2 * Copyright (C) Ericsson AB 2007-2008
3 * Copyright (C) ST-Ericsson SA 2008-2010
4 * Author: Per Forlin <per.forlin@stericsson.com> for ST-Ericsson
5 * Author: Jonas Aaberg <jonas.aberg@stericsson.com> for ST-Ericsson
6 * License terms: GNU General Public License (GPL) version 2
9 #include <linux/dma-mapping.h>
10 #include <linux/kernel.h>
11 #include <linux/slab.h>
12 #include <linux/export.h>
13 #include <linux/dmaengine.h>
14 #include <linux/platform_device.h>
15 #include <linux/clk.h>
16 #include <linux/delay.h>
18 #include <linux/pm_runtime.h>
19 #include <linux/err.h>
20 #include <linux/amba/bus.h>
21 #include <linux/regulator/consumer.h>
22 #include <linux/platform_data/dma-ste-dma40.h>
24 #include "dmaengine.h"
25 #include "ste_dma40_ll.h"
27 #define D40_NAME "dma40"
29 #define D40_PHY_CHAN -1
31 /* For masking out/in 2 bit channel positions */
32 #define D40_CHAN_POS(chan) (2 * (chan / 2))
33 #define D40_CHAN_POS_MASK(chan) (0x3 << D40_CHAN_POS(chan))
35 /* Maximum iterations taken before giving up suspending a channel */
36 #define D40_SUSPEND_MAX_IT 500
39 #define DMA40_AUTOSUSPEND_DELAY 100
41 /* Hardware requirement on LCLA alignment */
42 #define LCLA_ALIGNMENT 0x40000
44 /* Max number of links per event group */
45 #define D40_LCLA_LINK_PER_EVENT_GRP 128
46 #define D40_LCLA_END D40_LCLA_LINK_PER_EVENT_GRP
48 /* Attempts before giving up to trying to get pages that are aligned */
49 #define MAX_LCLA_ALLOC_ATTEMPTS 256
51 /* Bit markings for allocation map */
52 #define D40_ALLOC_FREE (1 << 31)
53 #define D40_ALLOC_PHY (1 << 30)
54 #define D40_ALLOC_LOG_FREE 0
56 #define MAX(a, b) (((a) < (b)) ? (b) : (a))
59 * enum 40_command - The different commands and/or statuses.
61 * @D40_DMA_STOP: DMA channel command STOP or status STOPPED,
62 * @D40_DMA_RUN: The DMA channel is RUNNING of the command RUN.
63 * @D40_DMA_SUSPEND_REQ: Request the DMA to SUSPEND as soon as possible.
64 * @D40_DMA_SUSPENDED: The DMA channel is SUSPENDED.
69 D40_DMA_SUSPEND_REQ = 2,
74 * enum d40_events - The different Event Enables for the event lines.
76 * @D40_DEACTIVATE_EVENTLINE: De-activate Event line, stopping the logical chan.
77 * @D40_ACTIVATE_EVENTLINE: Activate the Event line, to start a logical chan.
78 * @D40_SUSPEND_REQ_EVENTLINE: Requesting for suspending a event line.
79 * @D40_ROUND_EVENTLINE: Status check for event line.
83 D40_DEACTIVATE_EVENTLINE = 0,
84 D40_ACTIVATE_EVENTLINE = 1,
85 D40_SUSPEND_REQ_EVENTLINE = 2,
86 D40_ROUND_EVENTLINE = 3
90 * These are the registers that has to be saved and later restored
91 * when the DMA hw is powered off.
92 * TODO: Add save/restore of D40_DREG_GCC on dma40 v3 or later, if that works.
94 static u32 d40_backup_regs[] = {
103 #define BACKUP_REGS_SZ ARRAY_SIZE(d40_backup_regs)
106 * since 9540 and 8540 has the same HW revision
107 * use v4a for 9540 or ealier
108 * use v4b for 8540 or later
110 * DB8500ed has revision 0
111 * DB8500v1 has revision 2
112 * DB8500v2 has revision 3
113 * AP9540v1 has revision 4
114 * DB8540v1 has revision 4
115 * TODO: Check if all these registers have to be saved/restored on dma40 v4a
117 static u32 d40_backup_regs_v4a[] = {
136 #define BACKUP_REGS_SZ_V4A ARRAY_SIZE(d40_backup_regs_v4a)
138 static u32 d40_backup_regs_v4b[] = {
161 #define BACKUP_REGS_SZ_V4B ARRAY_SIZE(d40_backup_regs_v4b)
163 static u32 d40_backup_regs_chan[] = {
175 * struct d40_interrupt_lookup - lookup table for interrupt handler
177 * @src: Interrupt mask register.
178 * @clr: Interrupt clear register.
179 * @is_error: true if this is an error interrupt.
180 * @offset: start delta in the lookup_log_chans in d40_base. If equals to
181 * D40_PHY_CHAN, the lookup_phy_chans shall be used instead.
183 struct d40_interrupt_lookup {
191 static struct d40_interrupt_lookup il_v4a[] = {
192 {D40_DREG_LCTIS0, D40_DREG_LCICR0, false, 0},
193 {D40_DREG_LCTIS1, D40_DREG_LCICR1, false, 32},
194 {D40_DREG_LCTIS2, D40_DREG_LCICR2, false, 64},
195 {D40_DREG_LCTIS3, D40_DREG_LCICR3, false, 96},
196 {D40_DREG_LCEIS0, D40_DREG_LCICR0, true, 0},
197 {D40_DREG_LCEIS1, D40_DREG_LCICR1, true, 32},
198 {D40_DREG_LCEIS2, D40_DREG_LCICR2, true, 64},
199 {D40_DREG_LCEIS3, D40_DREG_LCICR3, true, 96},
200 {D40_DREG_PCTIS, D40_DREG_PCICR, false, D40_PHY_CHAN},
201 {D40_DREG_PCEIS, D40_DREG_PCICR, true, D40_PHY_CHAN},
204 static struct d40_interrupt_lookup il_v4b[] = {
205 {D40_DREG_CLCTIS1, D40_DREG_CLCICR1, false, 0},
206 {D40_DREG_CLCTIS2, D40_DREG_CLCICR2, false, 32},
207 {D40_DREG_CLCTIS3, D40_DREG_CLCICR3, false, 64},
208 {D40_DREG_CLCTIS4, D40_DREG_CLCICR4, false, 96},
209 {D40_DREG_CLCTIS5, D40_DREG_CLCICR5, false, 128},
210 {D40_DREG_CLCEIS1, D40_DREG_CLCICR1, true, 0},
211 {D40_DREG_CLCEIS2, D40_DREG_CLCICR2, true, 32},
212 {D40_DREG_CLCEIS3, D40_DREG_CLCICR3, true, 64},
213 {D40_DREG_CLCEIS4, D40_DREG_CLCICR4, true, 96},
214 {D40_DREG_CLCEIS5, D40_DREG_CLCICR5, true, 128},
215 {D40_DREG_CPCTIS, D40_DREG_CPCICR, false, D40_PHY_CHAN},
216 {D40_DREG_CPCEIS, D40_DREG_CPCICR, true, D40_PHY_CHAN},
220 * struct d40_reg_val - simple lookup struct
222 * @reg: The register.
223 * @val: The value that belongs to the register in reg.
230 static __initdata struct d40_reg_val dma_init_reg_v4a[] = {
231 /* Clock every part of the DMA block from start */
232 { .reg = D40_DREG_GCC, .val = D40_DREG_GCC_ENABLE_ALL},
234 /* Interrupts on all logical channels */
235 { .reg = D40_DREG_LCMIS0, .val = 0xFFFFFFFF},
236 { .reg = D40_DREG_LCMIS1, .val = 0xFFFFFFFF},
237 { .reg = D40_DREG_LCMIS2, .val = 0xFFFFFFFF},
238 { .reg = D40_DREG_LCMIS3, .val = 0xFFFFFFFF},
239 { .reg = D40_DREG_LCICR0, .val = 0xFFFFFFFF},
240 { .reg = D40_DREG_LCICR1, .val = 0xFFFFFFFF},
241 { .reg = D40_DREG_LCICR2, .val = 0xFFFFFFFF},
242 { .reg = D40_DREG_LCICR3, .val = 0xFFFFFFFF},
243 { .reg = D40_DREG_LCTIS0, .val = 0xFFFFFFFF},
244 { .reg = D40_DREG_LCTIS1, .val = 0xFFFFFFFF},
245 { .reg = D40_DREG_LCTIS2, .val = 0xFFFFFFFF},
246 { .reg = D40_DREG_LCTIS3, .val = 0xFFFFFFFF}
248 static __initdata struct d40_reg_val dma_init_reg_v4b[] = {
249 /* Clock every part of the DMA block from start */
250 { .reg = D40_DREG_GCC, .val = D40_DREG_GCC_ENABLE_ALL},
252 /* Interrupts on all logical channels */
253 { .reg = D40_DREG_CLCMIS1, .val = 0xFFFFFFFF},
254 { .reg = D40_DREG_CLCMIS2, .val = 0xFFFFFFFF},
255 { .reg = D40_DREG_CLCMIS3, .val = 0xFFFFFFFF},
256 { .reg = D40_DREG_CLCMIS4, .val = 0xFFFFFFFF},
257 { .reg = D40_DREG_CLCMIS5, .val = 0xFFFFFFFF},
258 { .reg = D40_DREG_CLCICR1, .val = 0xFFFFFFFF},
259 { .reg = D40_DREG_CLCICR2, .val = 0xFFFFFFFF},
260 { .reg = D40_DREG_CLCICR3, .val = 0xFFFFFFFF},
261 { .reg = D40_DREG_CLCICR4, .val = 0xFFFFFFFF},
262 { .reg = D40_DREG_CLCICR5, .val = 0xFFFFFFFF},
263 { .reg = D40_DREG_CLCTIS1, .val = 0xFFFFFFFF},
264 { .reg = D40_DREG_CLCTIS2, .val = 0xFFFFFFFF},
265 { .reg = D40_DREG_CLCTIS3, .val = 0xFFFFFFFF},
266 { .reg = D40_DREG_CLCTIS4, .val = 0xFFFFFFFF},
267 { .reg = D40_DREG_CLCTIS5, .val = 0xFFFFFFFF}
271 * struct d40_lli_pool - Structure for keeping LLIs in memory
273 * @base: Pointer to memory area when the pre_alloc_lli's are not large
274 * enough, IE bigger than the most common case, 1 dst and 1 src. NULL if
275 * pre_alloc_lli is used.
276 * @dma_addr: DMA address, if mapped
277 * @size: The size in bytes of the memory at base or the size of pre_alloc_lli.
278 * @pre_alloc_lli: Pre allocated area for the most common case of transfers,
279 * one buffer to one buffer.
281 struct d40_lli_pool {
285 /* Space for dst and src, plus an extra for padding */
286 u8 pre_alloc_lli[3 * sizeof(struct d40_phy_lli)];
290 * struct d40_desc - A descriptor is one DMA job.
292 * @lli_phy: LLI settings for physical channel. Both src and dst=
293 * points into the lli_pool, to base if lli_len > 1 or to pre_alloc_lli if
294 * lli_len equals one.
295 * @lli_log: Same as above but for logical channels.
296 * @lli_pool: The pool with two entries pre-allocated.
297 * @lli_len: Number of llis of current descriptor.
298 * @lli_current: Number of transferred llis.
299 * @lcla_alloc: Number of LCLA entries allocated.
300 * @txd: DMA engine struct. Used for among other things for communication
303 * @is_in_client_list: true if the client owns this descriptor.
304 * @cyclic: true if this is a cyclic job
306 * This descriptor is used for both logical and physical transfers.
310 struct d40_phy_lli_bidir lli_phy;
312 struct d40_log_lli_bidir lli_log;
314 struct d40_lli_pool lli_pool;
319 struct dma_async_tx_descriptor txd;
320 struct list_head node;
322 bool is_in_client_list;
327 * struct d40_lcla_pool - LCLA pool settings and data.
329 * @base: The virtual address of LCLA. 18 bit aligned.
330 * @base_unaligned: The orignal kmalloc pointer, if kmalloc is used.
331 * This pointer is only there for clean-up on error.
332 * @pages: The number of pages needed for all physical channels.
333 * Only used later for clean-up on error
334 * @lock: Lock to protect the content in this struct.
335 * @alloc_map: big map over which LCLA entry is own by which job.
337 struct d40_lcla_pool {
340 void *base_unaligned;
343 struct d40_desc **alloc_map;
347 * struct d40_phy_res - struct for handling eventlines mapped to physical
350 * @lock: A lock protection this entity.
351 * @reserved: True if used by secure world or otherwise.
352 * @num: The physical channel number of this entity.
353 * @allocated_src: Bit mapped to show which src event line's are mapped to
354 * this physical channel. Can also be free or physically allocated.
355 * @allocated_dst: Same as for src but is dst.
356 * allocated_dst and allocated_src uses the D40_ALLOC* defines as well as
358 * @use_soft_lli: To mark if the linked lists of channel are managed by SW.
372 * struct d40_chan - Struct that describes a channel.
374 * @lock: A spinlock to protect this struct.
375 * @log_num: The logical number, if any of this channel.
376 * @pending_tx: The number of pending transfers. Used between interrupt handler
378 * @busy: Set to true when transfer is ongoing on this channel.
379 * @phy_chan: Pointer to physical channel which this instance runs on. If this
380 * point is NULL, then the channel is not allocated.
381 * @chan: DMA engine handle.
382 * @tasklet: Tasklet that gets scheduled from interrupt context to complete a
383 * transfer and call client callback.
384 * @client: Cliented owned descriptor list.
385 * @pending_queue: Submitted jobs, to be issued by issue_pending()
386 * @active: Active descriptor.
387 * @done: Completed jobs
388 * @queue: Queued jobs.
389 * @prepare_queue: Prepared jobs.
390 * @dma_cfg: The client configuration of this dma channel.
391 * @configured: whether the dma_cfg configuration is valid
392 * @base: Pointer to the device instance struct.
393 * @src_def_cfg: Default cfg register setting for src.
394 * @dst_def_cfg: Default cfg register setting for dst.
395 * @log_def: Default logical channel settings.
396 * @lcpa: Pointer to dst and src lcpa settings.
397 * @runtime_addr: runtime configured address.
398 * @runtime_direction: runtime configured direction.
400 * This struct can either "be" a logical or a physical channel.
407 struct d40_phy_res *phy_chan;
408 struct dma_chan chan;
409 struct tasklet_struct tasklet;
410 struct list_head client;
411 struct list_head pending_queue;
412 struct list_head active;
413 struct list_head done;
414 struct list_head queue;
415 struct list_head prepare_queue;
416 struct stedma40_chan_cfg dma_cfg;
418 struct d40_base *base;
419 /* Default register configurations */
422 struct d40_def_lcsp log_def;
423 struct d40_log_lli_full *lcpa;
424 /* Runtime reconfiguration */
425 dma_addr_t runtime_addr;
426 enum dma_transfer_direction runtime_direction;
430 * struct d40_gen_dmac - generic values to represent u8500/u8540 DMA
433 * @backup: the pointer to the registers address array for backup
434 * @backup_size: the size of the registers address array for backup
435 * @realtime_en: the realtime enable register
436 * @realtime_clear: the realtime clear register
437 * @high_prio_en: the high priority enable register
438 * @high_prio_clear: the high priority clear register
439 * @interrupt_en: the interrupt enable register
440 * @interrupt_clear: the interrupt clear register
441 * @il: the pointer to struct d40_interrupt_lookup
442 * @il_size: the size of d40_interrupt_lookup array
443 * @init_reg: the pointer to the struct d40_reg_val
444 * @init_reg_size: the size of d40_reg_val array
446 struct d40_gen_dmac {
455 struct d40_interrupt_lookup *il;
457 struct d40_reg_val *init_reg;
462 * struct d40_base - The big global struct, one for each probe'd instance.
464 * @interrupt_lock: Lock used to make sure one interrupt is handle a time.
465 * @execmd_lock: Lock for execute command usage since several channels share
466 * the same physical register.
467 * @dev: The device structure.
468 * @virtbase: The virtual base address of the DMA's register.
469 * @rev: silicon revision detected.
470 * @clk: Pointer to the DMA clock structure.
471 * @phy_start: Physical memory start of the DMA registers.
472 * @phy_size: Size of the DMA register map.
473 * @irq: The IRQ number.
474 * @num_phy_chans: The number of physical channels. Read from HW. This
475 * is the number of available channels for this driver, not counting "Secure
476 * mode" allocated physical channels.
477 * @num_log_chans: The number of logical channels. Calculated from
479 * @dma_both: dma_device channels that can do both memcpy and slave transfers.
480 * @dma_slave: dma_device channels that can do only do slave transfers.
481 * @dma_memcpy: dma_device channels that can do only do memcpy transfers.
482 * @phy_chans: Room for all possible physical channels in system.
483 * @log_chans: Room for all possible logical channels in system.
484 * @lookup_log_chans: Used to map interrupt number to logical channel. Points
485 * to log_chans entries.
486 * @lookup_phy_chans: Used to map interrupt number to physical channel. Points
487 * to phy_chans entries.
488 * @plat_data: Pointer to provided platform_data which is the driver
490 * @lcpa_regulator: Pointer to hold the regulator for the esram bank for lcla.
491 * @phy_res: Vector containing all physical channels.
492 * @lcla_pool: lcla pool settings and data.
493 * @lcpa_base: The virtual mapped address of LCPA.
494 * @phy_lcpa: The physical address of the LCPA.
495 * @lcpa_size: The size of the LCPA area.
496 * @desc_slab: cache for descriptors.
497 * @reg_val_backup: Here the values of some hardware registers are stored
498 * before the DMA is powered off. They are restored when the power is back on.
499 * @reg_val_backup_v4: Backup of registers that only exits on dma40 v3 and
501 * @reg_val_backup_chan: Backup data for standard channel parameter registers.
502 * @gcc_pwr_off_mask: Mask to maintain the channels that can be turned off.
503 * @initialized: true if the dma has been initialized
504 * @gen_dmac: the struct for generic registers values to represent u8500/8540
508 spinlock_t interrupt_lock;
509 spinlock_t execmd_lock;
511 void __iomem *virtbase;
514 phys_addr_t phy_start;
515 resource_size_t phy_size;
519 struct device_dma_parameters dma_parms;
520 struct dma_device dma_both;
521 struct dma_device dma_slave;
522 struct dma_device dma_memcpy;
523 struct d40_chan *phy_chans;
524 struct d40_chan *log_chans;
525 struct d40_chan **lookup_log_chans;
526 struct d40_chan **lookup_phy_chans;
527 struct stedma40_platform_data *plat_data;
528 struct regulator *lcpa_regulator;
529 /* Physical half channels */
530 struct d40_phy_res *phy_res;
531 struct d40_lcla_pool lcla_pool;
534 resource_size_t lcpa_size;
535 struct kmem_cache *desc_slab;
536 u32 reg_val_backup[BACKUP_REGS_SZ];
537 u32 reg_val_backup_v4[MAX(BACKUP_REGS_SZ_V4A, BACKUP_REGS_SZ_V4B)];
538 u32 *reg_val_backup_chan;
539 u16 gcc_pwr_off_mask;
541 struct d40_gen_dmac gen_dmac;
544 static struct device *chan2dev(struct d40_chan *d40c)
546 return &d40c->chan.dev->device;
549 static bool chan_is_physical(struct d40_chan *chan)
551 return chan->log_num == D40_PHY_CHAN;
554 static bool chan_is_logical(struct d40_chan *chan)
556 return !chan_is_physical(chan);
559 static void __iomem *chan_base(struct d40_chan *chan)
561 return chan->base->virtbase + D40_DREG_PCBASE +
562 chan->phy_chan->num * D40_DREG_PCDELTA;
565 #define d40_err(dev, format, arg...) \
566 dev_err(dev, "[%s] " format, __func__, ## arg)
568 #define chan_err(d40c, format, arg...) \
569 d40_err(chan2dev(d40c), format, ## arg)
571 static int d40_pool_lli_alloc(struct d40_chan *d40c, struct d40_desc *d40d,
574 bool is_log = chan_is_logical(d40c);
579 align = sizeof(struct d40_log_lli);
581 align = sizeof(struct d40_phy_lli);
584 base = d40d->lli_pool.pre_alloc_lli;
585 d40d->lli_pool.size = sizeof(d40d->lli_pool.pre_alloc_lli);
586 d40d->lli_pool.base = NULL;
588 d40d->lli_pool.size = lli_len * 2 * align;
590 base = kmalloc(d40d->lli_pool.size + align, GFP_NOWAIT);
591 d40d->lli_pool.base = base;
593 if (d40d->lli_pool.base == NULL)
598 d40d->lli_log.src = PTR_ALIGN(base, align);
599 d40d->lli_log.dst = d40d->lli_log.src + lli_len;
601 d40d->lli_pool.dma_addr = 0;
603 d40d->lli_phy.src = PTR_ALIGN(base, align);
604 d40d->lli_phy.dst = d40d->lli_phy.src + lli_len;
606 d40d->lli_pool.dma_addr = dma_map_single(d40c->base->dev,
611 if (dma_mapping_error(d40c->base->dev,
612 d40d->lli_pool.dma_addr)) {
613 kfree(d40d->lli_pool.base);
614 d40d->lli_pool.base = NULL;
615 d40d->lli_pool.dma_addr = 0;
623 static void d40_pool_lli_free(struct d40_chan *d40c, struct d40_desc *d40d)
625 if (d40d->lli_pool.dma_addr)
626 dma_unmap_single(d40c->base->dev, d40d->lli_pool.dma_addr,
627 d40d->lli_pool.size, DMA_TO_DEVICE);
629 kfree(d40d->lli_pool.base);
630 d40d->lli_pool.base = NULL;
631 d40d->lli_pool.size = 0;
632 d40d->lli_log.src = NULL;
633 d40d->lli_log.dst = NULL;
634 d40d->lli_phy.src = NULL;
635 d40d->lli_phy.dst = NULL;
638 static int d40_lcla_alloc_one(struct d40_chan *d40c,
639 struct d40_desc *d40d)
645 spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
648 * Allocate both src and dst at the same time, therefore the half
649 * start on 1 since 0 can't be used since zero is used as end marker.
651 for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
652 int idx = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP + i;
654 if (!d40c->base->lcla_pool.alloc_map[idx]) {
655 d40c->base->lcla_pool.alloc_map[idx] = d40d;
662 spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
667 static int d40_lcla_free_all(struct d40_chan *d40c,
668 struct d40_desc *d40d)
674 if (chan_is_physical(d40c))
677 spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
679 for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
680 int idx = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP + i;
682 if (d40c->base->lcla_pool.alloc_map[idx] == d40d) {
683 d40c->base->lcla_pool.alloc_map[idx] = NULL;
685 if (d40d->lcla_alloc == 0) {
692 spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
698 static void d40_desc_remove(struct d40_desc *d40d)
700 list_del(&d40d->node);
703 static struct d40_desc *d40_desc_get(struct d40_chan *d40c)
705 struct d40_desc *desc = NULL;
707 if (!list_empty(&d40c->client)) {
711 list_for_each_entry_safe(d, _d, &d40c->client, node) {
712 if (async_tx_test_ack(&d->txd)) {
715 memset(desc, 0, sizeof(*desc));
722 desc = kmem_cache_zalloc(d40c->base->desc_slab, GFP_NOWAIT);
725 INIT_LIST_HEAD(&desc->node);
730 static void d40_desc_free(struct d40_chan *d40c, struct d40_desc *d40d)
733 d40_pool_lli_free(d40c, d40d);
734 d40_lcla_free_all(d40c, d40d);
735 kmem_cache_free(d40c->base->desc_slab, d40d);
738 static void d40_desc_submit(struct d40_chan *d40c, struct d40_desc *desc)
740 list_add_tail(&desc->node, &d40c->active);
743 static void d40_phy_lli_load(struct d40_chan *chan, struct d40_desc *desc)
745 struct d40_phy_lli *lli_dst = desc->lli_phy.dst;
746 struct d40_phy_lli *lli_src = desc->lli_phy.src;
747 void __iomem *base = chan_base(chan);
749 writel(lli_src->reg_cfg, base + D40_CHAN_REG_SSCFG);
750 writel(lli_src->reg_elt, base + D40_CHAN_REG_SSELT);
751 writel(lli_src->reg_ptr, base + D40_CHAN_REG_SSPTR);
752 writel(lli_src->reg_lnk, base + D40_CHAN_REG_SSLNK);
754 writel(lli_dst->reg_cfg, base + D40_CHAN_REG_SDCFG);
755 writel(lli_dst->reg_elt, base + D40_CHAN_REG_SDELT);
756 writel(lli_dst->reg_ptr, base + D40_CHAN_REG_SDPTR);
757 writel(lli_dst->reg_lnk, base + D40_CHAN_REG_SDLNK);
760 static void d40_desc_done(struct d40_chan *d40c, struct d40_desc *desc)
762 list_add_tail(&desc->node, &d40c->done);
765 static void d40_log_lli_to_lcxa(struct d40_chan *chan, struct d40_desc *desc)
767 struct d40_lcla_pool *pool = &chan->base->lcla_pool;
768 struct d40_log_lli_bidir *lli = &desc->lli_log;
769 int lli_current = desc->lli_current;
770 int lli_len = desc->lli_len;
771 bool cyclic = desc->cyclic;
772 int curr_lcla = -EINVAL;
774 bool use_esram_lcla = chan->base->plat_data->use_esram_lcla;
778 * We may have partially running cyclic transfers, in case we did't get
779 * enough LCLA entries.
781 linkback = cyclic && lli_current == 0;
784 * For linkback, we need one LCLA even with only one link, because we
785 * can't link back to the one in LCPA space
787 if (linkback || (lli_len - lli_current > 1)) {
789 * If the channel is expected to use only soft_lli don't
790 * allocate a lcla. This is to avoid a HW issue that exists
791 * in some controller during a peripheral to memory transfer
792 * that uses linked lists.
794 if (!(chan->phy_chan->use_soft_lli &&
795 chan->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM))
796 curr_lcla = d40_lcla_alloc_one(chan, desc);
798 first_lcla = curr_lcla;
802 * For linkback, we normally load the LCPA in the loop since we need to
803 * link it to the second LCLA and not the first. However, if we
804 * couldn't even get a first LCLA, then we have to run in LCPA and
807 if (!linkback || curr_lcla == -EINVAL) {
808 unsigned int flags = 0;
810 if (curr_lcla == -EINVAL)
811 flags |= LLI_TERM_INT;
813 d40_log_lli_lcpa_write(chan->lcpa,
814 &lli->dst[lli_current],
815 &lli->src[lli_current],
824 for (; lli_current < lli_len; lli_current++) {
825 unsigned int lcla_offset = chan->phy_chan->num * 1024 +
827 struct d40_log_lli *lcla = pool->base + lcla_offset;
828 unsigned int flags = 0;
831 if (lli_current + 1 < lli_len)
832 next_lcla = d40_lcla_alloc_one(chan, desc);
834 next_lcla = linkback ? first_lcla : -EINVAL;
836 if (cyclic || next_lcla == -EINVAL)
837 flags |= LLI_TERM_INT;
839 if (linkback && curr_lcla == first_lcla) {
840 /* First link goes in both LCPA and LCLA */
841 d40_log_lli_lcpa_write(chan->lcpa,
842 &lli->dst[lli_current],
843 &lli->src[lli_current],
848 * One unused LCLA in the cyclic case if the very first
851 d40_log_lli_lcla_write(lcla,
852 &lli->dst[lli_current],
853 &lli->src[lli_current],
857 * Cache maintenance is not needed if lcla is
860 if (!use_esram_lcla) {
861 dma_sync_single_range_for_device(chan->base->dev,
862 pool->dma_addr, lcla_offset,
863 2 * sizeof(struct d40_log_lli),
866 curr_lcla = next_lcla;
868 if (curr_lcla == -EINVAL || curr_lcla == first_lcla) {
875 desc->lli_current = lli_current;
878 static void d40_desc_load(struct d40_chan *d40c, struct d40_desc *d40d)
880 if (chan_is_physical(d40c)) {
881 d40_phy_lli_load(d40c, d40d);
882 d40d->lli_current = d40d->lli_len;
884 d40_log_lli_to_lcxa(d40c, d40d);
887 static struct d40_desc *d40_first_active_get(struct d40_chan *d40c)
891 if (list_empty(&d40c->active))
894 d = list_first_entry(&d40c->active,
900 /* remove desc from current queue and add it to the pending_queue */
901 static void d40_desc_queue(struct d40_chan *d40c, struct d40_desc *desc)
903 d40_desc_remove(desc);
904 desc->is_in_client_list = false;
905 list_add_tail(&desc->node, &d40c->pending_queue);
908 static struct d40_desc *d40_first_pending(struct d40_chan *d40c)
912 if (list_empty(&d40c->pending_queue))
915 d = list_first_entry(&d40c->pending_queue,
921 static struct d40_desc *d40_first_queued(struct d40_chan *d40c)
925 if (list_empty(&d40c->queue))
928 d = list_first_entry(&d40c->queue,
934 static struct d40_desc *d40_first_done(struct d40_chan *d40c)
936 if (list_empty(&d40c->done))
939 return list_first_entry(&d40c->done, struct d40_desc, node);
942 static int d40_psize_2_burst_size(bool is_log, int psize)
945 if (psize == STEDMA40_PSIZE_LOG_1)
948 if (psize == STEDMA40_PSIZE_PHY_1)
956 * The dma only supports transmitting packages up to
957 * STEDMA40_MAX_SEG_SIZE << data_width. Calculate the total number of
958 * dma elements required to send the entire sg list
960 static int d40_size_2_dmalen(int size, u32 data_width1, u32 data_width2)
963 u32 max_w = max(data_width1, data_width2);
964 u32 min_w = min(data_width1, data_width2);
965 u32 seg_max = ALIGN(STEDMA40_MAX_SEG_SIZE << min_w, 1 << max_w);
967 if (seg_max > STEDMA40_MAX_SEG_SIZE)
968 seg_max -= (1 << max_w);
970 if (!IS_ALIGNED(size, 1 << max_w))
976 dmalen = size / seg_max;
977 if (dmalen * seg_max < size)
983 static int d40_sg_2_dmalen(struct scatterlist *sgl, int sg_len,
984 u32 data_width1, u32 data_width2)
986 struct scatterlist *sg;
991 for_each_sg(sgl, sg, sg_len, i) {
992 ret = d40_size_2_dmalen(sg_dma_len(sg),
993 data_width1, data_width2);
1003 static void dma40_backup(void __iomem *baseaddr, u32 *backup,
1004 u32 *regaddr, int num, bool save)
1008 for (i = 0; i < num; i++) {
1009 void __iomem *addr = baseaddr + regaddr[i];
1012 backup[i] = readl_relaxed(addr);
1014 writel_relaxed(backup[i], addr);
1018 static void d40_save_restore_registers(struct d40_base *base, bool save)
1022 /* Save/Restore channel specific registers */
1023 for (i = 0; i < base->num_phy_chans; i++) {
1027 if (base->phy_res[i].reserved)
1030 addr = base->virtbase + D40_DREG_PCBASE + i * D40_DREG_PCDELTA;
1031 idx = i * ARRAY_SIZE(d40_backup_regs_chan);
1033 dma40_backup(addr, &base->reg_val_backup_chan[idx],
1034 d40_backup_regs_chan,
1035 ARRAY_SIZE(d40_backup_regs_chan),
1039 /* Save/Restore global registers */
1040 dma40_backup(base->virtbase, base->reg_val_backup,
1041 d40_backup_regs, ARRAY_SIZE(d40_backup_regs),
1044 /* Save/Restore registers only existing on dma40 v3 and later */
1045 if (base->gen_dmac.backup)
1046 dma40_backup(base->virtbase, base->reg_val_backup_v4,
1047 base->gen_dmac.backup,
1048 base->gen_dmac.backup_size,
1052 static void d40_save_restore_registers(struct d40_base *base, bool save)
1057 static int __d40_execute_command_phy(struct d40_chan *d40c,
1058 enum d40_command command)
1062 void __iomem *active_reg;
1064 unsigned long flags;
1067 if (command == D40_DMA_STOP) {
1068 ret = __d40_execute_command_phy(d40c, D40_DMA_SUSPEND_REQ);
1073 spin_lock_irqsave(&d40c->base->execmd_lock, flags);
1075 if (d40c->phy_chan->num % 2 == 0)
1076 active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
1078 active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
1080 if (command == D40_DMA_SUSPEND_REQ) {
1081 status = (readl(active_reg) &
1082 D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
1083 D40_CHAN_POS(d40c->phy_chan->num);
1085 if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
1089 wmask = 0xffffffff & ~(D40_CHAN_POS_MASK(d40c->phy_chan->num));
1090 writel(wmask | (command << D40_CHAN_POS(d40c->phy_chan->num)),
1093 if (command == D40_DMA_SUSPEND_REQ) {
1095 for (i = 0 ; i < D40_SUSPEND_MAX_IT; i++) {
1096 status = (readl(active_reg) &
1097 D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
1098 D40_CHAN_POS(d40c->phy_chan->num);
1102 * Reduce the number of bus accesses while
1103 * waiting for the DMA to suspend.
1107 if (status == D40_DMA_STOP ||
1108 status == D40_DMA_SUSPENDED)
1112 if (i == D40_SUSPEND_MAX_IT) {
1114 "unable to suspend the chl %d (log: %d) status %x\n",
1115 d40c->phy_chan->num, d40c->log_num,
1123 spin_unlock_irqrestore(&d40c->base->execmd_lock, flags);
1127 static void d40_term_all(struct d40_chan *d40c)
1129 struct d40_desc *d40d;
1130 struct d40_desc *_d;
1132 /* Release completed descriptors */
1133 while ((d40d = d40_first_done(d40c))) {
1134 d40_desc_remove(d40d);
1135 d40_desc_free(d40c, d40d);
1138 /* Release active descriptors */
1139 while ((d40d = d40_first_active_get(d40c))) {
1140 d40_desc_remove(d40d);
1141 d40_desc_free(d40c, d40d);
1144 /* Release queued descriptors waiting for transfer */
1145 while ((d40d = d40_first_queued(d40c))) {
1146 d40_desc_remove(d40d);
1147 d40_desc_free(d40c, d40d);
1150 /* Release pending descriptors */
1151 while ((d40d = d40_first_pending(d40c))) {
1152 d40_desc_remove(d40d);
1153 d40_desc_free(d40c, d40d);
1156 /* Release client owned descriptors */
1157 if (!list_empty(&d40c->client))
1158 list_for_each_entry_safe(d40d, _d, &d40c->client, node) {
1159 d40_desc_remove(d40d);
1160 d40_desc_free(d40c, d40d);
1163 /* Release descriptors in prepare queue */
1164 if (!list_empty(&d40c->prepare_queue))
1165 list_for_each_entry_safe(d40d, _d,
1166 &d40c->prepare_queue, node) {
1167 d40_desc_remove(d40d);
1168 d40_desc_free(d40c, d40d);
1171 d40c->pending_tx = 0;
1174 static void __d40_config_set_event(struct d40_chan *d40c,
1175 enum d40_events event_type, u32 event,
1178 void __iomem *addr = chan_base(d40c) + reg;
1182 switch (event_type) {
1184 case D40_DEACTIVATE_EVENTLINE:
1186 writel((D40_DEACTIVATE_EVENTLINE << D40_EVENTLINE_POS(event))
1187 | ~D40_EVENTLINE_MASK(event), addr);
1190 case D40_SUSPEND_REQ_EVENTLINE:
1191 status = (readl(addr) & D40_EVENTLINE_MASK(event)) >>
1192 D40_EVENTLINE_POS(event);
1194 if (status == D40_DEACTIVATE_EVENTLINE ||
1195 status == D40_SUSPEND_REQ_EVENTLINE)
1198 writel((D40_SUSPEND_REQ_EVENTLINE << D40_EVENTLINE_POS(event))
1199 | ~D40_EVENTLINE_MASK(event), addr);
1201 for (tries = 0 ; tries < D40_SUSPEND_MAX_IT; tries++) {
1203 status = (readl(addr) & D40_EVENTLINE_MASK(event)) >>
1204 D40_EVENTLINE_POS(event);
1208 * Reduce the number of bus accesses while
1209 * waiting for the DMA to suspend.
1213 if (status == D40_DEACTIVATE_EVENTLINE)
1217 if (tries == D40_SUSPEND_MAX_IT) {
1219 "unable to stop the event_line chl %d (log: %d)"
1220 "status %x\n", d40c->phy_chan->num,
1221 d40c->log_num, status);
1225 case D40_ACTIVATE_EVENTLINE:
1227 * The hardware sometimes doesn't register the enable when src and dst
1228 * event lines are active on the same logical channel. Retry to ensure
1229 * it does. Usually only one retry is sufficient.
1233 writel((D40_ACTIVATE_EVENTLINE <<
1234 D40_EVENTLINE_POS(event)) |
1235 ~D40_EVENTLINE_MASK(event), addr);
1237 if (readl(addr) & D40_EVENTLINE_MASK(event))
1242 dev_dbg(chan2dev(d40c),
1243 "[%s] workaround enable S%cLNK (%d tries)\n",
1244 __func__, reg == D40_CHAN_REG_SSLNK ? 'S' : 'D',
1250 case D40_ROUND_EVENTLINE:
1257 static void d40_config_set_event(struct d40_chan *d40c,
1258 enum d40_events event_type)
1260 /* Enable event line connected to device (or memcpy) */
1261 if ((d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) ||
1262 (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH)) {
1263 u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
1265 __d40_config_set_event(d40c, event_type, event,
1266 D40_CHAN_REG_SSLNK);
1269 if (d40c->dma_cfg.dir != STEDMA40_PERIPH_TO_MEM) {
1270 u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
1272 __d40_config_set_event(d40c, event_type, event,
1273 D40_CHAN_REG_SDLNK);
1277 static u32 d40_chan_has_events(struct d40_chan *d40c)
1279 void __iomem *chanbase = chan_base(d40c);
1282 val = readl(chanbase + D40_CHAN_REG_SSLNK);
1283 val |= readl(chanbase + D40_CHAN_REG_SDLNK);
1289 __d40_execute_command_log(struct d40_chan *d40c, enum d40_command command)
1291 unsigned long flags;
1294 void __iomem *active_reg;
1296 if (d40c->phy_chan->num % 2 == 0)
1297 active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
1299 active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
1302 spin_lock_irqsave(&d40c->phy_chan->lock, flags);
1306 case D40_DMA_SUSPEND_REQ:
1308 active_status = (readl(active_reg) &
1309 D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
1310 D40_CHAN_POS(d40c->phy_chan->num);
1312 if (active_status == D40_DMA_RUN)
1313 d40_config_set_event(d40c, D40_SUSPEND_REQ_EVENTLINE);
1315 d40_config_set_event(d40c, D40_DEACTIVATE_EVENTLINE);
1317 if (!d40_chan_has_events(d40c) && (command == D40_DMA_STOP))
1318 ret = __d40_execute_command_phy(d40c, command);
1324 d40_config_set_event(d40c, D40_ACTIVATE_EVENTLINE);
1325 ret = __d40_execute_command_phy(d40c, command);
1328 case D40_DMA_SUSPENDED:
1333 spin_unlock_irqrestore(&d40c->phy_chan->lock, flags);
1337 static int d40_channel_execute_command(struct d40_chan *d40c,
1338 enum d40_command command)
1340 if (chan_is_logical(d40c))
1341 return __d40_execute_command_log(d40c, command);
1343 return __d40_execute_command_phy(d40c, command);
1346 static u32 d40_get_prmo(struct d40_chan *d40c)
1348 static const unsigned int phy_map[] = {
1349 [STEDMA40_PCHAN_BASIC_MODE]
1350 = D40_DREG_PRMO_PCHAN_BASIC,
1351 [STEDMA40_PCHAN_MODULO_MODE]
1352 = D40_DREG_PRMO_PCHAN_MODULO,
1353 [STEDMA40_PCHAN_DOUBLE_DST_MODE]
1354 = D40_DREG_PRMO_PCHAN_DOUBLE_DST,
1356 static const unsigned int log_map[] = {
1357 [STEDMA40_LCHAN_SRC_PHY_DST_LOG]
1358 = D40_DREG_PRMO_LCHAN_SRC_PHY_DST_LOG,
1359 [STEDMA40_LCHAN_SRC_LOG_DST_PHY]
1360 = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_PHY,
1361 [STEDMA40_LCHAN_SRC_LOG_DST_LOG]
1362 = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_LOG,
1365 if (chan_is_physical(d40c))
1366 return phy_map[d40c->dma_cfg.mode_opt];
1368 return log_map[d40c->dma_cfg.mode_opt];
1371 static void d40_config_write(struct d40_chan *d40c)
1376 /* Odd addresses are even addresses + 4 */
1377 addr_base = (d40c->phy_chan->num % 2) * 4;
1378 /* Setup channel mode to logical or physical */
1379 var = ((u32)(chan_is_logical(d40c)) + 1) <<
1380 D40_CHAN_POS(d40c->phy_chan->num);
1381 writel(var, d40c->base->virtbase + D40_DREG_PRMSE + addr_base);
1383 /* Setup operational mode option register */
1384 var = d40_get_prmo(d40c) << D40_CHAN_POS(d40c->phy_chan->num);
1386 writel(var, d40c->base->virtbase + D40_DREG_PRMOE + addr_base);
1388 if (chan_is_logical(d40c)) {
1389 int lidx = (d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS)
1390 & D40_SREG_ELEM_LOG_LIDX_MASK;
1391 void __iomem *chanbase = chan_base(d40c);
1393 /* Set default config for CFG reg */
1394 writel(d40c->src_def_cfg, chanbase + D40_CHAN_REG_SSCFG);
1395 writel(d40c->dst_def_cfg, chanbase + D40_CHAN_REG_SDCFG);
1397 /* Set LIDX for lcla */
1398 writel(lidx, chanbase + D40_CHAN_REG_SSELT);
1399 writel(lidx, chanbase + D40_CHAN_REG_SDELT);
1401 /* Clear LNK which will be used by d40_chan_has_events() */
1402 writel(0, chanbase + D40_CHAN_REG_SSLNK);
1403 writel(0, chanbase + D40_CHAN_REG_SDLNK);
1407 static u32 d40_residue(struct d40_chan *d40c)
1411 if (chan_is_logical(d40c))
1412 num_elt = (readl(&d40c->lcpa->lcsp2) & D40_MEM_LCSP2_ECNT_MASK)
1413 >> D40_MEM_LCSP2_ECNT_POS;
1415 u32 val = readl(chan_base(d40c) + D40_CHAN_REG_SDELT);
1416 num_elt = (val & D40_SREG_ELEM_PHY_ECNT_MASK)
1417 >> D40_SREG_ELEM_PHY_ECNT_POS;
1420 return num_elt * (1 << d40c->dma_cfg.dst_info.data_width);
1423 static bool d40_tx_is_linked(struct d40_chan *d40c)
1427 if (chan_is_logical(d40c))
1428 is_link = readl(&d40c->lcpa->lcsp3) & D40_MEM_LCSP3_DLOS_MASK;
1430 is_link = readl(chan_base(d40c) + D40_CHAN_REG_SDLNK)
1431 & D40_SREG_LNK_PHYS_LNK_MASK;
1436 static int d40_pause(struct d40_chan *d40c)
1439 unsigned long flags;
1444 pm_runtime_get_sync(d40c->base->dev);
1445 spin_lock_irqsave(&d40c->lock, flags);
1447 res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
1449 pm_runtime_mark_last_busy(d40c->base->dev);
1450 pm_runtime_put_autosuspend(d40c->base->dev);
1451 spin_unlock_irqrestore(&d40c->lock, flags);
1455 static int d40_resume(struct d40_chan *d40c)
1458 unsigned long flags;
1463 spin_lock_irqsave(&d40c->lock, flags);
1464 pm_runtime_get_sync(d40c->base->dev);
1466 /* If bytes left to transfer or linked tx resume job */
1467 if (d40_residue(d40c) || d40_tx_is_linked(d40c))
1468 res = d40_channel_execute_command(d40c, D40_DMA_RUN);
1470 pm_runtime_mark_last_busy(d40c->base->dev);
1471 pm_runtime_put_autosuspend(d40c->base->dev);
1472 spin_unlock_irqrestore(&d40c->lock, flags);
1476 static dma_cookie_t d40_tx_submit(struct dma_async_tx_descriptor *tx)
1478 struct d40_chan *d40c = container_of(tx->chan,
1481 struct d40_desc *d40d = container_of(tx, struct d40_desc, txd);
1482 unsigned long flags;
1483 dma_cookie_t cookie;
1485 spin_lock_irqsave(&d40c->lock, flags);
1486 cookie = dma_cookie_assign(tx);
1487 d40_desc_queue(d40c, d40d);
1488 spin_unlock_irqrestore(&d40c->lock, flags);
1493 static int d40_start(struct d40_chan *d40c)
1495 return d40_channel_execute_command(d40c, D40_DMA_RUN);
1498 static struct d40_desc *d40_queue_start(struct d40_chan *d40c)
1500 struct d40_desc *d40d;
1503 /* Start queued jobs, if any */
1504 d40d = d40_first_queued(d40c);
1509 pm_runtime_get_sync(d40c->base->dev);
1512 /* Remove from queue */
1513 d40_desc_remove(d40d);
1515 /* Add to active queue */
1516 d40_desc_submit(d40c, d40d);
1518 /* Initiate DMA job */
1519 d40_desc_load(d40c, d40d);
1522 err = d40_start(d40c);
1531 /* called from interrupt context */
1532 static void dma_tc_handle(struct d40_chan *d40c)
1534 struct d40_desc *d40d;
1536 /* Get first active entry from list */
1537 d40d = d40_first_active_get(d40c);
1544 * If this was a paritially loaded list, we need to reloaded
1545 * it, and only when the list is completed. We need to check
1546 * for done because the interrupt will hit for every link, and
1547 * not just the last one.
1549 if (d40d->lli_current < d40d->lli_len
1550 && !d40_tx_is_linked(d40c)
1551 && !d40_residue(d40c)) {
1552 d40_lcla_free_all(d40c, d40d);
1553 d40_desc_load(d40c, d40d);
1554 (void) d40_start(d40c);
1556 if (d40d->lli_current == d40d->lli_len)
1557 d40d->lli_current = 0;
1560 d40_lcla_free_all(d40c, d40d);
1562 if (d40d->lli_current < d40d->lli_len) {
1563 d40_desc_load(d40c, d40d);
1565 (void) d40_start(d40c);
1569 if (d40_queue_start(d40c) == NULL)
1571 pm_runtime_mark_last_busy(d40c->base->dev);
1572 pm_runtime_put_autosuspend(d40c->base->dev);
1574 d40_desc_remove(d40d);
1575 d40_desc_done(d40c, d40d);
1579 tasklet_schedule(&d40c->tasklet);
1583 static void dma_tasklet(unsigned long data)
1585 struct d40_chan *d40c = (struct d40_chan *) data;
1586 struct d40_desc *d40d;
1587 unsigned long flags;
1588 dma_async_tx_callback callback;
1589 void *callback_param;
1591 spin_lock_irqsave(&d40c->lock, flags);
1593 /* Get first entry from the done list */
1594 d40d = d40_first_done(d40c);
1596 /* Check if we have reached here for cyclic job */
1597 d40d = d40_first_active_get(d40c);
1598 if (d40d == NULL || !d40d->cyclic)
1603 dma_cookie_complete(&d40d->txd);
1606 * If terminating a channel pending_tx is set to zero.
1607 * This prevents any finished active jobs to return to the client.
1609 if (d40c->pending_tx == 0) {
1610 spin_unlock_irqrestore(&d40c->lock, flags);
1614 /* Callback to client */
1615 callback = d40d->txd.callback;
1616 callback_param = d40d->txd.callback_param;
1618 if (!d40d->cyclic) {
1619 if (async_tx_test_ack(&d40d->txd)) {
1620 d40_desc_remove(d40d);
1621 d40_desc_free(d40c, d40d);
1622 } else if (!d40d->is_in_client_list) {
1623 d40_desc_remove(d40d);
1624 d40_lcla_free_all(d40c, d40d);
1625 list_add_tail(&d40d->node, &d40c->client);
1626 d40d->is_in_client_list = true;
1632 if (d40c->pending_tx)
1633 tasklet_schedule(&d40c->tasklet);
1635 spin_unlock_irqrestore(&d40c->lock, flags);
1637 if (callback && (d40d->txd.flags & DMA_PREP_INTERRUPT))
1638 callback(callback_param);
1643 /* Rescue manouver if receiving double interrupts */
1644 if (d40c->pending_tx > 0)
1646 spin_unlock_irqrestore(&d40c->lock, flags);
1649 static irqreturn_t d40_handle_interrupt(int irq, void *data)
1655 struct d40_chan *d40c;
1656 unsigned long flags;
1657 struct d40_base *base = data;
1658 u32 regs[base->gen_dmac.il_size];
1659 struct d40_interrupt_lookup *il = base->gen_dmac.il;
1660 u32 il_size = base->gen_dmac.il_size;
1662 spin_lock_irqsave(&base->interrupt_lock, flags);
1664 /* Read interrupt status of both logical and physical channels */
1665 for (i = 0; i < il_size; i++)
1666 regs[i] = readl(base->virtbase + il[i].src);
1670 chan = find_next_bit((unsigned long *)regs,
1671 BITS_PER_LONG * il_size, chan + 1);
1673 /* No more set bits found? */
1674 if (chan == BITS_PER_LONG * il_size)
1677 row = chan / BITS_PER_LONG;
1678 idx = chan & (BITS_PER_LONG - 1);
1680 if (il[row].offset == D40_PHY_CHAN)
1681 d40c = base->lookup_phy_chans[idx];
1683 d40c = base->lookup_log_chans[il[row].offset + idx];
1687 * No error because this can happen if something else
1688 * in the system is using the channel.
1694 writel(1 << idx, base->virtbase + il[row].clr);
1696 spin_lock(&d40c->lock);
1698 if (!il[row].is_error)
1699 dma_tc_handle(d40c);
1701 d40_err(base->dev, "IRQ chan: %ld offset %d idx %d\n",
1702 chan, il[row].offset, idx);
1704 spin_unlock(&d40c->lock);
1707 spin_unlock_irqrestore(&base->interrupt_lock, flags);
1712 static int d40_validate_conf(struct d40_chan *d40c,
1713 struct stedma40_chan_cfg *conf)
1716 u32 dst_event_group = D40_TYPE_TO_GROUP(conf->dst_dev_type);
1717 u32 src_event_group = D40_TYPE_TO_GROUP(conf->src_dev_type);
1718 bool is_log = conf->mode == STEDMA40_MODE_LOGICAL;
1721 chan_err(d40c, "Invalid direction.\n");
1725 if (conf->dst_dev_type != STEDMA40_DEV_DST_MEMORY &&
1726 d40c->base->plat_data->dev_tx[conf->dst_dev_type] == 0 &&
1727 d40c->runtime_addr == 0) {
1729 chan_err(d40c, "Invalid TX channel address (%d)\n",
1730 conf->dst_dev_type);
1734 if (conf->src_dev_type != STEDMA40_DEV_SRC_MEMORY &&
1735 d40c->base->plat_data->dev_rx[conf->src_dev_type] == 0 &&
1736 d40c->runtime_addr == 0) {
1737 chan_err(d40c, "Invalid RX channel address (%d)\n",
1738 conf->src_dev_type);
1742 if (conf->dir == STEDMA40_MEM_TO_PERIPH &&
1743 dst_event_group == STEDMA40_DEV_DST_MEMORY) {
1744 chan_err(d40c, "Invalid dst\n");
1748 if (conf->dir == STEDMA40_PERIPH_TO_MEM &&
1749 src_event_group == STEDMA40_DEV_SRC_MEMORY) {
1750 chan_err(d40c, "Invalid src\n");
1754 if (src_event_group == STEDMA40_DEV_SRC_MEMORY &&
1755 dst_event_group == STEDMA40_DEV_DST_MEMORY && is_log) {
1756 chan_err(d40c, "No event line\n");
1760 if (conf->dir == STEDMA40_PERIPH_TO_PERIPH &&
1761 (src_event_group != dst_event_group)) {
1762 chan_err(d40c, "Invalid event group\n");
1766 if (conf->dir == STEDMA40_PERIPH_TO_PERIPH) {
1768 * DMAC HW supports it. Will be added to this driver,
1769 * in case any dma client requires it.
1771 chan_err(d40c, "periph to periph not supported\n");
1775 if (d40_psize_2_burst_size(is_log, conf->src_info.psize) *
1776 (1 << conf->src_info.data_width) !=
1777 d40_psize_2_burst_size(is_log, conf->dst_info.psize) *
1778 (1 << conf->dst_info.data_width)) {
1780 * The DMAC hardware only supports
1781 * src (burst x width) == dst (burst x width)
1784 chan_err(d40c, "src (burst x width) != dst (burst x width)\n");
1791 static bool d40_alloc_mask_set(struct d40_phy_res *phy,
1792 bool is_src, int log_event_line, bool is_log,
1795 unsigned long flags;
1796 spin_lock_irqsave(&phy->lock, flags);
1798 *first_user = ((phy->allocated_src | phy->allocated_dst)
1802 /* Physical interrupts are masked per physical full channel */
1803 if (phy->allocated_src == D40_ALLOC_FREE &&
1804 phy->allocated_dst == D40_ALLOC_FREE) {
1805 phy->allocated_dst = D40_ALLOC_PHY;
1806 phy->allocated_src = D40_ALLOC_PHY;
1812 /* Logical channel */
1814 if (phy->allocated_src == D40_ALLOC_PHY)
1817 if (phy->allocated_src == D40_ALLOC_FREE)
1818 phy->allocated_src = D40_ALLOC_LOG_FREE;
1820 if (!(phy->allocated_src & (1 << log_event_line))) {
1821 phy->allocated_src |= 1 << log_event_line;
1826 if (phy->allocated_dst == D40_ALLOC_PHY)
1829 if (phy->allocated_dst == D40_ALLOC_FREE)
1830 phy->allocated_dst = D40_ALLOC_LOG_FREE;
1832 if (!(phy->allocated_dst & (1 << log_event_line))) {
1833 phy->allocated_dst |= 1 << log_event_line;
1840 spin_unlock_irqrestore(&phy->lock, flags);
1843 spin_unlock_irqrestore(&phy->lock, flags);
1847 static bool d40_alloc_mask_free(struct d40_phy_res *phy, bool is_src,
1850 unsigned long flags;
1851 bool is_free = false;
1853 spin_lock_irqsave(&phy->lock, flags);
1854 if (!log_event_line) {
1855 phy->allocated_dst = D40_ALLOC_FREE;
1856 phy->allocated_src = D40_ALLOC_FREE;
1861 /* Logical channel */
1863 phy->allocated_src &= ~(1 << log_event_line);
1864 if (phy->allocated_src == D40_ALLOC_LOG_FREE)
1865 phy->allocated_src = D40_ALLOC_FREE;
1867 phy->allocated_dst &= ~(1 << log_event_line);
1868 if (phy->allocated_dst == D40_ALLOC_LOG_FREE)
1869 phy->allocated_dst = D40_ALLOC_FREE;
1872 is_free = ((phy->allocated_src | phy->allocated_dst) ==
1876 spin_unlock_irqrestore(&phy->lock, flags);
1881 static int d40_allocate_channel(struct d40_chan *d40c, bool *first_phy_user)
1886 struct d40_phy_res *phys;
1892 bool is_log = d40c->dma_cfg.mode == STEDMA40_MODE_LOGICAL;
1894 phys = d40c->base->phy_res;
1895 num_phy_chans = d40c->base->num_phy_chans;
1897 if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
1898 dev_type = d40c->dma_cfg.src_dev_type;
1899 log_num = 2 * dev_type;
1901 } else if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
1902 d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
1903 /* dst event lines are used for logical memcpy */
1904 dev_type = d40c->dma_cfg.dst_dev_type;
1905 log_num = 2 * dev_type + 1;
1910 event_group = D40_TYPE_TO_GROUP(dev_type);
1911 event_line = D40_TYPE_TO_EVENT(dev_type);
1914 if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
1915 /* Find physical half channel */
1916 if (d40c->dma_cfg.use_fixed_channel) {
1917 i = d40c->dma_cfg.phy_channel;
1918 if (d40_alloc_mask_set(&phys[i], is_src,
1923 for (i = 0; i < num_phy_chans; i++) {
1924 if (d40_alloc_mask_set(&phys[i], is_src,
1931 for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
1932 int phy_num = j + event_group * 2;
1933 for (i = phy_num; i < phy_num + 2; i++) {
1934 if (d40_alloc_mask_set(&phys[i],
1944 d40c->phy_chan = &phys[i];
1945 d40c->log_num = D40_PHY_CHAN;
1951 /* Find logical channel */
1952 for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
1953 int phy_num = j + event_group * 2;
1955 if (d40c->dma_cfg.use_fixed_channel) {
1956 i = d40c->dma_cfg.phy_channel;
1958 if ((i != phy_num) && (i != phy_num + 1)) {
1959 dev_err(chan2dev(d40c),
1960 "invalid fixed phy channel %d\n", i);
1964 if (d40_alloc_mask_set(&phys[i], is_src, event_line,
1965 is_log, first_phy_user))
1968 dev_err(chan2dev(d40c),
1969 "could not allocate fixed phy channel %d\n", i);
1974 * Spread logical channels across all available physical rather
1975 * than pack every logical channel at the first available phy
1979 for (i = phy_num; i < phy_num + 2; i++) {
1980 if (d40_alloc_mask_set(&phys[i], is_src,
1986 for (i = phy_num + 1; i >= phy_num; i--) {
1987 if (d40_alloc_mask_set(&phys[i], is_src,
1997 d40c->phy_chan = &phys[i];
1998 d40c->log_num = log_num;
2002 d40c->base->lookup_log_chans[d40c->log_num] = d40c;
2004 d40c->base->lookup_phy_chans[d40c->phy_chan->num] = d40c;
2010 static int d40_config_memcpy(struct d40_chan *d40c)
2012 dma_cap_mask_t cap = d40c->chan.device->cap_mask;
2014 if (dma_has_cap(DMA_MEMCPY, cap) && !dma_has_cap(DMA_SLAVE, cap)) {
2015 d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_log;
2016 d40c->dma_cfg.src_dev_type = STEDMA40_DEV_SRC_MEMORY;
2017 d40c->dma_cfg.dst_dev_type = d40c->base->plat_data->
2018 memcpy[d40c->chan.chan_id];
2020 } else if (dma_has_cap(DMA_MEMCPY, cap) &&
2021 dma_has_cap(DMA_SLAVE, cap)) {
2022 d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_phy;
2024 chan_err(d40c, "No memcpy\n");
2031 static int d40_free_dma(struct d40_chan *d40c)
2036 struct d40_phy_res *phy = d40c->phy_chan;
2039 /* Terminate all queued and active transfers */
2043 chan_err(d40c, "phy == null\n");
2047 if (phy->allocated_src == D40_ALLOC_FREE &&
2048 phy->allocated_dst == D40_ALLOC_FREE) {
2049 chan_err(d40c, "channel already free\n");
2053 if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
2054 d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
2055 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
2057 } else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
2058 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
2061 chan_err(d40c, "Unknown direction\n");
2065 pm_runtime_get_sync(d40c->base->dev);
2066 res = d40_channel_execute_command(d40c, D40_DMA_STOP);
2068 chan_err(d40c, "stop failed\n");
2072 d40_alloc_mask_free(phy, is_src, chan_is_logical(d40c) ? event : 0);
2074 if (chan_is_logical(d40c))
2075 d40c->base->lookup_log_chans[d40c->log_num] = NULL;
2077 d40c->base->lookup_phy_chans[phy->num] = NULL;
2080 pm_runtime_mark_last_busy(d40c->base->dev);
2081 pm_runtime_put_autosuspend(d40c->base->dev);
2085 d40c->phy_chan = NULL;
2086 d40c->configured = false;
2089 pm_runtime_mark_last_busy(d40c->base->dev);
2090 pm_runtime_put_autosuspend(d40c->base->dev);
2094 static bool d40_is_paused(struct d40_chan *d40c)
2096 void __iomem *chanbase = chan_base(d40c);
2097 bool is_paused = false;
2098 unsigned long flags;
2099 void __iomem *active_reg;
2103 spin_lock_irqsave(&d40c->lock, flags);
2105 if (chan_is_physical(d40c)) {
2106 if (d40c->phy_chan->num % 2 == 0)
2107 active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
2109 active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
2111 status = (readl(active_reg) &
2112 D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
2113 D40_CHAN_POS(d40c->phy_chan->num);
2114 if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
2120 if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
2121 d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
2122 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
2123 status = readl(chanbase + D40_CHAN_REG_SDLNK);
2124 } else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
2125 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
2126 status = readl(chanbase + D40_CHAN_REG_SSLNK);
2128 chan_err(d40c, "Unknown direction\n");
2132 status = (status & D40_EVENTLINE_MASK(event)) >>
2133 D40_EVENTLINE_POS(event);
2135 if (status != D40_DMA_RUN)
2138 spin_unlock_irqrestore(&d40c->lock, flags);
2143 static u32 stedma40_residue(struct dma_chan *chan)
2145 struct d40_chan *d40c =
2146 container_of(chan, struct d40_chan, chan);
2148 unsigned long flags;
2150 spin_lock_irqsave(&d40c->lock, flags);
2151 bytes_left = d40_residue(d40c);
2152 spin_unlock_irqrestore(&d40c->lock, flags);
2158 d40_prep_sg_log(struct d40_chan *chan, struct d40_desc *desc,
2159 struct scatterlist *sg_src, struct scatterlist *sg_dst,
2160 unsigned int sg_len, dma_addr_t src_dev_addr,
2161 dma_addr_t dst_dev_addr)
2163 struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
2164 struct stedma40_half_channel_info *src_info = &cfg->src_info;
2165 struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
2168 ret = d40_log_sg_to_lli(sg_src, sg_len,
2171 chan->log_def.lcsp1,
2172 src_info->data_width,
2173 dst_info->data_width);
2175 ret = d40_log_sg_to_lli(sg_dst, sg_len,
2178 chan->log_def.lcsp3,
2179 dst_info->data_width,
2180 src_info->data_width);
2182 return ret < 0 ? ret : 0;
2186 d40_prep_sg_phy(struct d40_chan *chan, struct d40_desc *desc,
2187 struct scatterlist *sg_src, struct scatterlist *sg_dst,
2188 unsigned int sg_len, dma_addr_t src_dev_addr,
2189 dma_addr_t dst_dev_addr)
2191 struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
2192 struct stedma40_half_channel_info *src_info = &cfg->src_info;
2193 struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
2194 unsigned long flags = 0;
2198 flags |= LLI_CYCLIC | LLI_TERM_INT;
2200 ret = d40_phy_sg_to_lli(sg_src, sg_len, src_dev_addr,
2202 virt_to_phys(desc->lli_phy.src),
2204 src_info, dst_info, flags);
2206 ret = d40_phy_sg_to_lli(sg_dst, sg_len, dst_dev_addr,
2208 virt_to_phys(desc->lli_phy.dst),
2210 dst_info, src_info, flags);
2212 dma_sync_single_for_device(chan->base->dev, desc->lli_pool.dma_addr,
2213 desc->lli_pool.size, DMA_TO_DEVICE);
2215 return ret < 0 ? ret : 0;
2218 static struct d40_desc *
2219 d40_prep_desc(struct d40_chan *chan, struct scatterlist *sg,
2220 unsigned int sg_len, unsigned long dma_flags)
2222 struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
2223 struct d40_desc *desc;
2226 desc = d40_desc_get(chan);
2230 desc->lli_len = d40_sg_2_dmalen(sg, sg_len, cfg->src_info.data_width,
2231 cfg->dst_info.data_width);
2232 if (desc->lli_len < 0) {
2233 chan_err(chan, "Unaligned size\n");
2237 ret = d40_pool_lli_alloc(chan, desc, desc->lli_len);
2239 chan_err(chan, "Could not allocate lli\n");
2243 desc->lli_current = 0;
2244 desc->txd.flags = dma_flags;
2245 desc->txd.tx_submit = d40_tx_submit;
2247 dma_async_tx_descriptor_init(&desc->txd, &chan->chan);
2252 d40_desc_free(chan, desc);
2257 d40_get_dev_addr(struct d40_chan *chan, enum dma_transfer_direction direction)
2259 struct stedma40_platform_data *plat = chan->base->plat_data;
2260 struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
2261 dma_addr_t addr = 0;
2263 if (chan->runtime_addr)
2264 return chan->runtime_addr;
2266 if (direction == DMA_DEV_TO_MEM)
2267 addr = plat->dev_rx[cfg->src_dev_type];
2268 else if (direction == DMA_MEM_TO_DEV)
2269 addr = plat->dev_tx[cfg->dst_dev_type];
2274 static struct dma_async_tx_descriptor *
2275 d40_prep_sg(struct dma_chan *dchan, struct scatterlist *sg_src,
2276 struct scatterlist *sg_dst, unsigned int sg_len,
2277 enum dma_transfer_direction direction, unsigned long dma_flags)
2279 struct d40_chan *chan = container_of(dchan, struct d40_chan, chan);
2280 dma_addr_t src_dev_addr = 0;
2281 dma_addr_t dst_dev_addr = 0;
2282 struct d40_desc *desc;
2283 unsigned long flags;
2286 if (!chan->phy_chan) {
2287 chan_err(chan, "Cannot prepare unallocated channel\n");
2291 spin_lock_irqsave(&chan->lock, flags);
2293 desc = d40_prep_desc(chan, sg_src, sg_len, dma_flags);
2297 if (sg_next(&sg_src[sg_len - 1]) == sg_src)
2298 desc->cyclic = true;
2300 if (direction != DMA_TRANS_NONE) {
2301 dma_addr_t dev_addr = d40_get_dev_addr(chan, direction);
2303 if (direction == DMA_DEV_TO_MEM)
2304 src_dev_addr = dev_addr;
2305 else if (direction == DMA_MEM_TO_DEV)
2306 dst_dev_addr = dev_addr;
2309 if (chan_is_logical(chan))
2310 ret = d40_prep_sg_log(chan, desc, sg_src, sg_dst,
2311 sg_len, src_dev_addr, dst_dev_addr);
2313 ret = d40_prep_sg_phy(chan, desc, sg_src, sg_dst,
2314 sg_len, src_dev_addr, dst_dev_addr);
2317 chan_err(chan, "Failed to prepare %s sg job: %d\n",
2318 chan_is_logical(chan) ? "log" : "phy", ret);
2323 * add descriptor to the prepare queue in order to be able
2324 * to free them later in terminate_all
2326 list_add_tail(&desc->node, &chan->prepare_queue);
2328 spin_unlock_irqrestore(&chan->lock, flags);
2334 d40_desc_free(chan, desc);
2335 spin_unlock_irqrestore(&chan->lock, flags);
2339 bool stedma40_filter(struct dma_chan *chan, void *data)
2341 struct stedma40_chan_cfg *info = data;
2342 struct d40_chan *d40c =
2343 container_of(chan, struct d40_chan, chan);
2347 err = d40_validate_conf(d40c, info);
2349 d40c->dma_cfg = *info;
2351 err = d40_config_memcpy(d40c);
2354 d40c->configured = true;
2358 EXPORT_SYMBOL(stedma40_filter);
2360 static void __d40_set_prio_rt(struct d40_chan *d40c, int dev_type, bool src)
2362 bool realtime = d40c->dma_cfg.realtime;
2363 bool highprio = d40c->dma_cfg.high_priority;
2365 u32 event = D40_TYPE_TO_EVENT(dev_type);
2366 u32 group = D40_TYPE_TO_GROUP(dev_type);
2367 u32 bit = 1 << event;
2369 struct d40_gen_dmac *dmac = &d40c->base->gen_dmac;
2371 rtreg = realtime ? dmac->realtime_en : dmac->realtime_clear;
2373 * Due to a hardware bug, in some cases a logical channel triggered by
2374 * a high priority destination event line can generate extra packet
2377 * The workaround is to not set the high priority level for the
2378 * destination event lines that trigger logical channels.
2380 if (!src && chan_is_logical(d40c))
2383 prioreg = highprio ? dmac->high_prio_en : dmac->high_prio_clear;
2385 /* Destination event lines are stored in the upper halfword */
2389 writel(bit, d40c->base->virtbase + prioreg + group * 4);
2390 writel(bit, d40c->base->virtbase + rtreg + group * 4);
2393 static void d40_set_prio_realtime(struct d40_chan *d40c)
2395 if (d40c->base->rev < 3)
2398 if ((d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) ||
2399 (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH))
2400 __d40_set_prio_rt(d40c, d40c->dma_cfg.src_dev_type, true);
2402 if ((d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH) ||
2403 (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH))
2404 __d40_set_prio_rt(d40c, d40c->dma_cfg.dst_dev_type, false);
2407 /* DMA ENGINE functions */
2408 static int d40_alloc_chan_resources(struct dma_chan *chan)
2411 unsigned long flags;
2412 struct d40_chan *d40c =
2413 container_of(chan, struct d40_chan, chan);
2415 spin_lock_irqsave(&d40c->lock, flags);
2417 dma_cookie_init(chan);
2419 /* If no dma configuration is set use default configuration (memcpy) */
2420 if (!d40c->configured) {
2421 err = d40_config_memcpy(d40c);
2423 chan_err(d40c, "Failed to configure memcpy channel\n");
2428 err = d40_allocate_channel(d40c, &is_free_phy);
2430 chan_err(d40c, "Failed to allocate channel\n");
2431 d40c->configured = false;
2435 pm_runtime_get_sync(d40c->base->dev);
2436 /* Fill in basic CFG register values */
2437 d40_phy_cfg(&d40c->dma_cfg, &d40c->src_def_cfg,
2438 &d40c->dst_def_cfg, chan_is_logical(d40c));
2440 d40_set_prio_realtime(d40c);
2442 if (chan_is_logical(d40c)) {
2443 d40_log_cfg(&d40c->dma_cfg,
2444 &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
2446 if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM)
2447 d40c->lcpa = d40c->base->lcpa_base +
2448 d40c->dma_cfg.src_dev_type * D40_LCPA_CHAN_SIZE;
2450 d40c->lcpa = d40c->base->lcpa_base +
2451 d40c->dma_cfg.dst_dev_type *
2452 D40_LCPA_CHAN_SIZE + D40_LCPA_CHAN_DST_DELTA;
2455 dev_dbg(chan2dev(d40c), "allocated %s channel (phy %d%s)\n",
2456 chan_is_logical(d40c) ? "logical" : "physical",
2457 d40c->phy_chan->num,
2458 d40c->dma_cfg.use_fixed_channel ? ", fixed" : "");
2462 * Only write channel configuration to the DMA if the physical
2463 * resource is free. In case of multiple logical channels
2464 * on the same physical resource, only the first write is necessary.
2467 d40_config_write(d40c);
2469 pm_runtime_mark_last_busy(d40c->base->dev);
2470 pm_runtime_put_autosuspend(d40c->base->dev);
2471 spin_unlock_irqrestore(&d40c->lock, flags);
2475 static void d40_free_chan_resources(struct dma_chan *chan)
2477 struct d40_chan *d40c =
2478 container_of(chan, struct d40_chan, chan);
2480 unsigned long flags;
2482 if (d40c->phy_chan == NULL) {
2483 chan_err(d40c, "Cannot free unallocated channel\n");
2487 spin_lock_irqsave(&d40c->lock, flags);
2489 err = d40_free_dma(d40c);
2492 chan_err(d40c, "Failed to free channel\n");
2493 spin_unlock_irqrestore(&d40c->lock, flags);
2496 static struct dma_async_tx_descriptor *d40_prep_memcpy(struct dma_chan *chan,
2500 unsigned long dma_flags)
2502 struct scatterlist dst_sg;
2503 struct scatterlist src_sg;
2505 sg_init_table(&dst_sg, 1);
2506 sg_init_table(&src_sg, 1);
2508 sg_dma_address(&dst_sg) = dst;
2509 sg_dma_address(&src_sg) = src;
2511 sg_dma_len(&dst_sg) = size;
2512 sg_dma_len(&src_sg) = size;
2514 return d40_prep_sg(chan, &src_sg, &dst_sg, 1, DMA_NONE, dma_flags);
2517 static struct dma_async_tx_descriptor *
2518 d40_prep_memcpy_sg(struct dma_chan *chan,
2519 struct scatterlist *dst_sg, unsigned int dst_nents,
2520 struct scatterlist *src_sg, unsigned int src_nents,
2521 unsigned long dma_flags)
2523 if (dst_nents != src_nents)
2526 return d40_prep_sg(chan, src_sg, dst_sg, src_nents, DMA_NONE, dma_flags);
2529 static struct dma_async_tx_descriptor *
2530 d40_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
2531 unsigned int sg_len, enum dma_transfer_direction direction,
2532 unsigned long dma_flags, void *context)
2534 if (!is_slave_direction(direction))
2537 return d40_prep_sg(chan, sgl, sgl, sg_len, direction, dma_flags);
2540 static struct dma_async_tx_descriptor *
2541 dma40_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t dma_addr,
2542 size_t buf_len, size_t period_len,
2543 enum dma_transfer_direction direction, unsigned long flags,
2546 unsigned int periods = buf_len / period_len;
2547 struct dma_async_tx_descriptor *txd;
2548 struct scatterlist *sg;
2551 sg = kcalloc(periods + 1, sizeof(struct scatterlist), GFP_NOWAIT);
2552 for (i = 0; i < periods; i++) {
2553 sg_dma_address(&sg[i]) = dma_addr;
2554 sg_dma_len(&sg[i]) = period_len;
2555 dma_addr += period_len;
2558 sg[periods].offset = 0;
2559 sg_dma_len(&sg[periods]) = 0;
2560 sg[periods].page_link =
2561 ((unsigned long)sg | 0x01) & ~0x02;
2563 txd = d40_prep_sg(chan, sg, sg, periods, direction,
2564 DMA_PREP_INTERRUPT);
2571 static enum dma_status d40_tx_status(struct dma_chan *chan,
2572 dma_cookie_t cookie,
2573 struct dma_tx_state *txstate)
2575 struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2576 enum dma_status ret;
2578 if (d40c->phy_chan == NULL) {
2579 chan_err(d40c, "Cannot read status of unallocated channel\n");
2583 ret = dma_cookie_status(chan, cookie, txstate);
2584 if (ret != DMA_SUCCESS)
2585 dma_set_residue(txstate, stedma40_residue(chan));
2587 if (d40_is_paused(d40c))
2593 static void d40_issue_pending(struct dma_chan *chan)
2595 struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2596 unsigned long flags;
2598 if (d40c->phy_chan == NULL) {
2599 chan_err(d40c, "Channel is not allocated!\n");
2603 spin_lock_irqsave(&d40c->lock, flags);
2605 list_splice_tail_init(&d40c->pending_queue, &d40c->queue);
2607 /* Busy means that queued jobs are already being processed */
2609 (void) d40_queue_start(d40c);
2611 spin_unlock_irqrestore(&d40c->lock, flags);
2614 static void d40_terminate_all(struct dma_chan *chan)
2616 unsigned long flags;
2617 struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2620 spin_lock_irqsave(&d40c->lock, flags);
2622 pm_runtime_get_sync(d40c->base->dev);
2623 ret = d40_channel_execute_command(d40c, D40_DMA_STOP);
2625 chan_err(d40c, "Failed to stop channel\n");
2628 pm_runtime_mark_last_busy(d40c->base->dev);
2629 pm_runtime_put_autosuspend(d40c->base->dev);
2631 pm_runtime_mark_last_busy(d40c->base->dev);
2632 pm_runtime_put_autosuspend(d40c->base->dev);
2636 spin_unlock_irqrestore(&d40c->lock, flags);
2640 dma40_config_to_halfchannel(struct d40_chan *d40c,
2641 struct stedma40_half_channel_info *info,
2642 enum dma_slave_buswidth width,
2645 enum stedma40_periph_data_width addr_width;
2649 case DMA_SLAVE_BUSWIDTH_1_BYTE:
2650 addr_width = STEDMA40_BYTE_WIDTH;
2652 case DMA_SLAVE_BUSWIDTH_2_BYTES:
2653 addr_width = STEDMA40_HALFWORD_WIDTH;
2655 case DMA_SLAVE_BUSWIDTH_4_BYTES:
2656 addr_width = STEDMA40_WORD_WIDTH;
2658 case DMA_SLAVE_BUSWIDTH_8_BYTES:
2659 addr_width = STEDMA40_DOUBLEWORD_WIDTH;
2662 dev_err(d40c->base->dev,
2663 "illegal peripheral address width "
2669 if (chan_is_logical(d40c)) {
2671 psize = STEDMA40_PSIZE_LOG_16;
2672 else if (maxburst >= 8)
2673 psize = STEDMA40_PSIZE_LOG_8;
2674 else if (maxburst >= 4)
2675 psize = STEDMA40_PSIZE_LOG_4;
2677 psize = STEDMA40_PSIZE_LOG_1;
2680 psize = STEDMA40_PSIZE_PHY_16;
2681 else if (maxburst >= 8)
2682 psize = STEDMA40_PSIZE_PHY_8;
2683 else if (maxburst >= 4)
2684 psize = STEDMA40_PSIZE_PHY_4;
2686 psize = STEDMA40_PSIZE_PHY_1;
2689 info->data_width = addr_width;
2690 info->psize = psize;
2691 info->flow_ctrl = STEDMA40_NO_FLOW_CTRL;
2696 /* Runtime reconfiguration extension */
2697 static int d40_set_runtime_config(struct dma_chan *chan,
2698 struct dma_slave_config *config)
2700 struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2701 struct stedma40_chan_cfg *cfg = &d40c->dma_cfg;
2702 enum dma_slave_buswidth src_addr_width, dst_addr_width;
2703 dma_addr_t config_addr;
2704 u32 src_maxburst, dst_maxburst;
2707 src_addr_width = config->src_addr_width;
2708 src_maxburst = config->src_maxburst;
2709 dst_addr_width = config->dst_addr_width;
2710 dst_maxburst = config->dst_maxburst;
2712 if (config->direction == DMA_DEV_TO_MEM) {
2713 dma_addr_t dev_addr_rx =
2714 d40c->base->plat_data->dev_rx[cfg->src_dev_type];
2716 config_addr = config->src_addr;
2718 dev_dbg(d40c->base->dev,
2719 "channel has a pre-wired RX address %08x "
2720 "overriding with %08x\n",
2721 dev_addr_rx, config_addr);
2722 if (cfg->dir != STEDMA40_PERIPH_TO_MEM)
2723 dev_dbg(d40c->base->dev,
2724 "channel was not configured for peripheral "
2725 "to memory transfer (%d) overriding\n",
2727 cfg->dir = STEDMA40_PERIPH_TO_MEM;
2729 /* Configure the memory side */
2730 if (dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
2731 dst_addr_width = src_addr_width;
2732 if (dst_maxburst == 0)
2733 dst_maxburst = src_maxburst;
2735 } else if (config->direction == DMA_MEM_TO_DEV) {
2736 dma_addr_t dev_addr_tx =
2737 d40c->base->plat_data->dev_tx[cfg->dst_dev_type];
2739 config_addr = config->dst_addr;
2741 dev_dbg(d40c->base->dev,
2742 "channel has a pre-wired TX address %08x "
2743 "overriding with %08x\n",
2744 dev_addr_tx, config_addr);
2745 if (cfg->dir != STEDMA40_MEM_TO_PERIPH)
2746 dev_dbg(d40c->base->dev,
2747 "channel was not configured for memory "
2748 "to peripheral transfer (%d) overriding\n",
2750 cfg->dir = STEDMA40_MEM_TO_PERIPH;
2752 /* Configure the memory side */
2753 if (src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
2754 src_addr_width = dst_addr_width;
2755 if (src_maxburst == 0)
2756 src_maxburst = dst_maxburst;
2758 dev_err(d40c->base->dev,
2759 "unrecognized channel direction %d\n",
2764 if (src_maxburst * src_addr_width != dst_maxburst * dst_addr_width) {
2765 dev_err(d40c->base->dev,
2766 "src/dst width/maxburst mismatch: %d*%d != %d*%d\n",
2774 if (src_maxburst > 16) {
2776 dst_maxburst = src_maxburst * src_addr_width / dst_addr_width;
2777 } else if (dst_maxburst > 16) {
2779 src_maxburst = dst_maxburst * dst_addr_width / src_addr_width;
2782 ret = dma40_config_to_halfchannel(d40c, &cfg->src_info,
2788 ret = dma40_config_to_halfchannel(d40c, &cfg->dst_info,
2794 /* Fill in register values */
2795 if (chan_is_logical(d40c))
2796 d40_log_cfg(cfg, &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
2798 d40_phy_cfg(cfg, &d40c->src_def_cfg,
2799 &d40c->dst_def_cfg, false);
2801 /* These settings will take precedence later */
2802 d40c->runtime_addr = config_addr;
2803 d40c->runtime_direction = config->direction;
2804 dev_dbg(d40c->base->dev,
2805 "configured channel %s for %s, data width %d/%d, "
2806 "maxburst %d/%d elements, LE, no flow control\n",
2807 dma_chan_name(chan),
2808 (config->direction == DMA_DEV_TO_MEM) ? "RX" : "TX",
2809 src_addr_width, dst_addr_width,
2810 src_maxburst, dst_maxburst);
2815 static int d40_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
2818 struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2820 if (d40c->phy_chan == NULL) {
2821 chan_err(d40c, "Channel is not allocated!\n");
2826 case DMA_TERMINATE_ALL:
2827 d40_terminate_all(chan);
2830 return d40_pause(d40c);
2832 return d40_resume(d40c);
2833 case DMA_SLAVE_CONFIG:
2834 return d40_set_runtime_config(chan,
2835 (struct dma_slave_config *) arg);
2840 /* Other commands are unimplemented */
2844 /* Initialization functions */
2846 static void __init d40_chan_init(struct d40_base *base, struct dma_device *dma,
2847 struct d40_chan *chans, int offset,
2851 struct d40_chan *d40c;
2853 INIT_LIST_HEAD(&dma->channels);
2855 for (i = offset; i < offset + num_chans; i++) {
2858 d40c->chan.device = dma;
2860 spin_lock_init(&d40c->lock);
2862 d40c->log_num = D40_PHY_CHAN;
2864 INIT_LIST_HEAD(&d40c->done);
2865 INIT_LIST_HEAD(&d40c->active);
2866 INIT_LIST_HEAD(&d40c->queue);
2867 INIT_LIST_HEAD(&d40c->pending_queue);
2868 INIT_LIST_HEAD(&d40c->client);
2869 INIT_LIST_HEAD(&d40c->prepare_queue);
2871 tasklet_init(&d40c->tasklet, dma_tasklet,
2872 (unsigned long) d40c);
2874 list_add_tail(&d40c->chan.device_node,
2879 static void d40_ops_init(struct d40_base *base, struct dma_device *dev)
2881 if (dma_has_cap(DMA_SLAVE, dev->cap_mask))
2882 dev->device_prep_slave_sg = d40_prep_slave_sg;
2884 if (dma_has_cap(DMA_MEMCPY, dev->cap_mask)) {
2885 dev->device_prep_dma_memcpy = d40_prep_memcpy;
2888 * This controller can only access address at even
2889 * 32bit boundaries, i.e. 2^2
2891 dev->copy_align = 2;
2894 if (dma_has_cap(DMA_SG, dev->cap_mask))
2895 dev->device_prep_dma_sg = d40_prep_memcpy_sg;
2897 if (dma_has_cap(DMA_CYCLIC, dev->cap_mask))
2898 dev->device_prep_dma_cyclic = dma40_prep_dma_cyclic;
2900 dev->device_alloc_chan_resources = d40_alloc_chan_resources;
2901 dev->device_free_chan_resources = d40_free_chan_resources;
2902 dev->device_issue_pending = d40_issue_pending;
2903 dev->device_tx_status = d40_tx_status;
2904 dev->device_control = d40_control;
2905 dev->dev = base->dev;
2908 static int __init d40_dmaengine_init(struct d40_base *base,
2909 int num_reserved_chans)
2913 d40_chan_init(base, &base->dma_slave, base->log_chans,
2914 0, base->num_log_chans);
2916 dma_cap_zero(base->dma_slave.cap_mask);
2917 dma_cap_set(DMA_SLAVE, base->dma_slave.cap_mask);
2918 dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
2920 d40_ops_init(base, &base->dma_slave);
2922 err = dma_async_device_register(&base->dma_slave);
2925 d40_err(base->dev, "Failed to register slave channels\n");
2929 d40_chan_init(base, &base->dma_memcpy, base->log_chans,
2930 base->num_log_chans, base->plat_data->memcpy_len);
2932 dma_cap_zero(base->dma_memcpy.cap_mask);
2933 dma_cap_set(DMA_MEMCPY, base->dma_memcpy.cap_mask);
2934 dma_cap_set(DMA_SG, base->dma_memcpy.cap_mask);
2936 d40_ops_init(base, &base->dma_memcpy);
2938 err = dma_async_device_register(&base->dma_memcpy);
2942 "Failed to regsiter memcpy only channels\n");
2946 d40_chan_init(base, &base->dma_both, base->phy_chans,
2947 0, num_reserved_chans);
2949 dma_cap_zero(base->dma_both.cap_mask);
2950 dma_cap_set(DMA_SLAVE, base->dma_both.cap_mask);
2951 dma_cap_set(DMA_MEMCPY, base->dma_both.cap_mask);
2952 dma_cap_set(DMA_SG, base->dma_both.cap_mask);
2953 dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
2955 d40_ops_init(base, &base->dma_both);
2956 err = dma_async_device_register(&base->dma_both);
2960 "Failed to register logical and physical capable channels\n");
2965 dma_async_device_unregister(&base->dma_memcpy);
2967 dma_async_device_unregister(&base->dma_slave);
2972 /* Suspend resume functionality */
2974 static int dma40_pm_suspend(struct device *dev)
2976 struct platform_device *pdev = to_platform_device(dev);
2977 struct d40_base *base = platform_get_drvdata(pdev);
2980 if (base->lcpa_regulator)
2981 ret = regulator_disable(base->lcpa_regulator);
2985 static int dma40_runtime_suspend(struct device *dev)
2987 struct platform_device *pdev = to_platform_device(dev);
2988 struct d40_base *base = platform_get_drvdata(pdev);
2990 d40_save_restore_registers(base, true);
2992 /* Don't disable/enable clocks for v1 due to HW bugs */
2994 writel_relaxed(base->gcc_pwr_off_mask,
2995 base->virtbase + D40_DREG_GCC);
3000 static int dma40_runtime_resume(struct device *dev)
3002 struct platform_device *pdev = to_platform_device(dev);
3003 struct d40_base *base = platform_get_drvdata(pdev);
3005 if (base->initialized)
3006 d40_save_restore_registers(base, false);
3008 writel_relaxed(D40_DREG_GCC_ENABLE_ALL,
3009 base->virtbase + D40_DREG_GCC);
3013 static int dma40_resume(struct device *dev)
3015 struct platform_device *pdev = to_platform_device(dev);
3016 struct d40_base *base = platform_get_drvdata(pdev);
3019 if (base->lcpa_regulator)
3020 ret = regulator_enable(base->lcpa_regulator);
3025 static const struct dev_pm_ops dma40_pm_ops = {
3026 .suspend = dma40_pm_suspend,
3027 .runtime_suspend = dma40_runtime_suspend,
3028 .runtime_resume = dma40_runtime_resume,
3029 .resume = dma40_resume,
3031 #define DMA40_PM_OPS (&dma40_pm_ops)
3033 #define DMA40_PM_OPS NULL
3036 /* Initialization functions. */
3038 static int __init d40_phy_res_init(struct d40_base *base)
3041 int num_phy_chans_avail = 0;
3043 int odd_even_bit = -2;
3044 int gcc = D40_DREG_GCC_ENA;
3046 val[0] = readl(base->virtbase + D40_DREG_PRSME);
3047 val[1] = readl(base->virtbase + D40_DREG_PRSMO);
3049 for (i = 0; i < base->num_phy_chans; i++) {
3050 base->phy_res[i].num = i;
3051 odd_even_bit += 2 * ((i % 2) == 0);
3052 if (((val[i % 2] >> odd_even_bit) & 3) == 1) {
3053 /* Mark security only channels as occupied */
3054 base->phy_res[i].allocated_src = D40_ALLOC_PHY;
3055 base->phy_res[i].allocated_dst = D40_ALLOC_PHY;
3056 base->phy_res[i].reserved = true;
3057 gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(i),
3059 gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(i),
3064 base->phy_res[i].allocated_src = D40_ALLOC_FREE;
3065 base->phy_res[i].allocated_dst = D40_ALLOC_FREE;
3066 base->phy_res[i].reserved = false;
3067 num_phy_chans_avail++;
3069 spin_lock_init(&base->phy_res[i].lock);
3072 /* Mark disabled channels as occupied */
3073 for (i = 0; base->plat_data->disabled_channels[i] != -1; i++) {
3074 int chan = base->plat_data->disabled_channels[i];
3076 base->phy_res[chan].allocated_src = D40_ALLOC_PHY;
3077 base->phy_res[chan].allocated_dst = D40_ALLOC_PHY;
3078 base->phy_res[chan].reserved = true;
3079 gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(chan),
3081 gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(chan),
3083 num_phy_chans_avail--;
3086 /* Mark soft_lli channels */
3087 for (i = 0; i < base->plat_data->num_of_soft_lli_chans; i++) {
3088 int chan = base->plat_data->soft_lli_chans[i];
3090 base->phy_res[chan].use_soft_lli = true;
3093 dev_info(base->dev, "%d of %d physical DMA channels available\n",
3094 num_phy_chans_avail, base->num_phy_chans);
3096 /* Verify settings extended vs standard */
3097 val[0] = readl(base->virtbase + D40_DREG_PRTYP);
3099 for (i = 0; i < base->num_phy_chans; i++) {
3101 if (base->phy_res[i].allocated_src == D40_ALLOC_FREE &&
3102 (val[0] & 0x3) != 1)
3104 "[%s] INFO: channel %d is misconfigured (%d)\n",
3105 __func__, i, val[0] & 0x3);
3107 val[0] = val[0] >> 2;
3111 * To keep things simple, Enable all clocks initially.
3112 * The clocks will get managed later post channel allocation.
3113 * The clocks for the event lines on which reserved channels exists
3114 * are not managed here.
3116 writel(D40_DREG_GCC_ENABLE_ALL, base->virtbase + D40_DREG_GCC);
3117 base->gcc_pwr_off_mask = gcc;
3119 return num_phy_chans_avail;
3122 static struct d40_base * __init d40_hw_detect_init(struct platform_device *pdev)
3124 struct stedma40_platform_data *plat_data;
3125 struct clk *clk = NULL;
3126 void __iomem *virtbase = NULL;
3127 struct resource *res = NULL;
3128 struct d40_base *base = NULL;
3129 int num_log_chans = 0;
3131 int clk_ret = -EINVAL;
3137 clk = clk_get(&pdev->dev, NULL);
3139 d40_err(&pdev->dev, "No matching clock found\n");
3143 clk_ret = clk_prepare_enable(clk);
3145 d40_err(&pdev->dev, "Failed to prepare/enable clock\n");
3149 /* Get IO for DMAC base address */
3150 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "base");
3154 if (request_mem_region(res->start, resource_size(res),
3155 D40_NAME " I/O base") == NULL)
3158 virtbase = ioremap(res->start, resource_size(res));
3162 /* This is just a regular AMBA PrimeCell ID actually */
3163 for (pid = 0, i = 0; i < 4; i++)
3164 pid |= (readl(virtbase + resource_size(res) - 0x20 + 4 * i)
3166 for (cid = 0, i = 0; i < 4; i++)
3167 cid |= (readl(virtbase + resource_size(res) - 0x10 + 4 * i)
3170 if (cid != AMBA_CID) {
3171 d40_err(&pdev->dev, "Unknown hardware! No PrimeCell ID\n");
3174 if (AMBA_MANF_BITS(pid) != AMBA_VENDOR_ST) {
3175 d40_err(&pdev->dev, "Unknown designer! Got %x wanted %x\n",
3176 AMBA_MANF_BITS(pid),
3182 * DB8500ed has revision 0
3184 * DB8500v1 has revision 2
3185 * DB8500v2 has revision 3
3186 * AP9540v1 has revision 4
3187 * DB8540v1 has revision 4
3189 rev = AMBA_REV_BITS(pid);
3191 plat_data = pdev->dev.platform_data;
3193 /* The number of physical channels on this HW */
3194 if (plat_data->num_of_phy_chans)
3195 num_phy_chans = plat_data->num_of_phy_chans;
3197 num_phy_chans = 4 * (readl(virtbase + D40_DREG_ICFG) & 0x7) + 4;
3199 dev_info(&pdev->dev, "hardware revision: %d @ 0x%x with %d physical channels\n",
3200 rev, res->start, num_phy_chans);
3203 d40_err(&pdev->dev, "hardware revision: %d is not supported",
3208 /* Count the number of logical channels in use */
3209 for (i = 0; i < plat_data->dev_len; i++)
3210 if (plat_data->dev_rx[i] != 0)
3213 for (i = 0; i < plat_data->dev_len; i++)
3214 if (plat_data->dev_tx[i] != 0)
3217 base = kzalloc(ALIGN(sizeof(struct d40_base), 4) +
3218 (num_phy_chans + num_log_chans + plat_data->memcpy_len) *
3219 sizeof(struct d40_chan), GFP_KERNEL);
3222 d40_err(&pdev->dev, "Out of memory\n");
3228 base->num_phy_chans = num_phy_chans;
3229 base->num_log_chans = num_log_chans;
3230 base->phy_start = res->start;
3231 base->phy_size = resource_size(res);
3232 base->virtbase = virtbase;
3233 base->plat_data = plat_data;
3234 base->dev = &pdev->dev;
3235 base->phy_chans = ((void *)base) + ALIGN(sizeof(struct d40_base), 4);
3236 base->log_chans = &base->phy_chans[num_phy_chans];
3238 if (base->plat_data->num_of_phy_chans == 14) {
3239 base->gen_dmac.backup = d40_backup_regs_v4b;
3240 base->gen_dmac.backup_size = BACKUP_REGS_SZ_V4B;
3241 base->gen_dmac.interrupt_en = D40_DREG_CPCMIS;
3242 base->gen_dmac.interrupt_clear = D40_DREG_CPCICR;
3243 base->gen_dmac.realtime_en = D40_DREG_CRSEG1;
3244 base->gen_dmac.realtime_clear = D40_DREG_CRCEG1;
3245 base->gen_dmac.high_prio_en = D40_DREG_CPSEG1;
3246 base->gen_dmac.high_prio_clear = D40_DREG_CPCEG1;
3247 base->gen_dmac.il = il_v4b;
3248 base->gen_dmac.il_size = ARRAY_SIZE(il_v4b);
3249 base->gen_dmac.init_reg = dma_init_reg_v4b;
3250 base->gen_dmac.init_reg_size = ARRAY_SIZE(dma_init_reg_v4b);
3252 if (base->rev >= 3) {
3253 base->gen_dmac.backup = d40_backup_regs_v4a;
3254 base->gen_dmac.backup_size = BACKUP_REGS_SZ_V4A;
3256 base->gen_dmac.interrupt_en = D40_DREG_PCMIS;
3257 base->gen_dmac.interrupt_clear = D40_DREG_PCICR;
3258 base->gen_dmac.realtime_en = D40_DREG_RSEG1;
3259 base->gen_dmac.realtime_clear = D40_DREG_RCEG1;
3260 base->gen_dmac.high_prio_en = D40_DREG_PSEG1;
3261 base->gen_dmac.high_prio_clear = D40_DREG_PCEG1;
3262 base->gen_dmac.il = il_v4a;
3263 base->gen_dmac.il_size = ARRAY_SIZE(il_v4a);
3264 base->gen_dmac.init_reg = dma_init_reg_v4a;
3265 base->gen_dmac.init_reg_size = ARRAY_SIZE(dma_init_reg_v4a);
3268 base->phy_res = kzalloc(num_phy_chans * sizeof(struct d40_phy_res),
3273 base->lookup_phy_chans = kzalloc(num_phy_chans *
3274 sizeof(struct d40_chan *),
3276 if (!base->lookup_phy_chans)
3279 if (num_log_chans + plat_data->memcpy_len) {
3281 * The max number of logical channels are event lines for all
3282 * src devices and dst devices
3284 base->lookup_log_chans = kzalloc(plat_data->dev_len * 2 *
3285 sizeof(struct d40_chan *),
3287 if (!base->lookup_log_chans)
3291 base->reg_val_backup_chan = kmalloc(base->num_phy_chans *
3292 sizeof(d40_backup_regs_chan),
3294 if (!base->reg_val_backup_chan)
3297 base->lcla_pool.alloc_map =
3298 kzalloc(num_phy_chans * sizeof(struct d40_desc *)
3299 * D40_LCLA_LINK_PER_EVENT_GRP, GFP_KERNEL);
3300 if (!base->lcla_pool.alloc_map)
3303 base->desc_slab = kmem_cache_create(D40_NAME, sizeof(struct d40_desc),
3304 0, SLAB_HWCACHE_ALIGN,
3306 if (base->desc_slab == NULL)
3313 clk_disable_unprepare(clk);
3319 release_mem_region(res->start,
3320 resource_size(res));
3325 kfree(base->lcla_pool.alloc_map);
3326 kfree(base->reg_val_backup_chan);
3327 kfree(base->lookup_log_chans);
3328 kfree(base->lookup_phy_chans);
3329 kfree(base->phy_res);
3336 static void __init d40_hw_init(struct d40_base *base)
3340 u32 prmseo[2] = {0, 0};
3341 u32 activeo[2] = {0xFFFFFFFF, 0xFFFFFFFF};
3344 struct d40_reg_val *dma_init_reg = base->gen_dmac.init_reg;
3345 u32 reg_size = base->gen_dmac.init_reg_size;
3347 for (i = 0; i < reg_size; i++)
3348 writel(dma_init_reg[i].val,
3349 base->virtbase + dma_init_reg[i].reg);
3351 /* Configure all our dma channels to default settings */
3352 for (i = 0; i < base->num_phy_chans; i++) {
3354 activeo[i % 2] = activeo[i % 2] << 2;
3356 if (base->phy_res[base->num_phy_chans - i - 1].allocated_src
3358 activeo[i % 2] |= 3;
3362 /* Enable interrupt # */
3363 pcmis = (pcmis << 1) | 1;
3365 /* Clear interrupt # */
3366 pcicr = (pcicr << 1) | 1;
3368 /* Set channel to physical mode */
3369 prmseo[i % 2] = prmseo[i % 2] << 2;
3374 writel(prmseo[1], base->virtbase + D40_DREG_PRMSE);
3375 writel(prmseo[0], base->virtbase + D40_DREG_PRMSO);
3376 writel(activeo[1], base->virtbase + D40_DREG_ACTIVE);
3377 writel(activeo[0], base->virtbase + D40_DREG_ACTIVO);
3379 /* Write which interrupt to enable */
3380 writel(pcmis, base->virtbase + base->gen_dmac.interrupt_en);
3382 /* Write which interrupt to clear */
3383 writel(pcicr, base->virtbase + base->gen_dmac.interrupt_clear);
3385 /* These are __initdata and cannot be accessed after init */
3386 base->gen_dmac.init_reg = NULL;
3387 base->gen_dmac.init_reg_size = 0;
3390 static int __init d40_lcla_allocate(struct d40_base *base)
3392 struct d40_lcla_pool *pool = &base->lcla_pool;
3393 unsigned long *page_list;
3398 * This is somewhat ugly. We need 8192 bytes that are 18 bit aligned,
3399 * To full fill this hardware requirement without wasting 256 kb
3400 * we allocate pages until we get an aligned one.
3402 page_list = kmalloc(sizeof(unsigned long) * MAX_LCLA_ALLOC_ATTEMPTS,
3410 /* Calculating how many pages that are required */
3411 base->lcla_pool.pages = SZ_1K * base->num_phy_chans / PAGE_SIZE;
3413 for (i = 0; i < MAX_LCLA_ALLOC_ATTEMPTS; i++) {
3414 page_list[i] = __get_free_pages(GFP_KERNEL,
3415 base->lcla_pool.pages);
3416 if (!page_list[i]) {
3418 d40_err(base->dev, "Failed to allocate %d pages.\n",
3419 base->lcla_pool.pages);
3421 for (j = 0; j < i; j++)
3422 free_pages(page_list[j], base->lcla_pool.pages);
3426 if ((virt_to_phys((void *)page_list[i]) &
3427 (LCLA_ALIGNMENT - 1)) == 0)
3431 for (j = 0; j < i; j++)
3432 free_pages(page_list[j], base->lcla_pool.pages);
3434 if (i < MAX_LCLA_ALLOC_ATTEMPTS) {
3435 base->lcla_pool.base = (void *)page_list[i];
3438 * After many attempts and no succees with finding the correct
3439 * alignment, try with allocating a big buffer.
3442 "[%s] Failed to get %d pages @ 18 bit align.\n",
3443 __func__, base->lcla_pool.pages);
3444 base->lcla_pool.base_unaligned = kmalloc(SZ_1K *
3445 base->num_phy_chans +
3448 if (!base->lcla_pool.base_unaligned) {
3453 base->lcla_pool.base = PTR_ALIGN(base->lcla_pool.base_unaligned,
3457 pool->dma_addr = dma_map_single(base->dev, pool->base,
3458 SZ_1K * base->num_phy_chans,
3460 if (dma_mapping_error(base->dev, pool->dma_addr)) {
3466 writel(virt_to_phys(base->lcla_pool.base),
3467 base->virtbase + D40_DREG_LCLA);
3473 static int __init d40_probe(struct platform_device *pdev)
3477 struct d40_base *base;
3478 struct resource *res = NULL;
3479 int num_reserved_chans;
3482 base = d40_hw_detect_init(pdev);
3487 num_reserved_chans = d40_phy_res_init(base);
3489 platform_set_drvdata(pdev, base);
3491 spin_lock_init(&base->interrupt_lock);
3492 spin_lock_init(&base->execmd_lock);
3494 /* Get IO for logical channel parameter address */
3495 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "lcpa");
3498 d40_err(&pdev->dev, "No \"lcpa\" memory resource\n");
3501 base->lcpa_size = resource_size(res);
3502 base->phy_lcpa = res->start;
3504 if (request_mem_region(res->start, resource_size(res),
3505 D40_NAME " I/O lcpa") == NULL) {
3508 "Failed to request LCPA region 0x%x-0x%x\n",
3509 res->start, res->end);
3513 /* We make use of ESRAM memory for this. */
3514 val = readl(base->virtbase + D40_DREG_LCPA);
3515 if (res->start != val && val != 0) {
3516 dev_warn(&pdev->dev,
3517 "[%s] Mismatch LCPA dma 0x%x, def 0x%x\n",
3518 __func__, val, res->start);
3520 writel(res->start, base->virtbase + D40_DREG_LCPA);
3522 base->lcpa_base = ioremap(res->start, resource_size(res));
3523 if (!base->lcpa_base) {
3525 d40_err(&pdev->dev, "Failed to ioremap LCPA region\n");
3528 /* If lcla has to be located in ESRAM we don't need to allocate */
3529 if (base->plat_data->use_esram_lcla) {
3530 res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
3535 "No \"lcla_esram\" memory resource\n");
3538 base->lcla_pool.base = ioremap(res->start,
3539 resource_size(res));
3540 if (!base->lcla_pool.base) {
3542 d40_err(&pdev->dev, "Failed to ioremap LCLA region\n");
3545 writel(res->start, base->virtbase + D40_DREG_LCLA);
3548 ret = d40_lcla_allocate(base);
3550 d40_err(&pdev->dev, "Failed to allocate LCLA area\n");
3555 spin_lock_init(&base->lcla_pool.lock);
3557 base->irq = platform_get_irq(pdev, 0);
3559 ret = request_irq(base->irq, d40_handle_interrupt, 0, D40_NAME, base);
3561 d40_err(&pdev->dev, "No IRQ defined\n");
3565 pm_runtime_irq_safe(base->dev);
3566 pm_runtime_set_autosuspend_delay(base->dev, DMA40_AUTOSUSPEND_DELAY);
3567 pm_runtime_use_autosuspend(base->dev);
3568 pm_runtime_enable(base->dev);
3569 pm_runtime_resume(base->dev);
3571 if (base->plat_data->use_esram_lcla) {
3573 base->lcpa_regulator = regulator_get(base->dev, "lcla_esram");
3574 if (IS_ERR(base->lcpa_regulator)) {
3575 d40_err(&pdev->dev, "Failed to get lcpa_regulator\n");
3576 base->lcpa_regulator = NULL;
3580 ret = regulator_enable(base->lcpa_regulator);
3583 "Failed to enable lcpa_regulator\n");
3584 regulator_put(base->lcpa_regulator);
3585 base->lcpa_regulator = NULL;
3590 base->initialized = true;
3591 err = d40_dmaengine_init(base, num_reserved_chans);
3595 base->dev->dma_parms = &base->dma_parms;
3596 err = dma_set_max_seg_size(base->dev, STEDMA40_MAX_SEG_SIZE);
3598 d40_err(&pdev->dev, "Failed to set dma max seg size\n");
3604 dev_info(base->dev, "initialized\n");
3609 if (base->desc_slab)
3610 kmem_cache_destroy(base->desc_slab);
3612 iounmap(base->virtbase);
3614 if (base->lcla_pool.base && base->plat_data->use_esram_lcla) {
3615 iounmap(base->lcla_pool.base);
3616 base->lcla_pool.base = NULL;
3619 if (base->lcla_pool.dma_addr)
3620 dma_unmap_single(base->dev, base->lcla_pool.dma_addr,
3621 SZ_1K * base->num_phy_chans,
3624 if (!base->lcla_pool.base_unaligned && base->lcla_pool.base)
3625 free_pages((unsigned long)base->lcla_pool.base,
3626 base->lcla_pool.pages);
3628 kfree(base->lcla_pool.base_unaligned);
3631 release_mem_region(base->phy_lcpa,
3633 if (base->phy_start)
3634 release_mem_region(base->phy_start,
3637 clk_disable_unprepare(base->clk);
3641 if (base->lcpa_regulator) {
3642 regulator_disable(base->lcpa_regulator);
3643 regulator_put(base->lcpa_regulator);
3646 kfree(base->lcla_pool.alloc_map);
3647 kfree(base->lookup_log_chans);
3648 kfree(base->lookup_phy_chans);
3649 kfree(base->phy_res);
3653 d40_err(&pdev->dev, "probe failed\n");
3657 static struct platform_driver d40_driver = {
3659 .owner = THIS_MODULE,
3665 static int __init stedma40_init(void)
3667 return platform_driver_probe(&d40_driver, d40_probe);
3669 subsys_initcall(stedma40_init);