1 // SPDX-License-Identifier: GPL-2.0-only
3 * Driver for STM32 DMA controller
5 * Inspired by dma-jz4740.c and tegra20-apb-dma.c
7 * Copyright (C) M'boumba Cedric Madianga 2015
8 * Author: M'boumba Cedric Madianga <cedric.madianga@gmail.com>
9 * Pierre-Yves Mordret <pierre-yves.mordret@st.com>
12 #include <linux/clk.h>
13 #include <linux/delay.h>
14 #include <linux/dmaengine.h>
15 #include <linux/dma-mapping.h>
16 #include <linux/err.h>
17 #include <linux/init.h>
18 #include <linux/iopoll.h>
19 #include <linux/jiffies.h>
20 #include <linux/list.h>
21 #include <linux/module.h>
23 #include <linux/of_device.h>
24 #include <linux/of_dma.h>
25 #include <linux/platform_device.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/reset.h>
28 #include <linux/sched.h>
29 #include <linux/slab.h>
33 #define STM32_DMA_LISR 0x0000 /* DMA Low Int Status Reg */
34 #define STM32_DMA_HISR 0x0004 /* DMA High Int Status Reg */
35 #define STM32_DMA_LIFCR 0x0008 /* DMA Low Int Flag Clear Reg */
36 #define STM32_DMA_HIFCR 0x000c /* DMA High Int Flag Clear Reg */
37 #define STM32_DMA_TCI BIT(5) /* Transfer Complete Interrupt */
38 #define STM32_DMA_HTI BIT(4) /* Half Transfer Interrupt */
39 #define STM32_DMA_TEI BIT(3) /* Transfer Error Interrupt */
40 #define STM32_DMA_DMEI BIT(2) /* Direct Mode Error Interrupt */
41 #define STM32_DMA_FEI BIT(0) /* FIFO Error Interrupt */
42 #define STM32_DMA_MASKI (STM32_DMA_TCI \
47 /* DMA Stream x Configuration Register */
48 #define STM32_DMA_SCR(x) (0x0010 + 0x18 * (x)) /* x = 0..7 */
49 #define STM32_DMA_SCR_REQ(n) ((n & 0x7) << 25)
50 #define STM32_DMA_SCR_MBURST_MASK GENMASK(24, 23)
51 #define STM32_DMA_SCR_MBURST(n) ((n & 0x3) << 23)
52 #define STM32_DMA_SCR_PBURST_MASK GENMASK(22, 21)
53 #define STM32_DMA_SCR_PBURST(n) ((n & 0x3) << 21)
54 #define STM32_DMA_SCR_PL_MASK GENMASK(17, 16)
55 #define STM32_DMA_SCR_PL(n) ((n & 0x3) << 16)
56 #define STM32_DMA_SCR_MSIZE_MASK GENMASK(14, 13)
57 #define STM32_DMA_SCR_MSIZE(n) ((n & 0x3) << 13)
58 #define STM32_DMA_SCR_PSIZE_MASK GENMASK(12, 11)
59 #define STM32_DMA_SCR_PSIZE(n) ((n & 0x3) << 11)
60 #define STM32_DMA_SCR_PSIZE_GET(n) ((n & STM32_DMA_SCR_PSIZE_MASK) >> 11)
61 #define STM32_DMA_SCR_DIR_MASK GENMASK(7, 6)
62 #define STM32_DMA_SCR_DIR(n) ((n & 0x3) << 6)
63 #define STM32_DMA_SCR_TRBUFF BIT(20) /* Bufferable transfer for USART/UART */
64 #define STM32_DMA_SCR_CT BIT(19) /* Target in double buffer */
65 #define STM32_DMA_SCR_DBM BIT(18) /* Double Buffer Mode */
66 #define STM32_DMA_SCR_PINCOS BIT(15) /* Peripheral inc offset size */
67 #define STM32_DMA_SCR_MINC BIT(10) /* Memory increment mode */
68 #define STM32_DMA_SCR_PINC BIT(9) /* Peripheral increment mode */
69 #define STM32_DMA_SCR_CIRC BIT(8) /* Circular mode */
70 #define STM32_DMA_SCR_PFCTRL BIT(5) /* Peripheral Flow Controller */
71 #define STM32_DMA_SCR_TCIE BIT(4) /* Transfer Complete Int Enable
73 #define STM32_DMA_SCR_TEIE BIT(2) /* Transfer Error Int Enable */
74 #define STM32_DMA_SCR_DMEIE BIT(1) /* Direct Mode Err Int Enable */
75 #define STM32_DMA_SCR_EN BIT(0) /* Stream Enable */
76 #define STM32_DMA_SCR_CFG_MASK (STM32_DMA_SCR_PINC \
77 | STM32_DMA_SCR_MINC \
78 | STM32_DMA_SCR_PINCOS \
79 | STM32_DMA_SCR_PL_MASK)
80 #define STM32_DMA_SCR_IRQ_MASK (STM32_DMA_SCR_TCIE \
81 | STM32_DMA_SCR_TEIE \
82 | STM32_DMA_SCR_DMEIE)
84 /* DMA Stream x number of data register */
85 #define STM32_DMA_SNDTR(x) (0x0014 + 0x18 * (x))
87 /* DMA stream peripheral address register */
88 #define STM32_DMA_SPAR(x) (0x0018 + 0x18 * (x))
90 /* DMA stream x memory 0 address register */
91 #define STM32_DMA_SM0AR(x) (0x001c + 0x18 * (x))
93 /* DMA stream x memory 1 address register */
94 #define STM32_DMA_SM1AR(x) (0x0020 + 0x18 * (x))
96 /* DMA stream x FIFO control register */
97 #define STM32_DMA_SFCR(x) (0x0024 + 0x18 * (x))
98 #define STM32_DMA_SFCR_FTH_MASK GENMASK(1, 0)
99 #define STM32_DMA_SFCR_FTH(n) (n & STM32_DMA_SFCR_FTH_MASK)
100 #define STM32_DMA_SFCR_FEIE BIT(7) /* FIFO error interrupt enable */
101 #define STM32_DMA_SFCR_DMDIS BIT(2) /* Direct mode disable */
102 #define STM32_DMA_SFCR_MASK (STM32_DMA_SFCR_FEIE \
103 | STM32_DMA_SFCR_DMDIS)
106 #define STM32_DMA_DEV_TO_MEM 0x00
107 #define STM32_DMA_MEM_TO_DEV 0x01
108 #define STM32_DMA_MEM_TO_MEM 0x02
110 /* DMA priority level */
111 #define STM32_DMA_PRIORITY_LOW 0x00
112 #define STM32_DMA_PRIORITY_MEDIUM 0x01
113 #define STM32_DMA_PRIORITY_HIGH 0x02
114 #define STM32_DMA_PRIORITY_VERY_HIGH 0x03
116 /* DMA FIFO threshold selection */
117 #define STM32_DMA_FIFO_THRESHOLD_1QUARTERFULL 0x00
118 #define STM32_DMA_FIFO_THRESHOLD_HALFFULL 0x01
119 #define STM32_DMA_FIFO_THRESHOLD_3QUARTERSFULL 0x02
120 #define STM32_DMA_FIFO_THRESHOLD_FULL 0x03
121 #define STM32_DMA_FIFO_THRESHOLD_NONE 0x04
123 #define STM32_DMA_MAX_DATA_ITEMS 0xffff
125 * Valid transfer starts from @0 to @0xFFFE leading to unaligned scatter
126 * gather at boundary. Thus it's safer to round down this value on FIFO
129 #define STM32_DMA_ALIGNED_MAX_DATA_ITEMS \
130 ALIGN_DOWN(STM32_DMA_MAX_DATA_ITEMS, 16)
131 #define STM32_DMA_MAX_CHANNELS 0x08
132 #define STM32_DMA_MAX_REQUEST_ID 0x08
133 #define STM32_DMA_MAX_DATA_PARAM 0x03
134 #define STM32_DMA_FIFO_SIZE 16 /* FIFO is 16 bytes */
135 #define STM32_DMA_MIN_BURST 4
136 #define STM32_DMA_MAX_BURST 16
139 #define STM32_DMA_THRESHOLD_FTR_MASK GENMASK(1, 0)
140 #define STM32_DMA_THRESHOLD_FTR_GET(n) ((n) & STM32_DMA_THRESHOLD_FTR_MASK)
141 #define STM32_DMA_DIRECT_MODE_MASK BIT(2)
142 #define STM32_DMA_DIRECT_MODE_GET(n) (((n) & STM32_DMA_DIRECT_MODE_MASK) >> 2)
143 #define STM32_DMA_ALT_ACK_MODE_MASK BIT(4)
144 #define STM32_DMA_ALT_ACK_MODE_GET(n) (((n) & STM32_DMA_ALT_ACK_MODE_MASK) >> 4)
146 enum stm32_dma_width {
152 enum stm32_dma_burst_size {
153 STM32_DMA_BURST_SINGLE,
154 STM32_DMA_BURST_INCR4,
155 STM32_DMA_BURST_INCR8,
156 STM32_DMA_BURST_INCR16,
160 * struct stm32_dma_cfg - STM32 DMA custom configuration
161 * @channel_id: channel ID
162 * @request_line: DMA request
163 * @stream_config: 32bit mask specifying the DMA channel configuration
164 * @features: 32bit mask specifying the DMA Feature list
166 struct stm32_dma_cfg {
173 struct stm32_dma_chan_reg {
186 struct stm32_dma_sg_req {
188 struct stm32_dma_chan_reg chan_reg;
191 struct stm32_dma_desc {
192 struct virt_dma_desc vdesc;
195 struct stm32_dma_sg_req sg_req[];
198 struct stm32_dma_chan {
199 struct virt_dma_chan vchan;
204 struct stm32_dma_desc *desc;
206 struct dma_slave_config dma_sconfig;
207 struct stm32_dma_chan_reg chan_reg;
213 struct stm32_dma_device {
214 struct dma_device ddev;
218 struct stm32_dma_chan chan[STM32_DMA_MAX_CHANNELS];
221 static struct stm32_dma_device *stm32_dma_get_dev(struct stm32_dma_chan *chan)
223 return container_of(chan->vchan.chan.device, struct stm32_dma_device,
227 static struct stm32_dma_chan *to_stm32_dma_chan(struct dma_chan *c)
229 return container_of(c, struct stm32_dma_chan, vchan.chan);
232 static struct stm32_dma_desc *to_stm32_dma_desc(struct virt_dma_desc *vdesc)
234 return container_of(vdesc, struct stm32_dma_desc, vdesc);
237 static struct device *chan2dev(struct stm32_dma_chan *chan)
239 return &chan->vchan.chan.dev->device;
242 static u32 stm32_dma_read(struct stm32_dma_device *dmadev, u32 reg)
244 return readl_relaxed(dmadev->base + reg);
247 static void stm32_dma_write(struct stm32_dma_device *dmadev, u32 reg, u32 val)
249 writel_relaxed(val, dmadev->base + reg);
252 static int stm32_dma_get_width(struct stm32_dma_chan *chan,
253 enum dma_slave_buswidth width)
256 case DMA_SLAVE_BUSWIDTH_1_BYTE:
257 return STM32_DMA_BYTE;
258 case DMA_SLAVE_BUSWIDTH_2_BYTES:
259 return STM32_DMA_HALF_WORD;
260 case DMA_SLAVE_BUSWIDTH_4_BYTES:
261 return STM32_DMA_WORD;
263 dev_err(chan2dev(chan), "Dma bus width not supported\n");
268 static enum dma_slave_buswidth stm32_dma_get_max_width(u32 buf_len,
272 enum dma_slave_buswidth max_width;
275 if (threshold == STM32_DMA_FIFO_THRESHOLD_FULL)
276 max_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
278 max_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
280 while ((buf_len < max_width || buf_len % max_width) &&
281 max_width > DMA_SLAVE_BUSWIDTH_1_BYTE)
282 max_width = max_width >> 1;
284 if (do_div(addr, max_width))
285 max_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
290 static bool stm32_dma_fifo_threshold_is_allowed(u32 burst, u32 threshold,
291 enum dma_slave_buswidth width)
295 if (threshold == STM32_DMA_FIFO_THRESHOLD_NONE)
298 if (width != DMA_SLAVE_BUSWIDTH_UNDEFINED) {
301 * If number of beats fit in several whole bursts
302 * this configuration is allowed.
304 remaining = ((STM32_DMA_FIFO_SIZE / width) *
305 (threshold + 1) / 4) % burst;
317 static bool stm32_dma_is_burst_possible(u32 buf_len, u32 threshold)
319 /* If FIFO direct mode, burst is not possible */
320 if (threshold == STM32_DMA_FIFO_THRESHOLD_NONE)
324 * Buffer or period length has to be aligned on FIFO depth.
325 * Otherwise bytes may be stuck within FIFO at buffer or period
328 return ((buf_len % ((threshold + 1) * 4)) == 0);
331 static u32 stm32_dma_get_best_burst(u32 buf_len, u32 max_burst, u32 threshold,
332 enum dma_slave_buswidth width)
334 u32 best_burst = max_burst;
336 if (best_burst == 1 || !stm32_dma_is_burst_possible(buf_len, threshold))
339 while ((buf_len < best_burst * width && best_burst > 1) ||
340 !stm32_dma_fifo_threshold_is_allowed(best_burst, threshold,
342 if (best_burst > STM32_DMA_MIN_BURST)
343 best_burst = best_burst >> 1;
351 static int stm32_dma_get_burst(struct stm32_dma_chan *chan, u32 maxburst)
356 return STM32_DMA_BURST_SINGLE;
358 return STM32_DMA_BURST_INCR4;
360 return STM32_DMA_BURST_INCR8;
362 return STM32_DMA_BURST_INCR16;
364 dev_err(chan2dev(chan), "Dma burst size not supported\n");
369 static void stm32_dma_set_fifo_config(struct stm32_dma_chan *chan,
370 u32 src_burst, u32 dst_burst)
372 chan->chan_reg.dma_sfcr &= ~STM32_DMA_SFCR_MASK;
373 chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_DMEIE;
375 if (!src_burst && !dst_burst) {
376 /* Using direct mode */
377 chan->chan_reg.dma_scr |= STM32_DMA_SCR_DMEIE;
379 /* Using FIFO mode */
380 chan->chan_reg.dma_sfcr |= STM32_DMA_SFCR_MASK;
384 static int stm32_dma_slave_config(struct dma_chan *c,
385 struct dma_slave_config *config)
387 struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
389 memcpy(&chan->dma_sconfig, config, sizeof(*config));
391 chan->config_init = true;
396 static u32 stm32_dma_irq_status(struct stm32_dma_chan *chan)
398 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
402 * Read "flags" from DMA_xISR register corresponding to the selected
403 * DMA channel at the correct bit offset inside that register.
405 * If (ch % 4) is 2 or 3, left shift the mask by 16 bits.
406 * If (ch % 4) is 1 or 3, additionally left shift the mask by 6 bits.
410 dma_isr = stm32_dma_read(dmadev, STM32_DMA_HISR);
412 dma_isr = stm32_dma_read(dmadev, STM32_DMA_LISR);
414 flags = dma_isr >> (((chan->id & 2) << 3) | ((chan->id & 1) * 6));
416 return flags & STM32_DMA_MASKI;
419 static void stm32_dma_irq_clear(struct stm32_dma_chan *chan, u32 flags)
421 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
425 * Write "flags" to the DMA_xIFCR register corresponding to the selected
426 * DMA channel at the correct bit offset inside that register.
428 * If (ch % 4) is 2 or 3, left shift the mask by 16 bits.
429 * If (ch % 4) is 1 or 3, additionally left shift the mask by 6 bits.
431 flags &= STM32_DMA_MASKI;
432 dma_ifcr = flags << (((chan->id & 2) << 3) | ((chan->id & 1) * 6));
435 stm32_dma_write(dmadev, STM32_DMA_HIFCR, dma_ifcr);
437 stm32_dma_write(dmadev, STM32_DMA_LIFCR, dma_ifcr);
440 static int stm32_dma_disable_chan(struct stm32_dma_chan *chan)
442 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
443 u32 dma_scr, id, reg;
446 reg = STM32_DMA_SCR(id);
447 dma_scr = stm32_dma_read(dmadev, reg);
449 if (dma_scr & STM32_DMA_SCR_EN) {
450 dma_scr &= ~STM32_DMA_SCR_EN;
451 stm32_dma_write(dmadev, reg, dma_scr);
453 return readl_relaxed_poll_timeout_atomic(dmadev->base + reg,
454 dma_scr, !(dma_scr & STM32_DMA_SCR_EN),
461 static void stm32_dma_stop(struct stm32_dma_chan *chan)
463 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
464 u32 dma_scr, dma_sfcr, status;
467 /* Disable interrupts */
468 dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
469 dma_scr &= ~STM32_DMA_SCR_IRQ_MASK;
470 stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), dma_scr);
471 dma_sfcr = stm32_dma_read(dmadev, STM32_DMA_SFCR(chan->id));
472 dma_sfcr &= ~STM32_DMA_SFCR_FEIE;
473 stm32_dma_write(dmadev, STM32_DMA_SFCR(chan->id), dma_sfcr);
476 ret = stm32_dma_disable_chan(chan);
480 /* Clear interrupt status if it is there */
481 status = stm32_dma_irq_status(chan);
483 dev_dbg(chan2dev(chan), "%s(): clearing interrupt: 0x%08x\n",
485 stm32_dma_irq_clear(chan, status);
491 static int stm32_dma_terminate_all(struct dma_chan *c)
493 struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
497 spin_lock_irqsave(&chan->vchan.lock, flags);
500 vchan_terminate_vdesc(&chan->desc->vdesc);
502 stm32_dma_stop(chan);
506 vchan_get_all_descriptors(&chan->vchan, &head);
507 spin_unlock_irqrestore(&chan->vchan.lock, flags);
508 vchan_dma_desc_free_list(&chan->vchan, &head);
513 static void stm32_dma_synchronize(struct dma_chan *c)
515 struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
517 vchan_synchronize(&chan->vchan);
520 static void stm32_dma_dump_reg(struct stm32_dma_chan *chan)
522 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
523 u32 scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
524 u32 ndtr = stm32_dma_read(dmadev, STM32_DMA_SNDTR(chan->id));
525 u32 spar = stm32_dma_read(dmadev, STM32_DMA_SPAR(chan->id));
526 u32 sm0ar = stm32_dma_read(dmadev, STM32_DMA_SM0AR(chan->id));
527 u32 sm1ar = stm32_dma_read(dmadev, STM32_DMA_SM1AR(chan->id));
528 u32 sfcr = stm32_dma_read(dmadev, STM32_DMA_SFCR(chan->id));
530 dev_dbg(chan2dev(chan), "SCR: 0x%08x\n", scr);
531 dev_dbg(chan2dev(chan), "NDTR: 0x%08x\n", ndtr);
532 dev_dbg(chan2dev(chan), "SPAR: 0x%08x\n", spar);
533 dev_dbg(chan2dev(chan), "SM0AR: 0x%08x\n", sm0ar);
534 dev_dbg(chan2dev(chan), "SM1AR: 0x%08x\n", sm1ar);
535 dev_dbg(chan2dev(chan), "SFCR: 0x%08x\n", sfcr);
538 static void stm32_dma_configure_next_sg(struct stm32_dma_chan *chan);
540 static void stm32_dma_start_transfer(struct stm32_dma_chan *chan)
542 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
543 struct virt_dma_desc *vdesc;
544 struct stm32_dma_sg_req *sg_req;
545 struct stm32_dma_chan_reg *reg;
549 ret = stm32_dma_disable_chan(chan);
554 vdesc = vchan_next_desc(&chan->vchan);
558 list_del(&vdesc->node);
560 chan->desc = to_stm32_dma_desc(vdesc);
564 if (chan->next_sg == chan->desc->num_sgs)
567 sg_req = &chan->desc->sg_req[chan->next_sg];
568 reg = &sg_req->chan_reg;
570 reg->dma_scr &= ~STM32_DMA_SCR_EN;
571 stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), reg->dma_scr);
572 stm32_dma_write(dmadev, STM32_DMA_SPAR(chan->id), reg->dma_spar);
573 stm32_dma_write(dmadev, STM32_DMA_SM0AR(chan->id), reg->dma_sm0ar);
574 stm32_dma_write(dmadev, STM32_DMA_SFCR(chan->id), reg->dma_sfcr);
575 stm32_dma_write(dmadev, STM32_DMA_SM1AR(chan->id), reg->dma_sm1ar);
576 stm32_dma_write(dmadev, STM32_DMA_SNDTR(chan->id), reg->dma_sndtr);
580 /* Clear interrupt status if it is there */
581 status = stm32_dma_irq_status(chan);
583 stm32_dma_irq_clear(chan, status);
585 if (chan->desc->cyclic)
586 stm32_dma_configure_next_sg(chan);
588 stm32_dma_dump_reg(chan);
591 reg->dma_scr |= STM32_DMA_SCR_EN;
592 stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), reg->dma_scr);
596 dev_dbg(chan2dev(chan), "vchan %pK: started\n", &chan->vchan);
599 static void stm32_dma_configure_next_sg(struct stm32_dma_chan *chan)
601 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
602 struct stm32_dma_sg_req *sg_req;
603 u32 dma_scr, dma_sm0ar, dma_sm1ar, id;
606 dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
608 if (dma_scr & STM32_DMA_SCR_DBM) {
609 if (chan->next_sg == chan->desc->num_sgs)
612 sg_req = &chan->desc->sg_req[chan->next_sg];
614 if (dma_scr & STM32_DMA_SCR_CT) {
615 dma_sm0ar = sg_req->chan_reg.dma_sm0ar;
616 stm32_dma_write(dmadev, STM32_DMA_SM0AR(id), dma_sm0ar);
617 dev_dbg(chan2dev(chan), "CT=1 <=> SM0AR: 0x%08x\n",
618 stm32_dma_read(dmadev, STM32_DMA_SM0AR(id)));
620 dma_sm1ar = sg_req->chan_reg.dma_sm1ar;
621 stm32_dma_write(dmadev, STM32_DMA_SM1AR(id), dma_sm1ar);
622 dev_dbg(chan2dev(chan), "CT=0 <=> SM1AR: 0x%08x\n",
623 stm32_dma_read(dmadev, STM32_DMA_SM1AR(id)));
628 static void stm32_dma_handle_chan_done(struct stm32_dma_chan *chan)
631 if (chan->desc->cyclic) {
632 vchan_cyclic_callback(&chan->desc->vdesc);
634 stm32_dma_configure_next_sg(chan);
637 if (chan->next_sg == chan->desc->num_sgs) {
638 vchan_cookie_complete(&chan->desc->vdesc);
641 stm32_dma_start_transfer(chan);
646 static irqreturn_t stm32_dma_chan_irq(int irq, void *devid)
648 struct stm32_dma_chan *chan = devid;
649 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
650 u32 status, scr, sfcr;
652 spin_lock(&chan->vchan.lock);
654 status = stm32_dma_irq_status(chan);
655 scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
656 sfcr = stm32_dma_read(dmadev, STM32_DMA_SFCR(chan->id));
658 if (status & STM32_DMA_FEI) {
659 stm32_dma_irq_clear(chan, STM32_DMA_FEI);
660 status &= ~STM32_DMA_FEI;
661 if (sfcr & STM32_DMA_SFCR_FEIE) {
662 if (!(scr & STM32_DMA_SCR_EN) &&
663 !(status & STM32_DMA_TCI))
664 dev_err(chan2dev(chan), "FIFO Error\n");
666 dev_dbg(chan2dev(chan), "FIFO over/underrun\n");
669 if (status & STM32_DMA_DMEI) {
670 stm32_dma_irq_clear(chan, STM32_DMA_DMEI);
671 status &= ~STM32_DMA_DMEI;
672 if (sfcr & STM32_DMA_SCR_DMEIE)
673 dev_dbg(chan2dev(chan), "Direct mode overrun\n");
676 if (status & STM32_DMA_TCI) {
677 stm32_dma_irq_clear(chan, STM32_DMA_TCI);
678 if (scr & STM32_DMA_SCR_TCIE)
679 stm32_dma_handle_chan_done(chan);
680 status &= ~STM32_DMA_TCI;
683 if (status & STM32_DMA_HTI) {
684 stm32_dma_irq_clear(chan, STM32_DMA_HTI);
685 status &= ~STM32_DMA_HTI;
689 stm32_dma_irq_clear(chan, status);
690 dev_err(chan2dev(chan), "DMA error: status=0x%08x\n", status);
691 if (!(scr & STM32_DMA_SCR_EN))
692 dev_err(chan2dev(chan), "chan disabled by HW\n");
695 spin_unlock(&chan->vchan.lock);
700 static void stm32_dma_issue_pending(struct dma_chan *c)
702 struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
705 spin_lock_irqsave(&chan->vchan.lock, flags);
706 if (vchan_issue_pending(&chan->vchan) && !chan->desc && !chan->busy) {
707 dev_dbg(chan2dev(chan), "vchan %pK: issued\n", &chan->vchan);
708 stm32_dma_start_transfer(chan);
711 spin_unlock_irqrestore(&chan->vchan.lock, flags);
714 static int stm32_dma_set_xfer_param(struct stm32_dma_chan *chan,
715 enum dma_transfer_direction direction,
716 enum dma_slave_buswidth *buswidth,
717 u32 buf_len, dma_addr_t buf_addr)
719 enum dma_slave_buswidth src_addr_width, dst_addr_width;
720 int src_bus_width, dst_bus_width;
721 int src_burst_size, dst_burst_size;
722 u32 src_maxburst, dst_maxburst, src_best_burst, dst_best_burst;
725 src_addr_width = chan->dma_sconfig.src_addr_width;
726 dst_addr_width = chan->dma_sconfig.dst_addr_width;
727 src_maxburst = chan->dma_sconfig.src_maxburst;
728 dst_maxburst = chan->dma_sconfig.dst_maxburst;
729 fifoth = chan->threshold;
733 /* Set device data size */
734 dst_bus_width = stm32_dma_get_width(chan, dst_addr_width);
735 if (dst_bus_width < 0)
736 return dst_bus_width;
738 /* Set device burst size */
739 dst_best_burst = stm32_dma_get_best_burst(buf_len,
744 dst_burst_size = stm32_dma_get_burst(chan, dst_best_burst);
745 if (dst_burst_size < 0)
746 return dst_burst_size;
748 /* Set memory data size */
749 src_addr_width = stm32_dma_get_max_width(buf_len, buf_addr,
751 chan->mem_width = src_addr_width;
752 src_bus_width = stm32_dma_get_width(chan, src_addr_width);
753 if (src_bus_width < 0)
754 return src_bus_width;
756 /* Set memory burst size */
757 src_maxburst = STM32_DMA_MAX_BURST;
758 src_best_burst = stm32_dma_get_best_burst(buf_len,
762 src_burst_size = stm32_dma_get_burst(chan, src_best_burst);
763 if (src_burst_size < 0)
764 return src_burst_size;
766 dma_scr = STM32_DMA_SCR_DIR(STM32_DMA_MEM_TO_DEV) |
767 STM32_DMA_SCR_PSIZE(dst_bus_width) |
768 STM32_DMA_SCR_MSIZE(src_bus_width) |
769 STM32_DMA_SCR_PBURST(dst_burst_size) |
770 STM32_DMA_SCR_MBURST(src_burst_size);
772 /* Set FIFO threshold */
773 chan->chan_reg.dma_sfcr &= ~STM32_DMA_SFCR_FTH_MASK;
774 if (fifoth != STM32_DMA_FIFO_THRESHOLD_NONE)
775 chan->chan_reg.dma_sfcr |= STM32_DMA_SFCR_FTH(fifoth);
777 /* Set peripheral address */
778 chan->chan_reg.dma_spar = chan->dma_sconfig.dst_addr;
779 *buswidth = dst_addr_width;
783 /* Set device data size */
784 src_bus_width = stm32_dma_get_width(chan, src_addr_width);
785 if (src_bus_width < 0)
786 return src_bus_width;
788 /* Set device burst size */
789 src_best_burst = stm32_dma_get_best_burst(buf_len,
793 chan->mem_burst = src_best_burst;
794 src_burst_size = stm32_dma_get_burst(chan, src_best_burst);
795 if (src_burst_size < 0)
796 return src_burst_size;
798 /* Set memory data size */
799 dst_addr_width = stm32_dma_get_max_width(buf_len, buf_addr,
801 chan->mem_width = dst_addr_width;
802 dst_bus_width = stm32_dma_get_width(chan, dst_addr_width);
803 if (dst_bus_width < 0)
804 return dst_bus_width;
806 /* Set memory burst size */
807 dst_maxburst = STM32_DMA_MAX_BURST;
808 dst_best_burst = stm32_dma_get_best_burst(buf_len,
812 chan->mem_burst = dst_best_burst;
813 dst_burst_size = stm32_dma_get_burst(chan, dst_best_burst);
814 if (dst_burst_size < 0)
815 return dst_burst_size;
817 dma_scr = STM32_DMA_SCR_DIR(STM32_DMA_DEV_TO_MEM) |
818 STM32_DMA_SCR_PSIZE(src_bus_width) |
819 STM32_DMA_SCR_MSIZE(dst_bus_width) |
820 STM32_DMA_SCR_PBURST(src_burst_size) |
821 STM32_DMA_SCR_MBURST(dst_burst_size);
823 /* Set FIFO threshold */
824 chan->chan_reg.dma_sfcr &= ~STM32_DMA_SFCR_FTH_MASK;
825 if (fifoth != STM32_DMA_FIFO_THRESHOLD_NONE)
826 chan->chan_reg.dma_sfcr |= STM32_DMA_SFCR_FTH(fifoth);
828 /* Set peripheral address */
829 chan->chan_reg.dma_spar = chan->dma_sconfig.src_addr;
830 *buswidth = chan->dma_sconfig.src_addr_width;
834 dev_err(chan2dev(chan), "Dma direction is not supported\n");
838 stm32_dma_set_fifo_config(chan, src_best_burst, dst_best_burst);
840 /* Set DMA control register */
841 chan->chan_reg.dma_scr &= ~(STM32_DMA_SCR_DIR_MASK |
842 STM32_DMA_SCR_PSIZE_MASK | STM32_DMA_SCR_MSIZE_MASK |
843 STM32_DMA_SCR_PBURST_MASK | STM32_DMA_SCR_MBURST_MASK);
844 chan->chan_reg.dma_scr |= dma_scr;
849 static void stm32_dma_clear_reg(struct stm32_dma_chan_reg *regs)
851 memset(regs, 0, sizeof(struct stm32_dma_chan_reg));
854 static struct dma_async_tx_descriptor *stm32_dma_prep_slave_sg(
855 struct dma_chan *c, struct scatterlist *sgl,
856 u32 sg_len, enum dma_transfer_direction direction,
857 unsigned long flags, void *context)
859 struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
860 struct stm32_dma_desc *desc;
861 struct scatterlist *sg;
862 enum dma_slave_buswidth buswidth;
866 if (!chan->config_init) {
867 dev_err(chan2dev(chan), "dma channel is not configured\n");
872 dev_err(chan2dev(chan), "Invalid segment length %d\n", sg_len);
876 desc = kzalloc(struct_size(desc, sg_req, sg_len), GFP_NOWAIT);
880 /* Set peripheral flow controller */
881 if (chan->dma_sconfig.device_fc)
882 chan->chan_reg.dma_scr |= STM32_DMA_SCR_PFCTRL;
884 chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_PFCTRL;
886 for_each_sg(sgl, sg, sg_len, i) {
887 ret = stm32_dma_set_xfer_param(chan, direction, &buswidth,
893 desc->sg_req[i].len = sg_dma_len(sg);
895 nb_data_items = desc->sg_req[i].len / buswidth;
896 if (nb_data_items > STM32_DMA_ALIGNED_MAX_DATA_ITEMS) {
897 dev_err(chan2dev(chan), "nb items not supported\n");
901 stm32_dma_clear_reg(&desc->sg_req[i].chan_reg);
902 desc->sg_req[i].chan_reg.dma_scr = chan->chan_reg.dma_scr;
903 desc->sg_req[i].chan_reg.dma_sfcr = chan->chan_reg.dma_sfcr;
904 desc->sg_req[i].chan_reg.dma_spar = chan->chan_reg.dma_spar;
905 desc->sg_req[i].chan_reg.dma_sm0ar = sg_dma_address(sg);
906 desc->sg_req[i].chan_reg.dma_sm1ar = sg_dma_address(sg);
907 desc->sg_req[i].chan_reg.dma_sndtr = nb_data_items;
910 desc->num_sgs = sg_len;
911 desc->cyclic = false;
913 return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
920 static struct dma_async_tx_descriptor *stm32_dma_prep_dma_cyclic(
921 struct dma_chan *c, dma_addr_t buf_addr, size_t buf_len,
922 size_t period_len, enum dma_transfer_direction direction,
925 struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
926 struct stm32_dma_desc *desc;
927 enum dma_slave_buswidth buswidth;
928 u32 num_periods, nb_data_items;
931 if (!buf_len || !period_len) {
932 dev_err(chan2dev(chan), "Invalid buffer/period len\n");
936 if (!chan->config_init) {
937 dev_err(chan2dev(chan), "dma channel is not configured\n");
941 if (buf_len % period_len) {
942 dev_err(chan2dev(chan), "buf_len not multiple of period_len\n");
947 * We allow to take more number of requests till DMA is
948 * not started. The driver will loop over all requests.
949 * Once DMA is started then new requests can be queued only after
950 * terminating the DMA.
953 dev_err(chan2dev(chan), "Request not allowed when dma busy\n");
957 ret = stm32_dma_set_xfer_param(chan, direction, &buswidth, period_len,
962 nb_data_items = period_len / buswidth;
963 if (nb_data_items > STM32_DMA_ALIGNED_MAX_DATA_ITEMS) {
964 dev_err(chan2dev(chan), "number of items not supported\n");
968 /* Enable Circular mode or double buffer mode */
969 if (buf_len == period_len)
970 chan->chan_reg.dma_scr |= STM32_DMA_SCR_CIRC;
972 chan->chan_reg.dma_scr |= STM32_DMA_SCR_DBM;
974 /* Clear periph ctrl if client set it */
975 chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_PFCTRL;
977 num_periods = buf_len / period_len;
979 desc = kzalloc(struct_size(desc, sg_req, num_periods), GFP_NOWAIT);
983 for (i = 0; i < num_periods; i++) {
984 desc->sg_req[i].len = period_len;
986 stm32_dma_clear_reg(&desc->sg_req[i].chan_reg);
987 desc->sg_req[i].chan_reg.dma_scr = chan->chan_reg.dma_scr;
988 desc->sg_req[i].chan_reg.dma_sfcr = chan->chan_reg.dma_sfcr;
989 desc->sg_req[i].chan_reg.dma_spar = chan->chan_reg.dma_spar;
990 desc->sg_req[i].chan_reg.dma_sm0ar = buf_addr;
991 desc->sg_req[i].chan_reg.dma_sm1ar = buf_addr;
992 desc->sg_req[i].chan_reg.dma_sndtr = nb_data_items;
993 buf_addr += period_len;
996 desc->num_sgs = num_periods;
999 return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
1002 static struct dma_async_tx_descriptor *stm32_dma_prep_dma_memcpy(
1003 struct dma_chan *c, dma_addr_t dest,
1004 dma_addr_t src, size_t len, unsigned long flags)
1006 struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
1007 enum dma_slave_buswidth max_width;
1008 struct stm32_dma_desc *desc;
1009 size_t xfer_count, offset;
1010 u32 num_sgs, best_burst, dma_burst, threshold;
1013 num_sgs = DIV_ROUND_UP(len, STM32_DMA_ALIGNED_MAX_DATA_ITEMS);
1014 desc = kzalloc(struct_size(desc, sg_req, num_sgs), GFP_NOWAIT);
1018 threshold = chan->threshold;
1020 for (offset = 0, i = 0; offset < len; offset += xfer_count, i++) {
1021 xfer_count = min_t(size_t, len - offset,
1022 STM32_DMA_ALIGNED_MAX_DATA_ITEMS);
1024 /* Compute best burst size */
1025 max_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1026 best_burst = stm32_dma_get_best_burst(len, STM32_DMA_MAX_BURST,
1027 threshold, max_width);
1028 dma_burst = stm32_dma_get_burst(chan, best_burst);
1030 stm32_dma_clear_reg(&desc->sg_req[i].chan_reg);
1031 desc->sg_req[i].chan_reg.dma_scr =
1032 STM32_DMA_SCR_DIR(STM32_DMA_MEM_TO_MEM) |
1033 STM32_DMA_SCR_PBURST(dma_burst) |
1034 STM32_DMA_SCR_MBURST(dma_burst) |
1035 STM32_DMA_SCR_MINC |
1036 STM32_DMA_SCR_PINC |
1037 STM32_DMA_SCR_TCIE |
1039 desc->sg_req[i].chan_reg.dma_sfcr |= STM32_DMA_SFCR_MASK;
1040 desc->sg_req[i].chan_reg.dma_sfcr |=
1041 STM32_DMA_SFCR_FTH(threshold);
1042 desc->sg_req[i].chan_reg.dma_spar = src + offset;
1043 desc->sg_req[i].chan_reg.dma_sm0ar = dest + offset;
1044 desc->sg_req[i].chan_reg.dma_sndtr = xfer_count;
1045 desc->sg_req[i].len = xfer_count;
1048 desc->num_sgs = num_sgs;
1049 desc->cyclic = false;
1051 return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
1054 static u32 stm32_dma_get_remaining_bytes(struct stm32_dma_chan *chan)
1056 u32 dma_scr, width, ndtr;
1057 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
1059 dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
1060 width = STM32_DMA_SCR_PSIZE_GET(dma_scr);
1061 ndtr = stm32_dma_read(dmadev, STM32_DMA_SNDTR(chan->id));
1063 return ndtr << width;
1067 * stm32_dma_is_current_sg - check that expected sg_req is currently transferred
1068 * @chan: dma channel
1070 * This function called when IRQ are disable, checks that the hardware has not
1071 * switched on the next transfer in double buffer mode. The test is done by
1072 * comparing the next_sg memory address with the hardware related register
1073 * (based on CT bit value).
1075 * Returns true if expected current transfer is still running or double
1076 * buffer mode is not activated.
1078 static bool stm32_dma_is_current_sg(struct stm32_dma_chan *chan)
1080 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
1081 struct stm32_dma_sg_req *sg_req;
1082 u32 dma_scr, dma_smar, id;
1085 dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
1087 if (!(dma_scr & STM32_DMA_SCR_DBM))
1090 sg_req = &chan->desc->sg_req[chan->next_sg];
1092 if (dma_scr & STM32_DMA_SCR_CT) {
1093 dma_smar = stm32_dma_read(dmadev, STM32_DMA_SM0AR(id));
1094 return (dma_smar == sg_req->chan_reg.dma_sm0ar);
1097 dma_smar = stm32_dma_read(dmadev, STM32_DMA_SM1AR(id));
1099 return (dma_smar == sg_req->chan_reg.dma_sm1ar);
1102 static size_t stm32_dma_desc_residue(struct stm32_dma_chan *chan,
1103 struct stm32_dma_desc *desc,
1106 u32 modulo, burst_size;
1109 struct stm32_dma_sg_req *sg_req = &chan->desc->sg_req[chan->next_sg];
1113 * Calculate the residue means compute the descriptors
1115 * - the sg_req currently transferred
1116 * - the Hardware remaining position in this sg (NDTR bits field).
1118 * A race condition may occur if DMA is running in cyclic or double
1119 * buffer mode, since the DMA register are automatically reloaded at end
1120 * of period transfer. The hardware may have switched to the next
1121 * transfer (CT bit updated) just before the position (SxNDTR reg) is
1123 * In this case the SxNDTR reg could (or not) correspond to the new
1124 * transfer position, and not the expected one.
1125 * The strategy implemented in the stm32 driver is to:
1126 * - read the SxNDTR register
1127 * - crosscheck that hardware is still in current transfer.
1128 * In case of switch, we can assume that the DMA is at the beginning of
1129 * the next transfer. So we approximate the residue in consequence, by
1130 * pointing on the beginning of next transfer.
1132 * This race condition doesn't apply for none cyclic mode, as double
1133 * buffer is not used. In such situation registers are updated by the
1137 residue = stm32_dma_get_remaining_bytes(chan);
1139 if (!stm32_dma_is_current_sg(chan)) {
1141 if (n_sg == chan->desc->num_sgs)
1143 residue = sg_req->len;
1147 * In cyclic mode, for the last period, residue = remaining bytes
1149 * else for all other periods in cyclic mode, and in sg mode,
1150 * residue = remaining bytes from NDTR + remaining
1151 * periods/sg to be transferred
1153 if (!chan->desc->cyclic || n_sg != 0)
1154 for (i = n_sg; i < desc->num_sgs; i++)
1155 residue += desc->sg_req[i].len;
1157 if (!chan->mem_burst)
1160 burst_size = chan->mem_burst * chan->mem_width;
1161 modulo = residue % burst_size;
1163 residue = residue - modulo + burst_size;
1168 static enum dma_status stm32_dma_tx_status(struct dma_chan *c,
1169 dma_cookie_t cookie,
1170 struct dma_tx_state *state)
1172 struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
1173 struct virt_dma_desc *vdesc;
1174 enum dma_status status;
1175 unsigned long flags;
1178 status = dma_cookie_status(c, cookie, state);
1179 if (status == DMA_COMPLETE || !state)
1182 spin_lock_irqsave(&chan->vchan.lock, flags);
1183 vdesc = vchan_find_desc(&chan->vchan, cookie);
1184 if (chan->desc && cookie == chan->desc->vdesc.tx.cookie)
1185 residue = stm32_dma_desc_residue(chan, chan->desc,
1188 residue = stm32_dma_desc_residue(chan,
1189 to_stm32_dma_desc(vdesc), 0);
1190 dma_set_residue(state, residue);
1192 spin_unlock_irqrestore(&chan->vchan.lock, flags);
1197 static int stm32_dma_alloc_chan_resources(struct dma_chan *c)
1199 struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
1200 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
1203 chan->config_init = false;
1205 ret = pm_runtime_resume_and_get(dmadev->ddev.dev);
1209 ret = stm32_dma_disable_chan(chan);
1211 pm_runtime_put(dmadev->ddev.dev);
1216 static void stm32_dma_free_chan_resources(struct dma_chan *c)
1218 struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
1219 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
1220 unsigned long flags;
1222 dev_dbg(chan2dev(chan), "Freeing channel %d\n", chan->id);
1225 spin_lock_irqsave(&chan->vchan.lock, flags);
1226 stm32_dma_stop(chan);
1228 spin_unlock_irqrestore(&chan->vchan.lock, flags);
1231 pm_runtime_put(dmadev->ddev.dev);
1233 vchan_free_chan_resources(to_virt_chan(c));
1234 stm32_dma_clear_reg(&chan->chan_reg);
1235 chan->threshold = 0;
1238 static void stm32_dma_desc_free(struct virt_dma_desc *vdesc)
1240 kfree(container_of(vdesc, struct stm32_dma_desc, vdesc));
1243 static void stm32_dma_set_config(struct stm32_dma_chan *chan,
1244 struct stm32_dma_cfg *cfg)
1246 stm32_dma_clear_reg(&chan->chan_reg);
1248 chan->chan_reg.dma_scr = cfg->stream_config & STM32_DMA_SCR_CFG_MASK;
1249 chan->chan_reg.dma_scr |= STM32_DMA_SCR_REQ(cfg->request_line);
1251 /* Enable Interrupts */
1252 chan->chan_reg.dma_scr |= STM32_DMA_SCR_TEIE | STM32_DMA_SCR_TCIE;
1254 chan->threshold = STM32_DMA_THRESHOLD_FTR_GET(cfg->features);
1255 if (STM32_DMA_DIRECT_MODE_GET(cfg->features))
1256 chan->threshold = STM32_DMA_FIFO_THRESHOLD_NONE;
1257 if (STM32_DMA_ALT_ACK_MODE_GET(cfg->features))
1258 chan->chan_reg.dma_scr |= STM32_DMA_SCR_TRBUFF;
1261 static struct dma_chan *stm32_dma_of_xlate(struct of_phandle_args *dma_spec,
1262 struct of_dma *ofdma)
1264 struct stm32_dma_device *dmadev = ofdma->of_dma_data;
1265 struct device *dev = dmadev->ddev.dev;
1266 struct stm32_dma_cfg cfg;
1267 struct stm32_dma_chan *chan;
1270 if (dma_spec->args_count < 4) {
1271 dev_err(dev, "Bad number of cells\n");
1275 cfg.channel_id = dma_spec->args[0];
1276 cfg.request_line = dma_spec->args[1];
1277 cfg.stream_config = dma_spec->args[2];
1278 cfg.features = dma_spec->args[3];
1280 if (cfg.channel_id >= STM32_DMA_MAX_CHANNELS ||
1281 cfg.request_line >= STM32_DMA_MAX_REQUEST_ID) {
1282 dev_err(dev, "Bad channel and/or request id\n");
1286 chan = &dmadev->chan[cfg.channel_id];
1288 c = dma_get_slave_channel(&chan->vchan.chan);
1290 dev_err(dev, "No more channels available\n");
1294 stm32_dma_set_config(chan, &cfg);
1299 static const struct of_device_id stm32_dma_of_match[] = {
1300 { .compatible = "st,stm32-dma", },
1303 MODULE_DEVICE_TABLE(of, stm32_dma_of_match);
1305 static int stm32_dma_probe(struct platform_device *pdev)
1307 struct stm32_dma_chan *chan;
1308 struct stm32_dma_device *dmadev;
1309 struct dma_device *dd;
1310 const struct of_device_id *match;
1311 struct resource *res;
1312 struct reset_control *rst;
1315 match = of_match_device(stm32_dma_of_match, &pdev->dev);
1317 dev_err(&pdev->dev, "Error: No device match found\n");
1321 dmadev = devm_kzalloc(&pdev->dev, sizeof(*dmadev), GFP_KERNEL);
1327 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1328 dmadev->base = devm_ioremap_resource(&pdev->dev, res);
1329 if (IS_ERR(dmadev->base))
1330 return PTR_ERR(dmadev->base);
1332 dmadev->clk = devm_clk_get(&pdev->dev, NULL);
1333 if (IS_ERR(dmadev->clk))
1334 return dev_err_probe(&pdev->dev, PTR_ERR(dmadev->clk), "Can't get clock\n");
1336 ret = clk_prepare_enable(dmadev->clk);
1338 dev_err(&pdev->dev, "clk_prep_enable error: %d\n", ret);
1342 dmadev->mem2mem = of_property_read_bool(pdev->dev.of_node,
1345 rst = devm_reset_control_get(&pdev->dev, NULL);
1348 if (ret == -EPROBE_DEFER)
1351 reset_control_assert(rst);
1353 reset_control_deassert(rst);
1356 dma_set_max_seg_size(&pdev->dev, STM32_DMA_ALIGNED_MAX_DATA_ITEMS);
1358 dma_cap_set(DMA_SLAVE, dd->cap_mask);
1359 dma_cap_set(DMA_PRIVATE, dd->cap_mask);
1360 dma_cap_set(DMA_CYCLIC, dd->cap_mask);
1361 dd->device_alloc_chan_resources = stm32_dma_alloc_chan_resources;
1362 dd->device_free_chan_resources = stm32_dma_free_chan_resources;
1363 dd->device_tx_status = stm32_dma_tx_status;
1364 dd->device_issue_pending = stm32_dma_issue_pending;
1365 dd->device_prep_slave_sg = stm32_dma_prep_slave_sg;
1366 dd->device_prep_dma_cyclic = stm32_dma_prep_dma_cyclic;
1367 dd->device_config = stm32_dma_slave_config;
1368 dd->device_terminate_all = stm32_dma_terminate_all;
1369 dd->device_synchronize = stm32_dma_synchronize;
1370 dd->src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
1371 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
1372 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
1373 dd->dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
1374 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
1375 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
1376 dd->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1377 dd->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1378 dd->copy_align = DMAENGINE_ALIGN_32_BYTES;
1379 dd->max_burst = STM32_DMA_MAX_BURST;
1380 dd->descriptor_reuse = true;
1381 dd->dev = &pdev->dev;
1382 INIT_LIST_HEAD(&dd->channels);
1384 if (dmadev->mem2mem) {
1385 dma_cap_set(DMA_MEMCPY, dd->cap_mask);
1386 dd->device_prep_dma_memcpy = stm32_dma_prep_dma_memcpy;
1387 dd->directions |= BIT(DMA_MEM_TO_MEM);
1390 for (i = 0; i < STM32_DMA_MAX_CHANNELS; i++) {
1391 chan = &dmadev->chan[i];
1393 chan->vchan.desc_free = stm32_dma_desc_free;
1394 vchan_init(&chan->vchan, dd);
1397 ret = dma_async_device_register(dd);
1401 for (i = 0; i < STM32_DMA_MAX_CHANNELS; i++) {
1402 chan = &dmadev->chan[i];
1403 ret = platform_get_irq(pdev, i);
1405 goto err_unregister;
1408 ret = devm_request_irq(&pdev->dev, chan->irq,
1409 stm32_dma_chan_irq, 0,
1410 dev_name(chan2dev(chan)), chan);
1413 "request_irq failed with err %d channel %d\n",
1415 goto err_unregister;
1419 ret = of_dma_controller_register(pdev->dev.of_node,
1420 stm32_dma_of_xlate, dmadev);
1423 "STM32 DMA DMA OF registration failed %d\n", ret);
1424 goto err_unregister;
1427 platform_set_drvdata(pdev, dmadev);
1429 pm_runtime_set_active(&pdev->dev);
1430 pm_runtime_enable(&pdev->dev);
1431 pm_runtime_get_noresume(&pdev->dev);
1432 pm_runtime_put(&pdev->dev);
1434 dev_info(&pdev->dev, "STM32 DMA driver registered\n");
1439 dma_async_device_unregister(dd);
1441 clk_disable_unprepare(dmadev->clk);
1447 static int stm32_dma_runtime_suspend(struct device *dev)
1449 struct stm32_dma_device *dmadev = dev_get_drvdata(dev);
1451 clk_disable_unprepare(dmadev->clk);
1456 static int stm32_dma_runtime_resume(struct device *dev)
1458 struct stm32_dma_device *dmadev = dev_get_drvdata(dev);
1461 ret = clk_prepare_enable(dmadev->clk);
1463 dev_err(dev, "failed to prepare_enable clock\n");
1471 #ifdef CONFIG_PM_SLEEP
1472 static int stm32_dma_suspend(struct device *dev)
1474 struct stm32_dma_device *dmadev = dev_get_drvdata(dev);
1477 ret = pm_runtime_resume_and_get(dev);
1481 for (id = 0; id < STM32_DMA_MAX_CHANNELS; id++) {
1482 scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
1483 if (scr & STM32_DMA_SCR_EN) {
1484 dev_warn(dev, "Suspend is prevented by Chan %i\n", id);
1489 pm_runtime_put_sync(dev);
1491 pm_runtime_force_suspend(dev);
1496 static int stm32_dma_resume(struct device *dev)
1498 return pm_runtime_force_resume(dev);
1502 static const struct dev_pm_ops stm32_dma_pm_ops = {
1503 SET_SYSTEM_SLEEP_PM_OPS(stm32_dma_suspend, stm32_dma_resume)
1504 SET_RUNTIME_PM_OPS(stm32_dma_runtime_suspend,
1505 stm32_dma_runtime_resume, NULL)
1508 static struct platform_driver stm32_dma_driver = {
1510 .name = "stm32-dma",
1511 .of_match_table = stm32_dma_of_match,
1512 .pm = &stm32_dma_pm_ops,
1514 .probe = stm32_dma_probe,
1517 static int __init stm32_dma_init(void)
1519 return platform_driver_register(&stm32_dma_driver);
1521 subsys_initcall(stm32_dma_init);