Merge tag 'v5.15-rc2' into spi-5.15
[platform/kernel/linux-rpi.git] / drivers / dma / stm32-dma.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Driver for STM32 DMA controller
4  *
5  * Inspired by dma-jz4740.c and tegra20-apb-dma.c
6  *
7  * Copyright (C) M'boumba Cedric Madianga 2015
8  * Author: M'boumba Cedric Madianga <cedric.madianga@gmail.com>
9  *         Pierre-Yves Mordret <pierre-yves.mordret@st.com>
10  */
11
12 #include <linux/clk.h>
13 #include <linux/delay.h>
14 #include <linux/dmaengine.h>
15 #include <linux/dma-mapping.h>
16 #include <linux/err.h>
17 #include <linux/init.h>
18 #include <linux/iopoll.h>
19 #include <linux/jiffies.h>
20 #include <linux/list.h>
21 #include <linux/module.h>
22 #include <linux/of.h>
23 #include <linux/of_device.h>
24 #include <linux/of_dma.h>
25 #include <linux/platform_device.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/reset.h>
28 #include <linux/sched.h>
29 #include <linux/slab.h>
30
31 #include "virt-dma.h"
32
33 #define STM32_DMA_LISR                  0x0000 /* DMA Low Int Status Reg */
34 #define STM32_DMA_HISR                  0x0004 /* DMA High Int Status Reg */
35 #define STM32_DMA_LIFCR                 0x0008 /* DMA Low Int Flag Clear Reg */
36 #define STM32_DMA_HIFCR                 0x000c /* DMA High Int Flag Clear Reg */
37 #define STM32_DMA_TCI                   BIT(5) /* Transfer Complete Interrupt */
38 #define STM32_DMA_HTI                   BIT(4) /* Half Transfer Interrupt */
39 #define STM32_DMA_TEI                   BIT(3) /* Transfer Error Interrupt */
40 #define STM32_DMA_DMEI                  BIT(2) /* Direct Mode Error Interrupt */
41 #define STM32_DMA_FEI                   BIT(0) /* FIFO Error Interrupt */
42 #define STM32_DMA_MASKI                 (STM32_DMA_TCI \
43                                          | STM32_DMA_TEI \
44                                          | STM32_DMA_DMEI \
45                                          | STM32_DMA_FEI)
46
47 /* DMA Stream x Configuration Register */
48 #define STM32_DMA_SCR(x)                (0x0010 + 0x18 * (x)) /* x = 0..7 */
49 #define STM32_DMA_SCR_REQ(n)            ((n & 0x7) << 25)
50 #define STM32_DMA_SCR_MBURST_MASK       GENMASK(24, 23)
51 #define STM32_DMA_SCR_MBURST(n)         ((n & 0x3) << 23)
52 #define STM32_DMA_SCR_PBURST_MASK       GENMASK(22, 21)
53 #define STM32_DMA_SCR_PBURST(n)         ((n & 0x3) << 21)
54 #define STM32_DMA_SCR_PL_MASK           GENMASK(17, 16)
55 #define STM32_DMA_SCR_PL(n)             ((n & 0x3) << 16)
56 #define STM32_DMA_SCR_MSIZE_MASK        GENMASK(14, 13)
57 #define STM32_DMA_SCR_MSIZE(n)          ((n & 0x3) << 13)
58 #define STM32_DMA_SCR_PSIZE_MASK        GENMASK(12, 11)
59 #define STM32_DMA_SCR_PSIZE(n)          ((n & 0x3) << 11)
60 #define STM32_DMA_SCR_PSIZE_GET(n)      ((n & STM32_DMA_SCR_PSIZE_MASK) >> 11)
61 #define STM32_DMA_SCR_DIR_MASK          GENMASK(7, 6)
62 #define STM32_DMA_SCR_DIR(n)            ((n & 0x3) << 6)
63 #define STM32_DMA_SCR_TRBUFF            BIT(20) /* Bufferable transfer for USART/UART */
64 #define STM32_DMA_SCR_CT                BIT(19) /* Target in double buffer */
65 #define STM32_DMA_SCR_DBM               BIT(18) /* Double Buffer Mode */
66 #define STM32_DMA_SCR_PINCOS            BIT(15) /* Peripheral inc offset size */
67 #define STM32_DMA_SCR_MINC              BIT(10) /* Memory increment mode */
68 #define STM32_DMA_SCR_PINC              BIT(9) /* Peripheral increment mode */
69 #define STM32_DMA_SCR_CIRC              BIT(8) /* Circular mode */
70 #define STM32_DMA_SCR_PFCTRL            BIT(5) /* Peripheral Flow Controller */
71 #define STM32_DMA_SCR_TCIE              BIT(4) /* Transfer Complete Int Enable
72                                                 */
73 #define STM32_DMA_SCR_TEIE              BIT(2) /* Transfer Error Int Enable */
74 #define STM32_DMA_SCR_DMEIE             BIT(1) /* Direct Mode Err Int Enable */
75 #define STM32_DMA_SCR_EN                BIT(0) /* Stream Enable */
76 #define STM32_DMA_SCR_CFG_MASK          (STM32_DMA_SCR_PINC \
77                                         | STM32_DMA_SCR_MINC \
78                                         | STM32_DMA_SCR_PINCOS \
79                                         | STM32_DMA_SCR_PL_MASK)
80 #define STM32_DMA_SCR_IRQ_MASK          (STM32_DMA_SCR_TCIE \
81                                         | STM32_DMA_SCR_TEIE \
82                                         | STM32_DMA_SCR_DMEIE)
83
84 /* DMA Stream x number of data register */
85 #define STM32_DMA_SNDTR(x)              (0x0014 + 0x18 * (x))
86
87 /* DMA stream peripheral address register */
88 #define STM32_DMA_SPAR(x)               (0x0018 + 0x18 * (x))
89
90 /* DMA stream x memory 0 address register */
91 #define STM32_DMA_SM0AR(x)              (0x001c + 0x18 * (x))
92
93 /* DMA stream x memory 1 address register */
94 #define STM32_DMA_SM1AR(x)              (0x0020 + 0x18 * (x))
95
96 /* DMA stream x FIFO control register */
97 #define STM32_DMA_SFCR(x)               (0x0024 + 0x18 * (x))
98 #define STM32_DMA_SFCR_FTH_MASK         GENMASK(1, 0)
99 #define STM32_DMA_SFCR_FTH(n)           (n & STM32_DMA_SFCR_FTH_MASK)
100 #define STM32_DMA_SFCR_FEIE             BIT(7) /* FIFO error interrupt enable */
101 #define STM32_DMA_SFCR_DMDIS            BIT(2) /* Direct mode disable */
102 #define STM32_DMA_SFCR_MASK             (STM32_DMA_SFCR_FEIE \
103                                         | STM32_DMA_SFCR_DMDIS)
104
105 /* DMA direction */
106 #define STM32_DMA_DEV_TO_MEM            0x00
107 #define STM32_DMA_MEM_TO_DEV            0x01
108 #define STM32_DMA_MEM_TO_MEM            0x02
109
110 /* DMA priority level */
111 #define STM32_DMA_PRIORITY_LOW          0x00
112 #define STM32_DMA_PRIORITY_MEDIUM       0x01
113 #define STM32_DMA_PRIORITY_HIGH         0x02
114 #define STM32_DMA_PRIORITY_VERY_HIGH    0x03
115
116 /* DMA FIFO threshold selection */
117 #define STM32_DMA_FIFO_THRESHOLD_1QUARTERFULL           0x00
118 #define STM32_DMA_FIFO_THRESHOLD_HALFFULL               0x01
119 #define STM32_DMA_FIFO_THRESHOLD_3QUARTERSFULL          0x02
120 #define STM32_DMA_FIFO_THRESHOLD_FULL                   0x03
121 #define STM32_DMA_FIFO_THRESHOLD_NONE                   0x04
122
123 #define STM32_DMA_MAX_DATA_ITEMS        0xffff
124 /*
125  * Valid transfer starts from @0 to @0xFFFE leading to unaligned scatter
126  * gather at boundary. Thus it's safer to round down this value on FIFO
127  * size (16 Bytes)
128  */
129 #define STM32_DMA_ALIGNED_MAX_DATA_ITEMS        \
130         ALIGN_DOWN(STM32_DMA_MAX_DATA_ITEMS, 16)
131 #define STM32_DMA_MAX_CHANNELS          0x08
132 #define STM32_DMA_MAX_REQUEST_ID        0x08
133 #define STM32_DMA_MAX_DATA_PARAM        0x03
134 #define STM32_DMA_FIFO_SIZE             16      /* FIFO is 16 bytes */
135 #define STM32_DMA_MIN_BURST             4
136 #define STM32_DMA_MAX_BURST             16
137
138 /* DMA Features */
139 #define STM32_DMA_THRESHOLD_FTR_MASK    GENMASK(1, 0)
140 #define STM32_DMA_THRESHOLD_FTR_GET(n)  ((n) & STM32_DMA_THRESHOLD_FTR_MASK)
141 #define STM32_DMA_DIRECT_MODE_MASK      BIT(2)
142 #define STM32_DMA_DIRECT_MODE_GET(n)    (((n) & STM32_DMA_DIRECT_MODE_MASK) >> 2)
143 #define STM32_DMA_ALT_ACK_MODE_MASK     BIT(4)
144 #define STM32_DMA_ALT_ACK_MODE_GET(n)   (((n) & STM32_DMA_ALT_ACK_MODE_MASK) >> 4)
145
146 enum stm32_dma_width {
147         STM32_DMA_BYTE,
148         STM32_DMA_HALF_WORD,
149         STM32_DMA_WORD,
150 };
151
152 enum stm32_dma_burst_size {
153         STM32_DMA_BURST_SINGLE,
154         STM32_DMA_BURST_INCR4,
155         STM32_DMA_BURST_INCR8,
156         STM32_DMA_BURST_INCR16,
157 };
158
159 /**
160  * struct stm32_dma_cfg - STM32 DMA custom configuration
161  * @channel_id: channel ID
162  * @request_line: DMA request
163  * @stream_config: 32bit mask specifying the DMA channel configuration
164  * @features: 32bit mask specifying the DMA Feature list
165  */
166 struct stm32_dma_cfg {
167         u32 channel_id;
168         u32 request_line;
169         u32 stream_config;
170         u32 features;
171 };
172
173 struct stm32_dma_chan_reg {
174         u32 dma_lisr;
175         u32 dma_hisr;
176         u32 dma_lifcr;
177         u32 dma_hifcr;
178         u32 dma_scr;
179         u32 dma_sndtr;
180         u32 dma_spar;
181         u32 dma_sm0ar;
182         u32 dma_sm1ar;
183         u32 dma_sfcr;
184 };
185
186 struct stm32_dma_sg_req {
187         u32 len;
188         struct stm32_dma_chan_reg chan_reg;
189 };
190
191 struct stm32_dma_desc {
192         struct virt_dma_desc vdesc;
193         bool cyclic;
194         u32 num_sgs;
195         struct stm32_dma_sg_req sg_req[];
196 };
197
198 struct stm32_dma_chan {
199         struct virt_dma_chan vchan;
200         bool config_init;
201         bool busy;
202         u32 id;
203         u32 irq;
204         struct stm32_dma_desc *desc;
205         u32 next_sg;
206         struct dma_slave_config dma_sconfig;
207         struct stm32_dma_chan_reg chan_reg;
208         u32 threshold;
209         u32 mem_burst;
210         u32 mem_width;
211 };
212
213 struct stm32_dma_device {
214         struct dma_device ddev;
215         void __iomem *base;
216         struct clk *clk;
217         bool mem2mem;
218         struct stm32_dma_chan chan[STM32_DMA_MAX_CHANNELS];
219 };
220
221 static struct stm32_dma_device *stm32_dma_get_dev(struct stm32_dma_chan *chan)
222 {
223         return container_of(chan->vchan.chan.device, struct stm32_dma_device,
224                             ddev);
225 }
226
227 static struct stm32_dma_chan *to_stm32_dma_chan(struct dma_chan *c)
228 {
229         return container_of(c, struct stm32_dma_chan, vchan.chan);
230 }
231
232 static struct stm32_dma_desc *to_stm32_dma_desc(struct virt_dma_desc *vdesc)
233 {
234         return container_of(vdesc, struct stm32_dma_desc, vdesc);
235 }
236
237 static struct device *chan2dev(struct stm32_dma_chan *chan)
238 {
239         return &chan->vchan.chan.dev->device;
240 }
241
242 static u32 stm32_dma_read(struct stm32_dma_device *dmadev, u32 reg)
243 {
244         return readl_relaxed(dmadev->base + reg);
245 }
246
247 static void stm32_dma_write(struct stm32_dma_device *dmadev, u32 reg, u32 val)
248 {
249         writel_relaxed(val, dmadev->base + reg);
250 }
251
252 static int stm32_dma_get_width(struct stm32_dma_chan *chan,
253                                enum dma_slave_buswidth width)
254 {
255         switch (width) {
256         case DMA_SLAVE_BUSWIDTH_1_BYTE:
257                 return STM32_DMA_BYTE;
258         case DMA_SLAVE_BUSWIDTH_2_BYTES:
259                 return STM32_DMA_HALF_WORD;
260         case DMA_SLAVE_BUSWIDTH_4_BYTES:
261                 return STM32_DMA_WORD;
262         default:
263                 dev_err(chan2dev(chan), "Dma bus width not supported\n");
264                 return -EINVAL;
265         }
266 }
267
268 static enum dma_slave_buswidth stm32_dma_get_max_width(u32 buf_len,
269                                                        dma_addr_t buf_addr,
270                                                        u32 threshold)
271 {
272         enum dma_slave_buswidth max_width;
273         u64 addr = buf_addr;
274
275         if (threshold == STM32_DMA_FIFO_THRESHOLD_FULL)
276                 max_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
277         else
278                 max_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
279
280         while ((buf_len < max_width  || buf_len % max_width) &&
281                max_width > DMA_SLAVE_BUSWIDTH_1_BYTE)
282                 max_width = max_width >> 1;
283
284         if (do_div(addr, max_width))
285                 max_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
286
287         return max_width;
288 }
289
290 static bool stm32_dma_fifo_threshold_is_allowed(u32 burst, u32 threshold,
291                                                 enum dma_slave_buswidth width)
292 {
293         u32 remaining;
294
295         if (threshold == STM32_DMA_FIFO_THRESHOLD_NONE)
296                 return false;
297
298         if (width != DMA_SLAVE_BUSWIDTH_UNDEFINED) {
299                 if (burst != 0) {
300                         /*
301                          * If number of beats fit in several whole bursts
302                          * this configuration is allowed.
303                          */
304                         remaining = ((STM32_DMA_FIFO_SIZE / width) *
305                                      (threshold + 1) / 4) % burst;
306
307                         if (remaining == 0)
308                                 return true;
309                 } else {
310                         return true;
311                 }
312         }
313
314         return false;
315 }
316
317 static bool stm32_dma_is_burst_possible(u32 buf_len, u32 threshold)
318 {
319         /* If FIFO direct mode, burst is not possible */
320         if (threshold == STM32_DMA_FIFO_THRESHOLD_NONE)
321                 return false;
322
323         /*
324          * Buffer or period length has to be aligned on FIFO depth.
325          * Otherwise bytes may be stuck within FIFO at buffer or period
326          * length.
327          */
328         return ((buf_len % ((threshold + 1) * 4)) == 0);
329 }
330
331 static u32 stm32_dma_get_best_burst(u32 buf_len, u32 max_burst, u32 threshold,
332                                     enum dma_slave_buswidth width)
333 {
334         u32 best_burst = max_burst;
335
336         if (best_burst == 1 || !stm32_dma_is_burst_possible(buf_len, threshold))
337                 return 0;
338
339         while ((buf_len < best_burst * width && best_burst > 1) ||
340                !stm32_dma_fifo_threshold_is_allowed(best_burst, threshold,
341                                                     width)) {
342                 if (best_burst > STM32_DMA_MIN_BURST)
343                         best_burst = best_burst >> 1;
344                 else
345                         best_burst = 0;
346         }
347
348         return best_burst;
349 }
350
351 static int stm32_dma_get_burst(struct stm32_dma_chan *chan, u32 maxburst)
352 {
353         switch (maxburst) {
354         case 0:
355         case 1:
356                 return STM32_DMA_BURST_SINGLE;
357         case 4:
358                 return STM32_DMA_BURST_INCR4;
359         case 8:
360                 return STM32_DMA_BURST_INCR8;
361         case 16:
362                 return STM32_DMA_BURST_INCR16;
363         default:
364                 dev_err(chan2dev(chan), "Dma burst size not supported\n");
365                 return -EINVAL;
366         }
367 }
368
369 static void stm32_dma_set_fifo_config(struct stm32_dma_chan *chan,
370                                       u32 src_burst, u32 dst_burst)
371 {
372         chan->chan_reg.dma_sfcr &= ~STM32_DMA_SFCR_MASK;
373         chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_DMEIE;
374
375         if (!src_burst && !dst_burst) {
376                 /* Using direct mode */
377                 chan->chan_reg.dma_scr |= STM32_DMA_SCR_DMEIE;
378         } else {
379                 /* Using FIFO mode */
380                 chan->chan_reg.dma_sfcr |= STM32_DMA_SFCR_MASK;
381         }
382 }
383
384 static int stm32_dma_slave_config(struct dma_chan *c,
385                                   struct dma_slave_config *config)
386 {
387         struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
388
389         memcpy(&chan->dma_sconfig, config, sizeof(*config));
390
391         chan->config_init = true;
392
393         return 0;
394 }
395
396 static u32 stm32_dma_irq_status(struct stm32_dma_chan *chan)
397 {
398         struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
399         u32 flags, dma_isr;
400
401         /*
402          * Read "flags" from DMA_xISR register corresponding to the selected
403          * DMA channel at the correct bit offset inside that register.
404          *
405          * If (ch % 4) is 2 or 3, left shift the mask by 16 bits.
406          * If (ch % 4) is 1 or 3, additionally left shift the mask by 6 bits.
407          */
408
409         if (chan->id & 4)
410                 dma_isr = stm32_dma_read(dmadev, STM32_DMA_HISR);
411         else
412                 dma_isr = stm32_dma_read(dmadev, STM32_DMA_LISR);
413
414         flags = dma_isr >> (((chan->id & 2) << 3) | ((chan->id & 1) * 6));
415
416         return flags & STM32_DMA_MASKI;
417 }
418
419 static void stm32_dma_irq_clear(struct stm32_dma_chan *chan, u32 flags)
420 {
421         struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
422         u32 dma_ifcr;
423
424         /*
425          * Write "flags" to the DMA_xIFCR register corresponding to the selected
426          * DMA channel at the correct bit offset inside that register.
427          *
428          * If (ch % 4) is 2 or 3, left shift the mask by 16 bits.
429          * If (ch % 4) is 1 or 3, additionally left shift the mask by 6 bits.
430          */
431         flags &= STM32_DMA_MASKI;
432         dma_ifcr = flags << (((chan->id & 2) << 3) | ((chan->id & 1) * 6));
433
434         if (chan->id & 4)
435                 stm32_dma_write(dmadev, STM32_DMA_HIFCR, dma_ifcr);
436         else
437                 stm32_dma_write(dmadev, STM32_DMA_LIFCR, dma_ifcr);
438 }
439
440 static int stm32_dma_disable_chan(struct stm32_dma_chan *chan)
441 {
442         struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
443         u32 dma_scr, id, reg;
444
445         id = chan->id;
446         reg = STM32_DMA_SCR(id);
447         dma_scr = stm32_dma_read(dmadev, reg);
448
449         if (dma_scr & STM32_DMA_SCR_EN) {
450                 dma_scr &= ~STM32_DMA_SCR_EN;
451                 stm32_dma_write(dmadev, reg, dma_scr);
452
453                 return readl_relaxed_poll_timeout_atomic(dmadev->base + reg,
454                                         dma_scr, !(dma_scr & STM32_DMA_SCR_EN),
455                                         10, 1000000);
456         }
457
458         return 0;
459 }
460
461 static void stm32_dma_stop(struct stm32_dma_chan *chan)
462 {
463         struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
464         u32 dma_scr, dma_sfcr, status;
465         int ret;
466
467         /* Disable interrupts */
468         dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
469         dma_scr &= ~STM32_DMA_SCR_IRQ_MASK;
470         stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), dma_scr);
471         dma_sfcr = stm32_dma_read(dmadev, STM32_DMA_SFCR(chan->id));
472         dma_sfcr &= ~STM32_DMA_SFCR_FEIE;
473         stm32_dma_write(dmadev, STM32_DMA_SFCR(chan->id), dma_sfcr);
474
475         /* Disable DMA */
476         ret = stm32_dma_disable_chan(chan);
477         if (ret < 0)
478                 return;
479
480         /* Clear interrupt status if it is there */
481         status = stm32_dma_irq_status(chan);
482         if (status) {
483                 dev_dbg(chan2dev(chan), "%s(): clearing interrupt: 0x%08x\n",
484                         __func__, status);
485                 stm32_dma_irq_clear(chan, status);
486         }
487
488         chan->busy = false;
489 }
490
491 static int stm32_dma_terminate_all(struct dma_chan *c)
492 {
493         struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
494         unsigned long flags;
495         LIST_HEAD(head);
496
497         spin_lock_irqsave(&chan->vchan.lock, flags);
498
499         if (chan->desc) {
500                 vchan_terminate_vdesc(&chan->desc->vdesc);
501                 if (chan->busy)
502                         stm32_dma_stop(chan);
503                 chan->desc = NULL;
504         }
505
506         vchan_get_all_descriptors(&chan->vchan, &head);
507         spin_unlock_irqrestore(&chan->vchan.lock, flags);
508         vchan_dma_desc_free_list(&chan->vchan, &head);
509
510         return 0;
511 }
512
513 static void stm32_dma_synchronize(struct dma_chan *c)
514 {
515         struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
516
517         vchan_synchronize(&chan->vchan);
518 }
519
520 static void stm32_dma_dump_reg(struct stm32_dma_chan *chan)
521 {
522         struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
523         u32 scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
524         u32 ndtr = stm32_dma_read(dmadev, STM32_DMA_SNDTR(chan->id));
525         u32 spar = stm32_dma_read(dmadev, STM32_DMA_SPAR(chan->id));
526         u32 sm0ar = stm32_dma_read(dmadev, STM32_DMA_SM0AR(chan->id));
527         u32 sm1ar = stm32_dma_read(dmadev, STM32_DMA_SM1AR(chan->id));
528         u32 sfcr = stm32_dma_read(dmadev, STM32_DMA_SFCR(chan->id));
529
530         dev_dbg(chan2dev(chan), "SCR:   0x%08x\n", scr);
531         dev_dbg(chan2dev(chan), "NDTR:  0x%08x\n", ndtr);
532         dev_dbg(chan2dev(chan), "SPAR:  0x%08x\n", spar);
533         dev_dbg(chan2dev(chan), "SM0AR: 0x%08x\n", sm0ar);
534         dev_dbg(chan2dev(chan), "SM1AR: 0x%08x\n", sm1ar);
535         dev_dbg(chan2dev(chan), "SFCR:  0x%08x\n", sfcr);
536 }
537
538 static void stm32_dma_configure_next_sg(struct stm32_dma_chan *chan);
539
540 static void stm32_dma_start_transfer(struct stm32_dma_chan *chan)
541 {
542         struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
543         struct virt_dma_desc *vdesc;
544         struct stm32_dma_sg_req *sg_req;
545         struct stm32_dma_chan_reg *reg;
546         u32 status;
547         int ret;
548
549         ret = stm32_dma_disable_chan(chan);
550         if (ret < 0)
551                 return;
552
553         if (!chan->desc) {
554                 vdesc = vchan_next_desc(&chan->vchan);
555                 if (!vdesc)
556                         return;
557
558                 list_del(&vdesc->node);
559
560                 chan->desc = to_stm32_dma_desc(vdesc);
561                 chan->next_sg = 0;
562         }
563
564         if (chan->next_sg == chan->desc->num_sgs)
565                 chan->next_sg = 0;
566
567         sg_req = &chan->desc->sg_req[chan->next_sg];
568         reg = &sg_req->chan_reg;
569
570         reg->dma_scr &= ~STM32_DMA_SCR_EN;
571         stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), reg->dma_scr);
572         stm32_dma_write(dmadev, STM32_DMA_SPAR(chan->id), reg->dma_spar);
573         stm32_dma_write(dmadev, STM32_DMA_SM0AR(chan->id), reg->dma_sm0ar);
574         stm32_dma_write(dmadev, STM32_DMA_SFCR(chan->id), reg->dma_sfcr);
575         stm32_dma_write(dmadev, STM32_DMA_SM1AR(chan->id), reg->dma_sm1ar);
576         stm32_dma_write(dmadev, STM32_DMA_SNDTR(chan->id), reg->dma_sndtr);
577
578         chan->next_sg++;
579
580         /* Clear interrupt status if it is there */
581         status = stm32_dma_irq_status(chan);
582         if (status)
583                 stm32_dma_irq_clear(chan, status);
584
585         if (chan->desc->cyclic)
586                 stm32_dma_configure_next_sg(chan);
587
588         stm32_dma_dump_reg(chan);
589
590         /* Start DMA */
591         reg->dma_scr |= STM32_DMA_SCR_EN;
592         stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), reg->dma_scr);
593
594         chan->busy = true;
595
596         dev_dbg(chan2dev(chan), "vchan %pK: started\n", &chan->vchan);
597 }
598
599 static void stm32_dma_configure_next_sg(struct stm32_dma_chan *chan)
600 {
601         struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
602         struct stm32_dma_sg_req *sg_req;
603         u32 dma_scr, dma_sm0ar, dma_sm1ar, id;
604
605         id = chan->id;
606         dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
607
608         if (dma_scr & STM32_DMA_SCR_DBM) {
609                 if (chan->next_sg == chan->desc->num_sgs)
610                         chan->next_sg = 0;
611
612                 sg_req = &chan->desc->sg_req[chan->next_sg];
613
614                 if (dma_scr & STM32_DMA_SCR_CT) {
615                         dma_sm0ar = sg_req->chan_reg.dma_sm0ar;
616                         stm32_dma_write(dmadev, STM32_DMA_SM0AR(id), dma_sm0ar);
617                         dev_dbg(chan2dev(chan), "CT=1 <=> SM0AR: 0x%08x\n",
618                                 stm32_dma_read(dmadev, STM32_DMA_SM0AR(id)));
619                 } else {
620                         dma_sm1ar = sg_req->chan_reg.dma_sm1ar;
621                         stm32_dma_write(dmadev, STM32_DMA_SM1AR(id), dma_sm1ar);
622                         dev_dbg(chan2dev(chan), "CT=0 <=> SM1AR: 0x%08x\n",
623                                 stm32_dma_read(dmadev, STM32_DMA_SM1AR(id)));
624                 }
625         }
626 }
627
628 static void stm32_dma_handle_chan_done(struct stm32_dma_chan *chan)
629 {
630         if (chan->desc) {
631                 if (chan->desc->cyclic) {
632                         vchan_cyclic_callback(&chan->desc->vdesc);
633                         chan->next_sg++;
634                         stm32_dma_configure_next_sg(chan);
635                 } else {
636                         chan->busy = false;
637                         if (chan->next_sg == chan->desc->num_sgs) {
638                                 vchan_cookie_complete(&chan->desc->vdesc);
639                                 chan->desc = NULL;
640                         }
641                         stm32_dma_start_transfer(chan);
642                 }
643         }
644 }
645
646 static irqreturn_t stm32_dma_chan_irq(int irq, void *devid)
647 {
648         struct stm32_dma_chan *chan = devid;
649         struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
650         u32 status, scr, sfcr;
651
652         spin_lock(&chan->vchan.lock);
653
654         status = stm32_dma_irq_status(chan);
655         scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
656         sfcr = stm32_dma_read(dmadev, STM32_DMA_SFCR(chan->id));
657
658         if (status & STM32_DMA_FEI) {
659                 stm32_dma_irq_clear(chan, STM32_DMA_FEI);
660                 status &= ~STM32_DMA_FEI;
661                 if (sfcr & STM32_DMA_SFCR_FEIE) {
662                         if (!(scr & STM32_DMA_SCR_EN) &&
663                             !(status & STM32_DMA_TCI))
664                                 dev_err(chan2dev(chan), "FIFO Error\n");
665                         else
666                                 dev_dbg(chan2dev(chan), "FIFO over/underrun\n");
667                 }
668         }
669         if (status & STM32_DMA_DMEI) {
670                 stm32_dma_irq_clear(chan, STM32_DMA_DMEI);
671                 status &= ~STM32_DMA_DMEI;
672                 if (sfcr & STM32_DMA_SCR_DMEIE)
673                         dev_dbg(chan2dev(chan), "Direct mode overrun\n");
674         }
675
676         if (status & STM32_DMA_TCI) {
677                 stm32_dma_irq_clear(chan, STM32_DMA_TCI);
678                 if (scr & STM32_DMA_SCR_TCIE)
679                         stm32_dma_handle_chan_done(chan);
680                 status &= ~STM32_DMA_TCI;
681         }
682
683         if (status & STM32_DMA_HTI) {
684                 stm32_dma_irq_clear(chan, STM32_DMA_HTI);
685                 status &= ~STM32_DMA_HTI;
686         }
687
688         if (status) {
689                 stm32_dma_irq_clear(chan, status);
690                 dev_err(chan2dev(chan), "DMA error: status=0x%08x\n", status);
691                 if (!(scr & STM32_DMA_SCR_EN))
692                         dev_err(chan2dev(chan), "chan disabled by HW\n");
693         }
694
695         spin_unlock(&chan->vchan.lock);
696
697         return IRQ_HANDLED;
698 }
699
700 static void stm32_dma_issue_pending(struct dma_chan *c)
701 {
702         struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
703         unsigned long flags;
704
705         spin_lock_irqsave(&chan->vchan.lock, flags);
706         if (vchan_issue_pending(&chan->vchan) && !chan->desc && !chan->busy) {
707                 dev_dbg(chan2dev(chan), "vchan %pK: issued\n", &chan->vchan);
708                 stm32_dma_start_transfer(chan);
709
710         }
711         spin_unlock_irqrestore(&chan->vchan.lock, flags);
712 }
713
714 static int stm32_dma_set_xfer_param(struct stm32_dma_chan *chan,
715                                     enum dma_transfer_direction direction,
716                                     enum dma_slave_buswidth *buswidth,
717                                     u32 buf_len, dma_addr_t buf_addr)
718 {
719         enum dma_slave_buswidth src_addr_width, dst_addr_width;
720         int src_bus_width, dst_bus_width;
721         int src_burst_size, dst_burst_size;
722         u32 src_maxburst, dst_maxburst, src_best_burst, dst_best_burst;
723         u32 dma_scr, fifoth;
724
725         src_addr_width = chan->dma_sconfig.src_addr_width;
726         dst_addr_width = chan->dma_sconfig.dst_addr_width;
727         src_maxburst = chan->dma_sconfig.src_maxburst;
728         dst_maxburst = chan->dma_sconfig.dst_maxburst;
729         fifoth = chan->threshold;
730
731         switch (direction) {
732         case DMA_MEM_TO_DEV:
733                 /* Set device data size */
734                 dst_bus_width = stm32_dma_get_width(chan, dst_addr_width);
735                 if (dst_bus_width < 0)
736                         return dst_bus_width;
737
738                 /* Set device burst size */
739                 dst_best_burst = stm32_dma_get_best_burst(buf_len,
740                                                           dst_maxburst,
741                                                           fifoth,
742                                                           dst_addr_width);
743
744                 dst_burst_size = stm32_dma_get_burst(chan, dst_best_burst);
745                 if (dst_burst_size < 0)
746                         return dst_burst_size;
747
748                 /* Set memory data size */
749                 src_addr_width = stm32_dma_get_max_width(buf_len, buf_addr,
750                                                          fifoth);
751                 chan->mem_width = src_addr_width;
752                 src_bus_width = stm32_dma_get_width(chan, src_addr_width);
753                 if (src_bus_width < 0)
754                         return src_bus_width;
755
756                 /* Set memory burst size */
757                 src_maxburst = STM32_DMA_MAX_BURST;
758                 src_best_burst = stm32_dma_get_best_burst(buf_len,
759                                                           src_maxburst,
760                                                           fifoth,
761                                                           src_addr_width);
762                 src_burst_size = stm32_dma_get_burst(chan, src_best_burst);
763                 if (src_burst_size < 0)
764                         return src_burst_size;
765
766                 dma_scr = STM32_DMA_SCR_DIR(STM32_DMA_MEM_TO_DEV) |
767                         STM32_DMA_SCR_PSIZE(dst_bus_width) |
768                         STM32_DMA_SCR_MSIZE(src_bus_width) |
769                         STM32_DMA_SCR_PBURST(dst_burst_size) |
770                         STM32_DMA_SCR_MBURST(src_burst_size);
771
772                 /* Set FIFO threshold */
773                 chan->chan_reg.dma_sfcr &= ~STM32_DMA_SFCR_FTH_MASK;
774                 if (fifoth != STM32_DMA_FIFO_THRESHOLD_NONE)
775                         chan->chan_reg.dma_sfcr |= STM32_DMA_SFCR_FTH(fifoth);
776
777                 /* Set peripheral address */
778                 chan->chan_reg.dma_spar = chan->dma_sconfig.dst_addr;
779                 *buswidth = dst_addr_width;
780                 break;
781
782         case DMA_DEV_TO_MEM:
783                 /* Set device data size */
784                 src_bus_width = stm32_dma_get_width(chan, src_addr_width);
785                 if (src_bus_width < 0)
786                         return src_bus_width;
787
788                 /* Set device burst size */
789                 src_best_burst = stm32_dma_get_best_burst(buf_len,
790                                                           src_maxburst,
791                                                           fifoth,
792                                                           src_addr_width);
793                 chan->mem_burst = src_best_burst;
794                 src_burst_size = stm32_dma_get_burst(chan, src_best_burst);
795                 if (src_burst_size < 0)
796                         return src_burst_size;
797
798                 /* Set memory data size */
799                 dst_addr_width = stm32_dma_get_max_width(buf_len, buf_addr,
800                                                          fifoth);
801                 chan->mem_width = dst_addr_width;
802                 dst_bus_width = stm32_dma_get_width(chan, dst_addr_width);
803                 if (dst_bus_width < 0)
804                         return dst_bus_width;
805
806                 /* Set memory burst size */
807                 dst_maxburst = STM32_DMA_MAX_BURST;
808                 dst_best_burst = stm32_dma_get_best_burst(buf_len,
809                                                           dst_maxburst,
810                                                           fifoth,
811                                                           dst_addr_width);
812                 chan->mem_burst = dst_best_burst;
813                 dst_burst_size = stm32_dma_get_burst(chan, dst_best_burst);
814                 if (dst_burst_size < 0)
815                         return dst_burst_size;
816
817                 dma_scr = STM32_DMA_SCR_DIR(STM32_DMA_DEV_TO_MEM) |
818                         STM32_DMA_SCR_PSIZE(src_bus_width) |
819                         STM32_DMA_SCR_MSIZE(dst_bus_width) |
820                         STM32_DMA_SCR_PBURST(src_burst_size) |
821                         STM32_DMA_SCR_MBURST(dst_burst_size);
822
823                 /* Set FIFO threshold */
824                 chan->chan_reg.dma_sfcr &= ~STM32_DMA_SFCR_FTH_MASK;
825                 if (fifoth != STM32_DMA_FIFO_THRESHOLD_NONE)
826                         chan->chan_reg.dma_sfcr |= STM32_DMA_SFCR_FTH(fifoth);
827
828                 /* Set peripheral address */
829                 chan->chan_reg.dma_spar = chan->dma_sconfig.src_addr;
830                 *buswidth = chan->dma_sconfig.src_addr_width;
831                 break;
832
833         default:
834                 dev_err(chan2dev(chan), "Dma direction is not supported\n");
835                 return -EINVAL;
836         }
837
838         stm32_dma_set_fifo_config(chan, src_best_burst, dst_best_burst);
839
840         /* Set DMA control register */
841         chan->chan_reg.dma_scr &= ~(STM32_DMA_SCR_DIR_MASK |
842                         STM32_DMA_SCR_PSIZE_MASK | STM32_DMA_SCR_MSIZE_MASK |
843                         STM32_DMA_SCR_PBURST_MASK | STM32_DMA_SCR_MBURST_MASK);
844         chan->chan_reg.dma_scr |= dma_scr;
845
846         return 0;
847 }
848
849 static void stm32_dma_clear_reg(struct stm32_dma_chan_reg *regs)
850 {
851         memset(regs, 0, sizeof(struct stm32_dma_chan_reg));
852 }
853
854 static struct dma_async_tx_descriptor *stm32_dma_prep_slave_sg(
855         struct dma_chan *c, struct scatterlist *sgl,
856         u32 sg_len, enum dma_transfer_direction direction,
857         unsigned long flags, void *context)
858 {
859         struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
860         struct stm32_dma_desc *desc;
861         struct scatterlist *sg;
862         enum dma_slave_buswidth buswidth;
863         u32 nb_data_items;
864         int i, ret;
865
866         if (!chan->config_init) {
867                 dev_err(chan2dev(chan), "dma channel is not configured\n");
868                 return NULL;
869         }
870
871         if (sg_len < 1) {
872                 dev_err(chan2dev(chan), "Invalid segment length %d\n", sg_len);
873                 return NULL;
874         }
875
876         desc = kzalloc(struct_size(desc, sg_req, sg_len), GFP_NOWAIT);
877         if (!desc)
878                 return NULL;
879
880         /* Set peripheral flow controller */
881         if (chan->dma_sconfig.device_fc)
882                 chan->chan_reg.dma_scr |= STM32_DMA_SCR_PFCTRL;
883         else
884                 chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_PFCTRL;
885
886         for_each_sg(sgl, sg, sg_len, i) {
887                 ret = stm32_dma_set_xfer_param(chan, direction, &buswidth,
888                                                sg_dma_len(sg),
889                                                sg_dma_address(sg));
890                 if (ret < 0)
891                         goto err;
892
893                 desc->sg_req[i].len = sg_dma_len(sg);
894
895                 nb_data_items = desc->sg_req[i].len / buswidth;
896                 if (nb_data_items > STM32_DMA_ALIGNED_MAX_DATA_ITEMS) {
897                         dev_err(chan2dev(chan), "nb items not supported\n");
898                         goto err;
899                 }
900
901                 stm32_dma_clear_reg(&desc->sg_req[i].chan_reg);
902                 desc->sg_req[i].chan_reg.dma_scr = chan->chan_reg.dma_scr;
903                 desc->sg_req[i].chan_reg.dma_sfcr = chan->chan_reg.dma_sfcr;
904                 desc->sg_req[i].chan_reg.dma_spar = chan->chan_reg.dma_spar;
905                 desc->sg_req[i].chan_reg.dma_sm0ar = sg_dma_address(sg);
906                 desc->sg_req[i].chan_reg.dma_sm1ar = sg_dma_address(sg);
907                 desc->sg_req[i].chan_reg.dma_sndtr = nb_data_items;
908         }
909
910         desc->num_sgs = sg_len;
911         desc->cyclic = false;
912
913         return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
914
915 err:
916         kfree(desc);
917         return NULL;
918 }
919
920 static struct dma_async_tx_descriptor *stm32_dma_prep_dma_cyclic(
921         struct dma_chan *c, dma_addr_t buf_addr, size_t buf_len,
922         size_t period_len, enum dma_transfer_direction direction,
923         unsigned long flags)
924 {
925         struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
926         struct stm32_dma_desc *desc;
927         enum dma_slave_buswidth buswidth;
928         u32 num_periods, nb_data_items;
929         int i, ret;
930
931         if (!buf_len || !period_len) {
932                 dev_err(chan2dev(chan), "Invalid buffer/period len\n");
933                 return NULL;
934         }
935
936         if (!chan->config_init) {
937                 dev_err(chan2dev(chan), "dma channel is not configured\n");
938                 return NULL;
939         }
940
941         if (buf_len % period_len) {
942                 dev_err(chan2dev(chan), "buf_len not multiple of period_len\n");
943                 return NULL;
944         }
945
946         /*
947          * We allow to take more number of requests till DMA is
948          * not started. The driver will loop over all requests.
949          * Once DMA is started then new requests can be queued only after
950          * terminating the DMA.
951          */
952         if (chan->busy) {
953                 dev_err(chan2dev(chan), "Request not allowed when dma busy\n");
954                 return NULL;
955         }
956
957         ret = stm32_dma_set_xfer_param(chan, direction, &buswidth, period_len,
958                                        buf_addr);
959         if (ret < 0)
960                 return NULL;
961
962         nb_data_items = period_len / buswidth;
963         if (nb_data_items > STM32_DMA_ALIGNED_MAX_DATA_ITEMS) {
964                 dev_err(chan2dev(chan), "number of items not supported\n");
965                 return NULL;
966         }
967
968         /*  Enable Circular mode or double buffer mode */
969         if (buf_len == period_len)
970                 chan->chan_reg.dma_scr |= STM32_DMA_SCR_CIRC;
971         else
972                 chan->chan_reg.dma_scr |= STM32_DMA_SCR_DBM;
973
974         /* Clear periph ctrl if client set it */
975         chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_PFCTRL;
976
977         num_periods = buf_len / period_len;
978
979         desc = kzalloc(struct_size(desc, sg_req, num_periods), GFP_NOWAIT);
980         if (!desc)
981                 return NULL;
982
983         for (i = 0; i < num_periods; i++) {
984                 desc->sg_req[i].len = period_len;
985
986                 stm32_dma_clear_reg(&desc->sg_req[i].chan_reg);
987                 desc->sg_req[i].chan_reg.dma_scr = chan->chan_reg.dma_scr;
988                 desc->sg_req[i].chan_reg.dma_sfcr = chan->chan_reg.dma_sfcr;
989                 desc->sg_req[i].chan_reg.dma_spar = chan->chan_reg.dma_spar;
990                 desc->sg_req[i].chan_reg.dma_sm0ar = buf_addr;
991                 desc->sg_req[i].chan_reg.dma_sm1ar = buf_addr;
992                 desc->sg_req[i].chan_reg.dma_sndtr = nb_data_items;
993                 buf_addr += period_len;
994         }
995
996         desc->num_sgs = num_periods;
997         desc->cyclic = true;
998
999         return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
1000 }
1001
1002 static struct dma_async_tx_descriptor *stm32_dma_prep_dma_memcpy(
1003         struct dma_chan *c, dma_addr_t dest,
1004         dma_addr_t src, size_t len, unsigned long flags)
1005 {
1006         struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
1007         enum dma_slave_buswidth max_width;
1008         struct stm32_dma_desc *desc;
1009         size_t xfer_count, offset;
1010         u32 num_sgs, best_burst, dma_burst, threshold;
1011         int i;
1012
1013         num_sgs = DIV_ROUND_UP(len, STM32_DMA_ALIGNED_MAX_DATA_ITEMS);
1014         desc = kzalloc(struct_size(desc, sg_req, num_sgs), GFP_NOWAIT);
1015         if (!desc)
1016                 return NULL;
1017
1018         threshold = chan->threshold;
1019
1020         for (offset = 0, i = 0; offset < len; offset += xfer_count, i++) {
1021                 xfer_count = min_t(size_t, len - offset,
1022                                    STM32_DMA_ALIGNED_MAX_DATA_ITEMS);
1023
1024                 /* Compute best burst size */
1025                 max_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1026                 best_burst = stm32_dma_get_best_burst(len, STM32_DMA_MAX_BURST,
1027                                                       threshold, max_width);
1028                 dma_burst = stm32_dma_get_burst(chan, best_burst);
1029
1030                 stm32_dma_clear_reg(&desc->sg_req[i].chan_reg);
1031                 desc->sg_req[i].chan_reg.dma_scr =
1032                         STM32_DMA_SCR_DIR(STM32_DMA_MEM_TO_MEM) |
1033                         STM32_DMA_SCR_PBURST(dma_burst) |
1034                         STM32_DMA_SCR_MBURST(dma_burst) |
1035                         STM32_DMA_SCR_MINC |
1036                         STM32_DMA_SCR_PINC |
1037                         STM32_DMA_SCR_TCIE |
1038                         STM32_DMA_SCR_TEIE;
1039                 desc->sg_req[i].chan_reg.dma_sfcr |= STM32_DMA_SFCR_MASK;
1040                 desc->sg_req[i].chan_reg.dma_sfcr |=
1041                         STM32_DMA_SFCR_FTH(threshold);
1042                 desc->sg_req[i].chan_reg.dma_spar = src + offset;
1043                 desc->sg_req[i].chan_reg.dma_sm0ar = dest + offset;
1044                 desc->sg_req[i].chan_reg.dma_sndtr = xfer_count;
1045                 desc->sg_req[i].len = xfer_count;
1046         }
1047
1048         desc->num_sgs = num_sgs;
1049         desc->cyclic = false;
1050
1051         return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
1052 }
1053
1054 static u32 stm32_dma_get_remaining_bytes(struct stm32_dma_chan *chan)
1055 {
1056         u32 dma_scr, width, ndtr;
1057         struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
1058
1059         dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
1060         width = STM32_DMA_SCR_PSIZE_GET(dma_scr);
1061         ndtr = stm32_dma_read(dmadev, STM32_DMA_SNDTR(chan->id));
1062
1063         return ndtr << width;
1064 }
1065
1066 /**
1067  * stm32_dma_is_current_sg - check that expected sg_req is currently transferred
1068  * @chan: dma channel
1069  *
1070  * This function called when IRQ are disable, checks that the hardware has not
1071  * switched on the next transfer in double buffer mode. The test is done by
1072  * comparing the next_sg memory address with the hardware related register
1073  * (based on CT bit value).
1074  *
1075  * Returns true if expected current transfer is still running or double
1076  * buffer mode is not activated.
1077  */
1078 static bool stm32_dma_is_current_sg(struct stm32_dma_chan *chan)
1079 {
1080         struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
1081         struct stm32_dma_sg_req *sg_req;
1082         u32 dma_scr, dma_smar, id;
1083
1084         id = chan->id;
1085         dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
1086
1087         if (!(dma_scr & STM32_DMA_SCR_DBM))
1088                 return true;
1089
1090         sg_req = &chan->desc->sg_req[chan->next_sg];
1091
1092         if (dma_scr & STM32_DMA_SCR_CT) {
1093                 dma_smar = stm32_dma_read(dmadev, STM32_DMA_SM0AR(id));
1094                 return (dma_smar == sg_req->chan_reg.dma_sm0ar);
1095         }
1096
1097         dma_smar = stm32_dma_read(dmadev, STM32_DMA_SM1AR(id));
1098
1099         return (dma_smar == sg_req->chan_reg.dma_sm1ar);
1100 }
1101
1102 static size_t stm32_dma_desc_residue(struct stm32_dma_chan *chan,
1103                                      struct stm32_dma_desc *desc,
1104                                      u32 next_sg)
1105 {
1106         u32 modulo, burst_size;
1107         u32 residue;
1108         u32 n_sg = next_sg;
1109         struct stm32_dma_sg_req *sg_req = &chan->desc->sg_req[chan->next_sg];
1110         int i;
1111
1112         /*
1113          * Calculate the residue means compute the descriptors
1114          * information:
1115          * - the sg_req currently transferred
1116          * - the Hardware remaining position in this sg (NDTR bits field).
1117          *
1118          * A race condition may occur if DMA is running in cyclic or double
1119          * buffer mode, since the DMA register are automatically reloaded at end
1120          * of period transfer. The hardware may have switched to the next
1121          * transfer (CT bit updated) just before the position (SxNDTR reg) is
1122          * read.
1123          * In this case the SxNDTR reg could (or not) correspond to the new
1124          * transfer position, and not the expected one.
1125          * The strategy implemented in the stm32 driver is to:
1126          *  - read the SxNDTR register
1127          *  - crosscheck that hardware is still in current transfer.
1128          * In case of switch, we can assume that the DMA is at the beginning of
1129          * the next transfer. So we approximate the residue in consequence, by
1130          * pointing on the beginning of next transfer.
1131          *
1132          * This race condition doesn't apply for none cyclic mode, as double
1133          * buffer is not used. In such situation registers are updated by the
1134          * software.
1135          */
1136
1137         residue = stm32_dma_get_remaining_bytes(chan);
1138
1139         if (!stm32_dma_is_current_sg(chan)) {
1140                 n_sg++;
1141                 if (n_sg == chan->desc->num_sgs)
1142                         n_sg = 0;
1143                 residue = sg_req->len;
1144         }
1145
1146         /*
1147          * In cyclic mode, for the last period, residue = remaining bytes
1148          * from NDTR,
1149          * else for all other periods in cyclic mode, and in sg mode,
1150          * residue = remaining bytes from NDTR + remaining
1151          * periods/sg to be transferred
1152          */
1153         if (!chan->desc->cyclic || n_sg != 0)
1154                 for (i = n_sg; i < desc->num_sgs; i++)
1155                         residue += desc->sg_req[i].len;
1156
1157         if (!chan->mem_burst)
1158                 return residue;
1159
1160         burst_size = chan->mem_burst * chan->mem_width;
1161         modulo = residue % burst_size;
1162         if (modulo)
1163                 residue = residue - modulo + burst_size;
1164
1165         return residue;
1166 }
1167
1168 static enum dma_status stm32_dma_tx_status(struct dma_chan *c,
1169                                            dma_cookie_t cookie,
1170                                            struct dma_tx_state *state)
1171 {
1172         struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
1173         struct virt_dma_desc *vdesc;
1174         enum dma_status status;
1175         unsigned long flags;
1176         u32 residue = 0;
1177
1178         status = dma_cookie_status(c, cookie, state);
1179         if (status == DMA_COMPLETE || !state)
1180                 return status;
1181
1182         spin_lock_irqsave(&chan->vchan.lock, flags);
1183         vdesc = vchan_find_desc(&chan->vchan, cookie);
1184         if (chan->desc && cookie == chan->desc->vdesc.tx.cookie)
1185                 residue = stm32_dma_desc_residue(chan, chan->desc,
1186                                                  chan->next_sg);
1187         else if (vdesc)
1188                 residue = stm32_dma_desc_residue(chan,
1189                                                  to_stm32_dma_desc(vdesc), 0);
1190         dma_set_residue(state, residue);
1191
1192         spin_unlock_irqrestore(&chan->vchan.lock, flags);
1193
1194         return status;
1195 }
1196
1197 static int stm32_dma_alloc_chan_resources(struct dma_chan *c)
1198 {
1199         struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
1200         struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
1201         int ret;
1202
1203         chan->config_init = false;
1204
1205         ret = pm_runtime_resume_and_get(dmadev->ddev.dev);
1206         if (ret < 0)
1207                 return ret;
1208
1209         ret = stm32_dma_disable_chan(chan);
1210         if (ret < 0)
1211                 pm_runtime_put(dmadev->ddev.dev);
1212
1213         return ret;
1214 }
1215
1216 static void stm32_dma_free_chan_resources(struct dma_chan *c)
1217 {
1218         struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
1219         struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
1220         unsigned long flags;
1221
1222         dev_dbg(chan2dev(chan), "Freeing channel %d\n", chan->id);
1223
1224         if (chan->busy) {
1225                 spin_lock_irqsave(&chan->vchan.lock, flags);
1226                 stm32_dma_stop(chan);
1227                 chan->desc = NULL;
1228                 spin_unlock_irqrestore(&chan->vchan.lock, flags);
1229         }
1230
1231         pm_runtime_put(dmadev->ddev.dev);
1232
1233         vchan_free_chan_resources(to_virt_chan(c));
1234         stm32_dma_clear_reg(&chan->chan_reg);
1235         chan->threshold = 0;
1236 }
1237
1238 static void stm32_dma_desc_free(struct virt_dma_desc *vdesc)
1239 {
1240         kfree(container_of(vdesc, struct stm32_dma_desc, vdesc));
1241 }
1242
1243 static void stm32_dma_set_config(struct stm32_dma_chan *chan,
1244                                  struct stm32_dma_cfg *cfg)
1245 {
1246         stm32_dma_clear_reg(&chan->chan_reg);
1247
1248         chan->chan_reg.dma_scr = cfg->stream_config & STM32_DMA_SCR_CFG_MASK;
1249         chan->chan_reg.dma_scr |= STM32_DMA_SCR_REQ(cfg->request_line);
1250
1251         /* Enable Interrupts  */
1252         chan->chan_reg.dma_scr |= STM32_DMA_SCR_TEIE | STM32_DMA_SCR_TCIE;
1253
1254         chan->threshold = STM32_DMA_THRESHOLD_FTR_GET(cfg->features);
1255         if (STM32_DMA_DIRECT_MODE_GET(cfg->features))
1256                 chan->threshold = STM32_DMA_FIFO_THRESHOLD_NONE;
1257         if (STM32_DMA_ALT_ACK_MODE_GET(cfg->features))
1258                 chan->chan_reg.dma_scr |= STM32_DMA_SCR_TRBUFF;
1259 }
1260
1261 static struct dma_chan *stm32_dma_of_xlate(struct of_phandle_args *dma_spec,
1262                                            struct of_dma *ofdma)
1263 {
1264         struct stm32_dma_device *dmadev = ofdma->of_dma_data;
1265         struct device *dev = dmadev->ddev.dev;
1266         struct stm32_dma_cfg cfg;
1267         struct stm32_dma_chan *chan;
1268         struct dma_chan *c;
1269
1270         if (dma_spec->args_count < 4) {
1271                 dev_err(dev, "Bad number of cells\n");
1272                 return NULL;
1273         }
1274
1275         cfg.channel_id = dma_spec->args[0];
1276         cfg.request_line = dma_spec->args[1];
1277         cfg.stream_config = dma_spec->args[2];
1278         cfg.features = dma_spec->args[3];
1279
1280         if (cfg.channel_id >= STM32_DMA_MAX_CHANNELS ||
1281             cfg.request_line >= STM32_DMA_MAX_REQUEST_ID) {
1282                 dev_err(dev, "Bad channel and/or request id\n");
1283                 return NULL;
1284         }
1285
1286         chan = &dmadev->chan[cfg.channel_id];
1287
1288         c = dma_get_slave_channel(&chan->vchan.chan);
1289         if (!c) {
1290                 dev_err(dev, "No more channels available\n");
1291                 return NULL;
1292         }
1293
1294         stm32_dma_set_config(chan, &cfg);
1295
1296         return c;
1297 }
1298
1299 static const struct of_device_id stm32_dma_of_match[] = {
1300         { .compatible = "st,stm32-dma", },
1301         { /* sentinel */ },
1302 };
1303 MODULE_DEVICE_TABLE(of, stm32_dma_of_match);
1304
1305 static int stm32_dma_probe(struct platform_device *pdev)
1306 {
1307         struct stm32_dma_chan *chan;
1308         struct stm32_dma_device *dmadev;
1309         struct dma_device *dd;
1310         const struct of_device_id *match;
1311         struct resource *res;
1312         struct reset_control *rst;
1313         int i, ret;
1314
1315         match = of_match_device(stm32_dma_of_match, &pdev->dev);
1316         if (!match) {
1317                 dev_err(&pdev->dev, "Error: No device match found\n");
1318                 return -ENODEV;
1319         }
1320
1321         dmadev = devm_kzalloc(&pdev->dev, sizeof(*dmadev), GFP_KERNEL);
1322         if (!dmadev)
1323                 return -ENOMEM;
1324
1325         dd = &dmadev->ddev;
1326
1327         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1328         dmadev->base = devm_ioremap_resource(&pdev->dev, res);
1329         if (IS_ERR(dmadev->base))
1330                 return PTR_ERR(dmadev->base);
1331
1332         dmadev->clk = devm_clk_get(&pdev->dev, NULL);
1333         if (IS_ERR(dmadev->clk))
1334                 return dev_err_probe(&pdev->dev, PTR_ERR(dmadev->clk), "Can't get clock\n");
1335
1336         ret = clk_prepare_enable(dmadev->clk);
1337         if (ret < 0) {
1338                 dev_err(&pdev->dev, "clk_prep_enable error: %d\n", ret);
1339                 return ret;
1340         }
1341
1342         dmadev->mem2mem = of_property_read_bool(pdev->dev.of_node,
1343                                                 "st,mem2mem");
1344
1345         rst = devm_reset_control_get(&pdev->dev, NULL);
1346         if (IS_ERR(rst)) {
1347                 ret = PTR_ERR(rst);
1348                 if (ret == -EPROBE_DEFER)
1349                         goto clk_free;
1350         } else {
1351                 reset_control_assert(rst);
1352                 udelay(2);
1353                 reset_control_deassert(rst);
1354         }
1355
1356         dma_set_max_seg_size(&pdev->dev, STM32_DMA_ALIGNED_MAX_DATA_ITEMS);
1357
1358         dma_cap_set(DMA_SLAVE, dd->cap_mask);
1359         dma_cap_set(DMA_PRIVATE, dd->cap_mask);
1360         dma_cap_set(DMA_CYCLIC, dd->cap_mask);
1361         dd->device_alloc_chan_resources = stm32_dma_alloc_chan_resources;
1362         dd->device_free_chan_resources = stm32_dma_free_chan_resources;
1363         dd->device_tx_status = stm32_dma_tx_status;
1364         dd->device_issue_pending = stm32_dma_issue_pending;
1365         dd->device_prep_slave_sg = stm32_dma_prep_slave_sg;
1366         dd->device_prep_dma_cyclic = stm32_dma_prep_dma_cyclic;
1367         dd->device_config = stm32_dma_slave_config;
1368         dd->device_terminate_all = stm32_dma_terminate_all;
1369         dd->device_synchronize = stm32_dma_synchronize;
1370         dd->src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
1371                 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
1372                 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
1373         dd->dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
1374                 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
1375                 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
1376         dd->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1377         dd->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1378         dd->copy_align = DMAENGINE_ALIGN_32_BYTES;
1379         dd->max_burst = STM32_DMA_MAX_BURST;
1380         dd->descriptor_reuse = true;
1381         dd->dev = &pdev->dev;
1382         INIT_LIST_HEAD(&dd->channels);
1383
1384         if (dmadev->mem2mem) {
1385                 dma_cap_set(DMA_MEMCPY, dd->cap_mask);
1386                 dd->device_prep_dma_memcpy = stm32_dma_prep_dma_memcpy;
1387                 dd->directions |= BIT(DMA_MEM_TO_MEM);
1388         }
1389
1390         for (i = 0; i < STM32_DMA_MAX_CHANNELS; i++) {
1391                 chan = &dmadev->chan[i];
1392                 chan->id = i;
1393                 chan->vchan.desc_free = stm32_dma_desc_free;
1394                 vchan_init(&chan->vchan, dd);
1395         }
1396
1397         ret = dma_async_device_register(dd);
1398         if (ret)
1399                 goto clk_free;
1400
1401         for (i = 0; i < STM32_DMA_MAX_CHANNELS; i++) {
1402                 chan = &dmadev->chan[i];
1403                 ret = platform_get_irq(pdev, i);
1404                 if (ret < 0)
1405                         goto err_unregister;
1406                 chan->irq = ret;
1407
1408                 ret = devm_request_irq(&pdev->dev, chan->irq,
1409                                        stm32_dma_chan_irq, 0,
1410                                        dev_name(chan2dev(chan)), chan);
1411                 if (ret) {
1412                         dev_err(&pdev->dev,
1413                                 "request_irq failed with err %d channel %d\n",
1414                                 ret, i);
1415                         goto err_unregister;
1416                 }
1417         }
1418
1419         ret = of_dma_controller_register(pdev->dev.of_node,
1420                                          stm32_dma_of_xlate, dmadev);
1421         if (ret < 0) {
1422                 dev_err(&pdev->dev,
1423                         "STM32 DMA DMA OF registration failed %d\n", ret);
1424                 goto err_unregister;
1425         }
1426
1427         platform_set_drvdata(pdev, dmadev);
1428
1429         pm_runtime_set_active(&pdev->dev);
1430         pm_runtime_enable(&pdev->dev);
1431         pm_runtime_get_noresume(&pdev->dev);
1432         pm_runtime_put(&pdev->dev);
1433
1434         dev_info(&pdev->dev, "STM32 DMA driver registered\n");
1435
1436         return 0;
1437
1438 err_unregister:
1439         dma_async_device_unregister(dd);
1440 clk_free:
1441         clk_disable_unprepare(dmadev->clk);
1442
1443         return ret;
1444 }
1445
1446 #ifdef CONFIG_PM
1447 static int stm32_dma_runtime_suspend(struct device *dev)
1448 {
1449         struct stm32_dma_device *dmadev = dev_get_drvdata(dev);
1450
1451         clk_disable_unprepare(dmadev->clk);
1452
1453         return 0;
1454 }
1455
1456 static int stm32_dma_runtime_resume(struct device *dev)
1457 {
1458         struct stm32_dma_device *dmadev = dev_get_drvdata(dev);
1459         int ret;
1460
1461         ret = clk_prepare_enable(dmadev->clk);
1462         if (ret) {
1463                 dev_err(dev, "failed to prepare_enable clock\n");
1464                 return ret;
1465         }
1466
1467         return 0;
1468 }
1469 #endif
1470
1471 #ifdef CONFIG_PM_SLEEP
1472 static int stm32_dma_suspend(struct device *dev)
1473 {
1474         struct stm32_dma_device *dmadev = dev_get_drvdata(dev);
1475         int id, ret, scr;
1476
1477         ret = pm_runtime_resume_and_get(dev);
1478         if (ret < 0)
1479                 return ret;
1480
1481         for (id = 0; id < STM32_DMA_MAX_CHANNELS; id++) {
1482                 scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
1483                 if (scr & STM32_DMA_SCR_EN) {
1484                         dev_warn(dev, "Suspend is prevented by Chan %i\n", id);
1485                         return -EBUSY;
1486                 }
1487         }
1488
1489         pm_runtime_put_sync(dev);
1490
1491         pm_runtime_force_suspend(dev);
1492
1493         return 0;
1494 }
1495
1496 static int stm32_dma_resume(struct device *dev)
1497 {
1498         return pm_runtime_force_resume(dev);
1499 }
1500 #endif
1501
1502 static const struct dev_pm_ops stm32_dma_pm_ops = {
1503         SET_SYSTEM_SLEEP_PM_OPS(stm32_dma_suspend, stm32_dma_resume)
1504         SET_RUNTIME_PM_OPS(stm32_dma_runtime_suspend,
1505                            stm32_dma_runtime_resume, NULL)
1506 };
1507
1508 static struct platform_driver stm32_dma_driver = {
1509         .driver = {
1510                 .name = "stm32-dma",
1511                 .of_match_table = stm32_dma_of_match,
1512                 .pm = &stm32_dma_pm_ops,
1513         },
1514         .probe = stm32_dma_probe,
1515 };
1516
1517 static int __init stm32_dma_init(void)
1518 {
1519         return platform_driver_register(&stm32_dma_driver);
1520 }
1521 subsys_initcall(stm32_dma_init);