1 // SPDX-License-Identifier: GPL-2.0-only
3 * Driver for STM32 DMA controller
5 * Inspired by dma-jz4740.c and tegra20-apb-dma.c
7 * Copyright (C) M'boumba Cedric Madianga 2015
8 * Author: M'boumba Cedric Madianga <cedric.madianga@gmail.com>
9 * Pierre-Yves Mordret <pierre-yves.mordret@st.com>
12 #include <linux/bitfield.h>
13 #include <linux/clk.h>
14 #include <linux/delay.h>
15 #include <linux/dmaengine.h>
16 #include <linux/dma-mapping.h>
17 #include <linux/err.h>
18 #include <linux/init.h>
19 #include <linux/iopoll.h>
20 #include <linux/jiffies.h>
21 #include <linux/list.h>
22 #include <linux/module.h>
24 #include <linux/of_device.h>
25 #include <linux/of_dma.h>
26 #include <linux/platform_device.h>
27 #include <linux/pm_runtime.h>
28 #include <linux/reset.h>
29 #include <linux/sched.h>
30 #include <linux/slab.h>
34 #define STM32_DMA_LISR 0x0000 /* DMA Low Int Status Reg */
35 #define STM32_DMA_HISR 0x0004 /* DMA High Int Status Reg */
36 #define STM32_DMA_ISR(n) (((n) & 4) ? STM32_DMA_HISR : STM32_DMA_LISR)
37 #define STM32_DMA_LIFCR 0x0008 /* DMA Low Int Flag Clear Reg */
38 #define STM32_DMA_HIFCR 0x000c /* DMA High Int Flag Clear Reg */
39 #define STM32_DMA_IFCR(n) (((n) & 4) ? STM32_DMA_HIFCR : STM32_DMA_LIFCR)
40 #define STM32_DMA_TCI BIT(5) /* Transfer Complete Interrupt */
41 #define STM32_DMA_HTI BIT(4) /* Half Transfer Interrupt */
42 #define STM32_DMA_TEI BIT(3) /* Transfer Error Interrupt */
43 #define STM32_DMA_DMEI BIT(2) /* Direct Mode Error Interrupt */
44 #define STM32_DMA_FEI BIT(0) /* FIFO Error Interrupt */
45 #define STM32_DMA_MASKI (STM32_DMA_TCI \
50 * If (chan->id % 4) is 2 or 3, left shift the mask by 16 bits;
51 * if (ch % 4) is 1 or 3, additionally left shift the mask by 6 bits.
53 #define STM32_DMA_FLAGS_SHIFT(n) ({ typeof(n) (_n) = (n); \
54 (((_n) & 2) << 3) | (((_n) & 1) * 6); })
56 /* DMA Stream x Configuration Register */
57 #define STM32_DMA_SCR(x) (0x0010 + 0x18 * (x)) /* x = 0..7 */
58 #define STM32_DMA_SCR_REQ_MASK GENMASK(27, 25)
59 #define STM32_DMA_SCR_MBURST_MASK GENMASK(24, 23)
60 #define STM32_DMA_SCR_PBURST_MASK GENMASK(22, 21)
61 #define STM32_DMA_SCR_PL_MASK GENMASK(17, 16)
62 #define STM32_DMA_SCR_MSIZE_MASK GENMASK(14, 13)
63 #define STM32_DMA_SCR_PSIZE_MASK GENMASK(12, 11)
64 #define STM32_DMA_SCR_DIR_MASK GENMASK(7, 6)
65 #define STM32_DMA_SCR_TRBUFF BIT(20) /* Bufferable transfer for USART/UART */
66 #define STM32_DMA_SCR_CT BIT(19) /* Target in double buffer */
67 #define STM32_DMA_SCR_DBM BIT(18) /* Double Buffer Mode */
68 #define STM32_DMA_SCR_PINCOS BIT(15) /* Peripheral inc offset size */
69 #define STM32_DMA_SCR_MINC BIT(10) /* Memory increment mode */
70 #define STM32_DMA_SCR_PINC BIT(9) /* Peripheral increment mode */
71 #define STM32_DMA_SCR_CIRC BIT(8) /* Circular mode */
72 #define STM32_DMA_SCR_PFCTRL BIT(5) /* Peripheral Flow Controller */
73 #define STM32_DMA_SCR_TCIE BIT(4) /* Transfer Complete Int Enable
75 #define STM32_DMA_SCR_TEIE BIT(2) /* Transfer Error Int Enable */
76 #define STM32_DMA_SCR_DMEIE BIT(1) /* Direct Mode Err Int Enable */
77 #define STM32_DMA_SCR_EN BIT(0) /* Stream Enable */
78 #define STM32_DMA_SCR_CFG_MASK (STM32_DMA_SCR_PINC \
79 | STM32_DMA_SCR_MINC \
80 | STM32_DMA_SCR_PINCOS \
81 | STM32_DMA_SCR_PL_MASK)
82 #define STM32_DMA_SCR_IRQ_MASK (STM32_DMA_SCR_TCIE \
83 | STM32_DMA_SCR_TEIE \
84 | STM32_DMA_SCR_DMEIE)
86 /* DMA Stream x number of data register */
87 #define STM32_DMA_SNDTR(x) (0x0014 + 0x18 * (x))
89 /* DMA stream peripheral address register */
90 #define STM32_DMA_SPAR(x) (0x0018 + 0x18 * (x))
92 /* DMA stream x memory 0 address register */
93 #define STM32_DMA_SM0AR(x) (0x001c + 0x18 * (x))
95 /* DMA stream x memory 1 address register */
96 #define STM32_DMA_SM1AR(x) (0x0020 + 0x18 * (x))
98 /* DMA stream x FIFO control register */
99 #define STM32_DMA_SFCR(x) (0x0024 + 0x18 * (x))
100 #define STM32_DMA_SFCR_FTH_MASK GENMASK(1, 0)
101 #define STM32_DMA_SFCR_FEIE BIT(7) /* FIFO error interrupt enable */
102 #define STM32_DMA_SFCR_DMDIS BIT(2) /* Direct mode disable */
103 #define STM32_DMA_SFCR_MASK (STM32_DMA_SFCR_FEIE \
104 | STM32_DMA_SFCR_DMDIS)
107 #define STM32_DMA_DEV_TO_MEM 0x00
108 #define STM32_DMA_MEM_TO_DEV 0x01
109 #define STM32_DMA_MEM_TO_MEM 0x02
111 /* DMA priority level */
112 #define STM32_DMA_PRIORITY_LOW 0x00
113 #define STM32_DMA_PRIORITY_MEDIUM 0x01
114 #define STM32_DMA_PRIORITY_HIGH 0x02
115 #define STM32_DMA_PRIORITY_VERY_HIGH 0x03
117 /* DMA FIFO threshold selection */
118 #define STM32_DMA_FIFO_THRESHOLD_1QUARTERFULL 0x00
119 #define STM32_DMA_FIFO_THRESHOLD_HALFFULL 0x01
120 #define STM32_DMA_FIFO_THRESHOLD_3QUARTERSFULL 0x02
121 #define STM32_DMA_FIFO_THRESHOLD_FULL 0x03
122 #define STM32_DMA_FIFO_THRESHOLD_NONE 0x04
124 #define STM32_DMA_MAX_DATA_ITEMS 0xffff
126 * Valid transfer starts from @0 to @0xFFFE leading to unaligned scatter
127 * gather at boundary. Thus it's safer to round down this value on FIFO
130 #define STM32_DMA_ALIGNED_MAX_DATA_ITEMS \
131 ALIGN_DOWN(STM32_DMA_MAX_DATA_ITEMS, 16)
132 #define STM32_DMA_MAX_CHANNELS 0x08
133 #define STM32_DMA_MAX_REQUEST_ID 0x08
134 #define STM32_DMA_MAX_DATA_PARAM 0x03
135 #define STM32_DMA_FIFO_SIZE 16 /* FIFO is 16 bytes */
136 #define STM32_DMA_MIN_BURST 4
137 #define STM32_DMA_MAX_BURST 16
140 #define STM32_DMA_THRESHOLD_FTR_MASK GENMASK(1, 0)
141 #define STM32_DMA_DIRECT_MODE_MASK BIT(2)
142 #define STM32_DMA_ALT_ACK_MODE_MASK BIT(4)
143 #define STM32_DMA_MDMA_STREAM_ID_MASK GENMASK(19, 16)
145 enum stm32_dma_width {
151 enum stm32_dma_burst_size {
152 STM32_DMA_BURST_SINGLE,
153 STM32_DMA_BURST_INCR4,
154 STM32_DMA_BURST_INCR8,
155 STM32_DMA_BURST_INCR16,
159 * struct stm32_dma_cfg - STM32 DMA custom configuration
160 * @channel_id: channel ID
161 * @request_line: DMA request
162 * @stream_config: 32bit mask specifying the DMA channel configuration
163 * @features: 32bit mask specifying the DMA Feature list
165 struct stm32_dma_cfg {
172 struct stm32_dma_chan_reg {
185 struct stm32_dma_sg_req {
187 struct stm32_dma_chan_reg chan_reg;
190 struct stm32_dma_desc {
191 struct virt_dma_desc vdesc;
194 struct stm32_dma_sg_req sg_req[];
198 * struct stm32_dma_mdma_config - STM32 DMA MDMA configuration
199 * @stream_id: DMA request to trigger STM32 MDMA transfer
200 * @ifcr: DMA interrupt flag clear register address,
201 * used by STM32 MDMA to clear DMA Transfer Complete flag
202 * @tcf: DMA Transfer Complete flag
204 struct stm32_dma_mdma_config {
210 struct stm32_dma_chan {
211 struct virt_dma_chan vchan;
216 struct stm32_dma_desc *desc;
218 struct dma_slave_config dma_sconfig;
219 struct stm32_dma_chan_reg chan_reg;
223 enum dma_status status;
225 struct stm32_dma_mdma_config mdma_config;
228 struct stm32_dma_device {
229 struct dma_device ddev;
233 struct stm32_dma_chan chan[STM32_DMA_MAX_CHANNELS];
236 static struct stm32_dma_device *stm32_dma_get_dev(struct stm32_dma_chan *chan)
238 return container_of(chan->vchan.chan.device, struct stm32_dma_device,
242 static struct stm32_dma_chan *to_stm32_dma_chan(struct dma_chan *c)
244 return container_of(c, struct stm32_dma_chan, vchan.chan);
247 static struct stm32_dma_desc *to_stm32_dma_desc(struct virt_dma_desc *vdesc)
249 return container_of(vdesc, struct stm32_dma_desc, vdesc);
252 static struct device *chan2dev(struct stm32_dma_chan *chan)
254 return &chan->vchan.chan.dev->device;
257 static u32 stm32_dma_read(struct stm32_dma_device *dmadev, u32 reg)
259 return readl_relaxed(dmadev->base + reg);
262 static void stm32_dma_write(struct stm32_dma_device *dmadev, u32 reg, u32 val)
264 writel_relaxed(val, dmadev->base + reg);
267 static int stm32_dma_get_width(struct stm32_dma_chan *chan,
268 enum dma_slave_buswidth width)
271 case DMA_SLAVE_BUSWIDTH_1_BYTE:
272 return STM32_DMA_BYTE;
273 case DMA_SLAVE_BUSWIDTH_2_BYTES:
274 return STM32_DMA_HALF_WORD;
275 case DMA_SLAVE_BUSWIDTH_4_BYTES:
276 return STM32_DMA_WORD;
278 dev_err(chan2dev(chan), "Dma bus width not supported\n");
283 static enum dma_slave_buswidth stm32_dma_get_max_width(u32 buf_len,
287 enum dma_slave_buswidth max_width;
289 if (threshold == STM32_DMA_FIFO_THRESHOLD_FULL)
290 max_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
292 max_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
294 while ((buf_len < max_width || buf_len % max_width) &&
295 max_width > DMA_SLAVE_BUSWIDTH_1_BYTE)
296 max_width = max_width >> 1;
298 if (buf_addr & (max_width - 1))
299 max_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
304 static bool stm32_dma_fifo_threshold_is_allowed(u32 burst, u32 threshold,
305 enum dma_slave_buswidth width)
309 if (threshold == STM32_DMA_FIFO_THRESHOLD_NONE)
312 if (width != DMA_SLAVE_BUSWIDTH_UNDEFINED) {
315 * If number of beats fit in several whole bursts
316 * this configuration is allowed.
318 remaining = ((STM32_DMA_FIFO_SIZE / width) *
319 (threshold + 1) / 4) % burst;
331 static bool stm32_dma_is_burst_possible(u32 buf_len, u32 threshold)
333 /* If FIFO direct mode, burst is not possible */
334 if (threshold == STM32_DMA_FIFO_THRESHOLD_NONE)
338 * Buffer or period length has to be aligned on FIFO depth.
339 * Otherwise bytes may be stuck within FIFO at buffer or period
342 return ((buf_len % ((threshold + 1) * 4)) == 0);
345 static u32 stm32_dma_get_best_burst(u32 buf_len, u32 max_burst, u32 threshold,
346 enum dma_slave_buswidth width)
348 u32 best_burst = max_burst;
350 if (best_burst == 1 || !stm32_dma_is_burst_possible(buf_len, threshold))
353 while ((buf_len < best_burst * width && best_burst > 1) ||
354 !stm32_dma_fifo_threshold_is_allowed(best_burst, threshold,
356 if (best_burst > STM32_DMA_MIN_BURST)
357 best_burst = best_burst >> 1;
365 static int stm32_dma_get_burst(struct stm32_dma_chan *chan, u32 maxburst)
370 return STM32_DMA_BURST_SINGLE;
372 return STM32_DMA_BURST_INCR4;
374 return STM32_DMA_BURST_INCR8;
376 return STM32_DMA_BURST_INCR16;
378 dev_err(chan2dev(chan), "Dma burst size not supported\n");
383 static void stm32_dma_set_fifo_config(struct stm32_dma_chan *chan,
384 u32 src_burst, u32 dst_burst)
386 chan->chan_reg.dma_sfcr &= ~STM32_DMA_SFCR_MASK;
387 chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_DMEIE;
389 if (!src_burst && !dst_burst) {
390 /* Using direct mode */
391 chan->chan_reg.dma_scr |= STM32_DMA_SCR_DMEIE;
393 /* Using FIFO mode */
394 chan->chan_reg.dma_sfcr |= STM32_DMA_SFCR_MASK;
398 static int stm32_dma_slave_config(struct dma_chan *c,
399 struct dma_slave_config *config)
401 struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
403 memcpy(&chan->dma_sconfig, config, sizeof(*config));
405 /* Check if user is requesting DMA to trigger STM32 MDMA */
406 if (config->peripheral_size) {
407 config->peripheral_config = &chan->mdma_config;
408 config->peripheral_size = sizeof(chan->mdma_config);
409 chan->trig_mdma = true;
412 chan->config_init = true;
417 static u32 stm32_dma_irq_status(struct stm32_dma_chan *chan)
419 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
423 * Read "flags" from DMA_xISR register corresponding to the selected
424 * DMA channel at the correct bit offset inside that register.
427 dma_isr = stm32_dma_read(dmadev, STM32_DMA_ISR(chan->id));
428 flags = dma_isr >> STM32_DMA_FLAGS_SHIFT(chan->id);
430 return flags & STM32_DMA_MASKI;
433 static void stm32_dma_irq_clear(struct stm32_dma_chan *chan, u32 flags)
435 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
439 * Write "flags" to the DMA_xIFCR register corresponding to the selected
440 * DMA channel at the correct bit offset inside that register.
442 flags &= STM32_DMA_MASKI;
443 dma_ifcr = flags << STM32_DMA_FLAGS_SHIFT(chan->id);
445 stm32_dma_write(dmadev, STM32_DMA_IFCR(chan->id), dma_ifcr);
448 static int stm32_dma_disable_chan(struct stm32_dma_chan *chan)
450 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
451 u32 dma_scr, id, reg;
454 reg = STM32_DMA_SCR(id);
455 dma_scr = stm32_dma_read(dmadev, reg);
457 if (dma_scr & STM32_DMA_SCR_EN) {
458 dma_scr &= ~STM32_DMA_SCR_EN;
459 stm32_dma_write(dmadev, reg, dma_scr);
461 return readl_relaxed_poll_timeout_atomic(dmadev->base + reg,
462 dma_scr, !(dma_scr & STM32_DMA_SCR_EN),
469 static void stm32_dma_stop(struct stm32_dma_chan *chan)
471 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
472 u32 dma_scr, dma_sfcr, status;
475 /* Disable interrupts */
476 dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
477 dma_scr &= ~STM32_DMA_SCR_IRQ_MASK;
478 stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), dma_scr);
479 dma_sfcr = stm32_dma_read(dmadev, STM32_DMA_SFCR(chan->id));
480 dma_sfcr &= ~STM32_DMA_SFCR_FEIE;
481 stm32_dma_write(dmadev, STM32_DMA_SFCR(chan->id), dma_sfcr);
484 ret = stm32_dma_disable_chan(chan);
488 /* Clear interrupt status if it is there */
489 status = stm32_dma_irq_status(chan);
491 dev_dbg(chan2dev(chan), "%s(): clearing interrupt: 0x%08x\n",
493 stm32_dma_irq_clear(chan, status);
497 chan->status = DMA_COMPLETE;
500 static int stm32_dma_terminate_all(struct dma_chan *c)
502 struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
506 spin_lock_irqsave(&chan->vchan.lock, flags);
509 dma_cookie_complete(&chan->desc->vdesc.tx);
510 vchan_terminate_vdesc(&chan->desc->vdesc);
512 stm32_dma_stop(chan);
516 vchan_get_all_descriptors(&chan->vchan, &head);
517 spin_unlock_irqrestore(&chan->vchan.lock, flags);
518 vchan_dma_desc_free_list(&chan->vchan, &head);
523 static void stm32_dma_synchronize(struct dma_chan *c)
525 struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
527 vchan_synchronize(&chan->vchan);
530 static void stm32_dma_dump_reg(struct stm32_dma_chan *chan)
532 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
533 u32 scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
534 u32 ndtr = stm32_dma_read(dmadev, STM32_DMA_SNDTR(chan->id));
535 u32 spar = stm32_dma_read(dmadev, STM32_DMA_SPAR(chan->id));
536 u32 sm0ar = stm32_dma_read(dmadev, STM32_DMA_SM0AR(chan->id));
537 u32 sm1ar = stm32_dma_read(dmadev, STM32_DMA_SM1AR(chan->id));
538 u32 sfcr = stm32_dma_read(dmadev, STM32_DMA_SFCR(chan->id));
540 dev_dbg(chan2dev(chan), "SCR: 0x%08x\n", scr);
541 dev_dbg(chan2dev(chan), "NDTR: 0x%08x\n", ndtr);
542 dev_dbg(chan2dev(chan), "SPAR: 0x%08x\n", spar);
543 dev_dbg(chan2dev(chan), "SM0AR: 0x%08x\n", sm0ar);
544 dev_dbg(chan2dev(chan), "SM1AR: 0x%08x\n", sm1ar);
545 dev_dbg(chan2dev(chan), "SFCR: 0x%08x\n", sfcr);
548 static void stm32_dma_sg_inc(struct stm32_dma_chan *chan)
551 if (chan->desc->cyclic && (chan->next_sg == chan->desc->num_sgs))
555 static void stm32_dma_configure_next_sg(struct stm32_dma_chan *chan);
557 static void stm32_dma_start_transfer(struct stm32_dma_chan *chan)
559 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
560 struct virt_dma_desc *vdesc;
561 struct stm32_dma_sg_req *sg_req;
562 struct stm32_dma_chan_reg *reg;
566 ret = stm32_dma_disable_chan(chan);
571 vdesc = vchan_next_desc(&chan->vchan);
575 list_del(&vdesc->node);
577 chan->desc = to_stm32_dma_desc(vdesc);
581 if (chan->next_sg == chan->desc->num_sgs)
584 sg_req = &chan->desc->sg_req[chan->next_sg];
585 reg = &sg_req->chan_reg;
587 /* When DMA triggers STM32 MDMA, DMA Transfer Complete is managed by STM32 MDMA */
588 if (chan->trig_mdma && chan->dma_sconfig.direction != DMA_MEM_TO_DEV)
589 reg->dma_scr &= ~STM32_DMA_SCR_TCIE;
591 reg->dma_scr &= ~STM32_DMA_SCR_EN;
592 stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), reg->dma_scr);
593 stm32_dma_write(dmadev, STM32_DMA_SPAR(chan->id), reg->dma_spar);
594 stm32_dma_write(dmadev, STM32_DMA_SM0AR(chan->id), reg->dma_sm0ar);
595 stm32_dma_write(dmadev, STM32_DMA_SFCR(chan->id), reg->dma_sfcr);
596 stm32_dma_write(dmadev, STM32_DMA_SM1AR(chan->id), reg->dma_sm1ar);
597 stm32_dma_write(dmadev, STM32_DMA_SNDTR(chan->id), reg->dma_sndtr);
599 stm32_dma_sg_inc(chan);
601 /* Clear interrupt status if it is there */
602 status = stm32_dma_irq_status(chan);
604 stm32_dma_irq_clear(chan, status);
606 if (chan->desc->cyclic)
607 stm32_dma_configure_next_sg(chan);
609 stm32_dma_dump_reg(chan);
613 chan->status = DMA_IN_PROGRESS;
614 reg->dma_scr |= STM32_DMA_SCR_EN;
615 stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), reg->dma_scr);
617 dev_dbg(chan2dev(chan), "vchan %pK: started\n", &chan->vchan);
620 static void stm32_dma_configure_next_sg(struct stm32_dma_chan *chan)
622 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
623 struct stm32_dma_sg_req *sg_req;
624 u32 dma_scr, dma_sm0ar, dma_sm1ar, id;
627 dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
629 sg_req = &chan->desc->sg_req[chan->next_sg];
631 if (dma_scr & STM32_DMA_SCR_CT) {
632 dma_sm0ar = sg_req->chan_reg.dma_sm0ar;
633 stm32_dma_write(dmadev, STM32_DMA_SM0AR(id), dma_sm0ar);
634 dev_dbg(chan2dev(chan), "CT=1 <=> SM0AR: 0x%08x\n",
635 stm32_dma_read(dmadev, STM32_DMA_SM0AR(id)));
637 dma_sm1ar = sg_req->chan_reg.dma_sm1ar;
638 stm32_dma_write(dmadev, STM32_DMA_SM1AR(id), dma_sm1ar);
639 dev_dbg(chan2dev(chan), "CT=0 <=> SM1AR: 0x%08x\n",
640 stm32_dma_read(dmadev, STM32_DMA_SM1AR(id)));
644 static void stm32_dma_handle_chan_paused(struct stm32_dma_chan *chan)
646 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
650 * Read and store current remaining data items and peripheral/memory addresses to be
653 dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
655 * Transfer can be paused while between a previous resume and reconfiguration on transfer
656 * complete. If transfer is cyclic and CIRC and DBM have been deactivated for resume, need
657 * to set it here in SCR backup to ensure a good reconfiguration on transfer complete.
659 if (chan->desc && chan->desc->cyclic) {
660 if (chan->desc->num_sgs == 1)
661 dma_scr |= STM32_DMA_SCR_CIRC;
663 dma_scr |= STM32_DMA_SCR_DBM;
665 chan->chan_reg.dma_scr = dma_scr;
668 * Need to temporarily deactivate CIRC/DBM until next Transfer Complete interrupt, otherwise
669 * on resume NDTR autoreload value will be wrong (lower than the initial period length)
671 if (chan->desc && chan->desc->cyclic) {
672 dma_scr &= ~(STM32_DMA_SCR_DBM | STM32_DMA_SCR_CIRC);
673 stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), dma_scr);
676 chan->chan_reg.dma_sndtr = stm32_dma_read(dmadev, STM32_DMA_SNDTR(chan->id));
678 dev_dbg(chan2dev(chan), "vchan %pK: paused\n", &chan->vchan);
681 static void stm32_dma_post_resume_reconfigure(struct stm32_dma_chan *chan)
683 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
684 struct stm32_dma_sg_req *sg_req;
685 u32 dma_scr, status, id;
688 dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
690 /* Clear interrupt status if it is there */
691 status = stm32_dma_irq_status(chan);
693 stm32_dma_irq_clear(chan, status);
696 sg_req = &chan->desc->sg_req[chan->desc->num_sgs - 1];
698 sg_req = &chan->desc->sg_req[chan->next_sg - 1];
700 /* Reconfigure NDTR with the initial value */
701 stm32_dma_write(dmadev, STM32_DMA_SNDTR(chan->id), sg_req->chan_reg.dma_sndtr);
704 stm32_dma_write(dmadev, STM32_DMA_SPAR(id), sg_req->chan_reg.dma_spar);
706 /* Restore SM0AR/SM1AR whatever DBM/CT as they may have been modified */
707 stm32_dma_write(dmadev, STM32_DMA_SM0AR(id), sg_req->chan_reg.dma_sm0ar);
708 stm32_dma_write(dmadev, STM32_DMA_SM1AR(id), sg_req->chan_reg.dma_sm1ar);
710 /* Reactivate CIRC/DBM if needed */
711 if (chan->chan_reg.dma_scr & STM32_DMA_SCR_DBM) {
712 dma_scr |= STM32_DMA_SCR_DBM;
714 if (chan->chan_reg.dma_scr & STM32_DMA_SCR_CT)
715 dma_scr &= ~STM32_DMA_SCR_CT;
717 dma_scr |= STM32_DMA_SCR_CT;
718 } else if (chan->chan_reg.dma_scr & STM32_DMA_SCR_CIRC) {
719 dma_scr |= STM32_DMA_SCR_CIRC;
721 stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), dma_scr);
723 stm32_dma_configure_next_sg(chan);
725 stm32_dma_dump_reg(chan);
727 dma_scr |= STM32_DMA_SCR_EN;
728 stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), dma_scr);
730 dev_dbg(chan2dev(chan), "vchan %pK: reconfigured after pause/resume\n", &chan->vchan);
733 static void stm32_dma_handle_chan_done(struct stm32_dma_chan *chan, u32 scr)
738 if (chan->desc->cyclic) {
739 vchan_cyclic_callback(&chan->desc->vdesc);
742 stm32_dma_sg_inc(chan);
743 /* cyclic while CIRC/DBM disable => post resume reconfiguration needed */
744 if (!(scr & (STM32_DMA_SCR_CIRC | STM32_DMA_SCR_DBM)))
745 stm32_dma_post_resume_reconfigure(chan);
746 else if (scr & STM32_DMA_SCR_DBM)
747 stm32_dma_configure_next_sg(chan);
750 chan->status = DMA_COMPLETE;
751 if (chan->next_sg == chan->desc->num_sgs) {
752 vchan_cookie_complete(&chan->desc->vdesc);
755 stm32_dma_start_transfer(chan);
759 static irqreturn_t stm32_dma_chan_irq(int irq, void *devid)
761 struct stm32_dma_chan *chan = devid;
762 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
763 u32 status, scr, sfcr;
765 spin_lock(&chan->vchan.lock);
767 status = stm32_dma_irq_status(chan);
768 scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
769 sfcr = stm32_dma_read(dmadev, STM32_DMA_SFCR(chan->id));
771 if (status & STM32_DMA_FEI) {
772 stm32_dma_irq_clear(chan, STM32_DMA_FEI);
773 status &= ~STM32_DMA_FEI;
774 if (sfcr & STM32_DMA_SFCR_FEIE) {
775 if (!(scr & STM32_DMA_SCR_EN) &&
776 !(status & STM32_DMA_TCI))
777 dev_err(chan2dev(chan), "FIFO Error\n");
779 dev_dbg(chan2dev(chan), "FIFO over/underrun\n");
782 if (status & STM32_DMA_DMEI) {
783 stm32_dma_irq_clear(chan, STM32_DMA_DMEI);
784 status &= ~STM32_DMA_DMEI;
785 if (sfcr & STM32_DMA_SCR_DMEIE)
786 dev_dbg(chan2dev(chan), "Direct mode overrun\n");
789 if (status & STM32_DMA_TCI) {
790 stm32_dma_irq_clear(chan, STM32_DMA_TCI);
791 if (scr & STM32_DMA_SCR_TCIE) {
792 if (chan->status == DMA_PAUSED && !(scr & STM32_DMA_SCR_EN))
793 stm32_dma_handle_chan_paused(chan);
795 stm32_dma_handle_chan_done(chan, scr);
797 status &= ~STM32_DMA_TCI;
800 if (status & STM32_DMA_HTI) {
801 stm32_dma_irq_clear(chan, STM32_DMA_HTI);
802 status &= ~STM32_DMA_HTI;
806 stm32_dma_irq_clear(chan, status);
807 dev_err(chan2dev(chan), "DMA error: status=0x%08x\n", status);
808 if (!(scr & STM32_DMA_SCR_EN))
809 dev_err(chan2dev(chan), "chan disabled by HW\n");
812 spin_unlock(&chan->vchan.lock);
817 static void stm32_dma_issue_pending(struct dma_chan *c)
819 struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
822 spin_lock_irqsave(&chan->vchan.lock, flags);
823 if (vchan_issue_pending(&chan->vchan) && !chan->desc && !chan->busy) {
824 dev_dbg(chan2dev(chan), "vchan %pK: issued\n", &chan->vchan);
825 stm32_dma_start_transfer(chan);
828 spin_unlock_irqrestore(&chan->vchan.lock, flags);
831 static int stm32_dma_pause(struct dma_chan *c)
833 struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
837 if (chan->status != DMA_IN_PROGRESS)
840 spin_lock_irqsave(&chan->vchan.lock, flags);
841 ret = stm32_dma_disable_chan(chan);
843 * A transfer complete flag is set to indicate the end of transfer due to the stream
844 * interruption, so wait for interrupt
847 chan->status = DMA_PAUSED;
848 spin_unlock_irqrestore(&chan->vchan.lock, flags);
853 static int stm32_dma_resume(struct dma_chan *c)
855 struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
856 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
857 struct stm32_dma_chan_reg chan_reg = chan->chan_reg;
858 u32 id = chan->id, scr, ndtr, offset, spar, sm0ar, sm1ar;
859 struct stm32_dma_sg_req *sg_req;
862 if (chan->status != DMA_PAUSED)
865 scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
866 if (WARN_ON(scr & STM32_DMA_SCR_EN))
869 spin_lock_irqsave(&chan->vchan.lock, flags);
871 /* sg_reg[prev_sg] contains original ndtr, sm0ar and sm1ar before pausing the transfer */
873 sg_req = &chan->desc->sg_req[chan->desc->num_sgs - 1];
875 sg_req = &chan->desc->sg_req[chan->next_sg - 1];
877 ndtr = sg_req->chan_reg.dma_sndtr;
878 offset = (ndtr - chan_reg.dma_sndtr);
879 offset <<= FIELD_GET(STM32_DMA_SCR_PSIZE_MASK, chan_reg.dma_scr);
880 spar = sg_req->chan_reg.dma_spar;
881 sm0ar = sg_req->chan_reg.dma_sm0ar;
882 sm1ar = sg_req->chan_reg.dma_sm1ar;
885 * The peripheral and/or memory addresses have to be updated in order to adjust the
886 * address pointers. Need to check increment.
888 if (chan_reg.dma_scr & STM32_DMA_SCR_PINC)
889 stm32_dma_write(dmadev, STM32_DMA_SPAR(id), spar + offset);
891 stm32_dma_write(dmadev, STM32_DMA_SPAR(id), spar);
893 if (!(chan_reg.dma_scr & STM32_DMA_SCR_MINC))
897 * In case of DBM, the current target could be SM1AR.
898 * Need to temporarily deactivate CIRC/DBM to finish the current transfer, so
899 * SM0AR becomes the current target and must be updated with SM1AR + offset if CT=1.
901 if ((chan_reg.dma_scr & STM32_DMA_SCR_DBM) && (chan_reg.dma_scr & STM32_DMA_SCR_CT))
902 stm32_dma_write(dmadev, STM32_DMA_SM1AR(id), sm1ar + offset);
904 stm32_dma_write(dmadev, STM32_DMA_SM0AR(id), sm0ar + offset);
906 /* NDTR must be restored otherwise internal HW counter won't be correctly reset */
907 stm32_dma_write(dmadev, STM32_DMA_SNDTR(id), chan_reg.dma_sndtr);
910 * Need to temporarily deactivate CIRC/DBM until next Transfer Complete interrupt,
911 * otherwise NDTR autoreload value will be wrong (lower than the initial period length)
913 if (chan_reg.dma_scr & (STM32_DMA_SCR_CIRC | STM32_DMA_SCR_DBM))
914 chan_reg.dma_scr &= ~(STM32_DMA_SCR_CIRC | STM32_DMA_SCR_DBM);
916 if (chan_reg.dma_scr & STM32_DMA_SCR_DBM)
917 stm32_dma_configure_next_sg(chan);
919 stm32_dma_dump_reg(chan);
921 /* The stream may then be re-enabled to restart transfer from the point it was stopped */
922 chan->status = DMA_IN_PROGRESS;
923 chan_reg.dma_scr |= STM32_DMA_SCR_EN;
924 stm32_dma_write(dmadev, STM32_DMA_SCR(id), chan_reg.dma_scr);
926 spin_unlock_irqrestore(&chan->vchan.lock, flags);
928 dev_dbg(chan2dev(chan), "vchan %pK: resumed\n", &chan->vchan);
933 static int stm32_dma_set_xfer_param(struct stm32_dma_chan *chan,
934 enum dma_transfer_direction direction,
935 enum dma_slave_buswidth *buswidth,
936 u32 buf_len, dma_addr_t buf_addr)
938 enum dma_slave_buswidth src_addr_width, dst_addr_width;
939 int src_bus_width, dst_bus_width;
940 int src_burst_size, dst_burst_size;
941 u32 src_maxburst, dst_maxburst, src_best_burst, dst_best_burst;
944 src_addr_width = chan->dma_sconfig.src_addr_width;
945 dst_addr_width = chan->dma_sconfig.dst_addr_width;
946 src_maxburst = chan->dma_sconfig.src_maxburst;
947 dst_maxburst = chan->dma_sconfig.dst_maxburst;
948 fifoth = chan->threshold;
952 /* Set device data size */
953 dst_bus_width = stm32_dma_get_width(chan, dst_addr_width);
954 if (dst_bus_width < 0)
955 return dst_bus_width;
957 /* Set device burst size */
958 dst_best_burst = stm32_dma_get_best_burst(buf_len,
963 dst_burst_size = stm32_dma_get_burst(chan, dst_best_burst);
964 if (dst_burst_size < 0)
965 return dst_burst_size;
967 /* Set memory data size */
968 src_addr_width = stm32_dma_get_max_width(buf_len, buf_addr,
970 chan->mem_width = src_addr_width;
971 src_bus_width = stm32_dma_get_width(chan, src_addr_width);
972 if (src_bus_width < 0)
973 return src_bus_width;
976 * Set memory burst size - burst not possible if address is not aligned on
977 * the address boundary equal to the size of the transfer
979 if (buf_addr & (buf_len - 1))
982 src_maxburst = STM32_DMA_MAX_BURST;
983 src_best_burst = stm32_dma_get_best_burst(buf_len,
987 src_burst_size = stm32_dma_get_burst(chan, src_best_burst);
988 if (src_burst_size < 0)
989 return src_burst_size;
991 dma_scr = FIELD_PREP(STM32_DMA_SCR_DIR_MASK, STM32_DMA_MEM_TO_DEV) |
992 FIELD_PREP(STM32_DMA_SCR_PSIZE_MASK, dst_bus_width) |
993 FIELD_PREP(STM32_DMA_SCR_MSIZE_MASK, src_bus_width) |
994 FIELD_PREP(STM32_DMA_SCR_PBURST_MASK, dst_burst_size) |
995 FIELD_PREP(STM32_DMA_SCR_MBURST_MASK, src_burst_size);
997 /* Set FIFO threshold */
998 chan->chan_reg.dma_sfcr &= ~STM32_DMA_SFCR_FTH_MASK;
999 if (fifoth != STM32_DMA_FIFO_THRESHOLD_NONE)
1000 chan->chan_reg.dma_sfcr |= FIELD_PREP(STM32_DMA_SFCR_FTH_MASK, fifoth);
1002 /* Set peripheral address */
1003 chan->chan_reg.dma_spar = chan->dma_sconfig.dst_addr;
1004 *buswidth = dst_addr_width;
1007 case DMA_DEV_TO_MEM:
1008 /* Set device data size */
1009 src_bus_width = stm32_dma_get_width(chan, src_addr_width);
1010 if (src_bus_width < 0)
1011 return src_bus_width;
1013 /* Set device burst size */
1014 src_best_burst = stm32_dma_get_best_burst(buf_len,
1018 chan->mem_burst = src_best_burst;
1019 src_burst_size = stm32_dma_get_burst(chan, src_best_burst);
1020 if (src_burst_size < 0)
1021 return src_burst_size;
1023 /* Set memory data size */
1024 dst_addr_width = stm32_dma_get_max_width(buf_len, buf_addr,
1026 chan->mem_width = dst_addr_width;
1027 dst_bus_width = stm32_dma_get_width(chan, dst_addr_width);
1028 if (dst_bus_width < 0)
1029 return dst_bus_width;
1032 * Set memory burst size - burst not possible if address is not aligned on
1033 * the address boundary equal to the size of the transfer
1035 if (buf_addr & (buf_len - 1))
1038 dst_maxburst = STM32_DMA_MAX_BURST;
1039 dst_best_burst = stm32_dma_get_best_burst(buf_len,
1043 chan->mem_burst = dst_best_burst;
1044 dst_burst_size = stm32_dma_get_burst(chan, dst_best_burst);
1045 if (dst_burst_size < 0)
1046 return dst_burst_size;
1048 dma_scr = FIELD_PREP(STM32_DMA_SCR_DIR_MASK, STM32_DMA_DEV_TO_MEM) |
1049 FIELD_PREP(STM32_DMA_SCR_PSIZE_MASK, src_bus_width) |
1050 FIELD_PREP(STM32_DMA_SCR_MSIZE_MASK, dst_bus_width) |
1051 FIELD_PREP(STM32_DMA_SCR_PBURST_MASK, src_burst_size) |
1052 FIELD_PREP(STM32_DMA_SCR_MBURST_MASK, dst_burst_size);
1054 /* Set FIFO threshold */
1055 chan->chan_reg.dma_sfcr &= ~STM32_DMA_SFCR_FTH_MASK;
1056 if (fifoth != STM32_DMA_FIFO_THRESHOLD_NONE)
1057 chan->chan_reg.dma_sfcr |= FIELD_PREP(STM32_DMA_SFCR_FTH_MASK, fifoth);
1059 /* Set peripheral address */
1060 chan->chan_reg.dma_spar = chan->dma_sconfig.src_addr;
1061 *buswidth = chan->dma_sconfig.src_addr_width;
1065 dev_err(chan2dev(chan), "Dma direction is not supported\n");
1069 stm32_dma_set_fifo_config(chan, src_best_burst, dst_best_burst);
1071 /* Set DMA control register */
1072 chan->chan_reg.dma_scr &= ~(STM32_DMA_SCR_DIR_MASK |
1073 STM32_DMA_SCR_PSIZE_MASK | STM32_DMA_SCR_MSIZE_MASK |
1074 STM32_DMA_SCR_PBURST_MASK | STM32_DMA_SCR_MBURST_MASK);
1075 chan->chan_reg.dma_scr |= dma_scr;
1080 static void stm32_dma_clear_reg(struct stm32_dma_chan_reg *regs)
1082 memset(regs, 0, sizeof(struct stm32_dma_chan_reg));
1085 static struct dma_async_tx_descriptor *stm32_dma_prep_slave_sg(
1086 struct dma_chan *c, struct scatterlist *sgl,
1087 u32 sg_len, enum dma_transfer_direction direction,
1088 unsigned long flags, void *context)
1090 struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
1091 struct stm32_dma_desc *desc;
1092 struct scatterlist *sg;
1093 enum dma_slave_buswidth buswidth;
1097 if (!chan->config_init) {
1098 dev_err(chan2dev(chan), "dma channel is not configured\n");
1103 dev_err(chan2dev(chan), "Invalid segment length %d\n", sg_len);
1107 desc = kzalloc(struct_size(desc, sg_req, sg_len), GFP_NOWAIT);
1111 /* Set peripheral flow controller */
1112 if (chan->dma_sconfig.device_fc)
1113 chan->chan_reg.dma_scr |= STM32_DMA_SCR_PFCTRL;
1115 chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_PFCTRL;
1117 /* Activate Double Buffer Mode if DMA triggers STM32 MDMA and more than 1 sg */
1118 if (chan->trig_mdma && sg_len > 1)
1119 chan->chan_reg.dma_scr |= STM32_DMA_SCR_DBM;
1121 for_each_sg(sgl, sg, sg_len, i) {
1122 ret = stm32_dma_set_xfer_param(chan, direction, &buswidth,
1124 sg_dma_address(sg));
1128 desc->sg_req[i].len = sg_dma_len(sg);
1130 nb_data_items = desc->sg_req[i].len / buswidth;
1131 if (nb_data_items > STM32_DMA_ALIGNED_MAX_DATA_ITEMS) {
1132 dev_err(chan2dev(chan), "nb items not supported\n");
1136 stm32_dma_clear_reg(&desc->sg_req[i].chan_reg);
1137 desc->sg_req[i].chan_reg.dma_scr = chan->chan_reg.dma_scr;
1138 desc->sg_req[i].chan_reg.dma_sfcr = chan->chan_reg.dma_sfcr;
1139 desc->sg_req[i].chan_reg.dma_spar = chan->chan_reg.dma_spar;
1140 desc->sg_req[i].chan_reg.dma_sm0ar = sg_dma_address(sg);
1141 desc->sg_req[i].chan_reg.dma_sm1ar = sg_dma_address(sg);
1142 if (chan->trig_mdma)
1143 desc->sg_req[i].chan_reg.dma_sm1ar += sg_dma_len(sg);
1144 desc->sg_req[i].chan_reg.dma_sndtr = nb_data_items;
1147 desc->num_sgs = sg_len;
1148 desc->cyclic = false;
1150 return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
1157 static struct dma_async_tx_descriptor *stm32_dma_prep_dma_cyclic(
1158 struct dma_chan *c, dma_addr_t buf_addr, size_t buf_len,
1159 size_t period_len, enum dma_transfer_direction direction,
1160 unsigned long flags)
1162 struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
1163 struct stm32_dma_desc *desc;
1164 enum dma_slave_buswidth buswidth;
1165 u32 num_periods, nb_data_items;
1168 if (!buf_len || !period_len) {
1169 dev_err(chan2dev(chan), "Invalid buffer/period len\n");
1173 if (!chan->config_init) {
1174 dev_err(chan2dev(chan), "dma channel is not configured\n");
1178 if (buf_len % period_len) {
1179 dev_err(chan2dev(chan), "buf_len not multiple of period_len\n");
1184 * We allow to take more number of requests till DMA is
1185 * not started. The driver will loop over all requests.
1186 * Once DMA is started then new requests can be queued only after
1187 * terminating the DMA.
1190 dev_err(chan2dev(chan), "Request not allowed when dma busy\n");
1194 ret = stm32_dma_set_xfer_param(chan, direction, &buswidth, period_len,
1199 nb_data_items = period_len / buswidth;
1200 if (nb_data_items > STM32_DMA_ALIGNED_MAX_DATA_ITEMS) {
1201 dev_err(chan2dev(chan), "number of items not supported\n");
1205 /* Enable Circular mode or double buffer mode */
1206 if (buf_len == period_len) {
1207 chan->chan_reg.dma_scr |= STM32_DMA_SCR_CIRC;
1209 chan->chan_reg.dma_scr |= STM32_DMA_SCR_DBM;
1210 chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_CT;
1213 /* Clear periph ctrl if client set it */
1214 chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_PFCTRL;
1216 num_periods = buf_len / period_len;
1218 desc = kzalloc(struct_size(desc, sg_req, num_periods), GFP_NOWAIT);
1222 for (i = 0; i < num_periods; i++) {
1223 desc->sg_req[i].len = period_len;
1225 stm32_dma_clear_reg(&desc->sg_req[i].chan_reg);
1226 desc->sg_req[i].chan_reg.dma_scr = chan->chan_reg.dma_scr;
1227 desc->sg_req[i].chan_reg.dma_sfcr = chan->chan_reg.dma_sfcr;
1228 desc->sg_req[i].chan_reg.dma_spar = chan->chan_reg.dma_spar;
1229 desc->sg_req[i].chan_reg.dma_sm0ar = buf_addr;
1230 desc->sg_req[i].chan_reg.dma_sm1ar = buf_addr;
1231 if (chan->trig_mdma)
1232 desc->sg_req[i].chan_reg.dma_sm1ar += period_len;
1233 desc->sg_req[i].chan_reg.dma_sndtr = nb_data_items;
1234 if (!chan->trig_mdma)
1235 buf_addr += period_len;
1238 desc->num_sgs = num_periods;
1239 desc->cyclic = true;
1241 return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
1244 static struct dma_async_tx_descriptor *stm32_dma_prep_dma_memcpy(
1245 struct dma_chan *c, dma_addr_t dest,
1246 dma_addr_t src, size_t len, unsigned long flags)
1248 struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
1249 enum dma_slave_buswidth max_width;
1250 struct stm32_dma_desc *desc;
1251 size_t xfer_count, offset;
1252 u32 num_sgs, best_burst, dma_burst, threshold;
1255 num_sgs = DIV_ROUND_UP(len, STM32_DMA_ALIGNED_MAX_DATA_ITEMS);
1256 desc = kzalloc(struct_size(desc, sg_req, num_sgs), GFP_NOWAIT);
1260 threshold = chan->threshold;
1262 for (offset = 0, i = 0; offset < len; offset += xfer_count, i++) {
1263 xfer_count = min_t(size_t, len - offset,
1264 STM32_DMA_ALIGNED_MAX_DATA_ITEMS);
1266 /* Compute best burst size */
1267 max_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1268 best_burst = stm32_dma_get_best_burst(len, STM32_DMA_MAX_BURST,
1269 threshold, max_width);
1270 dma_burst = stm32_dma_get_burst(chan, best_burst);
1272 stm32_dma_clear_reg(&desc->sg_req[i].chan_reg);
1273 desc->sg_req[i].chan_reg.dma_scr =
1274 FIELD_PREP(STM32_DMA_SCR_DIR_MASK, STM32_DMA_MEM_TO_MEM) |
1275 FIELD_PREP(STM32_DMA_SCR_PBURST_MASK, dma_burst) |
1276 FIELD_PREP(STM32_DMA_SCR_MBURST_MASK, dma_burst) |
1277 STM32_DMA_SCR_MINC |
1278 STM32_DMA_SCR_PINC |
1279 STM32_DMA_SCR_TCIE |
1281 desc->sg_req[i].chan_reg.dma_sfcr |= STM32_DMA_SFCR_MASK;
1282 desc->sg_req[i].chan_reg.dma_sfcr |= FIELD_PREP(STM32_DMA_SFCR_FTH_MASK, threshold);
1283 desc->sg_req[i].chan_reg.dma_spar = src + offset;
1284 desc->sg_req[i].chan_reg.dma_sm0ar = dest + offset;
1285 desc->sg_req[i].chan_reg.dma_sndtr = xfer_count;
1286 desc->sg_req[i].len = xfer_count;
1289 desc->num_sgs = num_sgs;
1290 desc->cyclic = false;
1292 return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
1295 static u32 stm32_dma_get_remaining_bytes(struct stm32_dma_chan *chan)
1297 u32 dma_scr, width, ndtr;
1298 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
1300 dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
1301 width = FIELD_GET(STM32_DMA_SCR_PSIZE_MASK, dma_scr);
1302 ndtr = stm32_dma_read(dmadev, STM32_DMA_SNDTR(chan->id));
1304 return ndtr << width;
1308 * stm32_dma_is_current_sg - check that expected sg_req is currently transferred
1309 * @chan: dma channel
1311 * This function called when IRQ are disable, checks that the hardware has not
1312 * switched on the next transfer in double buffer mode. The test is done by
1313 * comparing the next_sg memory address with the hardware related register
1314 * (based on CT bit value).
1316 * Returns true if expected current transfer is still running or double
1317 * buffer mode is not activated.
1319 static bool stm32_dma_is_current_sg(struct stm32_dma_chan *chan)
1321 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
1322 struct stm32_dma_sg_req *sg_req;
1323 u32 dma_scr, dma_smar, id, period_len;
1326 dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
1328 /* In cyclic CIRC but not DBM, CT is not used */
1329 if (!(dma_scr & STM32_DMA_SCR_DBM))
1332 sg_req = &chan->desc->sg_req[chan->next_sg];
1333 period_len = sg_req->len;
1335 /* DBM - take care of a previous pause/resume not yet post reconfigured */
1336 if (dma_scr & STM32_DMA_SCR_CT) {
1337 dma_smar = stm32_dma_read(dmadev, STM32_DMA_SM0AR(id));
1339 * If transfer has been pause/resumed,
1340 * SM0AR is in the range of [SM0AR:SM0AR+period_len]
1342 return (dma_smar >= sg_req->chan_reg.dma_sm0ar &&
1343 dma_smar < sg_req->chan_reg.dma_sm0ar + period_len);
1346 dma_smar = stm32_dma_read(dmadev, STM32_DMA_SM1AR(id));
1348 * If transfer has been pause/resumed,
1349 * SM1AR is in the range of [SM1AR:SM1AR+period_len]
1351 return (dma_smar >= sg_req->chan_reg.dma_sm1ar &&
1352 dma_smar < sg_req->chan_reg.dma_sm1ar + period_len);
1355 static size_t stm32_dma_desc_residue(struct stm32_dma_chan *chan,
1356 struct stm32_dma_desc *desc,
1359 u32 modulo, burst_size;
1362 struct stm32_dma_sg_req *sg_req = &chan->desc->sg_req[chan->next_sg];
1366 * Calculate the residue means compute the descriptors
1368 * - the sg_req currently transferred
1369 * - the Hardware remaining position in this sg (NDTR bits field).
1371 * A race condition may occur if DMA is running in cyclic or double
1372 * buffer mode, since the DMA register are automatically reloaded at end
1373 * of period transfer. The hardware may have switched to the next
1374 * transfer (CT bit updated) just before the position (SxNDTR reg) is
1376 * In this case the SxNDTR reg could (or not) correspond to the new
1377 * transfer position, and not the expected one.
1378 * The strategy implemented in the stm32 driver is to:
1379 * - read the SxNDTR register
1380 * - crosscheck that hardware is still in current transfer.
1381 * In case of switch, we can assume that the DMA is at the beginning of
1382 * the next transfer. So we approximate the residue in consequence, by
1383 * pointing on the beginning of next transfer.
1385 * This race condition doesn't apply for none cyclic mode, as double
1386 * buffer is not used. In such situation registers are updated by the
1390 residue = stm32_dma_get_remaining_bytes(chan);
1392 if (chan->desc->cyclic && !stm32_dma_is_current_sg(chan)) {
1394 if (n_sg == chan->desc->num_sgs)
1396 residue = sg_req->len;
1400 * In cyclic mode, for the last period, residue = remaining bytes
1402 * else for all other periods in cyclic mode, and in sg mode,
1403 * residue = remaining bytes from NDTR + remaining
1404 * periods/sg to be transferred
1406 if (!chan->desc->cyclic || n_sg != 0)
1407 for (i = n_sg; i < desc->num_sgs; i++)
1408 residue += desc->sg_req[i].len;
1410 if (!chan->mem_burst)
1413 burst_size = chan->mem_burst * chan->mem_width;
1414 modulo = residue % burst_size;
1416 residue = residue - modulo + burst_size;
1421 static enum dma_status stm32_dma_tx_status(struct dma_chan *c,
1422 dma_cookie_t cookie,
1423 struct dma_tx_state *state)
1425 struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
1426 struct virt_dma_desc *vdesc;
1427 enum dma_status status;
1428 unsigned long flags;
1431 status = dma_cookie_status(c, cookie, state);
1432 if (status == DMA_COMPLETE)
1435 status = chan->status;
1440 spin_lock_irqsave(&chan->vchan.lock, flags);
1441 vdesc = vchan_find_desc(&chan->vchan, cookie);
1442 if (chan->desc && cookie == chan->desc->vdesc.tx.cookie)
1443 residue = stm32_dma_desc_residue(chan, chan->desc,
1446 residue = stm32_dma_desc_residue(chan,
1447 to_stm32_dma_desc(vdesc), 0);
1448 dma_set_residue(state, residue);
1450 spin_unlock_irqrestore(&chan->vchan.lock, flags);
1455 static int stm32_dma_alloc_chan_resources(struct dma_chan *c)
1457 struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
1458 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
1461 chan->config_init = false;
1463 ret = pm_runtime_resume_and_get(dmadev->ddev.dev);
1467 ret = stm32_dma_disable_chan(chan);
1469 pm_runtime_put(dmadev->ddev.dev);
1474 static void stm32_dma_free_chan_resources(struct dma_chan *c)
1476 struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
1477 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
1478 unsigned long flags;
1480 dev_dbg(chan2dev(chan), "Freeing channel %d\n", chan->id);
1483 spin_lock_irqsave(&chan->vchan.lock, flags);
1484 stm32_dma_stop(chan);
1486 spin_unlock_irqrestore(&chan->vchan.lock, flags);
1489 pm_runtime_put(dmadev->ddev.dev);
1491 vchan_free_chan_resources(to_virt_chan(c));
1492 stm32_dma_clear_reg(&chan->chan_reg);
1493 chan->threshold = 0;
1496 static void stm32_dma_desc_free(struct virt_dma_desc *vdesc)
1498 kfree(container_of(vdesc, struct stm32_dma_desc, vdesc));
1501 static void stm32_dma_set_config(struct stm32_dma_chan *chan,
1502 struct stm32_dma_cfg *cfg)
1504 stm32_dma_clear_reg(&chan->chan_reg);
1506 chan->chan_reg.dma_scr = cfg->stream_config & STM32_DMA_SCR_CFG_MASK;
1507 chan->chan_reg.dma_scr |= FIELD_PREP(STM32_DMA_SCR_REQ_MASK, cfg->request_line);
1509 /* Enable Interrupts */
1510 chan->chan_reg.dma_scr |= STM32_DMA_SCR_TEIE | STM32_DMA_SCR_TCIE;
1512 chan->threshold = FIELD_GET(STM32_DMA_THRESHOLD_FTR_MASK, cfg->features);
1513 if (FIELD_GET(STM32_DMA_DIRECT_MODE_MASK, cfg->features))
1514 chan->threshold = STM32_DMA_FIFO_THRESHOLD_NONE;
1515 if (FIELD_GET(STM32_DMA_ALT_ACK_MODE_MASK, cfg->features))
1516 chan->chan_reg.dma_scr |= STM32_DMA_SCR_TRBUFF;
1517 chan->mdma_config.stream_id = FIELD_GET(STM32_DMA_MDMA_STREAM_ID_MASK, cfg->features);
1520 static struct dma_chan *stm32_dma_of_xlate(struct of_phandle_args *dma_spec,
1521 struct of_dma *ofdma)
1523 struct stm32_dma_device *dmadev = ofdma->of_dma_data;
1524 struct device *dev = dmadev->ddev.dev;
1525 struct stm32_dma_cfg cfg;
1526 struct stm32_dma_chan *chan;
1529 if (dma_spec->args_count < 4) {
1530 dev_err(dev, "Bad number of cells\n");
1534 cfg.channel_id = dma_spec->args[0];
1535 cfg.request_line = dma_spec->args[1];
1536 cfg.stream_config = dma_spec->args[2];
1537 cfg.features = dma_spec->args[3];
1539 if (cfg.channel_id >= STM32_DMA_MAX_CHANNELS ||
1540 cfg.request_line >= STM32_DMA_MAX_REQUEST_ID) {
1541 dev_err(dev, "Bad channel and/or request id\n");
1545 chan = &dmadev->chan[cfg.channel_id];
1547 c = dma_get_slave_channel(&chan->vchan.chan);
1549 dev_err(dev, "No more channels available\n");
1553 stm32_dma_set_config(chan, &cfg);
1558 static const struct of_device_id stm32_dma_of_match[] = {
1559 { .compatible = "st,stm32-dma", },
1562 MODULE_DEVICE_TABLE(of, stm32_dma_of_match);
1564 static int stm32_dma_probe(struct platform_device *pdev)
1566 struct stm32_dma_chan *chan;
1567 struct stm32_dma_device *dmadev;
1568 struct dma_device *dd;
1569 const struct of_device_id *match;
1570 struct resource *res;
1571 struct reset_control *rst;
1574 match = of_match_device(stm32_dma_of_match, &pdev->dev);
1576 dev_err(&pdev->dev, "Error: No device match found\n");
1580 dmadev = devm_kzalloc(&pdev->dev, sizeof(*dmadev), GFP_KERNEL);
1586 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1587 dmadev->base = devm_ioremap_resource(&pdev->dev, res);
1588 if (IS_ERR(dmadev->base))
1589 return PTR_ERR(dmadev->base);
1591 dmadev->clk = devm_clk_get(&pdev->dev, NULL);
1592 if (IS_ERR(dmadev->clk))
1593 return dev_err_probe(&pdev->dev, PTR_ERR(dmadev->clk), "Can't get clock\n");
1595 ret = clk_prepare_enable(dmadev->clk);
1597 dev_err(&pdev->dev, "clk_prep_enable error: %d\n", ret);
1601 dmadev->mem2mem = of_property_read_bool(pdev->dev.of_node,
1604 rst = devm_reset_control_get(&pdev->dev, NULL);
1607 if (ret == -EPROBE_DEFER)
1610 reset_control_assert(rst);
1612 reset_control_deassert(rst);
1615 dma_set_max_seg_size(&pdev->dev, STM32_DMA_ALIGNED_MAX_DATA_ITEMS);
1617 dma_cap_set(DMA_SLAVE, dd->cap_mask);
1618 dma_cap_set(DMA_PRIVATE, dd->cap_mask);
1619 dma_cap_set(DMA_CYCLIC, dd->cap_mask);
1620 dd->device_alloc_chan_resources = stm32_dma_alloc_chan_resources;
1621 dd->device_free_chan_resources = stm32_dma_free_chan_resources;
1622 dd->device_tx_status = stm32_dma_tx_status;
1623 dd->device_issue_pending = stm32_dma_issue_pending;
1624 dd->device_prep_slave_sg = stm32_dma_prep_slave_sg;
1625 dd->device_prep_dma_cyclic = stm32_dma_prep_dma_cyclic;
1626 dd->device_config = stm32_dma_slave_config;
1627 dd->device_pause = stm32_dma_pause;
1628 dd->device_resume = stm32_dma_resume;
1629 dd->device_terminate_all = stm32_dma_terminate_all;
1630 dd->device_synchronize = stm32_dma_synchronize;
1631 dd->src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
1632 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
1633 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
1634 dd->dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
1635 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
1636 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
1637 dd->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1638 dd->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1639 dd->copy_align = DMAENGINE_ALIGN_32_BYTES;
1640 dd->max_burst = STM32_DMA_MAX_BURST;
1641 dd->max_sg_burst = STM32_DMA_ALIGNED_MAX_DATA_ITEMS;
1642 dd->descriptor_reuse = true;
1643 dd->dev = &pdev->dev;
1644 INIT_LIST_HEAD(&dd->channels);
1646 if (dmadev->mem2mem) {
1647 dma_cap_set(DMA_MEMCPY, dd->cap_mask);
1648 dd->device_prep_dma_memcpy = stm32_dma_prep_dma_memcpy;
1649 dd->directions |= BIT(DMA_MEM_TO_MEM);
1652 for (i = 0; i < STM32_DMA_MAX_CHANNELS; i++) {
1653 chan = &dmadev->chan[i];
1655 chan->vchan.desc_free = stm32_dma_desc_free;
1656 vchan_init(&chan->vchan, dd);
1658 chan->mdma_config.ifcr = res->start;
1659 chan->mdma_config.ifcr += STM32_DMA_IFCR(chan->id);
1661 chan->mdma_config.tcf = STM32_DMA_TCI;
1662 chan->mdma_config.tcf <<= STM32_DMA_FLAGS_SHIFT(chan->id);
1665 ret = dma_async_device_register(dd);
1669 for (i = 0; i < STM32_DMA_MAX_CHANNELS; i++) {
1670 chan = &dmadev->chan[i];
1671 ret = platform_get_irq(pdev, i);
1673 goto err_unregister;
1676 ret = devm_request_irq(&pdev->dev, chan->irq,
1677 stm32_dma_chan_irq, 0,
1678 dev_name(chan2dev(chan)), chan);
1681 "request_irq failed with err %d channel %d\n",
1683 goto err_unregister;
1687 ret = of_dma_controller_register(pdev->dev.of_node,
1688 stm32_dma_of_xlate, dmadev);
1691 "STM32 DMA DMA OF registration failed %d\n", ret);
1692 goto err_unregister;
1695 platform_set_drvdata(pdev, dmadev);
1697 pm_runtime_set_active(&pdev->dev);
1698 pm_runtime_enable(&pdev->dev);
1699 pm_runtime_get_noresume(&pdev->dev);
1700 pm_runtime_put(&pdev->dev);
1702 dev_info(&pdev->dev, "STM32 DMA driver registered\n");
1707 dma_async_device_unregister(dd);
1709 clk_disable_unprepare(dmadev->clk);
1715 static int stm32_dma_runtime_suspend(struct device *dev)
1717 struct stm32_dma_device *dmadev = dev_get_drvdata(dev);
1719 clk_disable_unprepare(dmadev->clk);
1724 static int stm32_dma_runtime_resume(struct device *dev)
1726 struct stm32_dma_device *dmadev = dev_get_drvdata(dev);
1729 ret = clk_prepare_enable(dmadev->clk);
1731 dev_err(dev, "failed to prepare_enable clock\n");
1739 #ifdef CONFIG_PM_SLEEP
1740 static int stm32_dma_pm_suspend(struct device *dev)
1742 struct stm32_dma_device *dmadev = dev_get_drvdata(dev);
1745 ret = pm_runtime_resume_and_get(dev);
1749 for (id = 0; id < STM32_DMA_MAX_CHANNELS; id++) {
1750 scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
1751 if (scr & STM32_DMA_SCR_EN) {
1752 dev_warn(dev, "Suspend is prevented by Chan %i\n", id);
1757 pm_runtime_put_sync(dev);
1759 pm_runtime_force_suspend(dev);
1764 static int stm32_dma_pm_resume(struct device *dev)
1766 return pm_runtime_force_resume(dev);
1770 static const struct dev_pm_ops stm32_dma_pm_ops = {
1771 SET_SYSTEM_SLEEP_PM_OPS(stm32_dma_pm_suspend, stm32_dma_pm_resume)
1772 SET_RUNTIME_PM_OPS(stm32_dma_runtime_suspend,
1773 stm32_dma_runtime_resume, NULL)
1776 static struct platform_driver stm32_dma_driver = {
1778 .name = "stm32-dma",
1779 .of_match_table = stm32_dma_of_match,
1780 .pm = &stm32_dma_pm_ops,
1782 .probe = stm32_dma_probe,
1785 static int __init stm32_dma_init(void)
1787 return platform_driver_register(&stm32_dma_driver);
1789 subsys_initcall(stm32_dma_init);