1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * Copyright (C) 2014 Emilio López
4 * Emilio López <emilio@elopez.com.ar>
7 #include <linux/bitmap.h>
8 #include <linux/bitops.h>
10 #include <linux/dmaengine.h>
11 #include <linux/dmapool.h>
12 #include <linux/interrupt.h>
13 #include <linux/module.h>
14 #include <linux/of_dma.h>
15 #include <linux/platform_device.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
21 /** Common macros to normal and dedicated DMA registers **/
23 #define SUN4I_DMA_CFG_LOADING BIT(31)
24 #define SUN4I_DMA_CFG_DST_DATA_WIDTH(width) ((width) << 25)
25 #define SUN4I_DMA_CFG_DST_BURST_LENGTH(len) ((len) << 23)
26 #define SUN4I_DMA_CFG_DST_ADDR_MODE(mode) ((mode) << 21)
27 #define SUN4I_DMA_CFG_DST_DRQ_TYPE(type) ((type) << 16)
28 #define SUN4I_DMA_CFG_SRC_DATA_WIDTH(width) ((width) << 9)
29 #define SUN4I_DMA_CFG_SRC_BURST_LENGTH(len) ((len) << 7)
30 #define SUN4I_DMA_CFG_SRC_ADDR_MODE(mode) ((mode) << 5)
31 #define SUN4I_DMA_CFG_SRC_DRQ_TYPE(type) (type)
33 /** Normal DMA register values **/
35 /* Normal DMA source/destination data request type values */
36 #define SUN4I_NDMA_DRQ_TYPE_SDRAM 0x16
37 #define SUN4I_NDMA_DRQ_TYPE_LIMIT (0x1F + 1)
39 /** Normal DMA register layout **/
41 /* Dedicated DMA source/destination address mode values */
42 #define SUN4I_NDMA_ADDR_MODE_LINEAR 0
43 #define SUN4I_NDMA_ADDR_MODE_IO 1
45 /* Normal DMA configuration register layout */
46 #define SUN4I_NDMA_CFG_CONT_MODE BIT(30)
47 #define SUN4I_NDMA_CFG_WAIT_STATE(n) ((n) << 27)
48 #define SUN4I_NDMA_CFG_DST_NON_SECURE BIT(22)
49 #define SUN4I_NDMA_CFG_BYTE_COUNT_MODE_REMAIN BIT(15)
50 #define SUN4I_NDMA_CFG_SRC_NON_SECURE BIT(6)
52 /** Dedicated DMA register values **/
54 /* Dedicated DMA source/destination address mode values */
55 #define SUN4I_DDMA_ADDR_MODE_LINEAR 0
56 #define SUN4I_DDMA_ADDR_MODE_IO 1
57 #define SUN4I_DDMA_ADDR_MODE_HORIZONTAL_PAGE 2
58 #define SUN4I_DDMA_ADDR_MODE_VERTICAL_PAGE 3
60 /* Dedicated DMA source/destination data request type values */
61 #define SUN4I_DDMA_DRQ_TYPE_SDRAM 0x1
62 #define SUN4I_DDMA_DRQ_TYPE_LIMIT (0x1F + 1)
64 /** Dedicated DMA register layout **/
66 /* Dedicated DMA configuration register layout */
67 #define SUN4I_DDMA_CFG_BUSY BIT(30)
68 #define SUN4I_DDMA_CFG_CONT_MODE BIT(29)
69 #define SUN4I_DDMA_CFG_DST_NON_SECURE BIT(28)
70 #define SUN4I_DDMA_CFG_BYTE_COUNT_MODE_REMAIN BIT(15)
71 #define SUN4I_DDMA_CFG_SRC_NON_SECURE BIT(12)
73 /* Dedicated DMA parameter register layout */
74 #define SUN4I_DDMA_PARA_DST_DATA_BLK_SIZE(n) (((n) - 1) << 24)
75 #define SUN4I_DDMA_PARA_DST_WAIT_CYCLES(n) (((n) - 1) << 16)
76 #define SUN4I_DDMA_PARA_SRC_DATA_BLK_SIZE(n) (((n) - 1) << 8)
77 #define SUN4I_DDMA_PARA_SRC_WAIT_CYCLES(n) (((n) - 1) << 0)
79 /** DMA register offsets **/
81 /* General register offsets */
82 #define SUN4I_DMA_IRQ_ENABLE_REG 0x0
83 #define SUN4I_DMA_IRQ_PENDING_STATUS_REG 0x4
85 /* Normal DMA register offsets */
86 #define SUN4I_NDMA_CHANNEL_REG_BASE(n) (0x100 + (n) * 0x20)
87 #define SUN4I_NDMA_CFG_REG 0x0
88 #define SUN4I_NDMA_SRC_ADDR_REG 0x4
89 #define SUN4I_NDMA_DST_ADDR_REG 0x8
90 #define SUN4I_NDMA_BYTE_COUNT_REG 0xC
92 /* Dedicated DMA register offsets */
93 #define SUN4I_DDMA_CHANNEL_REG_BASE(n) (0x300 + (n) * 0x20)
94 #define SUN4I_DDMA_CFG_REG 0x0
95 #define SUN4I_DDMA_SRC_ADDR_REG 0x4
96 #define SUN4I_DDMA_DST_ADDR_REG 0x8
97 #define SUN4I_DDMA_BYTE_COUNT_REG 0xC
98 #define SUN4I_DDMA_PARA_REG 0x18
103 * Normal DMA has 8 channels, and Dedicated DMA has another 8, so
104 * that's 16 channels. As for endpoints, there's 29 and 21
105 * respectively. Given that the Normal DMA endpoints (other than
106 * SDRAM) can be used as tx/rx, we need 78 vchans in total
108 #define SUN4I_NDMA_NR_MAX_CHANNELS 8
109 #define SUN4I_DDMA_NR_MAX_CHANNELS 8
110 #define SUN4I_DMA_NR_MAX_CHANNELS \
111 (SUN4I_NDMA_NR_MAX_CHANNELS + SUN4I_DDMA_NR_MAX_CHANNELS)
112 #define SUN4I_NDMA_NR_MAX_VCHANS (29 * 2 - 1)
113 #define SUN4I_DDMA_NR_MAX_VCHANS 21
114 #define SUN4I_DMA_NR_MAX_VCHANS \
115 (SUN4I_NDMA_NR_MAX_VCHANS + SUN4I_DDMA_NR_MAX_VCHANS)
117 /* This set of SUN4I_DDMA timing parameters were found experimentally while
118 * working with the SPI driver and seem to make it behave correctly */
119 #define SUN4I_DDMA_MAGIC_SPI_PARAMETERS \
120 (SUN4I_DDMA_PARA_DST_DATA_BLK_SIZE(1) | \
121 SUN4I_DDMA_PARA_SRC_DATA_BLK_SIZE(1) | \
122 SUN4I_DDMA_PARA_DST_WAIT_CYCLES(2) | \
123 SUN4I_DDMA_PARA_SRC_WAIT_CYCLES(2))
125 struct sun4i_dma_pchan {
126 /* Register base of channel */
128 /* vchan currently being serviced */
129 struct sun4i_dma_vchan *vchan;
130 /* Is this a dedicated pchan? */
134 struct sun4i_dma_vchan {
135 struct virt_dma_chan vc;
136 struct dma_slave_config cfg;
137 struct sun4i_dma_pchan *pchan;
138 struct sun4i_dma_promise *processing;
139 struct sun4i_dma_contract *contract;
144 struct sun4i_dma_promise {
150 struct list_head list;
153 /* A contract is a set of promises */
154 struct sun4i_dma_contract {
155 struct virt_dma_desc vd;
156 struct list_head demands;
157 struct list_head completed_demands;
161 struct sun4i_dma_dev {
162 DECLARE_BITMAP(pchans_used, SUN4I_DMA_NR_MAX_CHANNELS);
163 struct dma_device slave;
164 struct sun4i_dma_pchan *pchans;
165 struct sun4i_dma_vchan *vchans;
172 static struct sun4i_dma_dev *to_sun4i_dma_dev(struct dma_device *dev)
174 return container_of(dev, struct sun4i_dma_dev, slave);
177 static struct sun4i_dma_vchan *to_sun4i_dma_vchan(struct dma_chan *chan)
179 return container_of(chan, struct sun4i_dma_vchan, vc.chan);
182 static struct sun4i_dma_contract *to_sun4i_dma_contract(struct virt_dma_desc *vd)
184 return container_of(vd, struct sun4i_dma_contract, vd);
187 static struct device *chan2dev(struct dma_chan *chan)
189 return &chan->dev->device;
192 static int convert_burst(u32 maxburst)
197 /* 1 -> 0, 4 -> 1, 8 -> 2 */
198 return (maxburst >> 2);
201 static int convert_buswidth(enum dma_slave_buswidth addr_width)
203 if (addr_width > DMA_SLAVE_BUSWIDTH_4_BYTES)
206 /* 8 (1 byte) -> 0, 16 (2 bytes) -> 1, 32 (4 bytes) -> 2 */
207 return (addr_width >> 1);
210 static void sun4i_dma_free_chan_resources(struct dma_chan *chan)
212 struct sun4i_dma_vchan *vchan = to_sun4i_dma_vchan(chan);
214 vchan_free_chan_resources(&vchan->vc);
217 static struct sun4i_dma_pchan *find_and_use_pchan(struct sun4i_dma_dev *priv,
218 struct sun4i_dma_vchan *vchan)
220 struct sun4i_dma_pchan *pchan = NULL, *pchans = priv->pchans;
225 * pchans 0-SUN4I_NDMA_NR_MAX_CHANNELS are normal, and
226 * SUN4I_NDMA_NR_MAX_CHANNELS+ are dedicated ones
228 if (vchan->is_dedicated) {
229 i = SUN4I_NDMA_NR_MAX_CHANNELS;
230 max = SUN4I_DMA_NR_MAX_CHANNELS;
233 max = SUN4I_NDMA_NR_MAX_CHANNELS;
236 spin_lock_irqsave(&priv->lock, flags);
237 for_each_clear_bit_from(i, priv->pchans_used, max) {
239 pchan->vchan = vchan;
240 set_bit(i, priv->pchans_used);
243 spin_unlock_irqrestore(&priv->lock, flags);
248 static void release_pchan(struct sun4i_dma_dev *priv,
249 struct sun4i_dma_pchan *pchan)
252 int nr = pchan - priv->pchans;
254 spin_lock_irqsave(&priv->lock, flags);
257 clear_bit(nr, priv->pchans_used);
259 spin_unlock_irqrestore(&priv->lock, flags);
262 static void configure_pchan(struct sun4i_dma_pchan *pchan,
263 struct sun4i_dma_promise *d)
266 * Configure addresses and misc parameters depending on type
267 * SUN4I_DDMA has an extra field with timing parameters
269 if (pchan->is_dedicated) {
270 writel_relaxed(d->src, pchan->base + SUN4I_DDMA_SRC_ADDR_REG);
271 writel_relaxed(d->dst, pchan->base + SUN4I_DDMA_DST_ADDR_REG);
272 writel_relaxed(d->len, pchan->base + SUN4I_DDMA_BYTE_COUNT_REG);
273 writel_relaxed(d->para, pchan->base + SUN4I_DDMA_PARA_REG);
274 writel_relaxed(d->cfg, pchan->base + SUN4I_DDMA_CFG_REG);
276 writel_relaxed(d->src, pchan->base + SUN4I_NDMA_SRC_ADDR_REG);
277 writel_relaxed(d->dst, pchan->base + SUN4I_NDMA_DST_ADDR_REG);
278 writel_relaxed(d->len, pchan->base + SUN4I_NDMA_BYTE_COUNT_REG);
279 writel_relaxed(d->cfg, pchan->base + SUN4I_NDMA_CFG_REG);
283 static void set_pchan_interrupt(struct sun4i_dma_dev *priv,
284 struct sun4i_dma_pchan *pchan,
288 int pchan_number = pchan - priv->pchans;
291 spin_lock_irqsave(&priv->lock, flags);
293 reg = readl_relaxed(priv->base + SUN4I_DMA_IRQ_ENABLE_REG);
296 reg |= BIT(pchan_number * 2);
298 reg &= ~BIT(pchan_number * 2);
301 reg |= BIT(pchan_number * 2 + 1);
303 reg &= ~BIT(pchan_number * 2 + 1);
305 writel_relaxed(reg, priv->base + SUN4I_DMA_IRQ_ENABLE_REG);
307 spin_unlock_irqrestore(&priv->lock, flags);
311 * Execute pending operations on a vchan
313 * When given a vchan, this function will try to acquire a suitable
314 * pchan and, if successful, will configure it to fulfill a promise
315 * from the next pending contract.
317 * This function must be called with &vchan->vc.lock held.
319 static int __execute_vchan_pending(struct sun4i_dma_dev *priv,
320 struct sun4i_dma_vchan *vchan)
322 struct sun4i_dma_promise *promise = NULL;
323 struct sun4i_dma_contract *contract = NULL;
324 struct sun4i_dma_pchan *pchan;
325 struct virt_dma_desc *vd;
328 lockdep_assert_held(&vchan->vc.lock);
330 /* We need a pchan to do anything, so secure one if available */
331 pchan = find_and_use_pchan(priv, vchan);
336 * Channel endpoints must not be repeated, so if this vchan
337 * has already submitted some work, we can't do anything else
339 if (vchan->processing) {
340 dev_dbg(chan2dev(&vchan->vc.chan),
341 "processing something to this endpoint already\n");
347 /* Figure out which contract we're working with today */
348 vd = vchan_next_desc(&vchan->vc);
350 dev_dbg(chan2dev(&vchan->vc.chan),
351 "No pending contract found");
356 contract = to_sun4i_dma_contract(vd);
357 if (list_empty(&contract->demands)) {
358 /* The contract has been completed so mark it as such */
359 list_del(&contract->vd.node);
360 vchan_cookie_complete(&contract->vd);
361 dev_dbg(chan2dev(&vchan->vc.chan),
362 "Empty contract found and marked complete");
364 } while (list_empty(&contract->demands));
366 /* Now find out what we need to do */
367 promise = list_first_entry(&contract->demands,
368 struct sun4i_dma_promise, list);
369 vchan->processing = promise;
371 /* ... and make it reality */
373 vchan->contract = contract;
374 vchan->pchan = pchan;
375 set_pchan_interrupt(priv, pchan, contract->is_cyclic, 1);
376 configure_pchan(pchan, promise);
382 release_pchan(priv, pchan);
386 static int sanitize_config(struct dma_slave_config *sconfig,
387 enum dma_transfer_direction direction)
391 if ((sconfig->dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) ||
392 !sconfig->dst_maxburst)
395 if (sconfig->src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
396 sconfig->src_addr_width = sconfig->dst_addr_width;
398 if (!sconfig->src_maxburst)
399 sconfig->src_maxburst = sconfig->dst_maxburst;
404 if ((sconfig->src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) ||
405 !sconfig->src_maxburst)
408 if (sconfig->dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
409 sconfig->dst_addr_width = sconfig->src_addr_width;
411 if (!sconfig->dst_maxburst)
412 sconfig->dst_maxburst = sconfig->src_maxburst;
423 * Generate a promise, to be used in a normal DMA contract.
425 * A NDMA promise contains all the information required to program the
426 * normal part of the DMA Engine and get data copied. A non-executed
427 * promise will live in the demands list on a contract. Once it has been
428 * completed, it will be moved to the completed demands list for later freeing.
429 * All linked promises will be freed when the corresponding contract is freed
431 static struct sun4i_dma_promise *
432 generate_ndma_promise(struct dma_chan *chan, dma_addr_t src, dma_addr_t dest,
433 size_t len, struct dma_slave_config *sconfig,
434 enum dma_transfer_direction direction)
436 struct sun4i_dma_promise *promise;
439 ret = sanitize_config(sconfig, direction);
443 promise = kzalloc(sizeof(*promise), GFP_NOWAIT);
450 promise->cfg = SUN4I_DMA_CFG_LOADING |
451 SUN4I_NDMA_CFG_BYTE_COUNT_MODE_REMAIN;
453 dev_dbg(chan2dev(chan),
454 "src burst %d, dst burst %d, src buswidth %d, dst buswidth %d",
455 sconfig->src_maxburst, sconfig->dst_maxburst,
456 sconfig->src_addr_width, sconfig->dst_addr_width);
459 ret = convert_burst(sconfig->src_maxburst);
462 promise->cfg |= SUN4I_DMA_CFG_SRC_BURST_LENGTH(ret);
464 /* Destination burst */
465 ret = convert_burst(sconfig->dst_maxburst);
468 promise->cfg |= SUN4I_DMA_CFG_DST_BURST_LENGTH(ret);
470 /* Source bus width */
471 ret = convert_buswidth(sconfig->src_addr_width);
474 promise->cfg |= SUN4I_DMA_CFG_SRC_DATA_WIDTH(ret);
476 /* Destination bus width */
477 ret = convert_buswidth(sconfig->dst_addr_width);
480 promise->cfg |= SUN4I_DMA_CFG_DST_DATA_WIDTH(ret);
490 * Generate a promise, to be used in a dedicated DMA contract.
492 * A DDMA promise contains all the information required to program the
493 * Dedicated part of the DMA Engine and get data copied. A non-executed
494 * promise will live in the demands list on a contract. Once it has been
495 * completed, it will be moved to the completed demands list for later freeing.
496 * All linked promises will be freed when the corresponding contract is freed
498 static struct sun4i_dma_promise *
499 generate_ddma_promise(struct dma_chan *chan, dma_addr_t src, dma_addr_t dest,
500 size_t len, struct dma_slave_config *sconfig)
502 struct sun4i_dma_promise *promise;
505 promise = kzalloc(sizeof(*promise), GFP_NOWAIT);
512 promise->cfg = SUN4I_DMA_CFG_LOADING |
513 SUN4I_DDMA_CFG_BYTE_COUNT_MODE_REMAIN;
516 ret = convert_burst(sconfig->src_maxburst);
519 promise->cfg |= SUN4I_DMA_CFG_SRC_BURST_LENGTH(ret);
521 /* Destination burst */
522 ret = convert_burst(sconfig->dst_maxburst);
525 promise->cfg |= SUN4I_DMA_CFG_DST_BURST_LENGTH(ret);
527 /* Source bus width */
528 ret = convert_buswidth(sconfig->src_addr_width);
531 promise->cfg |= SUN4I_DMA_CFG_SRC_DATA_WIDTH(ret);
533 /* Destination bus width */
534 ret = convert_buswidth(sconfig->dst_addr_width);
537 promise->cfg |= SUN4I_DMA_CFG_DST_DATA_WIDTH(ret);
547 * Generate a contract
549 * Contracts function as DMA descriptors. As our hardware does not support
550 * linked lists, we need to implement SG via software. We use a contract
551 * to hold all the pieces of the request and process them serially one
552 * after another. Each piece is represented as a promise.
554 static struct sun4i_dma_contract *generate_dma_contract(void)
556 struct sun4i_dma_contract *contract;
558 contract = kzalloc(sizeof(*contract), GFP_NOWAIT);
562 INIT_LIST_HEAD(&contract->demands);
563 INIT_LIST_HEAD(&contract->completed_demands);
569 * Get next promise on a cyclic transfer
571 * Cyclic contracts contain a series of promises which are executed on a
572 * loop. This function returns the next promise from a cyclic contract,
573 * so it can be programmed into the hardware.
575 static struct sun4i_dma_promise *
576 get_next_cyclic_promise(struct sun4i_dma_contract *contract)
578 struct sun4i_dma_promise *promise;
580 promise = list_first_entry_or_null(&contract->demands,
581 struct sun4i_dma_promise, list);
583 list_splice_init(&contract->completed_demands,
585 promise = list_first_entry(&contract->demands,
586 struct sun4i_dma_promise, list);
593 * Free a contract and all its associated promises
595 static void sun4i_dma_free_contract(struct virt_dma_desc *vd)
597 struct sun4i_dma_contract *contract = to_sun4i_dma_contract(vd);
598 struct sun4i_dma_promise *promise, *tmp;
600 /* Free all the demands and completed demands */
601 list_for_each_entry_safe(promise, tmp, &contract->demands, list)
604 list_for_each_entry_safe(promise, tmp, &contract->completed_demands, list)
610 static struct dma_async_tx_descriptor *
611 sun4i_dma_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest,
612 dma_addr_t src, size_t len, unsigned long flags)
614 struct sun4i_dma_vchan *vchan = to_sun4i_dma_vchan(chan);
615 struct dma_slave_config *sconfig = &vchan->cfg;
616 struct sun4i_dma_promise *promise;
617 struct sun4i_dma_contract *contract;
619 contract = generate_dma_contract();
624 * We can only do the copy to bus aligned addresses, so
625 * choose the best one so we get decent performance. We also
626 * maximize the burst size for this same reason.
628 sconfig->src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
629 sconfig->dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
630 sconfig->src_maxburst = 8;
631 sconfig->dst_maxburst = 8;
633 if (vchan->is_dedicated)
634 promise = generate_ddma_promise(chan, src, dest, len, sconfig);
636 promise = generate_ndma_promise(chan, src, dest, len, sconfig,
644 /* Configure memcpy mode */
645 if (vchan->is_dedicated) {
646 promise->cfg |= SUN4I_DMA_CFG_SRC_DRQ_TYPE(SUN4I_DDMA_DRQ_TYPE_SDRAM) |
647 SUN4I_DMA_CFG_DST_DRQ_TYPE(SUN4I_DDMA_DRQ_TYPE_SDRAM);
649 promise->cfg |= SUN4I_DMA_CFG_SRC_DRQ_TYPE(SUN4I_NDMA_DRQ_TYPE_SDRAM) |
650 SUN4I_DMA_CFG_DST_DRQ_TYPE(SUN4I_NDMA_DRQ_TYPE_SDRAM);
653 /* Fill the contract with our only promise */
654 list_add_tail(&promise->list, &contract->demands);
656 /* And add it to the vchan */
657 return vchan_tx_prep(&vchan->vc, &contract->vd, flags);
660 static struct dma_async_tx_descriptor *
661 sun4i_dma_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t buf, size_t len,
662 size_t period_len, enum dma_transfer_direction dir,
665 struct sun4i_dma_vchan *vchan = to_sun4i_dma_vchan(chan);
666 struct dma_slave_config *sconfig = &vchan->cfg;
667 struct sun4i_dma_promise *promise;
668 struct sun4i_dma_contract *contract;
669 dma_addr_t src, dest;
671 int nr_periods, offset, plength, i;
672 u8 ram_type, io_mode, linear_mode;
674 if (!is_slave_direction(dir)) {
675 dev_err(chan2dev(chan), "Invalid DMA direction\n");
679 contract = generate_dma_contract();
683 contract->is_cyclic = 1;
685 if (vchan->is_dedicated) {
686 io_mode = SUN4I_DDMA_ADDR_MODE_IO;
687 linear_mode = SUN4I_DDMA_ADDR_MODE_LINEAR;
688 ram_type = SUN4I_DDMA_DRQ_TYPE_SDRAM;
690 io_mode = SUN4I_NDMA_ADDR_MODE_IO;
691 linear_mode = SUN4I_NDMA_ADDR_MODE_LINEAR;
692 ram_type = SUN4I_NDMA_DRQ_TYPE_SDRAM;
695 if (dir == DMA_MEM_TO_DEV) {
697 dest = sconfig->dst_addr;
698 endpoints = SUN4I_DMA_CFG_DST_DRQ_TYPE(vchan->endpoint) |
699 SUN4I_DMA_CFG_DST_ADDR_MODE(io_mode) |
700 SUN4I_DMA_CFG_SRC_DRQ_TYPE(ram_type) |
701 SUN4I_DMA_CFG_SRC_ADDR_MODE(linear_mode);
703 src = sconfig->src_addr;
705 endpoints = SUN4I_DMA_CFG_DST_DRQ_TYPE(ram_type) |
706 SUN4I_DMA_CFG_DST_ADDR_MODE(linear_mode) |
707 SUN4I_DMA_CFG_SRC_DRQ_TYPE(vchan->endpoint) |
708 SUN4I_DMA_CFG_SRC_ADDR_MODE(io_mode);
712 * We will be using half done interrupts to make two periods
713 * out of a promise, so we need to program the DMA engine less
718 * The engine can interrupt on half-transfer, so we can use
719 * this feature to program the engine half as often as if we
720 * didn't use it (keep in mind the hardware doesn't support
723 * Say you have a set of periods (| marks the start/end, I for
724 * interrupt, P for programming the engine to do a new
725 * transfer), the easy but slow way would be to do
727 * |---|---|---|---| (periods / promises)
730 * Using half transfer interrupts you can do
732 * |-------|-------| (promises as configured on hw)
733 * |---|---|---|---| (periods)
736 * Which requires half the engine programming for the same
739 nr_periods = DIV_ROUND_UP(len / period_len, 2);
740 for (i = 0; i < nr_periods; i++) {
741 /* Calculate the offset in the buffer and the length needed */
742 offset = i * period_len * 2;
743 plength = min((len - offset), (period_len * 2));
744 if (dir == DMA_MEM_TO_DEV)
749 /* Make the promise */
750 if (vchan->is_dedicated)
751 promise = generate_ddma_promise(chan, src, dest,
754 promise = generate_ndma_promise(chan, src, dest,
755 plength, sconfig, dir);
758 /* TODO: should we free everything? */
761 promise->cfg |= endpoints;
763 /* Then add it to the contract */
764 list_add_tail(&promise->list, &contract->demands);
767 /* And add it to the vchan */
768 return vchan_tx_prep(&vchan->vc, &contract->vd, flags);
771 static struct dma_async_tx_descriptor *
772 sun4i_dma_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
773 unsigned int sg_len, enum dma_transfer_direction dir,
774 unsigned long flags, void *context)
776 struct sun4i_dma_vchan *vchan = to_sun4i_dma_vchan(chan);
777 struct dma_slave_config *sconfig = &vchan->cfg;
778 struct sun4i_dma_promise *promise;
779 struct sun4i_dma_contract *contract;
780 u8 ram_type, io_mode, linear_mode;
781 struct scatterlist *sg;
782 dma_addr_t srcaddr, dstaddr;
789 if (!is_slave_direction(dir)) {
790 dev_err(chan2dev(chan), "Invalid DMA direction\n");
794 contract = generate_dma_contract();
798 if (vchan->is_dedicated) {
799 io_mode = SUN4I_DDMA_ADDR_MODE_IO;
800 linear_mode = SUN4I_DDMA_ADDR_MODE_LINEAR;
801 ram_type = SUN4I_DDMA_DRQ_TYPE_SDRAM;
803 io_mode = SUN4I_NDMA_ADDR_MODE_IO;
804 linear_mode = SUN4I_NDMA_ADDR_MODE_LINEAR;
805 ram_type = SUN4I_NDMA_DRQ_TYPE_SDRAM;
808 if (dir == DMA_MEM_TO_DEV)
809 endpoints = SUN4I_DMA_CFG_DST_DRQ_TYPE(vchan->endpoint) |
810 SUN4I_DMA_CFG_DST_ADDR_MODE(io_mode) |
811 SUN4I_DMA_CFG_SRC_DRQ_TYPE(ram_type) |
812 SUN4I_DMA_CFG_SRC_ADDR_MODE(linear_mode);
814 endpoints = SUN4I_DMA_CFG_DST_DRQ_TYPE(ram_type) |
815 SUN4I_DMA_CFG_DST_ADDR_MODE(linear_mode) |
816 SUN4I_DMA_CFG_SRC_DRQ_TYPE(vchan->endpoint) |
817 SUN4I_DMA_CFG_SRC_ADDR_MODE(io_mode);
819 for_each_sg(sgl, sg, sg_len, i) {
820 /* Figure out addresses */
821 if (dir == DMA_MEM_TO_DEV) {
822 srcaddr = sg_dma_address(sg);
823 dstaddr = sconfig->dst_addr;
825 srcaddr = sconfig->src_addr;
826 dstaddr = sg_dma_address(sg);
830 * These are the magic DMA engine timings that keep SPI going.
831 * I haven't seen any interface on DMAEngine to configure
832 * timings, and so far they seem to work for everything we
833 * support, so I've kept them here. I don't know if other
834 * devices need different timings because, as usual, we only
835 * have the "para" bitfield meanings, but no comment on what
836 * the values should be when doing a certain operation :|
838 para = SUN4I_DDMA_MAGIC_SPI_PARAMETERS;
840 /* And make a suitable promise */
841 if (vchan->is_dedicated)
842 promise = generate_ddma_promise(chan, srcaddr, dstaddr,
846 promise = generate_ndma_promise(chan, srcaddr, dstaddr,
851 return NULL; /* TODO: should we free everything? */
853 promise->cfg |= endpoints;
854 promise->para = para;
856 /* Then add it to the contract */
857 list_add_tail(&promise->list, &contract->demands);
861 * Once we've got all the promises ready, add the contract
862 * to the pending list on the vchan
864 return vchan_tx_prep(&vchan->vc, &contract->vd, flags);
867 static int sun4i_dma_terminate_all(struct dma_chan *chan)
869 struct sun4i_dma_dev *priv = to_sun4i_dma_dev(chan->device);
870 struct sun4i_dma_vchan *vchan = to_sun4i_dma_vchan(chan);
871 struct sun4i_dma_pchan *pchan = vchan->pchan;
875 spin_lock_irqsave(&vchan->vc.lock, flags);
876 vchan_get_all_descriptors(&vchan->vc, &head);
877 spin_unlock_irqrestore(&vchan->vc.lock, flags);
880 * Clearing the configuration register will halt the pchan. Interrupts
881 * may still trigger, so don't forget to disable them.
884 if (pchan->is_dedicated)
885 writel(0, pchan->base + SUN4I_DDMA_CFG_REG);
887 writel(0, pchan->base + SUN4I_NDMA_CFG_REG);
888 set_pchan_interrupt(priv, pchan, 0, 0);
889 release_pchan(priv, pchan);
892 spin_lock_irqsave(&vchan->vc.lock, flags);
893 /* Clear these so the vchan is usable again */
894 vchan->processing = NULL;
896 spin_unlock_irqrestore(&vchan->vc.lock, flags);
898 vchan_dma_desc_free_list(&vchan->vc, &head);
903 static int sun4i_dma_config(struct dma_chan *chan,
904 struct dma_slave_config *config)
906 struct sun4i_dma_vchan *vchan = to_sun4i_dma_vchan(chan);
908 memcpy(&vchan->cfg, config, sizeof(*config));
913 static struct dma_chan *sun4i_dma_of_xlate(struct of_phandle_args *dma_spec,
914 struct of_dma *ofdma)
916 struct sun4i_dma_dev *priv = ofdma->of_dma_data;
917 struct sun4i_dma_vchan *vchan;
918 struct dma_chan *chan;
919 u8 is_dedicated = dma_spec->args[0];
920 u8 endpoint = dma_spec->args[1];
922 /* Check if type is Normal or Dedicated */
923 if (is_dedicated != 0 && is_dedicated != 1)
926 /* Make sure the endpoint looks sane */
927 if ((is_dedicated && endpoint >= SUN4I_DDMA_DRQ_TYPE_LIMIT) ||
928 (!is_dedicated && endpoint >= SUN4I_NDMA_DRQ_TYPE_LIMIT))
931 chan = dma_get_any_slave_channel(&priv->slave);
935 /* Assign the endpoint to the vchan */
936 vchan = to_sun4i_dma_vchan(chan);
937 vchan->is_dedicated = is_dedicated;
938 vchan->endpoint = endpoint;
943 static enum dma_status sun4i_dma_tx_status(struct dma_chan *chan,
945 struct dma_tx_state *state)
947 struct sun4i_dma_vchan *vchan = to_sun4i_dma_vchan(chan);
948 struct sun4i_dma_pchan *pchan = vchan->pchan;
949 struct sun4i_dma_contract *contract;
950 struct sun4i_dma_promise *promise;
951 struct virt_dma_desc *vd;
956 ret = dma_cookie_status(chan, cookie, state);
957 if (!state || (ret == DMA_COMPLETE))
960 spin_lock_irqsave(&vchan->vc.lock, flags);
961 vd = vchan_find_desc(&vchan->vc, cookie);
964 contract = to_sun4i_dma_contract(vd);
966 list_for_each_entry(promise, &contract->demands, list)
967 bytes += promise->len;
970 * The hardware is configured to return the remaining byte
971 * quantity. If possible, replace the first listed element's
972 * full size with the actual remaining amount
974 promise = list_first_entry_or_null(&contract->demands,
975 struct sun4i_dma_promise, list);
976 if (promise && pchan) {
977 bytes -= promise->len;
978 if (pchan->is_dedicated)
979 bytes += readl(pchan->base + SUN4I_DDMA_BYTE_COUNT_REG);
981 bytes += readl(pchan->base + SUN4I_NDMA_BYTE_COUNT_REG);
986 dma_set_residue(state, bytes);
987 spin_unlock_irqrestore(&vchan->vc.lock, flags);
992 static void sun4i_dma_issue_pending(struct dma_chan *chan)
994 struct sun4i_dma_dev *priv = to_sun4i_dma_dev(chan->device);
995 struct sun4i_dma_vchan *vchan = to_sun4i_dma_vchan(chan);
998 spin_lock_irqsave(&vchan->vc.lock, flags);
1001 * If there are pending transactions for this vchan, push one of
1002 * them into the engine to get the ball rolling.
1004 if (vchan_issue_pending(&vchan->vc))
1005 __execute_vchan_pending(priv, vchan);
1007 spin_unlock_irqrestore(&vchan->vc.lock, flags);
1010 static irqreturn_t sun4i_dma_interrupt(int irq, void *dev_id)
1012 struct sun4i_dma_dev *priv = dev_id;
1013 struct sun4i_dma_pchan *pchans = priv->pchans, *pchan;
1014 struct sun4i_dma_vchan *vchan;
1015 struct sun4i_dma_contract *contract;
1016 struct sun4i_dma_promise *promise;
1017 unsigned long pendirq, irqs, disableirqs;
1018 int bit, i, free_room, allow_mitigation = 1;
1020 pendirq = readl_relaxed(priv->base + SUN4I_DMA_IRQ_PENDING_STATUS_REG);
1027 for_each_set_bit(bit, &pendirq, 32) {
1028 pchan = &pchans[bit >> 1];
1029 vchan = pchan->vchan;
1030 if (!vchan) /* a terminated channel may still interrupt */
1032 contract = vchan->contract;
1035 * Disable the IRQ and free the pchan if it's an end
1036 * interrupt (odd bit)
1039 spin_lock(&vchan->vc.lock);
1042 * Move the promise into the completed list now that
1043 * we're done with it
1045 list_move_tail(&vchan->processing->list,
1046 &contract->completed_demands);
1049 * Cyclic DMA transfers are special:
1050 * - There's always something we can dispatch
1051 * - We need to run the callback
1052 * - Latency is very important, as this is used by audio
1053 * We therefore just cycle through the list and dispatch
1054 * whatever we have here, reusing the pchan. There's
1055 * no need to run the thread after this.
1057 * For non-cyclic transfers we need to look around,
1058 * so we can program some more work, or notify the
1059 * client that their transfers have been completed.
1061 if (contract->is_cyclic) {
1062 promise = get_next_cyclic_promise(contract);
1063 vchan->processing = promise;
1064 configure_pchan(pchan, promise);
1065 vchan_cyclic_callback(&contract->vd);
1067 vchan->processing = NULL;
1068 vchan->pchan = NULL;
1071 disableirqs |= BIT(bit);
1072 release_pchan(priv, pchan);
1075 spin_unlock(&vchan->vc.lock);
1077 /* Half done interrupt */
1078 if (contract->is_cyclic)
1079 vchan_cyclic_callback(&contract->vd);
1081 disableirqs |= BIT(bit);
1085 /* Disable the IRQs for events we handled */
1086 spin_lock(&priv->lock);
1087 irqs = readl_relaxed(priv->base + SUN4I_DMA_IRQ_ENABLE_REG);
1088 writel_relaxed(irqs & ~disableirqs,
1089 priv->base + SUN4I_DMA_IRQ_ENABLE_REG);
1090 spin_unlock(&priv->lock);
1092 /* Writing 1 to the pending field will clear the pending interrupt */
1093 writel_relaxed(pendirq, priv->base + SUN4I_DMA_IRQ_PENDING_STATUS_REG);
1096 * If a pchan was freed, we may be able to schedule something else,
1097 * so have a look around
1100 for (i = 0; i < SUN4I_DMA_NR_MAX_VCHANS; i++) {
1101 vchan = &priv->vchans[i];
1102 spin_lock(&vchan->vc.lock);
1103 __execute_vchan_pending(priv, vchan);
1104 spin_unlock(&vchan->vc.lock);
1109 * Handle newer interrupts if some showed up, but only do it once
1110 * to avoid a too long a loop
1112 if (allow_mitigation) {
1113 pendirq = readl_relaxed(priv->base +
1114 SUN4I_DMA_IRQ_PENDING_STATUS_REG);
1116 allow_mitigation = 0;
1117 goto handle_pending;
1124 static int sun4i_dma_probe(struct platform_device *pdev)
1126 struct sun4i_dma_dev *priv;
1127 struct resource *res;
1130 priv = devm_kzalloc(&pdev->dev, sizeof(*priv), GFP_KERNEL);
1134 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1135 priv->base = devm_ioremap_resource(&pdev->dev, res);
1136 if (IS_ERR(priv->base))
1137 return PTR_ERR(priv->base);
1139 priv->irq = platform_get_irq(pdev, 0);
1143 priv->clk = devm_clk_get(&pdev->dev, NULL);
1144 if (IS_ERR(priv->clk)) {
1145 dev_err(&pdev->dev, "No clock specified\n");
1146 return PTR_ERR(priv->clk);
1149 platform_set_drvdata(pdev, priv);
1150 spin_lock_init(&priv->lock);
1152 dma_cap_zero(priv->slave.cap_mask);
1153 dma_cap_set(DMA_PRIVATE, priv->slave.cap_mask);
1154 dma_cap_set(DMA_MEMCPY, priv->slave.cap_mask);
1155 dma_cap_set(DMA_CYCLIC, priv->slave.cap_mask);
1156 dma_cap_set(DMA_SLAVE, priv->slave.cap_mask);
1158 INIT_LIST_HEAD(&priv->slave.channels);
1159 priv->slave.device_free_chan_resources = sun4i_dma_free_chan_resources;
1160 priv->slave.device_tx_status = sun4i_dma_tx_status;
1161 priv->slave.device_issue_pending = sun4i_dma_issue_pending;
1162 priv->slave.device_prep_slave_sg = sun4i_dma_prep_slave_sg;
1163 priv->slave.device_prep_dma_memcpy = sun4i_dma_prep_dma_memcpy;
1164 priv->slave.device_prep_dma_cyclic = sun4i_dma_prep_dma_cyclic;
1165 priv->slave.device_config = sun4i_dma_config;
1166 priv->slave.device_terminate_all = sun4i_dma_terminate_all;
1167 priv->slave.copy_align = 2;
1168 priv->slave.src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
1169 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
1170 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
1171 priv->slave.dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
1172 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
1173 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
1174 priv->slave.directions = BIT(DMA_DEV_TO_MEM) |
1175 BIT(DMA_MEM_TO_DEV);
1176 priv->slave.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1178 priv->slave.dev = &pdev->dev;
1180 priv->pchans = devm_kcalloc(&pdev->dev, SUN4I_DMA_NR_MAX_CHANNELS,
1181 sizeof(struct sun4i_dma_pchan), GFP_KERNEL);
1182 priv->vchans = devm_kcalloc(&pdev->dev, SUN4I_DMA_NR_MAX_VCHANS,
1183 sizeof(struct sun4i_dma_vchan), GFP_KERNEL);
1184 if (!priv->vchans || !priv->pchans)
1188 * [0..SUN4I_NDMA_NR_MAX_CHANNELS) are normal pchans, and
1189 * [SUN4I_NDMA_NR_MAX_CHANNELS..SUN4I_DMA_NR_MAX_CHANNELS) are
1192 for (i = 0; i < SUN4I_NDMA_NR_MAX_CHANNELS; i++)
1193 priv->pchans[i].base = priv->base +
1194 SUN4I_NDMA_CHANNEL_REG_BASE(i);
1196 for (j = 0; i < SUN4I_DMA_NR_MAX_CHANNELS; i++, j++) {
1197 priv->pchans[i].base = priv->base +
1198 SUN4I_DDMA_CHANNEL_REG_BASE(j);
1199 priv->pchans[i].is_dedicated = 1;
1202 for (i = 0; i < SUN4I_DMA_NR_MAX_VCHANS; i++) {
1203 struct sun4i_dma_vchan *vchan = &priv->vchans[i];
1205 spin_lock_init(&vchan->vc.lock);
1206 vchan->vc.desc_free = sun4i_dma_free_contract;
1207 vchan_init(&vchan->vc, &priv->slave);
1210 ret = clk_prepare_enable(priv->clk);
1212 dev_err(&pdev->dev, "Couldn't enable the clock\n");
1217 * Make sure the IRQs are all disabled and accounted for. The bootloader
1218 * likes to leave these dirty
1220 writel(0, priv->base + SUN4I_DMA_IRQ_ENABLE_REG);
1221 writel(0xFFFFFFFF, priv->base + SUN4I_DMA_IRQ_PENDING_STATUS_REG);
1223 ret = devm_request_irq(&pdev->dev, priv->irq, sun4i_dma_interrupt,
1224 0, dev_name(&pdev->dev), priv);
1226 dev_err(&pdev->dev, "Cannot request IRQ\n");
1227 goto err_clk_disable;
1230 ret = dma_async_device_register(&priv->slave);
1232 dev_warn(&pdev->dev, "Failed to register DMA engine device\n");
1233 goto err_clk_disable;
1236 ret = of_dma_controller_register(pdev->dev.of_node, sun4i_dma_of_xlate,
1239 dev_err(&pdev->dev, "of_dma_controller_register failed\n");
1240 goto err_dma_unregister;
1243 dev_dbg(&pdev->dev, "Successfully probed SUN4I_DMA\n");
1248 dma_async_device_unregister(&priv->slave);
1250 clk_disable_unprepare(priv->clk);
1254 static int sun4i_dma_remove(struct platform_device *pdev)
1256 struct sun4i_dma_dev *priv = platform_get_drvdata(pdev);
1258 /* Disable IRQ so no more work is scheduled */
1259 disable_irq(priv->irq);
1261 of_dma_controller_free(pdev->dev.of_node);
1262 dma_async_device_unregister(&priv->slave);
1264 clk_disable_unprepare(priv->clk);
1269 static const struct of_device_id sun4i_dma_match[] = {
1270 { .compatible = "allwinner,sun4i-a10-dma" },
1273 MODULE_DEVICE_TABLE(of, sun4i_dma_match);
1275 static struct platform_driver sun4i_dma_driver = {
1276 .probe = sun4i_dma_probe,
1277 .remove = sun4i_dma_remove,
1279 .name = "sun4i-dma",
1280 .of_match_table = sun4i_dma_match,
1284 module_platform_driver(sun4i_dma_driver);
1286 MODULE_DESCRIPTION("Allwinner A10 Dedicated DMA Controller Driver");
1287 MODULE_AUTHOR("Emilio López <emilio@elopez.com.ar>");
1288 MODULE_LICENSE("GPL");