Merge tag 'tty-6.1-rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/tty
[platform/kernel/linux-starfive.git] / drivers / dma / stm32-dma.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Driver for STM32 DMA controller
4  *
5  * Inspired by dma-jz4740.c and tegra20-apb-dma.c
6  *
7  * Copyright (C) M'boumba Cedric Madianga 2015
8  * Author: M'boumba Cedric Madianga <cedric.madianga@gmail.com>
9  *         Pierre-Yves Mordret <pierre-yves.mordret@st.com>
10  */
11
12 #include <linux/bitfield.h>
13 #include <linux/clk.h>
14 #include <linux/delay.h>
15 #include <linux/dmaengine.h>
16 #include <linux/dma-mapping.h>
17 #include <linux/err.h>
18 #include <linux/init.h>
19 #include <linux/iopoll.h>
20 #include <linux/jiffies.h>
21 #include <linux/list.h>
22 #include <linux/module.h>
23 #include <linux/of.h>
24 #include <linux/of_device.h>
25 #include <linux/of_dma.h>
26 #include <linux/platform_device.h>
27 #include <linux/pm_runtime.h>
28 #include <linux/reset.h>
29 #include <linux/sched.h>
30 #include <linux/slab.h>
31
32 #include "virt-dma.h"
33
34 #define STM32_DMA_LISR                  0x0000 /* DMA Low Int Status Reg */
35 #define STM32_DMA_HISR                  0x0004 /* DMA High Int Status Reg */
36 #define STM32_DMA_ISR(n)                (((n) & 4) ? STM32_DMA_HISR : STM32_DMA_LISR)
37 #define STM32_DMA_LIFCR                 0x0008 /* DMA Low Int Flag Clear Reg */
38 #define STM32_DMA_HIFCR                 0x000c /* DMA High Int Flag Clear Reg */
39 #define STM32_DMA_IFCR(n)               (((n) & 4) ? STM32_DMA_HIFCR : STM32_DMA_LIFCR)
40 #define STM32_DMA_TCI                   BIT(5) /* Transfer Complete Interrupt */
41 #define STM32_DMA_HTI                   BIT(4) /* Half Transfer Interrupt */
42 #define STM32_DMA_TEI                   BIT(3) /* Transfer Error Interrupt */
43 #define STM32_DMA_DMEI                  BIT(2) /* Direct Mode Error Interrupt */
44 #define STM32_DMA_FEI                   BIT(0) /* FIFO Error Interrupt */
45 #define STM32_DMA_MASKI                 (STM32_DMA_TCI \
46                                          | STM32_DMA_TEI \
47                                          | STM32_DMA_DMEI \
48                                          | STM32_DMA_FEI)
49 /*
50  * If (chan->id % 4) is 2 or 3, left shift the mask by 16 bits;
51  * if (ch % 4) is 1 or 3, additionally left shift the mask by 6 bits.
52  */
53 #define STM32_DMA_FLAGS_SHIFT(n)        ({ typeof(n) (_n) = (n); \
54                                            (((_n) & 2) << 3) | (((_n) & 1) * 6); })
55
56 /* DMA Stream x Configuration Register */
57 #define STM32_DMA_SCR(x)                (0x0010 + 0x18 * (x)) /* x = 0..7 */
58 #define STM32_DMA_SCR_REQ_MASK          GENMASK(27, 25)
59 #define STM32_DMA_SCR_MBURST_MASK       GENMASK(24, 23)
60 #define STM32_DMA_SCR_PBURST_MASK       GENMASK(22, 21)
61 #define STM32_DMA_SCR_PL_MASK           GENMASK(17, 16)
62 #define STM32_DMA_SCR_MSIZE_MASK        GENMASK(14, 13)
63 #define STM32_DMA_SCR_PSIZE_MASK        GENMASK(12, 11)
64 #define STM32_DMA_SCR_DIR_MASK          GENMASK(7, 6)
65 #define STM32_DMA_SCR_TRBUFF            BIT(20) /* Bufferable transfer for USART/UART */
66 #define STM32_DMA_SCR_CT                BIT(19) /* Target in double buffer */
67 #define STM32_DMA_SCR_DBM               BIT(18) /* Double Buffer Mode */
68 #define STM32_DMA_SCR_PINCOS            BIT(15) /* Peripheral inc offset size */
69 #define STM32_DMA_SCR_MINC              BIT(10) /* Memory increment mode */
70 #define STM32_DMA_SCR_PINC              BIT(9) /* Peripheral increment mode */
71 #define STM32_DMA_SCR_CIRC              BIT(8) /* Circular mode */
72 #define STM32_DMA_SCR_PFCTRL            BIT(5) /* Peripheral Flow Controller */
73 #define STM32_DMA_SCR_TCIE              BIT(4) /* Transfer Complete Int Enable
74                                                 */
75 #define STM32_DMA_SCR_TEIE              BIT(2) /* Transfer Error Int Enable */
76 #define STM32_DMA_SCR_DMEIE             BIT(1) /* Direct Mode Err Int Enable */
77 #define STM32_DMA_SCR_EN                BIT(0) /* Stream Enable */
78 #define STM32_DMA_SCR_CFG_MASK          (STM32_DMA_SCR_PINC \
79                                         | STM32_DMA_SCR_MINC \
80                                         | STM32_DMA_SCR_PINCOS \
81                                         | STM32_DMA_SCR_PL_MASK)
82 #define STM32_DMA_SCR_IRQ_MASK          (STM32_DMA_SCR_TCIE \
83                                         | STM32_DMA_SCR_TEIE \
84                                         | STM32_DMA_SCR_DMEIE)
85
86 /* DMA Stream x number of data register */
87 #define STM32_DMA_SNDTR(x)              (0x0014 + 0x18 * (x))
88
89 /* DMA stream peripheral address register */
90 #define STM32_DMA_SPAR(x)               (0x0018 + 0x18 * (x))
91
92 /* DMA stream x memory 0 address register */
93 #define STM32_DMA_SM0AR(x)              (0x001c + 0x18 * (x))
94
95 /* DMA stream x memory 1 address register */
96 #define STM32_DMA_SM1AR(x)              (0x0020 + 0x18 * (x))
97
98 /* DMA stream x FIFO control register */
99 #define STM32_DMA_SFCR(x)               (0x0024 + 0x18 * (x))
100 #define STM32_DMA_SFCR_FTH_MASK         GENMASK(1, 0)
101 #define STM32_DMA_SFCR_FEIE             BIT(7) /* FIFO error interrupt enable */
102 #define STM32_DMA_SFCR_DMDIS            BIT(2) /* Direct mode disable */
103 #define STM32_DMA_SFCR_MASK             (STM32_DMA_SFCR_FEIE \
104                                         | STM32_DMA_SFCR_DMDIS)
105
106 /* DMA direction */
107 #define STM32_DMA_DEV_TO_MEM            0x00
108 #define STM32_DMA_MEM_TO_DEV            0x01
109 #define STM32_DMA_MEM_TO_MEM            0x02
110
111 /* DMA priority level */
112 #define STM32_DMA_PRIORITY_LOW          0x00
113 #define STM32_DMA_PRIORITY_MEDIUM       0x01
114 #define STM32_DMA_PRIORITY_HIGH         0x02
115 #define STM32_DMA_PRIORITY_VERY_HIGH    0x03
116
117 /* DMA FIFO threshold selection */
118 #define STM32_DMA_FIFO_THRESHOLD_1QUARTERFULL           0x00
119 #define STM32_DMA_FIFO_THRESHOLD_HALFFULL               0x01
120 #define STM32_DMA_FIFO_THRESHOLD_3QUARTERSFULL          0x02
121 #define STM32_DMA_FIFO_THRESHOLD_FULL                   0x03
122 #define STM32_DMA_FIFO_THRESHOLD_NONE                   0x04
123
124 #define STM32_DMA_MAX_DATA_ITEMS        0xffff
125 /*
126  * Valid transfer starts from @0 to @0xFFFE leading to unaligned scatter
127  * gather at boundary. Thus it's safer to round down this value on FIFO
128  * size (16 Bytes)
129  */
130 #define STM32_DMA_ALIGNED_MAX_DATA_ITEMS        \
131         ALIGN_DOWN(STM32_DMA_MAX_DATA_ITEMS, 16)
132 #define STM32_DMA_MAX_CHANNELS          0x08
133 #define STM32_DMA_MAX_REQUEST_ID        0x08
134 #define STM32_DMA_MAX_DATA_PARAM        0x03
135 #define STM32_DMA_FIFO_SIZE             16      /* FIFO is 16 bytes */
136 #define STM32_DMA_MIN_BURST             4
137 #define STM32_DMA_MAX_BURST             16
138
139 /* DMA Features */
140 #define STM32_DMA_THRESHOLD_FTR_MASK    GENMASK(1, 0)
141 #define STM32_DMA_DIRECT_MODE_MASK      BIT(2)
142 #define STM32_DMA_ALT_ACK_MODE_MASK     BIT(4)
143 #define STM32_DMA_MDMA_STREAM_ID_MASK   GENMASK(19, 16)
144
145 enum stm32_dma_width {
146         STM32_DMA_BYTE,
147         STM32_DMA_HALF_WORD,
148         STM32_DMA_WORD,
149 };
150
151 enum stm32_dma_burst_size {
152         STM32_DMA_BURST_SINGLE,
153         STM32_DMA_BURST_INCR4,
154         STM32_DMA_BURST_INCR8,
155         STM32_DMA_BURST_INCR16,
156 };
157
158 /**
159  * struct stm32_dma_cfg - STM32 DMA custom configuration
160  * @channel_id: channel ID
161  * @request_line: DMA request
162  * @stream_config: 32bit mask specifying the DMA channel configuration
163  * @features: 32bit mask specifying the DMA Feature list
164  */
165 struct stm32_dma_cfg {
166         u32 channel_id;
167         u32 request_line;
168         u32 stream_config;
169         u32 features;
170 };
171
172 struct stm32_dma_chan_reg {
173         u32 dma_lisr;
174         u32 dma_hisr;
175         u32 dma_lifcr;
176         u32 dma_hifcr;
177         u32 dma_scr;
178         u32 dma_sndtr;
179         u32 dma_spar;
180         u32 dma_sm0ar;
181         u32 dma_sm1ar;
182         u32 dma_sfcr;
183 };
184
185 struct stm32_dma_sg_req {
186         u32 len;
187         struct stm32_dma_chan_reg chan_reg;
188 };
189
190 struct stm32_dma_desc {
191         struct virt_dma_desc vdesc;
192         bool cyclic;
193         u32 num_sgs;
194         struct stm32_dma_sg_req sg_req[];
195 };
196
197 /**
198  * struct stm32_dma_mdma_config - STM32 DMA MDMA configuration
199  * @stream_id: DMA request to trigger STM32 MDMA transfer
200  * @ifcr: DMA interrupt flag clear register address,
201  *        used by STM32 MDMA to clear DMA Transfer Complete flag
202  * @tcf: DMA Transfer Complete flag
203  */
204 struct stm32_dma_mdma_config {
205         u32 stream_id;
206         u32 ifcr;
207         u32 tcf;
208 };
209
210 struct stm32_dma_chan {
211         struct virt_dma_chan vchan;
212         bool config_init;
213         bool busy;
214         u32 id;
215         u32 irq;
216         struct stm32_dma_desc *desc;
217         u32 next_sg;
218         struct dma_slave_config dma_sconfig;
219         struct stm32_dma_chan_reg chan_reg;
220         u32 threshold;
221         u32 mem_burst;
222         u32 mem_width;
223         enum dma_status status;
224         bool trig_mdma;
225         struct stm32_dma_mdma_config mdma_config;
226 };
227
228 struct stm32_dma_device {
229         struct dma_device ddev;
230         void __iomem *base;
231         struct clk *clk;
232         bool mem2mem;
233         struct stm32_dma_chan chan[STM32_DMA_MAX_CHANNELS];
234 };
235
236 static struct stm32_dma_device *stm32_dma_get_dev(struct stm32_dma_chan *chan)
237 {
238         return container_of(chan->vchan.chan.device, struct stm32_dma_device,
239                             ddev);
240 }
241
242 static struct stm32_dma_chan *to_stm32_dma_chan(struct dma_chan *c)
243 {
244         return container_of(c, struct stm32_dma_chan, vchan.chan);
245 }
246
247 static struct stm32_dma_desc *to_stm32_dma_desc(struct virt_dma_desc *vdesc)
248 {
249         return container_of(vdesc, struct stm32_dma_desc, vdesc);
250 }
251
252 static struct device *chan2dev(struct stm32_dma_chan *chan)
253 {
254         return &chan->vchan.chan.dev->device;
255 }
256
257 static u32 stm32_dma_read(struct stm32_dma_device *dmadev, u32 reg)
258 {
259         return readl_relaxed(dmadev->base + reg);
260 }
261
262 static void stm32_dma_write(struct stm32_dma_device *dmadev, u32 reg, u32 val)
263 {
264         writel_relaxed(val, dmadev->base + reg);
265 }
266
267 static int stm32_dma_get_width(struct stm32_dma_chan *chan,
268                                enum dma_slave_buswidth width)
269 {
270         switch (width) {
271         case DMA_SLAVE_BUSWIDTH_1_BYTE:
272                 return STM32_DMA_BYTE;
273         case DMA_SLAVE_BUSWIDTH_2_BYTES:
274                 return STM32_DMA_HALF_WORD;
275         case DMA_SLAVE_BUSWIDTH_4_BYTES:
276                 return STM32_DMA_WORD;
277         default:
278                 dev_err(chan2dev(chan), "Dma bus width not supported\n");
279                 return -EINVAL;
280         }
281 }
282
283 static enum dma_slave_buswidth stm32_dma_get_max_width(u32 buf_len,
284                                                        dma_addr_t buf_addr,
285                                                        u32 threshold)
286 {
287         enum dma_slave_buswidth max_width;
288
289         if (threshold == STM32_DMA_FIFO_THRESHOLD_FULL)
290                 max_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
291         else
292                 max_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
293
294         while ((buf_len < max_width  || buf_len % max_width) &&
295                max_width > DMA_SLAVE_BUSWIDTH_1_BYTE)
296                 max_width = max_width >> 1;
297
298         if (buf_addr & (max_width - 1))
299                 max_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
300
301         return max_width;
302 }
303
304 static bool stm32_dma_fifo_threshold_is_allowed(u32 burst, u32 threshold,
305                                                 enum dma_slave_buswidth width)
306 {
307         u32 remaining;
308
309         if (threshold == STM32_DMA_FIFO_THRESHOLD_NONE)
310                 return false;
311
312         if (width != DMA_SLAVE_BUSWIDTH_UNDEFINED) {
313                 if (burst != 0) {
314                         /*
315                          * If number of beats fit in several whole bursts
316                          * this configuration is allowed.
317                          */
318                         remaining = ((STM32_DMA_FIFO_SIZE / width) *
319                                      (threshold + 1) / 4) % burst;
320
321                         if (remaining == 0)
322                                 return true;
323                 } else {
324                         return true;
325                 }
326         }
327
328         return false;
329 }
330
331 static bool stm32_dma_is_burst_possible(u32 buf_len, u32 threshold)
332 {
333         /* If FIFO direct mode, burst is not possible */
334         if (threshold == STM32_DMA_FIFO_THRESHOLD_NONE)
335                 return false;
336
337         /*
338          * Buffer or period length has to be aligned on FIFO depth.
339          * Otherwise bytes may be stuck within FIFO at buffer or period
340          * length.
341          */
342         return ((buf_len % ((threshold + 1) * 4)) == 0);
343 }
344
345 static u32 stm32_dma_get_best_burst(u32 buf_len, u32 max_burst, u32 threshold,
346                                     enum dma_slave_buswidth width)
347 {
348         u32 best_burst = max_burst;
349
350         if (best_burst == 1 || !stm32_dma_is_burst_possible(buf_len, threshold))
351                 return 0;
352
353         while ((buf_len < best_burst * width && best_burst > 1) ||
354                !stm32_dma_fifo_threshold_is_allowed(best_burst, threshold,
355                                                     width)) {
356                 if (best_burst > STM32_DMA_MIN_BURST)
357                         best_burst = best_burst >> 1;
358                 else
359                         best_burst = 0;
360         }
361
362         return best_burst;
363 }
364
365 static int stm32_dma_get_burst(struct stm32_dma_chan *chan, u32 maxburst)
366 {
367         switch (maxburst) {
368         case 0:
369         case 1:
370                 return STM32_DMA_BURST_SINGLE;
371         case 4:
372                 return STM32_DMA_BURST_INCR4;
373         case 8:
374                 return STM32_DMA_BURST_INCR8;
375         case 16:
376                 return STM32_DMA_BURST_INCR16;
377         default:
378                 dev_err(chan2dev(chan), "Dma burst size not supported\n");
379                 return -EINVAL;
380         }
381 }
382
383 static void stm32_dma_set_fifo_config(struct stm32_dma_chan *chan,
384                                       u32 src_burst, u32 dst_burst)
385 {
386         chan->chan_reg.dma_sfcr &= ~STM32_DMA_SFCR_MASK;
387         chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_DMEIE;
388
389         if (!src_burst && !dst_burst) {
390                 /* Using direct mode */
391                 chan->chan_reg.dma_scr |= STM32_DMA_SCR_DMEIE;
392         } else {
393                 /* Using FIFO mode */
394                 chan->chan_reg.dma_sfcr |= STM32_DMA_SFCR_MASK;
395         }
396 }
397
398 static int stm32_dma_slave_config(struct dma_chan *c,
399                                   struct dma_slave_config *config)
400 {
401         struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
402
403         memcpy(&chan->dma_sconfig, config, sizeof(*config));
404
405         /* Check if user is requesting DMA to trigger STM32 MDMA */
406         if (config->peripheral_size) {
407                 config->peripheral_config = &chan->mdma_config;
408                 config->peripheral_size = sizeof(chan->mdma_config);
409                 chan->trig_mdma = true;
410         }
411
412         chan->config_init = true;
413
414         return 0;
415 }
416
417 static u32 stm32_dma_irq_status(struct stm32_dma_chan *chan)
418 {
419         struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
420         u32 flags, dma_isr;
421
422         /*
423          * Read "flags" from DMA_xISR register corresponding to the selected
424          * DMA channel at the correct bit offset inside that register.
425          */
426
427         dma_isr = stm32_dma_read(dmadev, STM32_DMA_ISR(chan->id));
428         flags = dma_isr >> STM32_DMA_FLAGS_SHIFT(chan->id);
429
430         return flags & STM32_DMA_MASKI;
431 }
432
433 static void stm32_dma_irq_clear(struct stm32_dma_chan *chan, u32 flags)
434 {
435         struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
436         u32 dma_ifcr;
437
438         /*
439          * Write "flags" to the DMA_xIFCR register corresponding to the selected
440          * DMA channel at the correct bit offset inside that register.
441          */
442         flags &= STM32_DMA_MASKI;
443         dma_ifcr = flags << STM32_DMA_FLAGS_SHIFT(chan->id);
444
445         stm32_dma_write(dmadev, STM32_DMA_IFCR(chan->id), dma_ifcr);
446 }
447
448 static int stm32_dma_disable_chan(struct stm32_dma_chan *chan)
449 {
450         struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
451         u32 dma_scr, id, reg;
452
453         id = chan->id;
454         reg = STM32_DMA_SCR(id);
455         dma_scr = stm32_dma_read(dmadev, reg);
456
457         if (dma_scr & STM32_DMA_SCR_EN) {
458                 dma_scr &= ~STM32_DMA_SCR_EN;
459                 stm32_dma_write(dmadev, reg, dma_scr);
460
461                 return readl_relaxed_poll_timeout_atomic(dmadev->base + reg,
462                                         dma_scr, !(dma_scr & STM32_DMA_SCR_EN),
463                                         10, 1000000);
464         }
465
466         return 0;
467 }
468
469 static void stm32_dma_stop(struct stm32_dma_chan *chan)
470 {
471         struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
472         u32 dma_scr, dma_sfcr, status;
473         int ret;
474
475         /* Disable interrupts */
476         dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
477         dma_scr &= ~STM32_DMA_SCR_IRQ_MASK;
478         stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), dma_scr);
479         dma_sfcr = stm32_dma_read(dmadev, STM32_DMA_SFCR(chan->id));
480         dma_sfcr &= ~STM32_DMA_SFCR_FEIE;
481         stm32_dma_write(dmadev, STM32_DMA_SFCR(chan->id), dma_sfcr);
482
483         /* Disable DMA */
484         ret = stm32_dma_disable_chan(chan);
485         if (ret < 0)
486                 return;
487
488         /* Clear interrupt status if it is there */
489         status = stm32_dma_irq_status(chan);
490         if (status) {
491                 dev_dbg(chan2dev(chan), "%s(): clearing interrupt: 0x%08x\n",
492                         __func__, status);
493                 stm32_dma_irq_clear(chan, status);
494         }
495
496         chan->busy = false;
497         chan->status = DMA_COMPLETE;
498 }
499
500 static int stm32_dma_terminate_all(struct dma_chan *c)
501 {
502         struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
503         unsigned long flags;
504         LIST_HEAD(head);
505
506         spin_lock_irqsave(&chan->vchan.lock, flags);
507
508         if (chan->desc) {
509                 dma_cookie_complete(&chan->desc->vdesc.tx);
510                 vchan_terminate_vdesc(&chan->desc->vdesc);
511                 if (chan->busy)
512                         stm32_dma_stop(chan);
513                 chan->desc = NULL;
514         }
515
516         vchan_get_all_descriptors(&chan->vchan, &head);
517         spin_unlock_irqrestore(&chan->vchan.lock, flags);
518         vchan_dma_desc_free_list(&chan->vchan, &head);
519
520         return 0;
521 }
522
523 static void stm32_dma_synchronize(struct dma_chan *c)
524 {
525         struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
526
527         vchan_synchronize(&chan->vchan);
528 }
529
530 static void stm32_dma_dump_reg(struct stm32_dma_chan *chan)
531 {
532         struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
533         u32 scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
534         u32 ndtr = stm32_dma_read(dmadev, STM32_DMA_SNDTR(chan->id));
535         u32 spar = stm32_dma_read(dmadev, STM32_DMA_SPAR(chan->id));
536         u32 sm0ar = stm32_dma_read(dmadev, STM32_DMA_SM0AR(chan->id));
537         u32 sm1ar = stm32_dma_read(dmadev, STM32_DMA_SM1AR(chan->id));
538         u32 sfcr = stm32_dma_read(dmadev, STM32_DMA_SFCR(chan->id));
539
540         dev_dbg(chan2dev(chan), "SCR:   0x%08x\n", scr);
541         dev_dbg(chan2dev(chan), "NDTR:  0x%08x\n", ndtr);
542         dev_dbg(chan2dev(chan), "SPAR:  0x%08x\n", spar);
543         dev_dbg(chan2dev(chan), "SM0AR: 0x%08x\n", sm0ar);
544         dev_dbg(chan2dev(chan), "SM1AR: 0x%08x\n", sm1ar);
545         dev_dbg(chan2dev(chan), "SFCR:  0x%08x\n", sfcr);
546 }
547
548 static void stm32_dma_sg_inc(struct stm32_dma_chan *chan)
549 {
550         chan->next_sg++;
551         if (chan->desc->cyclic && (chan->next_sg == chan->desc->num_sgs))
552                 chan->next_sg = 0;
553 }
554
555 static void stm32_dma_configure_next_sg(struct stm32_dma_chan *chan);
556
557 static void stm32_dma_start_transfer(struct stm32_dma_chan *chan)
558 {
559         struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
560         struct virt_dma_desc *vdesc;
561         struct stm32_dma_sg_req *sg_req;
562         struct stm32_dma_chan_reg *reg;
563         u32 status;
564         int ret;
565
566         ret = stm32_dma_disable_chan(chan);
567         if (ret < 0)
568                 return;
569
570         if (!chan->desc) {
571                 vdesc = vchan_next_desc(&chan->vchan);
572                 if (!vdesc)
573                         return;
574
575                 list_del(&vdesc->node);
576
577                 chan->desc = to_stm32_dma_desc(vdesc);
578                 chan->next_sg = 0;
579         }
580
581         if (chan->next_sg == chan->desc->num_sgs)
582                 chan->next_sg = 0;
583
584         sg_req = &chan->desc->sg_req[chan->next_sg];
585         reg = &sg_req->chan_reg;
586
587         /* When DMA triggers STM32 MDMA, DMA Transfer Complete is managed by STM32 MDMA */
588         if (chan->trig_mdma && chan->dma_sconfig.direction != DMA_MEM_TO_DEV)
589                 reg->dma_scr &= ~STM32_DMA_SCR_TCIE;
590
591         reg->dma_scr &= ~STM32_DMA_SCR_EN;
592         stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), reg->dma_scr);
593         stm32_dma_write(dmadev, STM32_DMA_SPAR(chan->id), reg->dma_spar);
594         stm32_dma_write(dmadev, STM32_DMA_SM0AR(chan->id), reg->dma_sm0ar);
595         stm32_dma_write(dmadev, STM32_DMA_SFCR(chan->id), reg->dma_sfcr);
596         stm32_dma_write(dmadev, STM32_DMA_SM1AR(chan->id), reg->dma_sm1ar);
597         stm32_dma_write(dmadev, STM32_DMA_SNDTR(chan->id), reg->dma_sndtr);
598
599         stm32_dma_sg_inc(chan);
600
601         /* Clear interrupt status if it is there */
602         status = stm32_dma_irq_status(chan);
603         if (status)
604                 stm32_dma_irq_clear(chan, status);
605
606         if (chan->desc->cyclic)
607                 stm32_dma_configure_next_sg(chan);
608
609         stm32_dma_dump_reg(chan);
610
611         /* Start DMA */
612         chan->busy = true;
613         chan->status = DMA_IN_PROGRESS;
614         reg->dma_scr |= STM32_DMA_SCR_EN;
615         stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), reg->dma_scr);
616
617         dev_dbg(chan2dev(chan), "vchan %pK: started\n", &chan->vchan);
618 }
619
620 static void stm32_dma_configure_next_sg(struct stm32_dma_chan *chan)
621 {
622         struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
623         struct stm32_dma_sg_req *sg_req;
624         u32 dma_scr, dma_sm0ar, dma_sm1ar, id;
625
626         id = chan->id;
627         dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
628
629         sg_req = &chan->desc->sg_req[chan->next_sg];
630
631         if (dma_scr & STM32_DMA_SCR_CT) {
632                 dma_sm0ar = sg_req->chan_reg.dma_sm0ar;
633                 stm32_dma_write(dmadev, STM32_DMA_SM0AR(id), dma_sm0ar);
634                 dev_dbg(chan2dev(chan), "CT=1 <=> SM0AR: 0x%08x\n",
635                         stm32_dma_read(dmadev, STM32_DMA_SM0AR(id)));
636         } else {
637                 dma_sm1ar = sg_req->chan_reg.dma_sm1ar;
638                 stm32_dma_write(dmadev, STM32_DMA_SM1AR(id), dma_sm1ar);
639                 dev_dbg(chan2dev(chan), "CT=0 <=> SM1AR: 0x%08x\n",
640                         stm32_dma_read(dmadev, STM32_DMA_SM1AR(id)));
641         }
642 }
643
644 static void stm32_dma_handle_chan_paused(struct stm32_dma_chan *chan)
645 {
646         struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
647         u32 dma_scr;
648
649         /*
650          * Read and store current remaining data items and peripheral/memory addresses to be
651          * updated on resume
652          */
653         dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
654         /*
655          * Transfer can be paused while between a previous resume and reconfiguration on transfer
656          * complete. If transfer is cyclic and CIRC and DBM have been deactivated for resume, need
657          * to set it here in SCR backup to ensure a good reconfiguration on transfer complete.
658          */
659         if (chan->desc && chan->desc->cyclic) {
660                 if (chan->desc->num_sgs == 1)
661                         dma_scr |= STM32_DMA_SCR_CIRC;
662                 else
663                         dma_scr |= STM32_DMA_SCR_DBM;
664         }
665         chan->chan_reg.dma_scr = dma_scr;
666
667         /*
668          * Need to temporarily deactivate CIRC/DBM until next Transfer Complete interrupt, otherwise
669          * on resume NDTR autoreload value will be wrong (lower than the initial period length)
670          */
671         if (chan->desc && chan->desc->cyclic) {
672                 dma_scr &= ~(STM32_DMA_SCR_DBM | STM32_DMA_SCR_CIRC);
673                 stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), dma_scr);
674         }
675
676         chan->chan_reg.dma_sndtr = stm32_dma_read(dmadev, STM32_DMA_SNDTR(chan->id));
677
678         chan->status = DMA_PAUSED;
679
680         dev_dbg(chan2dev(chan), "vchan %pK: paused\n", &chan->vchan);
681 }
682
683 static void stm32_dma_post_resume_reconfigure(struct stm32_dma_chan *chan)
684 {
685         struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
686         struct stm32_dma_sg_req *sg_req;
687         u32 dma_scr, status, id;
688
689         id = chan->id;
690         dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
691
692         /* Clear interrupt status if it is there */
693         status = stm32_dma_irq_status(chan);
694         if (status)
695                 stm32_dma_irq_clear(chan, status);
696
697         if (!chan->next_sg)
698                 sg_req = &chan->desc->sg_req[chan->desc->num_sgs - 1];
699         else
700                 sg_req = &chan->desc->sg_req[chan->next_sg - 1];
701
702         /* Reconfigure NDTR with the initial value */
703         stm32_dma_write(dmadev, STM32_DMA_SNDTR(chan->id), sg_req->chan_reg.dma_sndtr);
704
705         /* Restore SPAR */
706         stm32_dma_write(dmadev, STM32_DMA_SPAR(id), sg_req->chan_reg.dma_spar);
707
708         /* Restore SM0AR/SM1AR whatever DBM/CT as they may have been modified */
709         stm32_dma_write(dmadev, STM32_DMA_SM0AR(id), sg_req->chan_reg.dma_sm0ar);
710         stm32_dma_write(dmadev, STM32_DMA_SM1AR(id), sg_req->chan_reg.dma_sm1ar);
711
712         /* Reactivate CIRC/DBM if needed */
713         if (chan->chan_reg.dma_scr & STM32_DMA_SCR_DBM) {
714                 dma_scr |= STM32_DMA_SCR_DBM;
715                 /* Restore CT */
716                 if (chan->chan_reg.dma_scr & STM32_DMA_SCR_CT)
717                         dma_scr &= ~STM32_DMA_SCR_CT;
718                 else
719                         dma_scr |= STM32_DMA_SCR_CT;
720         } else if (chan->chan_reg.dma_scr & STM32_DMA_SCR_CIRC) {
721                 dma_scr |= STM32_DMA_SCR_CIRC;
722         }
723         stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), dma_scr);
724
725         stm32_dma_configure_next_sg(chan);
726
727         stm32_dma_dump_reg(chan);
728
729         dma_scr |= STM32_DMA_SCR_EN;
730         stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), dma_scr);
731
732         dev_dbg(chan2dev(chan), "vchan %pK: reconfigured after pause/resume\n", &chan->vchan);
733 }
734
735 static void stm32_dma_handle_chan_done(struct stm32_dma_chan *chan, u32 scr)
736 {
737         if (!chan->desc)
738                 return;
739
740         if (chan->desc->cyclic) {
741                 vchan_cyclic_callback(&chan->desc->vdesc);
742                 if (chan->trig_mdma)
743                         return;
744                 stm32_dma_sg_inc(chan);
745                 /* cyclic while CIRC/DBM disable => post resume reconfiguration needed */
746                 if (!(scr & (STM32_DMA_SCR_CIRC | STM32_DMA_SCR_DBM)))
747                         stm32_dma_post_resume_reconfigure(chan);
748                 else if (scr & STM32_DMA_SCR_DBM)
749                         stm32_dma_configure_next_sg(chan);
750         } else {
751                 chan->busy = false;
752                 chan->status = DMA_COMPLETE;
753                 if (chan->next_sg == chan->desc->num_sgs) {
754                         vchan_cookie_complete(&chan->desc->vdesc);
755                         chan->desc = NULL;
756                 }
757                 stm32_dma_start_transfer(chan);
758         }
759 }
760
761 static irqreturn_t stm32_dma_chan_irq(int irq, void *devid)
762 {
763         struct stm32_dma_chan *chan = devid;
764         struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
765         u32 status, scr, sfcr;
766
767         spin_lock(&chan->vchan.lock);
768
769         status = stm32_dma_irq_status(chan);
770         scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
771         sfcr = stm32_dma_read(dmadev, STM32_DMA_SFCR(chan->id));
772
773         if (status & STM32_DMA_FEI) {
774                 stm32_dma_irq_clear(chan, STM32_DMA_FEI);
775                 status &= ~STM32_DMA_FEI;
776                 if (sfcr & STM32_DMA_SFCR_FEIE) {
777                         if (!(scr & STM32_DMA_SCR_EN) &&
778                             !(status & STM32_DMA_TCI))
779                                 dev_err(chan2dev(chan), "FIFO Error\n");
780                         else
781                                 dev_dbg(chan2dev(chan), "FIFO over/underrun\n");
782                 }
783         }
784         if (status & STM32_DMA_DMEI) {
785                 stm32_dma_irq_clear(chan, STM32_DMA_DMEI);
786                 status &= ~STM32_DMA_DMEI;
787                 if (sfcr & STM32_DMA_SCR_DMEIE)
788                         dev_dbg(chan2dev(chan), "Direct mode overrun\n");
789         }
790
791         if (status & STM32_DMA_TCI) {
792                 stm32_dma_irq_clear(chan, STM32_DMA_TCI);
793                 if (scr & STM32_DMA_SCR_TCIE) {
794                         if (chan->status != DMA_PAUSED)
795                                 stm32_dma_handle_chan_done(chan, scr);
796                 }
797                 status &= ~STM32_DMA_TCI;
798         }
799
800         if (status & STM32_DMA_HTI) {
801                 stm32_dma_irq_clear(chan, STM32_DMA_HTI);
802                 status &= ~STM32_DMA_HTI;
803         }
804
805         if (status) {
806                 stm32_dma_irq_clear(chan, status);
807                 dev_err(chan2dev(chan), "DMA error: status=0x%08x\n", status);
808                 if (!(scr & STM32_DMA_SCR_EN))
809                         dev_err(chan2dev(chan), "chan disabled by HW\n");
810         }
811
812         spin_unlock(&chan->vchan.lock);
813
814         return IRQ_HANDLED;
815 }
816
817 static void stm32_dma_issue_pending(struct dma_chan *c)
818 {
819         struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
820         unsigned long flags;
821
822         spin_lock_irqsave(&chan->vchan.lock, flags);
823         if (vchan_issue_pending(&chan->vchan) && !chan->desc && !chan->busy) {
824                 dev_dbg(chan2dev(chan), "vchan %pK: issued\n", &chan->vchan);
825                 stm32_dma_start_transfer(chan);
826
827         }
828         spin_unlock_irqrestore(&chan->vchan.lock, flags);
829 }
830
831 static int stm32_dma_pause(struct dma_chan *c)
832 {
833         struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
834         unsigned long flags;
835         int ret;
836
837         if (chan->status != DMA_IN_PROGRESS)
838                 return -EPERM;
839
840         spin_lock_irqsave(&chan->vchan.lock, flags);
841
842         ret = stm32_dma_disable_chan(chan);
843         if (!ret)
844                 stm32_dma_handle_chan_paused(chan);
845
846         spin_unlock_irqrestore(&chan->vchan.lock, flags);
847
848         return ret;
849 }
850
851 static int stm32_dma_resume(struct dma_chan *c)
852 {
853         struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
854         struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
855         struct stm32_dma_chan_reg chan_reg = chan->chan_reg;
856         u32 id = chan->id, scr, ndtr, offset, spar, sm0ar, sm1ar;
857         struct stm32_dma_sg_req *sg_req;
858         unsigned long flags;
859
860         if (chan->status != DMA_PAUSED)
861                 return -EPERM;
862
863         scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
864         if (WARN_ON(scr & STM32_DMA_SCR_EN))
865                 return -EPERM;
866
867         spin_lock_irqsave(&chan->vchan.lock, flags);
868
869         /* sg_reg[prev_sg] contains original ndtr, sm0ar and sm1ar before pausing the transfer */
870         if (!chan->next_sg)
871                 sg_req = &chan->desc->sg_req[chan->desc->num_sgs - 1];
872         else
873                 sg_req = &chan->desc->sg_req[chan->next_sg - 1];
874
875         ndtr = sg_req->chan_reg.dma_sndtr;
876         offset = (ndtr - chan_reg.dma_sndtr);
877         offset <<= FIELD_GET(STM32_DMA_SCR_PSIZE_MASK, chan_reg.dma_scr);
878         spar = sg_req->chan_reg.dma_spar;
879         sm0ar = sg_req->chan_reg.dma_sm0ar;
880         sm1ar = sg_req->chan_reg.dma_sm1ar;
881
882         /*
883          * The peripheral and/or memory addresses have to be updated in order to adjust the
884          * address pointers. Need to check increment.
885          */
886         if (chan_reg.dma_scr & STM32_DMA_SCR_PINC)
887                 stm32_dma_write(dmadev, STM32_DMA_SPAR(id), spar + offset);
888         else
889                 stm32_dma_write(dmadev, STM32_DMA_SPAR(id), spar);
890
891         if (!(chan_reg.dma_scr & STM32_DMA_SCR_MINC))
892                 offset = 0;
893
894         /*
895          * In case of DBM, the current target could be SM1AR.
896          * Need to temporarily deactivate CIRC/DBM to finish the current transfer, so
897          * SM0AR becomes the current target and must be updated with SM1AR + offset if CT=1.
898          */
899         if ((chan_reg.dma_scr & STM32_DMA_SCR_DBM) && (chan_reg.dma_scr & STM32_DMA_SCR_CT))
900                 stm32_dma_write(dmadev, STM32_DMA_SM1AR(id), sm1ar + offset);
901         else
902                 stm32_dma_write(dmadev, STM32_DMA_SM0AR(id), sm0ar + offset);
903
904         /* NDTR must be restored otherwise internal HW counter won't be correctly reset */
905         stm32_dma_write(dmadev, STM32_DMA_SNDTR(id), chan_reg.dma_sndtr);
906
907         /*
908          * Need to temporarily deactivate CIRC/DBM until next Transfer Complete interrupt,
909          * otherwise NDTR autoreload value will be wrong (lower than the initial period length)
910          */
911         if (chan_reg.dma_scr & (STM32_DMA_SCR_CIRC | STM32_DMA_SCR_DBM))
912                 chan_reg.dma_scr &= ~(STM32_DMA_SCR_CIRC | STM32_DMA_SCR_DBM);
913
914         if (chan_reg.dma_scr & STM32_DMA_SCR_DBM)
915                 stm32_dma_configure_next_sg(chan);
916
917         stm32_dma_dump_reg(chan);
918
919         /* The stream may then be re-enabled to restart transfer from the point it was stopped */
920         chan->status = DMA_IN_PROGRESS;
921         chan_reg.dma_scr |= STM32_DMA_SCR_EN;
922         stm32_dma_write(dmadev, STM32_DMA_SCR(id), chan_reg.dma_scr);
923
924         spin_unlock_irqrestore(&chan->vchan.lock, flags);
925
926         dev_dbg(chan2dev(chan), "vchan %pK: resumed\n", &chan->vchan);
927
928         return 0;
929 }
930
931 static int stm32_dma_set_xfer_param(struct stm32_dma_chan *chan,
932                                     enum dma_transfer_direction direction,
933                                     enum dma_slave_buswidth *buswidth,
934                                     u32 buf_len, dma_addr_t buf_addr)
935 {
936         enum dma_slave_buswidth src_addr_width, dst_addr_width;
937         int src_bus_width, dst_bus_width;
938         int src_burst_size, dst_burst_size;
939         u32 src_maxburst, dst_maxburst, src_best_burst, dst_best_burst;
940         u32 dma_scr, fifoth;
941
942         src_addr_width = chan->dma_sconfig.src_addr_width;
943         dst_addr_width = chan->dma_sconfig.dst_addr_width;
944         src_maxburst = chan->dma_sconfig.src_maxburst;
945         dst_maxburst = chan->dma_sconfig.dst_maxburst;
946         fifoth = chan->threshold;
947
948         switch (direction) {
949         case DMA_MEM_TO_DEV:
950                 /* Set device data size */
951                 dst_bus_width = stm32_dma_get_width(chan, dst_addr_width);
952                 if (dst_bus_width < 0)
953                         return dst_bus_width;
954
955                 /* Set device burst size */
956                 dst_best_burst = stm32_dma_get_best_burst(buf_len,
957                                                           dst_maxburst,
958                                                           fifoth,
959                                                           dst_addr_width);
960
961                 dst_burst_size = stm32_dma_get_burst(chan, dst_best_burst);
962                 if (dst_burst_size < 0)
963                         return dst_burst_size;
964
965                 /* Set memory data size */
966                 src_addr_width = stm32_dma_get_max_width(buf_len, buf_addr,
967                                                          fifoth);
968                 chan->mem_width = src_addr_width;
969                 src_bus_width = stm32_dma_get_width(chan, src_addr_width);
970                 if (src_bus_width < 0)
971                         return src_bus_width;
972
973                 /*
974                  * Set memory burst size - burst not possible if address is not aligned on
975                  * the address boundary equal to the size of the transfer
976                  */
977                 if (buf_addr & (buf_len - 1))
978                         src_maxburst = 1;
979                 else
980                         src_maxburst = STM32_DMA_MAX_BURST;
981                 src_best_burst = stm32_dma_get_best_burst(buf_len,
982                                                           src_maxburst,
983                                                           fifoth,
984                                                           src_addr_width);
985                 src_burst_size = stm32_dma_get_burst(chan, src_best_burst);
986                 if (src_burst_size < 0)
987                         return src_burst_size;
988
989                 dma_scr = FIELD_PREP(STM32_DMA_SCR_DIR_MASK, STM32_DMA_MEM_TO_DEV) |
990                         FIELD_PREP(STM32_DMA_SCR_PSIZE_MASK, dst_bus_width) |
991                         FIELD_PREP(STM32_DMA_SCR_MSIZE_MASK, src_bus_width) |
992                         FIELD_PREP(STM32_DMA_SCR_PBURST_MASK, dst_burst_size) |
993                         FIELD_PREP(STM32_DMA_SCR_MBURST_MASK, src_burst_size);
994
995                 /* Set FIFO threshold */
996                 chan->chan_reg.dma_sfcr &= ~STM32_DMA_SFCR_FTH_MASK;
997                 if (fifoth != STM32_DMA_FIFO_THRESHOLD_NONE)
998                         chan->chan_reg.dma_sfcr |= FIELD_PREP(STM32_DMA_SFCR_FTH_MASK, fifoth);
999
1000                 /* Set peripheral address */
1001                 chan->chan_reg.dma_spar = chan->dma_sconfig.dst_addr;
1002                 *buswidth = dst_addr_width;
1003                 break;
1004
1005         case DMA_DEV_TO_MEM:
1006                 /* Set device data size */
1007                 src_bus_width = stm32_dma_get_width(chan, src_addr_width);
1008                 if (src_bus_width < 0)
1009                         return src_bus_width;
1010
1011                 /* Set device burst size */
1012                 src_best_burst = stm32_dma_get_best_burst(buf_len,
1013                                                           src_maxburst,
1014                                                           fifoth,
1015                                                           src_addr_width);
1016                 chan->mem_burst = src_best_burst;
1017                 src_burst_size = stm32_dma_get_burst(chan, src_best_burst);
1018                 if (src_burst_size < 0)
1019                         return src_burst_size;
1020
1021                 /* Set memory data size */
1022                 dst_addr_width = stm32_dma_get_max_width(buf_len, buf_addr,
1023                                                          fifoth);
1024                 chan->mem_width = dst_addr_width;
1025                 dst_bus_width = stm32_dma_get_width(chan, dst_addr_width);
1026                 if (dst_bus_width < 0)
1027                         return dst_bus_width;
1028
1029                 /*
1030                  * Set memory burst size - burst not possible if address is not aligned on
1031                  * the address boundary equal to the size of the transfer
1032                  */
1033                 if (buf_addr & (buf_len - 1))
1034                         dst_maxburst = 1;
1035                 else
1036                         dst_maxburst = STM32_DMA_MAX_BURST;
1037                 dst_best_burst = stm32_dma_get_best_burst(buf_len,
1038                                                           dst_maxburst,
1039                                                           fifoth,
1040                                                           dst_addr_width);
1041                 chan->mem_burst = dst_best_burst;
1042                 dst_burst_size = stm32_dma_get_burst(chan, dst_best_burst);
1043                 if (dst_burst_size < 0)
1044                         return dst_burst_size;
1045
1046                 dma_scr = FIELD_PREP(STM32_DMA_SCR_DIR_MASK, STM32_DMA_DEV_TO_MEM) |
1047                         FIELD_PREP(STM32_DMA_SCR_PSIZE_MASK, src_bus_width) |
1048                         FIELD_PREP(STM32_DMA_SCR_MSIZE_MASK, dst_bus_width) |
1049                         FIELD_PREP(STM32_DMA_SCR_PBURST_MASK, src_burst_size) |
1050                         FIELD_PREP(STM32_DMA_SCR_MBURST_MASK, dst_burst_size);
1051
1052                 /* Set FIFO threshold */
1053                 chan->chan_reg.dma_sfcr &= ~STM32_DMA_SFCR_FTH_MASK;
1054                 if (fifoth != STM32_DMA_FIFO_THRESHOLD_NONE)
1055                         chan->chan_reg.dma_sfcr |= FIELD_PREP(STM32_DMA_SFCR_FTH_MASK, fifoth);
1056
1057                 /* Set peripheral address */
1058                 chan->chan_reg.dma_spar = chan->dma_sconfig.src_addr;
1059                 *buswidth = chan->dma_sconfig.src_addr_width;
1060                 break;
1061
1062         default:
1063                 dev_err(chan2dev(chan), "Dma direction is not supported\n");
1064                 return -EINVAL;
1065         }
1066
1067         stm32_dma_set_fifo_config(chan, src_best_burst, dst_best_burst);
1068
1069         /* Set DMA control register */
1070         chan->chan_reg.dma_scr &= ~(STM32_DMA_SCR_DIR_MASK |
1071                         STM32_DMA_SCR_PSIZE_MASK | STM32_DMA_SCR_MSIZE_MASK |
1072                         STM32_DMA_SCR_PBURST_MASK | STM32_DMA_SCR_MBURST_MASK);
1073         chan->chan_reg.dma_scr |= dma_scr;
1074
1075         return 0;
1076 }
1077
1078 static void stm32_dma_clear_reg(struct stm32_dma_chan_reg *regs)
1079 {
1080         memset(regs, 0, sizeof(struct stm32_dma_chan_reg));
1081 }
1082
1083 static struct dma_async_tx_descriptor *stm32_dma_prep_slave_sg(
1084         struct dma_chan *c, struct scatterlist *sgl,
1085         u32 sg_len, enum dma_transfer_direction direction,
1086         unsigned long flags, void *context)
1087 {
1088         struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
1089         struct stm32_dma_desc *desc;
1090         struct scatterlist *sg;
1091         enum dma_slave_buswidth buswidth;
1092         u32 nb_data_items;
1093         int i, ret;
1094
1095         if (!chan->config_init) {
1096                 dev_err(chan2dev(chan), "dma channel is not configured\n");
1097                 return NULL;
1098         }
1099
1100         if (sg_len < 1) {
1101                 dev_err(chan2dev(chan), "Invalid segment length %d\n", sg_len);
1102                 return NULL;
1103         }
1104
1105         desc = kzalloc(struct_size(desc, sg_req, sg_len), GFP_NOWAIT);
1106         if (!desc)
1107                 return NULL;
1108
1109         /* Set peripheral flow controller */
1110         if (chan->dma_sconfig.device_fc)
1111                 chan->chan_reg.dma_scr |= STM32_DMA_SCR_PFCTRL;
1112         else
1113                 chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_PFCTRL;
1114
1115         /* Activate Double Buffer Mode if DMA triggers STM32 MDMA and more than 1 sg */
1116         if (chan->trig_mdma && sg_len > 1)
1117                 chan->chan_reg.dma_scr |= STM32_DMA_SCR_DBM;
1118
1119         for_each_sg(sgl, sg, sg_len, i) {
1120                 ret = stm32_dma_set_xfer_param(chan, direction, &buswidth,
1121                                                sg_dma_len(sg),
1122                                                sg_dma_address(sg));
1123                 if (ret < 0)
1124                         goto err;
1125
1126                 desc->sg_req[i].len = sg_dma_len(sg);
1127
1128                 nb_data_items = desc->sg_req[i].len / buswidth;
1129                 if (nb_data_items > STM32_DMA_ALIGNED_MAX_DATA_ITEMS) {
1130                         dev_err(chan2dev(chan), "nb items not supported\n");
1131                         goto err;
1132                 }
1133
1134                 stm32_dma_clear_reg(&desc->sg_req[i].chan_reg);
1135                 desc->sg_req[i].chan_reg.dma_scr = chan->chan_reg.dma_scr;
1136                 desc->sg_req[i].chan_reg.dma_sfcr = chan->chan_reg.dma_sfcr;
1137                 desc->sg_req[i].chan_reg.dma_spar = chan->chan_reg.dma_spar;
1138                 desc->sg_req[i].chan_reg.dma_sm0ar = sg_dma_address(sg);
1139                 desc->sg_req[i].chan_reg.dma_sm1ar = sg_dma_address(sg);
1140                 if (chan->trig_mdma)
1141                         desc->sg_req[i].chan_reg.dma_sm1ar += sg_dma_len(sg);
1142                 desc->sg_req[i].chan_reg.dma_sndtr = nb_data_items;
1143         }
1144
1145         desc->num_sgs = sg_len;
1146         desc->cyclic = false;
1147
1148         return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
1149
1150 err:
1151         kfree(desc);
1152         return NULL;
1153 }
1154
1155 static struct dma_async_tx_descriptor *stm32_dma_prep_dma_cyclic(
1156         struct dma_chan *c, dma_addr_t buf_addr, size_t buf_len,
1157         size_t period_len, enum dma_transfer_direction direction,
1158         unsigned long flags)
1159 {
1160         struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
1161         struct stm32_dma_desc *desc;
1162         enum dma_slave_buswidth buswidth;
1163         u32 num_periods, nb_data_items;
1164         int i, ret;
1165
1166         if (!buf_len || !period_len) {
1167                 dev_err(chan2dev(chan), "Invalid buffer/period len\n");
1168                 return NULL;
1169         }
1170
1171         if (!chan->config_init) {
1172                 dev_err(chan2dev(chan), "dma channel is not configured\n");
1173                 return NULL;
1174         }
1175
1176         if (buf_len % period_len) {
1177                 dev_err(chan2dev(chan), "buf_len not multiple of period_len\n");
1178                 return NULL;
1179         }
1180
1181         /*
1182          * We allow to take more number of requests till DMA is
1183          * not started. The driver will loop over all requests.
1184          * Once DMA is started then new requests can be queued only after
1185          * terminating the DMA.
1186          */
1187         if (chan->busy) {
1188                 dev_err(chan2dev(chan), "Request not allowed when dma busy\n");
1189                 return NULL;
1190         }
1191
1192         ret = stm32_dma_set_xfer_param(chan, direction, &buswidth, period_len,
1193                                        buf_addr);
1194         if (ret < 0)
1195                 return NULL;
1196
1197         nb_data_items = period_len / buswidth;
1198         if (nb_data_items > STM32_DMA_ALIGNED_MAX_DATA_ITEMS) {
1199                 dev_err(chan2dev(chan), "number of items not supported\n");
1200                 return NULL;
1201         }
1202
1203         /*  Enable Circular mode or double buffer mode */
1204         if (buf_len == period_len) {
1205                 chan->chan_reg.dma_scr |= STM32_DMA_SCR_CIRC;
1206         } else {
1207                 chan->chan_reg.dma_scr |= STM32_DMA_SCR_DBM;
1208                 chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_CT;
1209         }
1210
1211         /* Clear periph ctrl if client set it */
1212         chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_PFCTRL;
1213
1214         num_periods = buf_len / period_len;
1215
1216         desc = kzalloc(struct_size(desc, sg_req, num_periods), GFP_NOWAIT);
1217         if (!desc)
1218                 return NULL;
1219
1220         for (i = 0; i < num_periods; i++) {
1221                 desc->sg_req[i].len = period_len;
1222
1223                 stm32_dma_clear_reg(&desc->sg_req[i].chan_reg);
1224                 desc->sg_req[i].chan_reg.dma_scr = chan->chan_reg.dma_scr;
1225                 desc->sg_req[i].chan_reg.dma_sfcr = chan->chan_reg.dma_sfcr;
1226                 desc->sg_req[i].chan_reg.dma_spar = chan->chan_reg.dma_spar;
1227                 desc->sg_req[i].chan_reg.dma_sm0ar = buf_addr;
1228                 desc->sg_req[i].chan_reg.dma_sm1ar = buf_addr;
1229                 if (chan->trig_mdma)
1230                         desc->sg_req[i].chan_reg.dma_sm1ar += period_len;
1231                 desc->sg_req[i].chan_reg.dma_sndtr = nb_data_items;
1232                 if (!chan->trig_mdma)
1233                         buf_addr += period_len;
1234         }
1235
1236         desc->num_sgs = num_periods;
1237         desc->cyclic = true;
1238
1239         return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
1240 }
1241
1242 static struct dma_async_tx_descriptor *stm32_dma_prep_dma_memcpy(
1243         struct dma_chan *c, dma_addr_t dest,
1244         dma_addr_t src, size_t len, unsigned long flags)
1245 {
1246         struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
1247         enum dma_slave_buswidth max_width;
1248         struct stm32_dma_desc *desc;
1249         size_t xfer_count, offset;
1250         u32 num_sgs, best_burst, dma_burst, threshold;
1251         int i;
1252
1253         num_sgs = DIV_ROUND_UP(len, STM32_DMA_ALIGNED_MAX_DATA_ITEMS);
1254         desc = kzalloc(struct_size(desc, sg_req, num_sgs), GFP_NOWAIT);
1255         if (!desc)
1256                 return NULL;
1257
1258         threshold = chan->threshold;
1259
1260         for (offset = 0, i = 0; offset < len; offset += xfer_count, i++) {
1261                 xfer_count = min_t(size_t, len - offset,
1262                                    STM32_DMA_ALIGNED_MAX_DATA_ITEMS);
1263
1264                 /* Compute best burst size */
1265                 max_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1266                 best_burst = stm32_dma_get_best_burst(len, STM32_DMA_MAX_BURST,
1267                                                       threshold, max_width);
1268                 dma_burst = stm32_dma_get_burst(chan, best_burst);
1269
1270                 stm32_dma_clear_reg(&desc->sg_req[i].chan_reg);
1271                 desc->sg_req[i].chan_reg.dma_scr =
1272                         FIELD_PREP(STM32_DMA_SCR_DIR_MASK, STM32_DMA_MEM_TO_MEM) |
1273                         FIELD_PREP(STM32_DMA_SCR_PBURST_MASK, dma_burst) |
1274                         FIELD_PREP(STM32_DMA_SCR_MBURST_MASK, dma_burst) |
1275                         STM32_DMA_SCR_MINC |
1276                         STM32_DMA_SCR_PINC |
1277                         STM32_DMA_SCR_TCIE |
1278                         STM32_DMA_SCR_TEIE;
1279                 desc->sg_req[i].chan_reg.dma_sfcr |= STM32_DMA_SFCR_MASK;
1280                 desc->sg_req[i].chan_reg.dma_sfcr |= FIELD_PREP(STM32_DMA_SFCR_FTH_MASK, threshold);
1281                 desc->sg_req[i].chan_reg.dma_spar = src + offset;
1282                 desc->sg_req[i].chan_reg.dma_sm0ar = dest + offset;
1283                 desc->sg_req[i].chan_reg.dma_sndtr = xfer_count;
1284                 desc->sg_req[i].len = xfer_count;
1285         }
1286
1287         desc->num_sgs = num_sgs;
1288         desc->cyclic = false;
1289
1290         return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
1291 }
1292
1293 static u32 stm32_dma_get_remaining_bytes(struct stm32_dma_chan *chan)
1294 {
1295         u32 dma_scr, width, ndtr;
1296         struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
1297
1298         dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
1299         width = FIELD_GET(STM32_DMA_SCR_PSIZE_MASK, dma_scr);
1300         ndtr = stm32_dma_read(dmadev, STM32_DMA_SNDTR(chan->id));
1301
1302         return ndtr << width;
1303 }
1304
1305 /**
1306  * stm32_dma_is_current_sg - check that expected sg_req is currently transferred
1307  * @chan: dma channel
1308  *
1309  * This function called when IRQ are disable, checks that the hardware has not
1310  * switched on the next transfer in double buffer mode. The test is done by
1311  * comparing the next_sg memory address with the hardware related register
1312  * (based on CT bit value).
1313  *
1314  * Returns true if expected current transfer is still running or double
1315  * buffer mode is not activated.
1316  */
1317 static bool stm32_dma_is_current_sg(struct stm32_dma_chan *chan)
1318 {
1319         struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
1320         struct stm32_dma_sg_req *sg_req;
1321         u32 dma_scr, dma_smar, id, period_len;
1322
1323         id = chan->id;
1324         dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
1325
1326         /* In cyclic CIRC but not DBM, CT is not used */
1327         if (!(dma_scr & STM32_DMA_SCR_DBM))
1328                 return true;
1329
1330         sg_req = &chan->desc->sg_req[chan->next_sg];
1331         period_len = sg_req->len;
1332
1333         /* DBM - take care of a previous pause/resume not yet post reconfigured */
1334         if (dma_scr & STM32_DMA_SCR_CT) {
1335                 dma_smar = stm32_dma_read(dmadev, STM32_DMA_SM0AR(id));
1336                 /*
1337                  * If transfer has been pause/resumed,
1338                  * SM0AR is in the range of [SM0AR:SM0AR+period_len]
1339                  */
1340                 return (dma_smar >= sg_req->chan_reg.dma_sm0ar &&
1341                         dma_smar < sg_req->chan_reg.dma_sm0ar + period_len);
1342         }
1343
1344         dma_smar = stm32_dma_read(dmadev, STM32_DMA_SM1AR(id));
1345         /*
1346          * If transfer has been pause/resumed,
1347          * SM1AR is in the range of [SM1AR:SM1AR+period_len]
1348          */
1349         return (dma_smar >= sg_req->chan_reg.dma_sm1ar &&
1350                 dma_smar < sg_req->chan_reg.dma_sm1ar + period_len);
1351 }
1352
1353 static size_t stm32_dma_desc_residue(struct stm32_dma_chan *chan,
1354                                      struct stm32_dma_desc *desc,
1355                                      u32 next_sg)
1356 {
1357         u32 modulo, burst_size;
1358         u32 residue;
1359         u32 n_sg = next_sg;
1360         struct stm32_dma_sg_req *sg_req = &chan->desc->sg_req[chan->next_sg];
1361         int i;
1362
1363         /*
1364          * Calculate the residue means compute the descriptors
1365          * information:
1366          * - the sg_req currently transferred
1367          * - the Hardware remaining position in this sg (NDTR bits field).
1368          *
1369          * A race condition may occur if DMA is running in cyclic or double
1370          * buffer mode, since the DMA register are automatically reloaded at end
1371          * of period transfer. The hardware may have switched to the next
1372          * transfer (CT bit updated) just before the position (SxNDTR reg) is
1373          * read.
1374          * In this case the SxNDTR reg could (or not) correspond to the new
1375          * transfer position, and not the expected one.
1376          * The strategy implemented in the stm32 driver is to:
1377          *  - read the SxNDTR register
1378          *  - crosscheck that hardware is still in current transfer.
1379          * In case of switch, we can assume that the DMA is at the beginning of
1380          * the next transfer. So we approximate the residue in consequence, by
1381          * pointing on the beginning of next transfer.
1382          *
1383          * This race condition doesn't apply for none cyclic mode, as double
1384          * buffer is not used. In such situation registers are updated by the
1385          * software.
1386          */
1387
1388         residue = stm32_dma_get_remaining_bytes(chan);
1389
1390         if (chan->desc->cyclic && !stm32_dma_is_current_sg(chan)) {
1391                 n_sg++;
1392                 if (n_sg == chan->desc->num_sgs)
1393                         n_sg = 0;
1394                 residue = sg_req->len;
1395         }
1396
1397         /*
1398          * In cyclic mode, for the last period, residue = remaining bytes
1399          * from NDTR,
1400          * else for all other periods in cyclic mode, and in sg mode,
1401          * residue = remaining bytes from NDTR + remaining
1402          * periods/sg to be transferred
1403          */
1404         if (!chan->desc->cyclic || n_sg != 0)
1405                 for (i = n_sg; i < desc->num_sgs; i++)
1406                         residue += desc->sg_req[i].len;
1407
1408         if (!chan->mem_burst)
1409                 return residue;
1410
1411         burst_size = chan->mem_burst * chan->mem_width;
1412         modulo = residue % burst_size;
1413         if (modulo)
1414                 residue = residue - modulo + burst_size;
1415
1416         return residue;
1417 }
1418
1419 static enum dma_status stm32_dma_tx_status(struct dma_chan *c,
1420                                            dma_cookie_t cookie,
1421                                            struct dma_tx_state *state)
1422 {
1423         struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
1424         struct virt_dma_desc *vdesc;
1425         enum dma_status status;
1426         unsigned long flags;
1427         u32 residue = 0;
1428
1429         status = dma_cookie_status(c, cookie, state);
1430         if (status == DMA_COMPLETE)
1431                 return status;
1432
1433         status = chan->status;
1434
1435         if (!state)
1436                 return status;
1437
1438         spin_lock_irqsave(&chan->vchan.lock, flags);
1439         vdesc = vchan_find_desc(&chan->vchan, cookie);
1440         if (chan->desc && cookie == chan->desc->vdesc.tx.cookie)
1441                 residue = stm32_dma_desc_residue(chan, chan->desc,
1442                                                  chan->next_sg);
1443         else if (vdesc)
1444                 residue = stm32_dma_desc_residue(chan,
1445                                                  to_stm32_dma_desc(vdesc), 0);
1446         dma_set_residue(state, residue);
1447
1448         spin_unlock_irqrestore(&chan->vchan.lock, flags);
1449
1450         return status;
1451 }
1452
1453 static int stm32_dma_alloc_chan_resources(struct dma_chan *c)
1454 {
1455         struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
1456         struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
1457         int ret;
1458
1459         chan->config_init = false;
1460
1461         ret = pm_runtime_resume_and_get(dmadev->ddev.dev);
1462         if (ret < 0)
1463                 return ret;
1464
1465         ret = stm32_dma_disable_chan(chan);
1466         if (ret < 0)
1467                 pm_runtime_put(dmadev->ddev.dev);
1468
1469         return ret;
1470 }
1471
1472 static void stm32_dma_free_chan_resources(struct dma_chan *c)
1473 {
1474         struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
1475         struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
1476         unsigned long flags;
1477
1478         dev_dbg(chan2dev(chan), "Freeing channel %d\n", chan->id);
1479
1480         if (chan->busy) {
1481                 spin_lock_irqsave(&chan->vchan.lock, flags);
1482                 stm32_dma_stop(chan);
1483                 chan->desc = NULL;
1484                 spin_unlock_irqrestore(&chan->vchan.lock, flags);
1485         }
1486
1487         pm_runtime_put(dmadev->ddev.dev);
1488
1489         vchan_free_chan_resources(to_virt_chan(c));
1490         stm32_dma_clear_reg(&chan->chan_reg);
1491         chan->threshold = 0;
1492 }
1493
1494 static void stm32_dma_desc_free(struct virt_dma_desc *vdesc)
1495 {
1496         kfree(container_of(vdesc, struct stm32_dma_desc, vdesc));
1497 }
1498
1499 static void stm32_dma_set_config(struct stm32_dma_chan *chan,
1500                                  struct stm32_dma_cfg *cfg)
1501 {
1502         stm32_dma_clear_reg(&chan->chan_reg);
1503
1504         chan->chan_reg.dma_scr = cfg->stream_config & STM32_DMA_SCR_CFG_MASK;
1505         chan->chan_reg.dma_scr |= FIELD_PREP(STM32_DMA_SCR_REQ_MASK, cfg->request_line);
1506
1507         /* Enable Interrupts  */
1508         chan->chan_reg.dma_scr |= STM32_DMA_SCR_TEIE | STM32_DMA_SCR_TCIE;
1509
1510         chan->threshold = FIELD_GET(STM32_DMA_THRESHOLD_FTR_MASK, cfg->features);
1511         if (FIELD_GET(STM32_DMA_DIRECT_MODE_MASK, cfg->features))
1512                 chan->threshold = STM32_DMA_FIFO_THRESHOLD_NONE;
1513         if (FIELD_GET(STM32_DMA_ALT_ACK_MODE_MASK, cfg->features))
1514                 chan->chan_reg.dma_scr |= STM32_DMA_SCR_TRBUFF;
1515         chan->mdma_config.stream_id = FIELD_GET(STM32_DMA_MDMA_STREAM_ID_MASK, cfg->features);
1516 }
1517
1518 static struct dma_chan *stm32_dma_of_xlate(struct of_phandle_args *dma_spec,
1519                                            struct of_dma *ofdma)
1520 {
1521         struct stm32_dma_device *dmadev = ofdma->of_dma_data;
1522         struct device *dev = dmadev->ddev.dev;
1523         struct stm32_dma_cfg cfg;
1524         struct stm32_dma_chan *chan;
1525         struct dma_chan *c;
1526
1527         if (dma_spec->args_count < 4) {
1528                 dev_err(dev, "Bad number of cells\n");
1529                 return NULL;
1530         }
1531
1532         cfg.channel_id = dma_spec->args[0];
1533         cfg.request_line = dma_spec->args[1];
1534         cfg.stream_config = dma_spec->args[2];
1535         cfg.features = dma_spec->args[3];
1536
1537         if (cfg.channel_id >= STM32_DMA_MAX_CHANNELS ||
1538             cfg.request_line >= STM32_DMA_MAX_REQUEST_ID) {
1539                 dev_err(dev, "Bad channel and/or request id\n");
1540                 return NULL;
1541         }
1542
1543         chan = &dmadev->chan[cfg.channel_id];
1544
1545         c = dma_get_slave_channel(&chan->vchan.chan);
1546         if (!c) {
1547                 dev_err(dev, "No more channels available\n");
1548                 return NULL;
1549         }
1550
1551         stm32_dma_set_config(chan, &cfg);
1552
1553         return c;
1554 }
1555
1556 static const struct of_device_id stm32_dma_of_match[] = {
1557         { .compatible = "st,stm32-dma", },
1558         { /* sentinel */ },
1559 };
1560 MODULE_DEVICE_TABLE(of, stm32_dma_of_match);
1561
1562 static int stm32_dma_probe(struct platform_device *pdev)
1563 {
1564         struct stm32_dma_chan *chan;
1565         struct stm32_dma_device *dmadev;
1566         struct dma_device *dd;
1567         const struct of_device_id *match;
1568         struct resource *res;
1569         struct reset_control *rst;
1570         int i, ret;
1571
1572         match = of_match_device(stm32_dma_of_match, &pdev->dev);
1573         if (!match) {
1574                 dev_err(&pdev->dev, "Error: No device match found\n");
1575                 return -ENODEV;
1576         }
1577
1578         dmadev = devm_kzalloc(&pdev->dev, sizeof(*dmadev), GFP_KERNEL);
1579         if (!dmadev)
1580                 return -ENOMEM;
1581
1582         dd = &dmadev->ddev;
1583
1584         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1585         dmadev->base = devm_ioremap_resource(&pdev->dev, res);
1586         if (IS_ERR(dmadev->base))
1587                 return PTR_ERR(dmadev->base);
1588
1589         dmadev->clk = devm_clk_get(&pdev->dev, NULL);
1590         if (IS_ERR(dmadev->clk))
1591                 return dev_err_probe(&pdev->dev, PTR_ERR(dmadev->clk), "Can't get clock\n");
1592
1593         ret = clk_prepare_enable(dmadev->clk);
1594         if (ret < 0) {
1595                 dev_err(&pdev->dev, "clk_prep_enable error: %d\n", ret);
1596                 return ret;
1597         }
1598
1599         dmadev->mem2mem = of_property_read_bool(pdev->dev.of_node,
1600                                                 "st,mem2mem");
1601
1602         rst = devm_reset_control_get(&pdev->dev, NULL);
1603         if (IS_ERR(rst)) {
1604                 ret = PTR_ERR(rst);
1605                 if (ret == -EPROBE_DEFER)
1606                         goto clk_free;
1607         } else {
1608                 reset_control_assert(rst);
1609                 udelay(2);
1610                 reset_control_deassert(rst);
1611         }
1612
1613         dma_set_max_seg_size(&pdev->dev, STM32_DMA_ALIGNED_MAX_DATA_ITEMS);
1614
1615         dma_cap_set(DMA_SLAVE, dd->cap_mask);
1616         dma_cap_set(DMA_PRIVATE, dd->cap_mask);
1617         dma_cap_set(DMA_CYCLIC, dd->cap_mask);
1618         dd->device_alloc_chan_resources = stm32_dma_alloc_chan_resources;
1619         dd->device_free_chan_resources = stm32_dma_free_chan_resources;
1620         dd->device_tx_status = stm32_dma_tx_status;
1621         dd->device_issue_pending = stm32_dma_issue_pending;
1622         dd->device_prep_slave_sg = stm32_dma_prep_slave_sg;
1623         dd->device_prep_dma_cyclic = stm32_dma_prep_dma_cyclic;
1624         dd->device_config = stm32_dma_slave_config;
1625         dd->device_pause = stm32_dma_pause;
1626         dd->device_resume = stm32_dma_resume;
1627         dd->device_terminate_all = stm32_dma_terminate_all;
1628         dd->device_synchronize = stm32_dma_synchronize;
1629         dd->src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
1630                 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
1631                 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
1632         dd->dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
1633                 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
1634                 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
1635         dd->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1636         dd->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1637         dd->copy_align = DMAENGINE_ALIGN_32_BYTES;
1638         dd->max_burst = STM32_DMA_MAX_BURST;
1639         dd->max_sg_burst = STM32_DMA_ALIGNED_MAX_DATA_ITEMS;
1640         dd->descriptor_reuse = true;
1641         dd->dev = &pdev->dev;
1642         INIT_LIST_HEAD(&dd->channels);
1643
1644         if (dmadev->mem2mem) {
1645                 dma_cap_set(DMA_MEMCPY, dd->cap_mask);
1646                 dd->device_prep_dma_memcpy = stm32_dma_prep_dma_memcpy;
1647                 dd->directions |= BIT(DMA_MEM_TO_MEM);
1648         }
1649
1650         for (i = 0; i < STM32_DMA_MAX_CHANNELS; i++) {
1651                 chan = &dmadev->chan[i];
1652                 chan->id = i;
1653                 chan->vchan.desc_free = stm32_dma_desc_free;
1654                 vchan_init(&chan->vchan, dd);
1655
1656                 chan->mdma_config.ifcr = res->start;
1657                 chan->mdma_config.ifcr += STM32_DMA_IFCR(chan->id);
1658
1659                 chan->mdma_config.tcf = STM32_DMA_TCI;
1660                 chan->mdma_config.tcf <<= STM32_DMA_FLAGS_SHIFT(chan->id);
1661         }
1662
1663         ret = dma_async_device_register(dd);
1664         if (ret)
1665                 goto clk_free;
1666
1667         for (i = 0; i < STM32_DMA_MAX_CHANNELS; i++) {
1668                 chan = &dmadev->chan[i];
1669                 ret = platform_get_irq(pdev, i);
1670                 if (ret < 0)
1671                         goto err_unregister;
1672                 chan->irq = ret;
1673
1674                 ret = devm_request_irq(&pdev->dev, chan->irq,
1675                                        stm32_dma_chan_irq, 0,
1676                                        dev_name(chan2dev(chan)), chan);
1677                 if (ret) {
1678                         dev_err(&pdev->dev,
1679                                 "request_irq failed with err %d channel %d\n",
1680                                 ret, i);
1681                         goto err_unregister;
1682                 }
1683         }
1684
1685         ret = of_dma_controller_register(pdev->dev.of_node,
1686                                          stm32_dma_of_xlate, dmadev);
1687         if (ret < 0) {
1688                 dev_err(&pdev->dev,
1689                         "STM32 DMA DMA OF registration failed %d\n", ret);
1690                 goto err_unregister;
1691         }
1692
1693         platform_set_drvdata(pdev, dmadev);
1694
1695         pm_runtime_set_active(&pdev->dev);
1696         pm_runtime_enable(&pdev->dev);
1697         pm_runtime_get_noresume(&pdev->dev);
1698         pm_runtime_put(&pdev->dev);
1699
1700         dev_info(&pdev->dev, "STM32 DMA driver registered\n");
1701
1702         return 0;
1703
1704 err_unregister:
1705         dma_async_device_unregister(dd);
1706 clk_free:
1707         clk_disable_unprepare(dmadev->clk);
1708
1709         return ret;
1710 }
1711
1712 #ifdef CONFIG_PM
1713 static int stm32_dma_runtime_suspend(struct device *dev)
1714 {
1715         struct stm32_dma_device *dmadev = dev_get_drvdata(dev);
1716
1717         clk_disable_unprepare(dmadev->clk);
1718
1719         return 0;
1720 }
1721
1722 static int stm32_dma_runtime_resume(struct device *dev)
1723 {
1724         struct stm32_dma_device *dmadev = dev_get_drvdata(dev);
1725         int ret;
1726
1727         ret = clk_prepare_enable(dmadev->clk);
1728         if (ret) {
1729                 dev_err(dev, "failed to prepare_enable clock\n");
1730                 return ret;
1731         }
1732
1733         return 0;
1734 }
1735 #endif
1736
1737 #ifdef CONFIG_PM_SLEEP
1738 static int stm32_dma_pm_suspend(struct device *dev)
1739 {
1740         struct stm32_dma_device *dmadev = dev_get_drvdata(dev);
1741         int id, ret, scr;
1742
1743         ret = pm_runtime_resume_and_get(dev);
1744         if (ret < 0)
1745                 return ret;
1746
1747         for (id = 0; id < STM32_DMA_MAX_CHANNELS; id++) {
1748                 scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
1749                 if (scr & STM32_DMA_SCR_EN) {
1750                         dev_warn(dev, "Suspend is prevented by Chan %i\n", id);
1751                         return -EBUSY;
1752                 }
1753         }
1754
1755         pm_runtime_put_sync(dev);
1756
1757         pm_runtime_force_suspend(dev);
1758
1759         return 0;
1760 }
1761
1762 static int stm32_dma_pm_resume(struct device *dev)
1763 {
1764         return pm_runtime_force_resume(dev);
1765 }
1766 #endif
1767
1768 static const struct dev_pm_ops stm32_dma_pm_ops = {
1769         SET_SYSTEM_SLEEP_PM_OPS(stm32_dma_pm_suspend, stm32_dma_pm_resume)
1770         SET_RUNTIME_PM_OPS(stm32_dma_runtime_suspend,
1771                            stm32_dma_runtime_resume, NULL)
1772 };
1773
1774 static struct platform_driver stm32_dma_driver = {
1775         .driver = {
1776                 .name = "stm32-dma",
1777                 .of_match_table = stm32_dma_of_match,
1778                 .pm = &stm32_dma_pm_ops,
1779         },
1780         .probe = stm32_dma_probe,
1781 };
1782
1783 static int __init stm32_dma_init(void)
1784 {
1785         return platform_driver_register(&stm32_dma_driver);
1786 }
1787 subsys_initcall(stm32_dma_init);