same
737          * functionality.
738          */
739         nr_periods = DIV_ROUND_UP(len / period_len, 2);
740         for (i = 0; i < nr_periods; i++) {
741                 /* Calculate the offset in the buffer and the length needed */
742                 offset = i * period_len * 2;
743                 plength = min((len - offset), (period_len * 2));
744                 if (dir == DMA_MEM_TO_DEV)
745                         src = buf + offset;
746                 else
747                         dest = buf + offset;
748
749                 /* Make the promise */
750                 if (vchan->is_dedicated)
751                         promise = generate_ddma_promise(chan, src, dest,
752                                                         plength, sconfig);
753                 else
754                         promise = generate_ndma_promise(chan, src, dest,
755                                                         plength, sconfig, dir);
756
757                 if (!promise) {
758                         /* TODO: should we free everything? */
759                         return NULL;
760                 }
761                 promise->cfg |= endpoints;
762
763                 /* Then add it to the contract */
764                 list_add_tail(&promise->list, &contract->demands);
765         }
766
767         /* And add it to the vchan */
768         return vchan_tx_prep(&vchan->vc, &contract->vd, flags);
769 }
770
771 static struct dma_async_tx_descriptor *
772 sun4i_dma_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
773                         unsigned int sg_len, enum dma_transfer_direction dir,
774                         unsigned long flags, void *context)
775 {
776         struct sun4i_dma_vchan *vchan = to_sun4i_dma_vchan(chan);
777         struct dma_slave_config *sconfig = &vchan->cfg;
778         struct sun4i_dma_promise *promise;
779         struct sun4i_dma_contract *contract;
780         u8 ram_type, io_mode, linear_mode;
781         struct scatterlist *sg;
782         dma_addr_t srcaddr, dstaddr;
783         u32 endpoints, para;
784         int i;
785
786         if (!sgl)
787                 return NULL;
788
789         if (!is_slave_direction(dir)) {
790                 dev_err(chan2dev(chan), "Invalid DMA direction\n");
791                 return NULL;
792         }
793
794         contract = generate_dma_contract();
795         if (!contract)
796                 return NULL;
797
798         if (vchan->is_dedicated) {
799                 io_mode = SUN4I_DDMA_ADDR_MODE_IO;
800                 linear_mode = SUN4I_DDMA_ADDR_MODE_LINEAR;
801                 ram_type = SUN4I_DDMA_DRQ_TYPE_SDRAM;
802         } else {
803                 io_mode = SUN4I_NDMA_ADDR_MODE_IO;
804                 linear_mode = SUN4I_NDMA_ADDR_MODE_LINEAR;
805                 ram_type = SUN4I_NDMA_DRQ_TYPE_SDRAM;
806         }
807
808         if (dir == DMA_MEM_TO_DEV)
809                 endpoints = SUN4I_DMA_CFG_DST_DRQ_TYPE(vchan->endpoint) |
810                             SUN4I_DMA_CFG_DST_ADDR_MODE(io_mode) |
811                             SUN4I_DMA_CFG_SRC_DRQ_TYPE(ram_type) |
812                             SUN4I_DMA_CFG_SRC_ADDR_MODE(linear_mode);
813         else
814                 endpoints = SUN4I_DMA_CFG_DST_DRQ_TYPE(ram_type) |
815                             SUN4I_DMA_CFG_DST_ADDR_MODE(linear_mode) |
816                             SUN4I_DMA_CFG_SRC_DRQ_TYPE(vchan->endpoint) |
817                             SUN4I_DMA_CFG_SRC_ADDR_MODE(io_mode);
818
819         for_each_sg(sgl, sg, sg_len, i) {
820                 /* Figure out addresses */
821                 if (dir == DMA_MEM_TO_DEV) {
822                         srcaddr = sg_dma_address(sg);
823                         dstaddr = sconfig->dst_addr;
824                 } else {
825                         srcaddr = sconfig->src_addr;
826                         dstaddr = sg_dma_address(sg);
827                 }
828
829                 /*
830                  * These are the magic DMA engine timings that keep SPI going.
831                  * I haven't seen any interface on DMAEngine to configure
832                  * timings, and so far they seem to work for everything we
833                  * support, so I've kept them here. I don't know if other
834                  * devices need different timings because, as usual, we only
835                  * have the "para" bitfield meanings, but no comment on what
836                  * the values should be when doing a certain operation :|
837                  */
838                 para = SUN4I_DDMA_MAGIC_SPI_PARAMETERS;
839
840                 /* And make a suitable promise */
841                 if (vchan->is_dedicated)
842                         promise = generate_ddma_promise(chan, srcaddr, dstaddr,
843                                                         sg_dma_len(sg),
844                                                         sconfig);
845                 else
846                         promise = generate_ndma_promise(chan, srcaddr, dstaddr,
847                                                         sg_dma_len(sg),
848                                                         sconfig, dir);
849
850                 if (!promise)
851                         return NULL; /* TODO: should we free everything? */
852
853                 promise->cfg |= endpoints;
854                 promise->para = para;
855
856                 /* Then add it to the contract */
857                 list_add_tail(&promise->list, &contract->demands);
858         }
859
860         /*
861          * Once we've got all the promises ready, add the contract
862          * to the pending list on the vchan
863          */
864         return vchan_tx_prep(&vchan->vc, &contract->vd, flags);
865 }
866
867 static int sun4i_dma_terminate_all(struct dma_chan *chan)
868 {
869         struct sun4i_dma_dev *priv = to_sun4i_dma_dev(chan->device);
870         struct sun4i_dma_vchan *vchan = to_sun4i_dma_vchan(chan);
871         struct sun4i_dma_pchan *pchan = vchan->pchan;
872         LIST_HEAD(head);
873         unsigned long flags;
874
875         spin_lock_irqsave(&vchan->vc.lock, flags);
876         vchan_get_all_descriptors(&vchan->vc, &head);
877         spin_unlock_irqrestore(&vchan->vc.lock, flags);
878
879         /*
880          * Clearing the configuration register will halt the pchan. Interrupts
881          * may still trigger, so don't forget to disable them.
882          */
883         if (pchan) {
884                 if (pchan->is_dedicated)
885                         writel(0, pchan->base + SUN4I_DDMA_CFG_REG);
886                 else
887                         writel(0, pchan->base + SUN4I_NDMA_CFG_REG);
888                 set_pchan_interrupt(priv, pchan, 0, 0);
889                 release_pchan(priv, pchan);
890         }
891
892         spin_lock_irqsave(&vchan->vc.lock, flags);
893         /* Clear these so the vchan is usable again */
894         vchan->processing = NULL;
895         vchan->pchan = NULL;
896         spin_unlock_irqrestore(&vchan->vc.lock, flags);
897
898         vchan_dma_desc_free_list(&vchan->vc, &head);
899
900         return 0;
901 }
902
903 static int sun4i_dma_config(struct dma_chan *chan,
904                             struct dma_slave_config *config)
905 {
906         struct sun4i_dma_vchan *vchan = to_sun4i_dma_vchan(chan);
907
908         memcpy(&vchan->cfg, config, sizeof(*config));
909
910         return 0;
911 }
912
913 static struct dma_chan *sun4i_dma_of_xlate(struct of_phandle_args *dma_spec,
914                                            struct of_dma *ofdma)
915 {
916         struct sun4i_dma_dev *priv = ofdma->of_dma_data;
917         struct sun4i_dma_vchan *vchan;
918         struct dma_chan *chan;
919         u8 is_dedicated = dma_spec->args[0];
920         u8 endpoint = dma_spec->args[1];
921
922         /* Check if type is Normal or Dedicated */
923         if (is_dedicated != 0 && is_dedicated != 1)
924                 return NULL;
925
926         /* Make sure the endpoint looks sane */
927         if ((is_dedicated && endpoint >= SUN4I_DDMA_DRQ_TYPE_LIMIT) ||
928             (!is_dedicated && endpoint >= SUN4I_NDMA_DRQ_TYPE_LIMIT))
929                 return NULL;
930
931         chan = dma_get_any_slave_channel(&priv->slave);
932         if (!chan)
933                 return NULL;
934
935         /* Assign the endpoint to the vchan */
936         vchan = to_sun4i_dma_vchan(chan);
937         vchan->is_dedicated = is_dedicated;
938         vchan->endpoint = endpoint;
939
940         return chan;
941 }
942
943 static enum dma_status sun4i_dma_tx_status(struct dma_chan *chan,
944                                            dma_cookie_t cookie,
945                                            struct dma_tx_state *state)
946 {
947         struct sun4i_dma_vchan *vchan = to_sun4i_dma_vchan(chan);
948         struct sun4i_dma_pchan *pchan = vchan->pchan;
949         struct sun4i_dma_contract *contract;
950         struct sun4i_dma_promise *promise;
951         struct virt_dma_desc *vd;
952         unsigned long flags;
953         enum dma_status ret;
954         size_t bytes = 0;
955
956         ret = dma_cookie_status(chan, cookie, state);
957         if (!state || (ret == DMA_COMPLETE))
958                 return ret;
959
960         spin_lock_irqsave(&vchan->vc.lock, flags);
961         vd = vchan_find_desc(&vchan->vc, cookie);
962         if (!vd)
963                 goto exit;
964         contract = to_sun4i_dma_contract(vd);
965
966         list_for_each_entry(promise, &contract->demands, list)
967                 bytes += promise->len;
968
969         /*
970          * The hardware is configured to return the remaining byte
971          * quantity. If possible, replace the first listed element's
972          * full size with the actual remaining amount
973          */
974         promise = list_first_entry_or_null(&contract->demands,
975                                            struct sun4i_dma_promise, list);
976         if (promise && pchan) {
977                 bytes -= promise->len;
978                 if (pchan->is_dedicated)
979                         bytes += readl(pchan->base + SUN4I_DDMA_BYTE_COUNT_REG);
980                 else
981                         bytes += readl(pchan->base + SUN4I_NDMA_BYTE_COUNT_REG);
982         }
983
984 exit:
985
986         dma_set_residue(state, bytes);
987         spin_unlock_irqrestore(&vchan->vc.lock, flags);
988
989         return ret;
990 }
991
992 static void sun4i_dma_issue_pending(struct dma_chan *chan)
993 {
994         struct sun4i_dma_dev *priv = to_sun4i_dma_dev(chan->device);
995         struct sun4i_dma_vchan *vchan = to_sun4i_dma_vchan(chan);
996         unsigned long flags;
997
998         spin_lock_irqsave(&vchan->vc.lock, flags);
999
1000         /*
1001          * If there are pending transactions for this vchan, push one of
1002          * them into the engine to get the ball rolling.
1003          */
1004         if (vchan_issue_pending(&vchan->vc))
1005                 __execute_vchan_pending(priv, vchan);
1006
1007         spin_unlock_irqrestore(&vchan->vc.lock, flags);
1008 }
1009
1010 static irqreturn_t sun4i_dma_interrupt(int irq, void *dev_id)
1011 {
1012         struct sun4i_dma_dev *priv = dev_id;
1013         struct sun4i_dma_pchan *pchans = priv->pchans, *pchan;
1014         struct sun4i_dma_vchan *vchan;
1015         struct sun4i_dma_contract *contract;
1016         struct sun4i_dma_promise *promise;
1017         unsigned long pendirq, irqs, disableirqs;
1018         int bit, i, free_room, allow_mitigation = 1;
1019
1020         pendirq = readl_relaxed(priv->base + SUN4I_DMA_IRQ_PENDING_STATUS_REG);
1021
1022 handle_pending:
1023
1024         disableirqs = 0;
1025         free_room = 0;
1026
1027         for_each_set_bit(bit, &pendirq, 32) {
1028                 pchan = &pchans[bit >> 1];
1029                 vchan = pchan->vchan;
1030                 if (!vchan) /* a terminated channel may still interrupt */
1031                         continue;
1032                 contract = vchan->contract;
1033
1034                 /*
1035                  * Disable the IRQ and free the pchan if it's an end
1036                  * interrupt (odd bit)
1037                  */
1038                 if (bit & 1) {
1039                         spin_lock(&vchan->vc.lock);
1040
1041                         /*
1042                          * Move the promise into the completed list now that
1043                          * we're done with it
1044                          */
1045                         list_move_tail(&vchan->processing->list,
1046                                        &contract->completed_demands);
1047
1048                         /*
1049                          * Cyclic DMA transfers are special:
1050                          * - There's always something we can dispatch
1051                          * - We need to run the callback
1052                          * - Latency is very important, as this is used by audio
1053                          * We therefore just cycle through the list and dispatch
1054                          * whatever we have here, reusing the pchan. There's
1055                          * no need to run the thread after this.
1056                          *
1057                          * For non-cyclic transfers we need to look around,
1058                          * so we can program some more work, or notify the
1059                          * client that their transfers have been completed.
1060                          */
1061                         if (contract->is_cyclic) {
1062                                 promise = get_next_cyclic_promise(contract);
1063                                 vchan->processing = promise;
1064                                 configure_pchan(pchan, promise);
1065                                 vchan_cyclic_callback(&contract->vd);
1066                         } else {
1067                                 vchan->processing = NULL;
1068                                 vchan->pchan = NULL;
1069
1070                                 free_room = 1;
1071                                 disableirqs |= BIT(bit);
1072                                 release_pchan(priv, pchan);
1073                         }
1074
1075                         spin_unlock(&vchan->vc.lock);
1076                 } else {
1077                         /* Half done interrupt */
1078                         if (contract->is_cyclic)
1079                                 vchan_cyclic_callback(&contract->vd);
1080                         else
1081                                 disableirqs |= BIT(bit);
1082                 }
1083         }
1084
1085         /* Disable the IRQs for events we handled */
1086         spin_lock(&priv->lock);
1087         irqs = readl_relaxed(priv->base + SUN4I_DMA_IRQ_ENABLE_REG);
1088         writel_relaxed(irqs & ~disableirqs,
1089                        priv->base + SUN4I_DMA_IRQ_ENABLE_REG);
1090         spin_unlock(&priv->lock);
1091
1092         /* Writing 1 to the pending field will clear the pending interrupt */
1093         writel_relaxed(pendirq, priv->base + SUN4I_DMA_IRQ_PENDING_STATUS_REG);
1094
1095         /*
1096          * If a pchan was freed, we may be able to schedule something else,
1097          * so have a look around
1098          */
1099         if (free_room) {
1100                 for (i = 0; i < SUN4I_DMA_NR_MAX_VCHANS; i++) {
1101                         vchan = &priv->vchans[i];
1102                         spin_lock(&vchan->vc.lock);
1103                         __execute_vchan_pending(priv, vchan);
1104                         spin_unlock(&vchan->vc.lock);
1105                 }
1106         }
1107
1108         /*
1109          * Handle newer interrupts if some showed up, but only do it once
1110          * to avoid a too long a loop
1111          */
1112         if (allow_mitigation) {
1113                 pendirq = readl_relaxed(priv->base +
1114                                         SUN4I_DMA_IRQ_PENDING_STATUS_REG);
1115                 if (pendirq) {
1116                         allow_mitigation = 0;
1117                         goto handle_pending;
1118                 }
1119         }
1120
1121         return IRQ_HANDLED;
1122 }
1123
1124 static int sun4i_dma_probe(struct platform_device *pdev)
1125 {
1126         struct sun4i_dma_dev *priv;
1127         struct resource *res;
1128         int i, j, ret;
1129
1130         priv = devm_kzalloc(&pdev->dev, sizeof(*priv), GFP_KERNEL);
1131         if (!priv)
1132                 return -ENOMEM;
1133
1134         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1135         priv->base = devm_ioremap_resource(&pdev->dev, res);
1136         if (IS_ERR(priv->base))
1137                 return PTR_ERR(priv->base);
1138
1139         priv->irq = platform_get_irq(pdev, 0);
1140         if (priv->irq < 0)
1141                 return priv->irq;
1142
1143         priv->clk = devm_clk_get(&pdev->dev, NULL);
1144         if (IS_ERR(priv->clk)) {
1145                 dev_err(&pdev->dev, "No clock specified\n");
1146                 return PTR_ERR(priv->clk);
1147         }
1148
1149         platform_set_drvdata(pdev, priv);
1150         spin_lock_init(&priv->lock);
1151
1152         dma_cap_zero(priv->slave.cap_mask);
1153         dma_cap_set(DMA_PRIVATE, priv->slave.cap_mask);
1154         dma_cap_set(DMA_MEMCPY, priv->slave.cap_mask);
1155         dma_cap_set(DMA_CYCLIC, priv->slave.cap_mask);
1156         dma_cap_set(DMA_SLAVE, priv->slave.cap_mask);
1157
1158         INIT_LIST_HEAD(&priv->slave.channels);
1159         priv->slave.device_free_chan_resources  = sun4i_dma_free_chan_resources;
1160         priv->slave.device_tx_status            = sun4i_dma_tx_status;
1161         priv->slave.device_issue_pending        = sun4i_dma_issue_pending;
1162         priv->slave.device_prep_slave_sg        = sun4i_dma_prep_slave_sg;
1163         priv->slave.device_prep_dma_memcpy      = sun4i_dma_prep_dma_memcpy;
1164         priv->slave.device_prep_dma_cyclic      = sun4i_dma_prep_dma_cyclic;
1165         priv->slave.device_config               = sun4i_dma_config;
1166         priv->slave.device_terminate_all        = sun4i_dma_terminate_all;
1167         priv->slave.copy_align                  = 2;
1168         priv->slave.src_addr_widths             = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
1169                                                   BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
1170                                                   BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
1171         priv->slave.dst_addr_widths             = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
1172                                                   BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
1173                                                   BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
1174         priv->slave.directions                  = BIT(DMA_DEV_TO_MEM) |
1175                                                   BIT(DMA_MEM_TO_DEV);
1176         priv->slave.residue_granularity         = DMA_RESIDUE_GRANULARITY_BURST;
1177
1178         priv->slave.dev = &pdev->dev;
1179
1180         priv->pchans = devm_kcalloc(&pdev->dev, SUN4I_DMA_NR_MAX_CHANNELS,
1181                                     sizeof(struct sun4i_dma_pchan), GFP_KERNEL);
1182         priv->vchans = devm_kcalloc(&pdev->dev, SUN4I_DMA_NR_MAX_VCHANS,
1183                                     sizeof(struct sun4i_dma_vchan), GFP_KERNEL);
1184         if (!priv->vchans || !priv->pchans)
1185                 return -ENOMEM;
1186
1187         /*
1188          * [0..SUN4I_NDMA_NR_MAX_CHANNELS) are normal pchans, and
1189          * [SUN4I_NDMA_NR_MAX_CHANNELS..SUN4I_DMA_NR_MAX_CHANNELS) are
1190          * dedicated ones
1191          */
1192         for (i = 0; i < SUN4I_NDMA_NR_MAX_CHANNELS; i++)
1193                 priv->pchans[i].base = priv->base +
1194                         SUN4I_NDMA_CHANNEL_REG_BASE(i);
1195
1196         for (j = 0; i < SUN4I_DMA_NR_MAX_CHANNELS; i++, j++) {
1197                 priv->pchans[i].base = priv->base +
1198                         SUN4I_DDMA_CHANNEL_REG_BASE(j);
1199                 priv->pchans[i].is_dedicated = 1;
1200         }
1201
1202         for (i = 0; i < SUN4I_DMA_NR_MAX_VCHANS; i++) {
1203                 struct sun4i_dma_vchan *vchan = &priv->vchans[i];
1204
1205                 spin_lock_init(&vchan->vc.lock);
1206                 vchan->vc.desc_free = sun4i_dma_free_contract;
1207                 vchan_init(&vchan->vc, &priv->slave);
1208         }
1209
1210         ret = clk_prepare_enable(priv->clk);
1211         if (ret) {
1212                 dev_err(&pdev->dev, "Couldn't enable the clock\n");
1213                 return ret;
1214         }
1215
1216         /*
1217          * Make sure the IRQs are all disabled and accounted for. The bootloader
1218          * likes to leave these dirty
1219          */
1220         writel(0, priv->base + SUN4I_DMA_IRQ_ENABLE_REG);
1221         writel(0xFFFFFFFF, priv->base + SUN4I_DMA_IRQ_PENDING_STATUS_REG);
1222
1223         ret = devm_request_irq(&pdev->dev, priv->irq, sun4i_dma_interrupt,
1224                                0, dev_name(&pdev->dev), priv);
1225         if (ret) {
1226                 dev_err(&pdev->dev, "Cannot request IRQ\n");
1227                 goto err_clk_disable;
1228         }
1229
1230         ret = dma_async_device_register(&priv->slave);
1231         if (ret) {
1232                 dev_warn(&pdev->dev, "Failed to register DMA engine device\n");
1233                 goto err_clk_disable;
1234         }
1235
1236         ret = of_dma_controller_register(pdev->dev.of_node, sun4i_dma_of_xlate,
1237                                          priv);
1238         if (ret) {
1239                 dev_err(&pdev->dev, "of_dma_controller_register failed\n");
1240                 goto err_dma_unregister;
1241         }
1242
1243         dev_dbg(&pdev->dev, "Successfully probed SUN4I_DMA\n");
1244
1245         return 0;
1246
1247 err_dma_unregister:
1248         dma_async_device_unregister(&priv->slave);
1249 err_clk_disable:
1250         clk_disable_unprepare(priv->clk);
1251         return ret;
1252 }
1253
1254 static int sun4i_dma_remove(struct platform_device *pdev)
1255 {
1256         struct sun4i_dma_dev *priv = platform_get_drvdata(pdev);
1257
1258         /* Disable IRQ so no more work is scheduled */
1259         disable_irq(priv->irq);
1260
1261         of_dma_controller_free(pdev->dev.of_node);
1262         dma_async_device_unregister(&priv->slave);
1263
1264         clk_disable_unprepare(priv->clk);
1265
1266         return 0;
1267 }
1268
1269 static const struct of_device_id sun4i_dma_match[] = {
1270         { .compatible = "allwinner,sun4i-a10-dma" },
1271         { /* sentinel */ },
1272 };
1273 MODULE_DEVICE_TABLE(of, sun4i_dma_match);
1274
1275 static struct platform_driver sun4i_dma_driver = {
1276         .probe  = sun4i_dma_probe,
1277         .remove = sun4i_dma_remove,
1278         .driver = {
1279                 .name           = "sun4i-dma",
1280                 .of_match_table = sun4i_dma_match,
1281         },
1282 };
1283
1284 module_platform_driver(sun4i_dma_driver);
1285
1286 MODULE_DESCRIPTION("Allwinner A10 Dedicated DMA Controller Driver");
1287 MODULE_AUTHOR("Emilio López <emilio@elopez.com.ar>");
1288 MODULE_LICENSE("GPL");