1 // SPDX-License-Identifier: GPL-2.0-only
3 * Driver for STM32 DMA controller
5 * Inspired by dma-jz4740.c and tegra20-apb-dma.c
7 * Copyright (C) M'boumba Cedric Madianga 2015
8 * Author: M'boumba Cedric Madianga <cedric.madianga@gmail.com>
9 * Pierre-Yves Mordret <pierre-yves.mordret@st.com>
12 #include <linux/clk.h>
13 #include <linux/delay.h>
14 #include <linux/dmaengine.h>
15 #include <linux/dma-mapping.h>
16 #include <linux/err.h>
17 #include <linux/init.h>
18 #include <linux/iopoll.h>
19 #include <linux/jiffies.h>
20 #include <linux/list.h>
21 #include <linux/module.h>
23 #include <linux/of_device.h>
24 #include <linux/of_dma.h>
25 #include <linux/platform_device.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/reset.h>
28 #include <linux/sched.h>
29 #include <linux/slab.h>
33 #define STM32_DMA_LISR 0x0000 /* DMA Low Int Status Reg */
34 #define STM32_DMA_HISR 0x0004 /* DMA High Int Status Reg */
35 #define STM32_DMA_LIFCR 0x0008 /* DMA Low Int Flag Clear Reg */
36 #define STM32_DMA_HIFCR 0x000c /* DMA High Int Flag Clear Reg */
37 #define STM32_DMA_TCI BIT(5) /* Transfer Complete Interrupt */
38 #define STM32_DMA_HTI BIT(4) /* Half Transfer Interrupt */
39 #define STM32_DMA_TEI BIT(3) /* Transfer Error Interrupt */
40 #define STM32_DMA_DMEI BIT(2) /* Direct Mode Error Interrupt */
41 #define STM32_DMA_FEI BIT(0) /* FIFO Error Interrupt */
42 #define STM32_DMA_MASKI (STM32_DMA_TCI \
47 /* DMA Stream x Configuration Register */
48 #define STM32_DMA_SCR(x) (0x0010 + 0x18 * (x)) /* x = 0..7 */
49 #define STM32_DMA_SCR_REQ(n) ((n & 0x7) << 25)
50 #define STM32_DMA_SCR_MBURST_MASK GENMASK(24, 23)
51 #define STM32_DMA_SCR_MBURST(n) ((n & 0x3) << 23)
52 #define STM32_DMA_SCR_PBURST_MASK GENMASK(22, 21)
53 #define STM32_DMA_SCR_PBURST(n) ((n & 0x3) << 21)
54 #define STM32_DMA_SCR_PL_MASK GENMASK(17, 16)
55 #define STM32_DMA_SCR_PL(n) ((n & 0x3) << 16)
56 #define STM32_DMA_SCR_MSIZE_MASK GENMASK(14, 13)
57 #define STM32_DMA_SCR_MSIZE(n) ((n & 0x3) << 13)
58 #define STM32_DMA_SCR_PSIZE_MASK GENMASK(12, 11)
59 #define STM32_DMA_SCR_PSIZE(n) ((n & 0x3) << 11)
60 #define STM32_DMA_SCR_PSIZE_GET(n) ((n & STM32_DMA_SCR_PSIZE_MASK) >> 11)
61 #define STM32_DMA_SCR_DIR_MASK GENMASK(7, 6)
62 #define STM32_DMA_SCR_DIR(n) ((n & 0x3) << 6)
63 #define STM32_DMA_SCR_TRBUFF BIT(20) /* Bufferable transfer for USART/UART */
64 #define STM32_DMA_SCR_CT BIT(19) /* Target in double buffer */
65 #define STM32_DMA_SCR_DBM BIT(18) /* Double Buffer Mode */
66 #define STM32_DMA_SCR_PINCOS BIT(15) /* Peripheral inc offset size */
67 #define STM32_DMA_SCR_MINC BIT(10) /* Memory increment mode */
68 #define STM32_DMA_SCR_PINC BIT(9) /* Peripheral increment mode */
69 #define STM32_DMA_SCR_CIRC BIT(8) /* Circular mode */
70 #define STM32_DMA_SCR_PFCTRL BIT(5) /* Peripheral Flow Controller */
71 #define STM32_DMA_SCR_TCIE BIT(4) /* Transfer Complete Int Enable
73 #define STM32_DMA_SCR_TEIE BIT(2) /* Transfer Error Int Enable */
74 #define STM32_DMA_SCR_DMEIE BIT(1) /* Direct Mode Err Int Enable */
75 #define STM32_DMA_SCR_EN BIT(0) /* Stream Enable */
76 #define STM32_DMA_SCR_CFG_MASK (STM32_DMA_SCR_PINC \
77 | STM32_DMA_SCR_MINC \
78 | STM32_DMA_SCR_PINCOS \
79 | STM32_DMA_SCR_PL_MASK)
80 #define STM32_DMA_SCR_IRQ_MASK (STM32_DMA_SCR_TCIE \
81 | STM32_DMA_SCR_TEIE \
82 | STM32_DMA_SCR_DMEIE)
84 /* DMA Stream x number of data register */
85 #define STM32_DMA_SNDTR(x) (0x0014 + 0x18 * (x))
87 /* DMA stream peripheral address register */
88 #define STM32_DMA_SPAR(x) (0x0018 + 0x18 * (x))
90 /* DMA stream x memory 0 address register */
91 #define STM32_DMA_SM0AR(x) (0x001c + 0x18 * (x))
93 /* DMA stream x memory 1 address register */
94 #define STM32_DMA_SM1AR(x) (0x0020 + 0x18 * (x))
96 /* DMA stream x FIFO control register */
97 #define STM32_DMA_SFCR(x) (0x0024 + 0x18 * (x))
98 #define STM32_DMA_SFCR_FTH_MASK GENMASK(1, 0)
99 #define STM32_DMA_SFCR_FTH(n) (n & STM32_DMA_SFCR_FTH_MASK)
100 #define STM32_DMA_SFCR_FEIE BIT(7) /* FIFO error interrupt enable */
101 #define STM32_DMA_SFCR_DMDIS BIT(2) /* Direct mode disable */
102 #define STM32_DMA_SFCR_MASK (STM32_DMA_SFCR_FEIE \
103 | STM32_DMA_SFCR_DMDIS)
106 #define STM32_DMA_DEV_TO_MEM 0x00
107 #define STM32_DMA_MEM_TO_DEV 0x01
108 #define STM32_DMA_MEM_TO_MEM 0x02
110 /* DMA priority level */
111 #define STM32_DMA_PRIORITY_LOW 0x00
112 #define STM32_DMA_PRIORITY_MEDIUM 0x01
113 #define STM32_DMA_PRIORITY_HIGH 0x02
114 #define STM32_DMA_PRIORITY_VERY_HIGH 0x03
116 /* DMA FIFO threshold selection */
117 #define STM32_DMA_FIFO_THRESHOLD_1QUARTERFULL 0x00
118 #define STM32_DMA_FIFO_THRESHOLD_HALFFULL 0x01
119 #define STM32_DMA_FIFO_THRESHOLD_3QUARTERSFULL 0x02
120 #define STM32_DMA_FIFO_THRESHOLD_FULL 0x03
121 #define STM32_DMA_FIFO_THRESHOLD_NONE 0x04
123 #define STM32_DMA_MAX_DATA_ITEMS 0xffff
125 * Valid transfer starts from @0 to @0xFFFE leading to unaligned scatter
126 * gather at boundary. Thus it's safer to round down this value on FIFO
129 #define STM32_DMA_ALIGNED_MAX_DATA_ITEMS \
130 ALIGN_DOWN(STM32_DMA_MAX_DATA_ITEMS, 16)
131 #define STM32_DMA_MAX_CHANNELS 0x08
132 #define STM32_DMA_MAX_REQUEST_ID 0x08
133 #define STM32_DMA_MAX_DATA_PARAM 0x03
134 #define STM32_DMA_FIFO_SIZE 16 /* FIFO is 16 bytes */
135 #define STM32_DMA_MIN_BURST 4
136 #define STM32_DMA_MAX_BURST 16
139 #define STM32_DMA_THRESHOLD_FTR_MASK GENMASK(1, 0)
140 #define STM32_DMA_THRESHOLD_FTR_GET(n) ((n) & STM32_DMA_THRESHOLD_FTR_MASK)
141 #define STM32_DMA_DIRECT_MODE_MASK BIT(2)
142 #define STM32_DMA_DIRECT_MODE_GET(n) (((n) & STM32_DMA_DIRECT_MODE_MASK) >> 2)
143 #define STM32_DMA_ALT_ACK_MODE_MASK BIT(4)
144 #define STM32_DMA_ALT_ACK_MODE_GET(n) (((n) & STM32_DMA_ALT_ACK_MODE_MASK) >> 4)
146 enum stm32_dma_width {
152 enum stm32_dma_burst_size {
153 STM32_DMA_BURST_SINGLE,
154 STM32_DMA_BURST_INCR4,
155 STM32_DMA_BURST_INCR8,
156 STM32_DMA_BURST_INCR16,
160 * struct stm32_dma_cfg - STM32 DMA custom configuration
161 * @channel_id: channel ID
162 * @request_line: DMA request
163 * @stream_config: 32bit mask specifying the DMA channel configuration
164 * @features: 32bit mask specifying the DMA Feature list
166 struct stm32_dma_cfg {
173 struct stm32_dma_chan_reg {
186 struct stm32_dma_sg_req {
188 struct stm32_dma_chan_reg chan_reg;
191 struct stm32_dma_desc {
192 struct virt_dma_desc vdesc;
195 struct stm32_dma_sg_req sg_req[];
198 struct stm32_dma_chan {
199 struct virt_dma_chan vchan;
204 struct stm32_dma_desc *desc;
206 struct dma_slave_config dma_sconfig;
207 struct stm32_dma_chan_reg chan_reg;
213 struct stm32_dma_device {
214 struct dma_device ddev;
218 struct stm32_dma_chan chan[STM32_DMA_MAX_CHANNELS];
221 static struct stm32_dma_device *stm32_dma_get_dev(struct stm32_dma_chan *chan)
223 return container_of(chan->vchan.chan.device, struct stm32_dma_device,
227 static struct stm32_dma_chan *to_stm32_dma_chan(struct dma_chan *c)
229 return container_of(c, struct stm32_dma_chan, vchan.chan);
232 static struct stm32_dma_desc *to_stm32_dma_desc(struct virt_dma_desc *vdesc)
234 return container_of(vdesc, struct stm32_dma_desc, vdesc);
237 static struct device *chan2dev(struct stm32_dma_chan *chan)
239 return &chan->vchan.chan.dev->device;
242 static u32 stm32_dma_read(struct stm32_dma_device *dmadev, u32 reg)
244 return readl_relaxed(dmadev->base + reg);
247 static void stm32_dma_write(struct stm32_dma_device *dmadev, u32 reg, u32 val)
249 writel_relaxed(val, dmadev->base + reg);
252 static int stm32_dma_get_width(struct stm32_dma_chan *chan,
253 enum dma_slave_buswidth width)
256 case DMA_SLAVE_BUSWIDTH_1_BYTE:
257 return STM32_DMA_BYTE;
258 case DMA_SLAVE_BUSWIDTH_2_BYTES:
259 return STM32_DMA_HALF_WORD;
260 case DMA_SLAVE_BUSWIDTH_4_BYTES:
261 return STM32_DMA_WORD;
263 dev_err(chan2dev(chan), "Dma bus width not supported\n");
268 static enum dma_slave_buswidth stm32_dma_get_max_width(u32 buf_len,
272 enum dma_slave_buswidth max_width;
274 if (threshold == STM32_DMA_FIFO_THRESHOLD_FULL)
275 max_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
277 max_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
279 while ((buf_len < max_width || buf_len % max_width) &&
280 max_width > DMA_SLAVE_BUSWIDTH_1_BYTE)
281 max_width = max_width >> 1;
283 if (buf_addr & (max_width - 1))
284 max_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
289 static bool stm32_dma_fifo_threshold_is_allowed(u32 burst, u32 threshold,
290 enum dma_slave_buswidth width)
294 if (threshold == STM32_DMA_FIFO_THRESHOLD_NONE)
297 if (width != DMA_SLAVE_BUSWIDTH_UNDEFINED) {
300 * If number of beats fit in several whole bursts
301 * this configuration is allowed.
303 remaining = ((STM32_DMA_FIFO_SIZE / width) *
304 (threshold + 1) / 4) % burst;
316 static bool stm32_dma_is_burst_possible(u32 buf_len, u32 threshold)
318 /* If FIFO direct mode, burst is not possible */
319 if (threshold == STM32_DMA_FIFO_THRESHOLD_NONE)
323 * Buffer or period length has to be aligned on FIFO depth.
324 * Otherwise bytes may be stuck within FIFO at buffer or period
327 return ((buf_len % ((threshold + 1) * 4)) == 0);
330 static u32 stm32_dma_get_best_burst(u32 buf_len, u32 max_burst, u32 threshold,
331 enum dma_slave_buswidth width)
333 u32 best_burst = max_burst;
335 if (best_burst == 1 || !stm32_dma_is_burst_possible(buf_len, threshold))
338 while ((buf_len < best_burst * width && best_burst > 1) ||
339 !stm32_dma_fifo_threshold_is_allowed(best_burst, threshold,
341 if (best_burst > STM32_DMA_MIN_BURST)
342 best_burst = best_burst >> 1;
350 static int stm32_dma_get_burst(struct stm32_dma_chan *chan, u32 maxburst)
355 return STM32_DMA_BURST_SINGLE;
357 return STM32_DMA_BURST_INCR4;
359 return STM32_DMA_BURST_INCR8;
361 return STM32_DMA_BURST_INCR16;
363 dev_err(chan2dev(chan), "Dma burst size not supported\n");
368 static void stm32_dma_set_fifo_config(struct stm32_dma_chan *chan,
369 u32 src_burst, u32 dst_burst)
371 chan->chan_reg.dma_sfcr &= ~STM32_DMA_SFCR_MASK;
372 chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_DMEIE;
374 if (!src_burst && !dst_burst) {
375 /* Using direct mode */
376 chan->chan_reg.dma_scr |= STM32_DMA_SCR_DMEIE;
378 /* Using FIFO mode */
379 chan->chan_reg.dma_sfcr |= STM32_DMA_SFCR_MASK;
383 static int stm32_dma_slave_config(struct dma_chan *c,
384 struct dma_slave_config *config)
386 struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
388 memcpy(&chan->dma_sconfig, config, sizeof(*config));
390 chan->config_init = true;
395 static u32 stm32_dma_irq_status(struct stm32_dma_chan *chan)
397 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
401 * Read "flags" from DMA_xISR register corresponding to the selected
402 * DMA channel at the correct bit offset inside that register.
404 * If (ch % 4) is 2 or 3, left shift the mask by 16 bits.
405 * If (ch % 4) is 1 or 3, additionally left shift the mask by 6 bits.
409 dma_isr = stm32_dma_read(dmadev, STM32_DMA_HISR);
411 dma_isr = stm32_dma_read(dmadev, STM32_DMA_LISR);
413 flags = dma_isr >> (((chan->id & 2) << 3) | ((chan->id & 1) * 6));
415 return flags & STM32_DMA_MASKI;
418 static void stm32_dma_irq_clear(struct stm32_dma_chan *chan, u32 flags)
420 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
424 * Write "flags" to the DMA_xIFCR register corresponding to the selected
425 * DMA channel at the correct bit offset inside that register.
427 * If (ch % 4) is 2 or 3, left shift the mask by 16 bits.
428 * If (ch % 4) is 1 or 3, additionally left shift the mask by 6 bits.
430 flags &= STM32_DMA_MASKI;
431 dma_ifcr = flags << (((chan->id & 2) << 3) | ((chan->id & 1) * 6));
434 stm32_dma_write(dmadev, STM32_DMA_HIFCR, dma_ifcr);
436 stm32_dma_write(dmadev, STM32_DMA_LIFCR, dma_ifcr);
439 static int stm32_dma_disable_chan(struct stm32_dma_chan *chan)
441 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
442 u32 dma_scr, id, reg;
445 reg = STM32_DMA_SCR(id);
446 dma_scr = stm32_dma_read(dmadev, reg);
448 if (dma_scr & STM32_DMA_SCR_EN) {
449 dma_scr &= ~STM32_DMA_SCR_EN;
450 stm32_dma_write(dmadev, reg, dma_scr);
452 return readl_relaxed_poll_timeout_atomic(dmadev->base + reg,
453 dma_scr, !(dma_scr & STM32_DMA_SCR_EN),
460 static void stm32_dma_stop(struct stm32_dma_chan *chan)
462 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
463 u32 dma_scr, dma_sfcr, status;
466 /* Disable interrupts */
467 dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
468 dma_scr &= ~STM32_DMA_SCR_IRQ_MASK;
469 stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), dma_scr);
470 dma_sfcr = stm32_dma_read(dmadev, STM32_DMA_SFCR(chan->id));
471 dma_sfcr &= ~STM32_DMA_SFCR_FEIE;
472 stm32_dma_write(dmadev, STM32_DMA_SFCR(chan->id), dma_sfcr);
475 ret = stm32_dma_disable_chan(chan);
479 /* Clear interrupt status if it is there */
480 status = stm32_dma_irq_status(chan);
482 dev_dbg(chan2dev(chan), "%s(): clearing interrupt: 0x%08x\n",
484 stm32_dma_irq_clear(chan, status);
490 static int stm32_dma_terminate_all(struct dma_chan *c)
492 struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
496 spin_lock_irqsave(&chan->vchan.lock, flags);
499 dma_cookie_complete(&chan->desc->vdesc.tx);
500 vchan_terminate_vdesc(&chan->desc->vdesc);
502 stm32_dma_stop(chan);
506 vchan_get_all_descriptors(&chan->vchan, &head);
507 spin_unlock_irqrestore(&chan->vchan.lock, flags);
508 vchan_dma_desc_free_list(&chan->vchan, &head);
513 static void stm32_dma_synchronize(struct dma_chan *c)
515 struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
517 vchan_synchronize(&chan->vchan);
520 static void stm32_dma_dump_reg(struct stm32_dma_chan *chan)
522 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
523 u32 scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
524 u32 ndtr = stm32_dma_read(dmadev, STM32_DMA_SNDTR(chan->id));
525 u32 spar = stm32_dma_read(dmadev, STM32_DMA_SPAR(chan->id));
526 u32 sm0ar = stm32_dma_read(dmadev, STM32_DMA_SM0AR(chan->id));
527 u32 sm1ar = stm32_dma_read(dmadev, STM32_DMA_SM1AR(chan->id));
528 u32 sfcr = stm32_dma_read(dmadev, STM32_DMA_SFCR(chan->id));
530 dev_dbg(chan2dev(chan), "SCR: 0x%08x\n", scr);
531 dev_dbg(chan2dev(chan), "NDTR: 0x%08x\n", ndtr);
532 dev_dbg(chan2dev(chan), "SPAR: 0x%08x\n", spar);
533 dev_dbg(chan2dev(chan), "SM0AR: 0x%08x\n", sm0ar);
534 dev_dbg(chan2dev(chan), "SM1AR: 0x%08x\n", sm1ar);
535 dev_dbg(chan2dev(chan), "SFCR: 0x%08x\n", sfcr);
538 static void stm32_dma_configure_next_sg(struct stm32_dma_chan *chan);
540 static void stm32_dma_start_transfer(struct stm32_dma_chan *chan)
542 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
543 struct virt_dma_desc *vdesc;
544 struct stm32_dma_sg_req *sg_req;
545 struct stm32_dma_chan_reg *reg;
549 ret = stm32_dma_disable_chan(chan);
554 vdesc = vchan_next_desc(&chan->vchan);
558 list_del(&vdesc->node);
560 chan->desc = to_stm32_dma_desc(vdesc);
564 if (chan->next_sg == chan->desc->num_sgs)
567 sg_req = &chan->desc->sg_req[chan->next_sg];
568 reg = &sg_req->chan_reg;
570 reg->dma_scr &= ~STM32_DMA_SCR_EN;
571 stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), reg->dma_scr);
572 stm32_dma_write(dmadev, STM32_DMA_SPAR(chan->id), reg->dma_spar);
573 stm32_dma_write(dmadev, STM32_DMA_SM0AR(chan->id), reg->dma_sm0ar);
574 stm32_dma_write(dmadev, STM32_DMA_SFCR(chan->id), reg->dma_sfcr);
575 stm32_dma_write(dmadev, STM32_DMA_SM1AR(chan->id), reg->dma_sm1ar);
576 stm32_dma_write(dmadev, STM32_DMA_SNDTR(chan->id), reg->dma_sndtr);
580 /* Clear interrupt status if it is there */
581 status = stm32_dma_irq_status(chan);
583 stm32_dma_irq_clear(chan, status);
585 if (chan->desc->cyclic)
586 stm32_dma_configure_next_sg(chan);
588 stm32_dma_dump_reg(chan);
591 reg->dma_scr |= STM32_DMA_SCR_EN;
592 stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), reg->dma_scr);
596 dev_dbg(chan2dev(chan), "vchan %pK: started\n", &chan->vchan);
599 static void stm32_dma_configure_next_sg(struct stm32_dma_chan *chan)
601 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
602 struct stm32_dma_sg_req *sg_req;
603 u32 dma_scr, dma_sm0ar, dma_sm1ar, id;
606 dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
608 if (dma_scr & STM32_DMA_SCR_DBM) {
609 if (chan->next_sg == chan->desc->num_sgs)
612 sg_req = &chan->desc->sg_req[chan->next_sg];
614 if (dma_scr & STM32_DMA_SCR_CT) {
615 dma_sm0ar = sg_req->chan_reg.dma_sm0ar;
616 stm32_dma_write(dmadev, STM32_DMA_SM0AR(id), dma_sm0ar);
617 dev_dbg(chan2dev(chan), "CT=1 <=> SM0AR: 0x%08x\n",
618 stm32_dma_read(dmadev, STM32_DMA_SM0AR(id)));
620 dma_sm1ar = sg_req->chan_reg.dma_sm1ar;
621 stm32_dma_write(dmadev, STM32_DMA_SM1AR(id), dma_sm1ar);
622 dev_dbg(chan2dev(chan), "CT=0 <=> SM1AR: 0x%08x\n",
623 stm32_dma_read(dmadev, STM32_DMA_SM1AR(id)));
628 static void stm32_dma_handle_chan_done(struct stm32_dma_chan *chan)
631 if (chan->desc->cyclic) {
632 vchan_cyclic_callback(&chan->desc->vdesc);
634 stm32_dma_configure_next_sg(chan);
637 if (chan->next_sg == chan->desc->num_sgs) {
638 vchan_cookie_complete(&chan->desc->vdesc);
641 stm32_dma_start_transfer(chan);
646 static irqreturn_t stm32_dma_chan_irq(int irq, void *devid)
648 struct stm32_dma_chan *chan = devid;
649 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
650 u32 status, scr, sfcr;
652 spin_lock(&chan->vchan.lock);
654 status = stm32_dma_irq_status(chan);
655 scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
656 sfcr = stm32_dma_read(dmadev, STM32_DMA_SFCR(chan->id));
658 if (status & STM32_DMA_FEI) {
659 stm32_dma_irq_clear(chan, STM32_DMA_FEI);
660 status &= ~STM32_DMA_FEI;
661 if (sfcr & STM32_DMA_SFCR_FEIE) {
662 if (!(scr & STM32_DMA_SCR_EN) &&
663 !(status & STM32_DMA_TCI))
664 dev_err(chan2dev(chan), "FIFO Error\n");
666 dev_dbg(chan2dev(chan), "FIFO over/underrun\n");
669 if (status & STM32_DMA_DMEI) {
670 stm32_dma_irq_clear(chan, STM32_DMA_DMEI);
671 status &= ~STM32_DMA_DMEI;
672 if (sfcr & STM32_DMA_SCR_DMEIE)
673 dev_dbg(chan2dev(chan), "Direct mode overrun\n");
676 if (status & STM32_DMA_TCI) {
677 stm32_dma_irq_clear(chan, STM32_DMA_TCI);
678 if (scr & STM32_DMA_SCR_TCIE)
679 stm32_dma_handle_chan_done(chan);
680 status &= ~STM32_DMA_TCI;
683 if (status & STM32_DMA_HTI) {
684 stm32_dma_irq_clear(chan, STM32_DMA_HTI);
685 status &= ~STM32_DMA_HTI;
689 stm32_dma_irq_clear(chan, status);
690 dev_err(chan2dev(chan), "DMA error: status=0x%08x\n", status);
691 if (!(scr & STM32_DMA_SCR_EN))
692 dev_err(chan2dev(chan), "chan disabled by HW\n");
695 spin_unlock(&chan->vchan.lock);
700 static void stm32_dma_issue_pending(struct dma_chan *c)
702 struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
705 spin_lock_irqsave(&chan->vchan.lock, flags);
706 if (vchan_issue_pending(&chan->vchan) && !chan->desc && !chan->busy) {
707 dev_dbg(chan2dev(chan), "vchan %pK: issued\n", &chan->vchan);
708 stm32_dma_start_transfer(chan);
711 spin_unlock_irqrestore(&chan->vchan.lock, flags);
714 static int stm32_dma_set_xfer_param(struct stm32_dma_chan *chan,
715 enum dma_transfer_direction direction,
716 enum dma_slave_buswidth *buswidth,
717 u32 buf_len, dma_addr_t buf_addr)
719 enum dma_slave_buswidth src_addr_width, dst_addr_width;
720 int src_bus_width, dst_bus_width;
721 int src_burst_size, dst_burst_size;
722 u32 src_maxburst, dst_maxburst, src_best_burst, dst_best_burst;
725 src_addr_width = chan->dma_sconfig.src_addr_width;
726 dst_addr_width = chan->dma_sconfig.dst_addr_width;
727 src_maxburst = chan->dma_sconfig.src_maxburst;
728 dst_maxburst = chan->dma_sconfig.dst_maxburst;
729 fifoth = chan->threshold;
733 /* Set device data size */
734 dst_bus_width = stm32_dma_get_width(chan, dst_addr_width);
735 if (dst_bus_width < 0)
736 return dst_bus_width;
738 /* Set device burst size */
739 dst_best_burst = stm32_dma_get_best_burst(buf_len,
744 dst_burst_size = stm32_dma_get_burst(chan, dst_best_burst);
745 if (dst_burst_size < 0)
746 return dst_burst_size;
748 /* Set memory data size */
749 src_addr_width = stm32_dma_get_max_width(buf_len, buf_addr,
751 chan->mem_width = src_addr_width;
752 src_bus_width = stm32_dma_get_width(chan, src_addr_width);
753 if (src_bus_width < 0)
754 return src_bus_width;
757 * Set memory burst size - burst not possible if address is not aligned on
758 * the address boundary equal to the size of the transfer
760 if (buf_addr & (buf_len - 1))
763 src_maxburst = STM32_DMA_MAX_BURST;
764 src_best_burst = stm32_dma_get_best_burst(buf_len,
768 src_burst_size = stm32_dma_get_burst(chan, src_best_burst);
769 if (src_burst_size < 0)
770 return src_burst_size;
772 dma_scr = STM32_DMA_SCR_DIR(STM32_DMA_MEM_TO_DEV) |
773 STM32_DMA_SCR_PSIZE(dst_bus_width) |
774 STM32_DMA_SCR_MSIZE(src_bus_width) |
775 STM32_DMA_SCR_PBURST(dst_burst_size) |
776 STM32_DMA_SCR_MBURST(src_burst_size);
778 /* Set FIFO threshold */
779 chan->chan_reg.dma_sfcr &= ~STM32_DMA_SFCR_FTH_MASK;
780 if (fifoth != STM32_DMA_FIFO_THRESHOLD_NONE)
781 chan->chan_reg.dma_sfcr |= STM32_DMA_SFCR_FTH(fifoth);
783 /* Set peripheral address */
784 chan->chan_reg.dma_spar = chan->dma_sconfig.dst_addr;
785 *buswidth = dst_addr_width;
789 /* Set device data size */
790 src_bus_width = stm32_dma_get_width(chan, src_addr_width);
791 if (src_bus_width < 0)
792 return src_bus_width;
794 /* Set device burst size */
795 src_best_burst = stm32_dma_get_best_burst(buf_len,
799 chan->mem_burst = src_best_burst;
800 src_burst_size = stm32_dma_get_burst(chan, src_best_burst);
801 if (src_burst_size < 0)
802 return src_burst_size;
804 /* Set memory data size */
805 dst_addr_width = stm32_dma_get_max_width(buf_len, buf_addr,
807 chan->mem_width = dst_addr_width;
808 dst_bus_width = stm32_dma_get_width(chan, dst_addr_width);
809 if (dst_bus_width < 0)
810 return dst_bus_width;
813 * Set memory burst size - burst not possible if address is not aligned on
814 * the address boundary equal to the size of the transfer
816 if (buf_addr & (buf_len - 1))
819 dst_maxburst = STM32_DMA_MAX_BURST;
820 dst_best_burst = stm32_dma_get_best_burst(buf_len,
824 chan->mem_burst = dst_best_burst;
825 dst_burst_size = stm32_dma_get_burst(chan, dst_best_burst);
826 if (dst_burst_size < 0)
827 return dst_burst_size;
829 dma_scr = STM32_DMA_SCR_DIR(STM32_DMA_DEV_TO_MEM) |
830 STM32_DMA_SCR_PSIZE(src_bus_width) |
831 STM32_DMA_SCR_MSIZE(dst_bus_width) |
832 STM32_DMA_SCR_PBURST(src_burst_size) |
833 STM32_DMA_SCR_MBURST(dst_burst_size);
835 /* Set FIFO threshold */
836 chan->chan_reg.dma_sfcr &= ~STM32_DMA_SFCR_FTH_MASK;
837 if (fifoth != STM32_DMA_FIFO_THRESHOLD_NONE)
838 chan->chan_reg.dma_sfcr |= STM32_DMA_SFCR_FTH(fifoth);
840 /* Set peripheral address */
841 chan->chan_reg.dma_spar = chan->dma_sconfig.src_addr;
842 *buswidth = chan->dma_sconfig.src_addr_width;
846 dev_err(chan2dev(chan), "Dma direction is not supported\n");
850 stm32_dma_set_fifo_config(chan, src_best_burst, dst_best_burst);
852 /* Set DMA control register */
853 chan->chan_reg.dma_scr &= ~(STM32_DMA_SCR_DIR_MASK |
854 STM32_DMA_SCR_PSIZE_MASK | STM32_DMA_SCR_MSIZE_MASK |
855 STM32_DMA_SCR_PBURST_MASK | STM32_DMA_SCR_MBURST_MASK);
856 chan->chan_reg.dma_scr |= dma_scr;
861 static void stm32_dma_clear_reg(struct stm32_dma_chan_reg *regs)
863 memset(regs, 0, sizeof(struct stm32_dma_chan_reg));
866 static struct dma_async_tx_descriptor *stm32_dma_prep_slave_sg(
867 struct dma_chan *c, struct scatterlist *sgl,
868 u32 sg_len, enum dma_transfer_direction direction,
869 unsigned long flags, void *context)
871 struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
872 struct stm32_dma_desc *desc;
873 struct scatterlist *sg;
874 enum dma_slave_buswidth buswidth;
878 if (!chan->config_init) {
879 dev_err(chan2dev(chan), "dma channel is not configured\n");
884 dev_err(chan2dev(chan), "Invalid segment length %d\n", sg_len);
888 desc = kzalloc(struct_size(desc, sg_req, sg_len), GFP_NOWAIT);
892 /* Set peripheral flow controller */
893 if (chan->dma_sconfig.device_fc)
894 chan->chan_reg.dma_scr |= STM32_DMA_SCR_PFCTRL;
896 chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_PFCTRL;
898 for_each_sg(sgl, sg, sg_len, i) {
899 ret = stm32_dma_set_xfer_param(chan, direction, &buswidth,
905 desc->sg_req[i].len = sg_dma_len(sg);
907 nb_data_items = desc->sg_req[i].len / buswidth;
908 if (nb_data_items > STM32_DMA_ALIGNED_MAX_DATA_ITEMS) {
909 dev_err(chan2dev(chan), "nb items not supported\n");
913 stm32_dma_clear_reg(&desc->sg_req[i].chan_reg);
914 desc->sg_req[i].chan_reg.dma_scr = chan->chan_reg.dma_scr;
915 desc->sg_req[i].chan_reg.dma_sfcr = chan->chan_reg.dma_sfcr;
916 desc->sg_req[i].chan_reg.dma_spar = chan->chan_reg.dma_spar;
917 desc->sg_req[i].chan_reg.dma_sm0ar = sg_dma_address(sg);
918 desc->sg_req[i].chan_reg.dma_sm1ar = sg_dma_address(sg);
919 desc->sg_req[i].chan_reg.dma_sndtr = nb_data_items;
922 desc->num_sgs = sg_len;
923 desc->cyclic = false;
925 return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
932 static struct dma_async_tx_descriptor *stm32_dma_prep_dma_cyclic(
933 struct dma_chan *c, dma_addr_t buf_addr, size_t buf_len,
934 size_t period_len, enum dma_transfer_direction direction,
937 struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
938 struct stm32_dma_desc *desc;
939 enum dma_slave_buswidth buswidth;
940 u32 num_periods, nb_data_items;
943 if (!buf_len || !period_len) {
944 dev_err(chan2dev(chan), "Invalid buffer/period len\n");
948 if (!chan->config_init) {
949 dev_err(chan2dev(chan), "dma channel is not configured\n");
953 if (buf_len % period_len) {
954 dev_err(chan2dev(chan), "buf_len not multiple of period_len\n");
959 * We allow to take more number of requests till DMA is
960 * not started. The driver will loop over all requests.
961 * Once DMA is started then new requests can be queued only after
962 * terminating the DMA.
965 dev_err(chan2dev(chan), "Request not allowed when dma busy\n");
969 ret = stm32_dma_set_xfer_param(chan, direction, &buswidth, period_len,
974 nb_data_items = period_len / buswidth;
975 if (nb_data_items > STM32_DMA_ALIGNED_MAX_DATA_ITEMS) {
976 dev_err(chan2dev(chan), "number of items not supported\n");
980 /* Enable Circular mode or double buffer mode */
981 if (buf_len == period_len)
982 chan->chan_reg.dma_scr |= STM32_DMA_SCR_CIRC;
984 chan->chan_reg.dma_scr |= STM32_DMA_SCR_DBM;
986 /* Clear periph ctrl if client set it */
987 chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_PFCTRL;
989 num_periods = buf_len / period_len;
991 desc = kzalloc(struct_size(desc, sg_req, num_periods), GFP_NOWAIT);
995 for (i = 0; i < num_periods; i++) {
996 desc->sg_req[i].len = period_len;
998 stm32_dma_clear_reg(&desc->sg_req[i].chan_reg);
999 desc->sg_req[i].chan_reg.dma_scr = chan->chan_reg.dma_scr;
1000 desc->sg_req[i].chan_reg.dma_sfcr = chan->chan_reg.dma_sfcr;
1001 desc->sg_req[i].chan_reg.dma_spar = chan->chan_reg.dma_spar;
1002 desc->sg_req[i].chan_reg.dma_sm0ar = buf_addr;
1003 desc->sg_req[i].chan_reg.dma_sm1ar = buf_addr;
1004 desc->sg_req[i].chan_reg.dma_sndtr = nb_data_items;
1005 buf_addr += period_len;
1008 desc->num_sgs = num_periods;
1009 desc->cyclic = true;
1011 return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
1014 static struct dma_async_tx_descriptor *stm32_dma_prep_dma_memcpy(
1015 struct dma_chan *c, dma_addr_t dest,
1016 dma_addr_t src, size_t len, unsigned long flags)
1018 struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
1019 enum dma_slave_buswidth max_width;
1020 struct stm32_dma_desc *desc;
1021 size_t xfer_count, offset;
1022 u32 num_sgs, best_burst, dma_burst, threshold;
1025 num_sgs = DIV_ROUND_UP(len, STM32_DMA_ALIGNED_MAX_DATA_ITEMS);
1026 desc = kzalloc(struct_size(desc, sg_req, num_sgs), GFP_NOWAIT);
1030 threshold = chan->threshold;
1032 for (offset = 0, i = 0; offset < len; offset += xfer_count, i++) {
1033 xfer_count = min_t(size_t, len - offset,
1034 STM32_DMA_ALIGNED_MAX_DATA_ITEMS);
1036 /* Compute best burst size */
1037 max_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1038 best_burst = stm32_dma_get_best_burst(len, STM32_DMA_MAX_BURST,
1039 threshold, max_width);
1040 dma_burst = stm32_dma_get_burst(chan, best_burst);
1042 stm32_dma_clear_reg(&desc->sg_req[i].chan_reg);
1043 desc->sg_req[i].chan_reg.dma_scr =
1044 STM32_DMA_SCR_DIR(STM32_DMA_MEM_TO_MEM) |
1045 STM32_DMA_SCR_PBURST(dma_burst) |
1046 STM32_DMA_SCR_MBURST(dma_burst) |
1047 STM32_DMA_SCR_MINC |
1048 STM32_DMA_SCR_PINC |
1049 STM32_DMA_SCR_TCIE |
1051 desc->sg_req[i].chan_reg.dma_sfcr |= STM32_DMA_SFCR_MASK;
1052 desc->sg_req[i].chan_reg.dma_sfcr |=
1053 STM32_DMA_SFCR_FTH(threshold);
1054 desc->sg_req[i].chan_reg.dma_spar = src + offset;
1055 desc->sg_req[i].chan_reg.dma_sm0ar = dest + offset;
1056 desc->sg_req[i].chan_reg.dma_sndtr = xfer_count;
1057 desc->sg_req[i].len = xfer_count;
1060 desc->num_sgs = num_sgs;
1061 desc->cyclic = false;
1063 return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
1066 static u32 stm32_dma_get_remaining_bytes(struct stm32_dma_chan *chan)
1068 u32 dma_scr, width, ndtr;
1069 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
1071 dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
1072 width = STM32_DMA_SCR_PSIZE_GET(dma_scr);
1073 ndtr = stm32_dma_read(dmadev, STM32_DMA_SNDTR(chan->id));
1075 return ndtr << width;
1079 * stm32_dma_is_current_sg - check that expected sg_req is currently transferred
1080 * @chan: dma channel
1082 * This function called when IRQ are disable, checks that the hardware has not
1083 * switched on the next transfer in double buffer mode. The test is done by
1084 * comparing the next_sg memory address with the hardware related register
1085 * (based on CT bit value).
1087 * Returns true if expected current transfer is still running or double
1088 * buffer mode is not activated.
1090 static bool stm32_dma_is_current_sg(struct stm32_dma_chan *chan)
1092 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
1093 struct stm32_dma_sg_req *sg_req;
1094 u32 dma_scr, dma_smar, id;
1097 dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
1099 if (!(dma_scr & STM32_DMA_SCR_DBM))
1102 sg_req = &chan->desc->sg_req[chan->next_sg];
1104 if (dma_scr & STM32_DMA_SCR_CT) {
1105 dma_smar = stm32_dma_read(dmadev, STM32_DMA_SM0AR(id));
1106 return (dma_smar == sg_req->chan_reg.dma_sm0ar);
1109 dma_smar = stm32_dma_read(dmadev, STM32_DMA_SM1AR(id));
1111 return (dma_smar == sg_req->chan_reg.dma_sm1ar);
1114 static size_t stm32_dma_desc_residue(struct stm32_dma_chan *chan,
1115 struct stm32_dma_desc *desc,
1118 u32 modulo, burst_size;
1121 struct stm32_dma_sg_req *sg_req = &chan->desc->sg_req[chan->next_sg];
1125 * Calculate the residue means compute the descriptors
1127 * - the sg_req currently transferred
1128 * - the Hardware remaining position in this sg (NDTR bits field).
1130 * A race condition may occur if DMA is running in cyclic or double
1131 * buffer mode, since the DMA register are automatically reloaded at end
1132 * of period transfer. The hardware may have switched to the next
1133 * transfer (CT bit updated) just before the position (SxNDTR reg) is
1135 * In this case the SxNDTR reg could (or not) correspond to the new
1136 * transfer position, and not the expected one.
1137 * The strategy implemented in the stm32 driver is to:
1138 * - read the SxNDTR register
1139 * - crosscheck that hardware is still in current transfer.
1140 * In case of switch, we can assume that the DMA is at the beginning of
1141 * the next transfer. So we approximate the residue in consequence, by
1142 * pointing on the beginning of next transfer.
1144 * This race condition doesn't apply for none cyclic mode, as double
1145 * buffer is not used. In such situation registers are updated by the
1149 residue = stm32_dma_get_remaining_bytes(chan);
1151 if (!stm32_dma_is_current_sg(chan)) {
1153 if (n_sg == chan->desc->num_sgs)
1155 residue = sg_req->len;
1159 * In cyclic mode, for the last period, residue = remaining bytes
1161 * else for all other periods in cyclic mode, and in sg mode,
1162 * residue = remaining bytes from NDTR + remaining
1163 * periods/sg to be transferred
1165 if (!chan->desc->cyclic || n_sg != 0)
1166 for (i = n_sg; i < desc->num_sgs; i++)
1167 residue += desc->sg_req[i].len;
1169 if (!chan->mem_burst)
1172 burst_size = chan->mem_burst * chan->mem_width;
1173 modulo = residue % burst_size;
1175 residue = residue - modulo + burst_size;
1180 static enum dma_status stm32_dma_tx_status(struct dma_chan *c,
1181 dma_cookie_t cookie,
1182 struct dma_tx_state *state)
1184 struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
1185 struct virt_dma_desc *vdesc;
1186 enum dma_status status;
1187 unsigned long flags;
1190 status = dma_cookie_status(c, cookie, state);
1191 if (status == DMA_COMPLETE || !state)
1194 spin_lock_irqsave(&chan->vchan.lock, flags);
1195 vdesc = vchan_find_desc(&chan->vchan, cookie);
1196 if (chan->desc && cookie == chan->desc->vdesc.tx.cookie)
1197 residue = stm32_dma_desc_residue(chan, chan->desc,
1200 residue = stm32_dma_desc_residue(chan,
1201 to_stm32_dma_desc(vdesc), 0);
1202 dma_set_residue(state, residue);
1204 spin_unlock_irqrestore(&chan->vchan.lock, flags);
1209 static int stm32_dma_alloc_chan_resources(struct dma_chan *c)
1211 struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
1212 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
1215 chan->config_init = false;
1217 ret = pm_runtime_resume_and_get(dmadev->ddev.dev);
1221 ret = stm32_dma_disable_chan(chan);
1223 pm_runtime_put(dmadev->ddev.dev);
1228 static void stm32_dma_free_chan_resources(struct dma_chan *c)
1230 struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
1231 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
1232 unsigned long flags;
1234 dev_dbg(chan2dev(chan), "Freeing channel %d\n", chan->id);
1237 spin_lock_irqsave(&chan->vchan.lock, flags);
1238 stm32_dma_stop(chan);
1240 spin_unlock_irqrestore(&chan->vchan.lock, flags);
1243 pm_runtime_put(dmadev->ddev.dev);
1245 vchan_free_chan_resources(to_virt_chan(c));
1246 stm32_dma_clear_reg(&chan->chan_reg);
1247 chan->threshold = 0;
1250 static void stm32_dma_desc_free(struct virt_dma_desc *vdesc)
1252 kfree(container_of(vdesc, struct stm32_dma_desc, vdesc));
1255 static void stm32_dma_set_config(struct stm32_dma_chan *chan,
1256 struct stm32_dma_cfg *cfg)
1258 stm32_dma_clear_reg(&chan->chan_reg);
1260 chan->chan_reg.dma_scr = cfg->stream_config & STM32_DMA_SCR_CFG_MASK;
1261 chan->chan_reg.dma_scr |= STM32_DMA_SCR_REQ(cfg->request_line);
1263 /* Enable Interrupts */
1264 chan->chan_reg.dma_scr |= STM32_DMA_SCR_TEIE | STM32_DMA_SCR_TCIE;
1266 chan->threshold = STM32_DMA_THRESHOLD_FTR_GET(cfg->features);
1267 if (STM32_DMA_DIRECT_MODE_GET(cfg->features))
1268 chan->threshold = STM32_DMA_FIFO_THRESHOLD_NONE;
1269 if (STM32_DMA_ALT_ACK_MODE_GET(cfg->features))
1270 chan->chan_reg.dma_scr |= STM32_DMA_SCR_TRBUFF;
1273 static struct dma_chan *stm32_dma_of_xlate(struct of_phandle_args *dma_spec,
1274 struct of_dma *ofdma)
1276 struct stm32_dma_device *dmadev = ofdma->of_dma_data;
1277 struct device *dev = dmadev->ddev.dev;
1278 struct stm32_dma_cfg cfg;
1279 struct stm32_dma_chan *chan;
1282 if (dma_spec->args_count < 4) {
1283 dev_err(dev, "Bad number of cells\n");
1287 cfg.channel_id = dma_spec->args[0];
1288 cfg.request_line = dma_spec->args[1];
1289 cfg.stream_config = dma_spec->args[2];
1290 cfg.features = dma_spec->args[3];
1292 if (cfg.channel_id >= STM32_DMA_MAX_CHANNELS ||
1293 cfg.request_line >= STM32_DMA_MAX_REQUEST_ID) {
1294 dev_err(dev, "Bad channel and/or request id\n");
1298 chan = &dmadev->chan[cfg.channel_id];
1300 c = dma_get_slave_channel(&chan->vchan.chan);
1302 dev_err(dev, "No more channels available\n");
1306 stm32_dma_set_config(chan, &cfg);
1311 static const struct of_device_id stm32_dma_of_match[] = {
1312 { .compatible = "st,stm32-dma", },
1315 MODULE_DEVICE_TABLE(of, stm32_dma_of_match);
1317 static int stm32_dma_probe(struct platform_device *pdev)
1319 struct stm32_dma_chan *chan;
1320 struct stm32_dma_device *dmadev;
1321 struct dma_device *dd;
1322 const struct of_device_id *match;
1323 struct resource *res;
1324 struct reset_control *rst;
1327 match = of_match_device(stm32_dma_of_match, &pdev->dev);
1329 dev_err(&pdev->dev, "Error: No device match found\n");
1333 dmadev = devm_kzalloc(&pdev->dev, sizeof(*dmadev), GFP_KERNEL);
1339 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1340 dmadev->base = devm_ioremap_resource(&pdev->dev, res);
1341 if (IS_ERR(dmadev->base))
1342 return PTR_ERR(dmadev->base);
1344 dmadev->clk = devm_clk_get(&pdev->dev, NULL);
1345 if (IS_ERR(dmadev->clk))
1346 return dev_err_probe(&pdev->dev, PTR_ERR(dmadev->clk), "Can't get clock\n");
1348 ret = clk_prepare_enable(dmadev->clk);
1350 dev_err(&pdev->dev, "clk_prep_enable error: %d\n", ret);
1354 dmadev->mem2mem = of_property_read_bool(pdev->dev.of_node,
1357 rst = devm_reset_control_get(&pdev->dev, NULL);
1360 if (ret == -EPROBE_DEFER)
1363 reset_control_assert(rst);
1365 reset_control_deassert(rst);
1368 dma_set_max_seg_size(&pdev->dev, STM32_DMA_ALIGNED_MAX_DATA_ITEMS);
1370 dma_cap_set(DMA_SLAVE, dd->cap_mask);
1371 dma_cap_set(DMA_PRIVATE, dd->cap_mask);
1372 dma_cap_set(DMA_CYCLIC, dd->cap_mask);
1373 dd->device_alloc_chan_resources = stm32_dma_alloc_chan_resources;
1374 dd->device_free_chan_resources = stm32_dma_free_chan_resources;
1375 dd->device_tx_status = stm32_dma_tx_status;
1376 dd->device_issue_pending = stm32_dma_issue_pending;
1377 dd->device_prep_slave_sg = stm32_dma_prep_slave_sg;
1378 dd->device_prep_dma_cyclic = stm32_dma_prep_dma_cyclic;
1379 dd->device_config = stm32_dma_slave_config;
1380 dd->device_terminate_all = stm32_dma_terminate_all;
1381 dd->device_synchronize = stm32_dma_synchronize;
1382 dd->src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
1383 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
1384 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
1385 dd->dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
1386 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
1387 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
1388 dd->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1389 dd->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1390 dd->copy_align = DMAENGINE_ALIGN_32_BYTES;
1391 dd->max_burst = STM32_DMA_MAX_BURST;
1392 dd->descriptor_reuse = true;
1393 dd->dev = &pdev->dev;
1394 INIT_LIST_HEAD(&dd->channels);
1396 if (dmadev->mem2mem) {
1397 dma_cap_set(DMA_MEMCPY, dd->cap_mask);
1398 dd->device_prep_dma_memcpy = stm32_dma_prep_dma_memcpy;
1399 dd->directions |= BIT(DMA_MEM_TO_MEM);
1402 for (i = 0; i < STM32_DMA_MAX_CHANNELS; i++) {
1403 chan = &dmadev->chan[i];
1405 chan->vchan.desc_free = stm32_dma_desc_free;
1406 vchan_init(&chan->vchan, dd);
1409 ret = dma_async_device_register(dd);
1413 for (i = 0; i < STM32_DMA_MAX_CHANNELS; i++) {
1414 chan = &dmadev->chan[i];
1415 ret = platform_get_irq(pdev, i);
1417 goto err_unregister;
1420 ret = devm_request_irq(&pdev->dev, chan->irq,
1421 stm32_dma_chan_irq, 0,
1422 dev_name(chan2dev(chan)), chan);
1425 "request_irq failed with err %d channel %d\n",
1427 goto err_unregister;
1431 ret = of_dma_controller_register(pdev->dev.of_node,
1432 stm32_dma_of_xlate, dmadev);
1435 "STM32 DMA DMA OF registration failed %d\n", ret);
1436 goto err_unregister;
1439 platform_set_drvdata(pdev, dmadev);
1441 pm_runtime_set_active(&pdev->dev);
1442 pm_runtime_enable(&pdev->dev);
1443 pm_runtime_get_noresume(&pdev->dev);
1444 pm_runtime_put(&pdev->dev);
1446 dev_info(&pdev->dev, "STM32 DMA driver registered\n");
1451 dma_async_device_unregister(dd);
1453 clk_disable_unprepare(dmadev->clk);
1459 static int stm32_dma_runtime_suspend(struct device *dev)
1461 struct stm32_dma_device *dmadev = dev_get_drvdata(dev);
1463 clk_disable_unprepare(dmadev->clk);
1468 static int stm32_dma_runtime_resume(struct device *dev)
1470 struct stm32_dma_device *dmadev = dev_get_drvdata(dev);
1473 ret = clk_prepare_enable(dmadev->clk);
1475 dev_err(dev, "failed to prepare_enable clock\n");
1483 #ifdef CONFIG_PM_SLEEP
1484 static int stm32_dma_suspend(struct device *dev)
1486 struct stm32_dma_device *dmadev = dev_get_drvdata(dev);
1489 ret = pm_runtime_resume_and_get(dev);
1493 for (id = 0; id < STM32_DMA_MAX_CHANNELS; id++) {
1494 scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
1495 if (scr & STM32_DMA_SCR_EN) {
1496 dev_warn(dev, "Suspend is prevented by Chan %i\n", id);
1501 pm_runtime_put_sync(dev);
1503 pm_runtime_force_suspend(dev);
1508 static int stm32_dma_resume(struct device *dev)
1510 return pm_runtime_force_resume(dev);
1514 static const struct dev_pm_ops stm32_dma_pm_ops = {
1515 SET_SYSTEM_SLEEP_PM_OPS(stm32_dma_suspend, stm32_dma_resume)
1516 SET_RUNTIME_PM_OPS(stm32_dma_runtime_suspend,
1517 stm32_dma_runtime_resume, NULL)
1520 static struct platform_driver stm32_dma_driver = {
1522 .name = "stm32-dma",
1523 .of_match_table = stm32_dma_of_match,
1524 .pm = &stm32_dma_pm_ops,
1526 .probe = stm32_dma_probe,
1529 static int __init stm32_dma_init(void)
1531 return platform_driver_register(&stm32_dma_driver);
1533 subsys_initcall(stm32_dma_init);