Merge branch 'x86-build-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[platform/adaptation/renesas_rcar/renesas_kernel.git] / drivers / dma / ste_dma40.c
1 /*
2  * Copyright (C) Ericsson AB 2007-2008
3  * Copyright (C) ST-Ericsson SA 2008-2010
4  * Author: Per Forlin <per.forlin@stericsson.com> for ST-Ericsson
5  * Author: Jonas Aaberg <jonas.aberg@stericsson.com> for ST-Ericsson
6  * License terms: GNU General Public License (GPL) version 2
7  */
8
9 #include <linux/dma-mapping.h>
10 #include <linux/kernel.h>
11 #include <linux/slab.h>
12 #include <linux/export.h>
13 #include <linux/dmaengine.h>
14 #include <linux/platform_device.h>
15 #include <linux/clk.h>
16 #include <linux/delay.h>
17 #include <linux/pm.h>
18 #include <linux/pm_runtime.h>
19 #include <linux/err.h>
20 #include <linux/amba/bus.h>
21 #include <linux/regulator/consumer.h>
22 #include <linux/platform_data/dma-ste-dma40.h>
23
24 #include "dmaengine.h"
25 #include "ste_dma40_ll.h"
26
27 #define D40_NAME "dma40"
28
29 #define D40_PHY_CHAN -1
30
31 /* For masking out/in 2 bit channel positions */
32 #define D40_CHAN_POS(chan)  (2 * (chan / 2))
33 #define D40_CHAN_POS_MASK(chan) (0x3 << D40_CHAN_POS(chan))
34
35 /* Maximum iterations taken before giving up suspending a channel */
36 #define D40_SUSPEND_MAX_IT 500
37
38 /* Milliseconds */
39 #define DMA40_AUTOSUSPEND_DELAY 100
40
41 /* Hardware requirement on LCLA alignment */
42 #define LCLA_ALIGNMENT 0x40000
43
44 /* Max number of links per event group */
45 #define D40_LCLA_LINK_PER_EVENT_GRP 128
46 #define D40_LCLA_END D40_LCLA_LINK_PER_EVENT_GRP
47
48 /* Attempts before giving up to trying to get pages that are aligned */
49 #define MAX_LCLA_ALLOC_ATTEMPTS 256
50
51 /* Bit markings for allocation map */
52 #define D40_ALLOC_FREE          (1 << 31)
53 #define D40_ALLOC_PHY           (1 << 30)
54 #define D40_ALLOC_LOG_FREE      0
55
56 /**
57  * enum 40_command - The different commands and/or statuses.
58  *
59  * @D40_DMA_STOP: DMA channel command STOP or status STOPPED,
60  * @D40_DMA_RUN: The DMA channel is RUNNING of the command RUN.
61  * @D40_DMA_SUSPEND_REQ: Request the DMA to SUSPEND as soon as possible.
62  * @D40_DMA_SUSPENDED: The DMA channel is SUSPENDED.
63  */
64 enum d40_command {
65         D40_DMA_STOP            = 0,
66         D40_DMA_RUN             = 1,
67         D40_DMA_SUSPEND_REQ     = 2,
68         D40_DMA_SUSPENDED       = 3
69 };
70
71 /*
72  * enum d40_events - The different Event Enables for the event lines.
73  *
74  * @D40_DEACTIVATE_EVENTLINE: De-activate Event line, stopping the logical chan.
75  * @D40_ACTIVATE_EVENTLINE: Activate the Event line, to start a logical chan.
76  * @D40_SUSPEND_REQ_EVENTLINE: Requesting for suspending a event line.
77  * @D40_ROUND_EVENTLINE: Status check for event line.
78  */
79
80 enum d40_events {
81         D40_DEACTIVATE_EVENTLINE        = 0,
82         D40_ACTIVATE_EVENTLINE          = 1,
83         D40_SUSPEND_REQ_EVENTLINE       = 2,
84         D40_ROUND_EVENTLINE             = 3
85 };
86
87 /*
88  * These are the registers that has to be saved and later restored
89  * when the DMA hw is powered off.
90  * TODO: Add save/restore of D40_DREG_GCC on dma40 v3 or later, if that works.
91  */
92 static u32 d40_backup_regs[] = {
93         D40_DREG_LCPA,
94         D40_DREG_LCLA,
95         D40_DREG_PRMSE,
96         D40_DREG_PRMSO,
97         D40_DREG_PRMOE,
98         D40_DREG_PRMOO,
99 };
100
101 #define BACKUP_REGS_SZ ARRAY_SIZE(d40_backup_regs)
102
103 /* TODO: Check if all these registers have to be saved/restored on dma40 v3 */
104 static u32 d40_backup_regs_v3[] = {
105         D40_DREG_PSEG1,
106         D40_DREG_PSEG2,
107         D40_DREG_PSEG3,
108         D40_DREG_PSEG4,
109         D40_DREG_PCEG1,
110         D40_DREG_PCEG2,
111         D40_DREG_PCEG3,
112         D40_DREG_PCEG4,
113         D40_DREG_RSEG1,
114         D40_DREG_RSEG2,
115         D40_DREG_RSEG3,
116         D40_DREG_RSEG4,
117         D40_DREG_RCEG1,
118         D40_DREG_RCEG2,
119         D40_DREG_RCEG3,
120         D40_DREG_RCEG4,
121 };
122
123 #define BACKUP_REGS_SZ_V3 ARRAY_SIZE(d40_backup_regs_v3)
124
125 static u32 d40_backup_regs_chan[] = {
126         D40_CHAN_REG_SSCFG,
127         D40_CHAN_REG_SSELT,
128         D40_CHAN_REG_SSPTR,
129         D40_CHAN_REG_SSLNK,
130         D40_CHAN_REG_SDCFG,
131         D40_CHAN_REG_SDELT,
132         D40_CHAN_REG_SDPTR,
133         D40_CHAN_REG_SDLNK,
134 };
135
136 /**
137  * struct d40_lli_pool - Structure for keeping LLIs in memory
138  *
139  * @base: Pointer to memory area when the pre_alloc_lli's are not large
140  * enough, IE bigger than the most common case, 1 dst and 1 src. NULL if
141  * pre_alloc_lli is used.
142  * @dma_addr: DMA address, if mapped
143  * @size: The size in bytes of the memory at base or the size of pre_alloc_lli.
144  * @pre_alloc_lli: Pre allocated area for the most common case of transfers,
145  * one buffer to one buffer.
146  */
147 struct d40_lli_pool {
148         void    *base;
149         int      size;
150         dma_addr_t      dma_addr;
151         /* Space for dst and src, plus an extra for padding */
152         u8       pre_alloc_lli[3 * sizeof(struct d40_phy_lli)];
153 };
154
155 /**
156  * struct d40_desc - A descriptor is one DMA job.
157  *
158  * @lli_phy: LLI settings for physical channel. Both src and dst=
159  * points into the lli_pool, to base if lli_len > 1 or to pre_alloc_lli if
160  * lli_len equals one.
161  * @lli_log: Same as above but for logical channels.
162  * @lli_pool: The pool with two entries pre-allocated.
163  * @lli_len: Number of llis of current descriptor.
164  * @lli_current: Number of transferred llis.
165  * @lcla_alloc: Number of LCLA entries allocated.
166  * @txd: DMA engine struct. Used for among other things for communication
167  * during a transfer.
168  * @node: List entry.
169  * @is_in_client_list: true if the client owns this descriptor.
170  * @cyclic: true if this is a cyclic job
171  *
172  * This descriptor is used for both logical and physical transfers.
173  */
174 struct d40_desc {
175         /* LLI physical */
176         struct d40_phy_lli_bidir         lli_phy;
177         /* LLI logical */
178         struct d40_log_lli_bidir         lli_log;
179
180         struct d40_lli_pool              lli_pool;
181         int                              lli_len;
182         int                              lli_current;
183         int                              lcla_alloc;
184
185         struct dma_async_tx_descriptor   txd;
186         struct list_head                 node;
187
188         bool                             is_in_client_list;
189         bool                             cyclic;
190 };
191
192 /**
193  * struct d40_lcla_pool - LCLA pool settings and data.
194  *
195  * @base: The virtual address of LCLA. 18 bit aligned.
196  * @base_unaligned: The orignal kmalloc pointer, if kmalloc is used.
197  * This pointer is only there for clean-up on error.
198  * @pages: The number of pages needed for all physical channels.
199  * Only used later for clean-up on error
200  * @lock: Lock to protect the content in this struct.
201  * @alloc_map: big map over which LCLA entry is own by which job.
202  */
203 struct d40_lcla_pool {
204         void            *base;
205         dma_addr_t      dma_addr;
206         void            *base_unaligned;
207         int              pages;
208         spinlock_t       lock;
209         struct d40_desc **alloc_map;
210 };
211
212 /**
213  * struct d40_phy_res - struct for handling eventlines mapped to physical
214  * channels.
215  *
216  * @lock: A lock protection this entity.
217  * @reserved: True if used by secure world or otherwise.
218  * @num: The physical channel number of this entity.
219  * @allocated_src: Bit mapped to show which src event line's are mapped to
220  * this physical channel. Can also be free or physically allocated.
221  * @allocated_dst: Same as for src but is dst.
222  * allocated_dst and allocated_src uses the D40_ALLOC* defines as well as
223  * event line number.
224  */
225 struct d40_phy_res {
226         spinlock_t lock;
227         bool       reserved;
228         int        num;
229         u32        allocated_src;
230         u32        allocated_dst;
231 };
232
233 struct d40_base;
234
235 /**
236  * struct d40_chan - Struct that describes a channel.
237  *
238  * @lock: A spinlock to protect this struct.
239  * @log_num: The logical number, if any of this channel.
240  * @pending_tx: The number of pending transfers. Used between interrupt handler
241  * and tasklet.
242  * @busy: Set to true when transfer is ongoing on this channel.
243  * @phy_chan: Pointer to physical channel which this instance runs on. If this
244  * point is NULL, then the channel is not allocated.
245  * @chan: DMA engine handle.
246  * @tasklet: Tasklet that gets scheduled from interrupt context to complete a
247  * transfer and call client callback.
248  * @client: Cliented owned descriptor list.
249  * @pending_queue: Submitted jobs, to be issued by issue_pending()
250  * @active: Active descriptor.
251  * @queue: Queued jobs.
252  * @prepare_queue: Prepared jobs.
253  * @dma_cfg: The client configuration of this dma channel.
254  * @configured: whether the dma_cfg configuration is valid
255  * @base: Pointer to the device instance struct.
256  * @src_def_cfg: Default cfg register setting for src.
257  * @dst_def_cfg: Default cfg register setting for dst.
258  * @log_def: Default logical channel settings.
259  * @lcpa: Pointer to dst and src lcpa settings.
260  * @runtime_addr: runtime configured address.
261  * @runtime_direction: runtime configured direction.
262  *
263  * This struct can either "be" a logical or a physical channel.
264  */
265 struct d40_chan {
266         spinlock_t                       lock;
267         int                              log_num;
268         int                              pending_tx;
269         bool                             busy;
270         struct d40_phy_res              *phy_chan;
271         struct dma_chan                  chan;
272         struct tasklet_struct            tasklet;
273         struct list_head                 client;
274         struct list_head                 pending_queue;
275         struct list_head                 active;
276         struct list_head                 queue;
277         struct list_head                 prepare_queue;
278         struct stedma40_chan_cfg         dma_cfg;
279         bool                             configured;
280         struct d40_base                 *base;
281         /* Default register configurations */
282         u32                              src_def_cfg;
283         u32                              dst_def_cfg;
284         struct d40_def_lcsp              log_def;
285         struct d40_log_lli_full         *lcpa;
286         /* Runtime reconfiguration */
287         dma_addr_t                      runtime_addr;
288         enum dma_transfer_direction     runtime_direction;
289 };
290
291 /**
292  * struct d40_base - The big global struct, one for each probe'd instance.
293  *
294  * @interrupt_lock: Lock used to make sure one interrupt is handle a time.
295  * @execmd_lock: Lock for execute command usage since several channels share
296  * the same physical register.
297  * @dev: The device structure.
298  * @virtbase: The virtual base address of the DMA's register.
299  * @rev: silicon revision detected.
300  * @clk: Pointer to the DMA clock structure.
301  * @phy_start: Physical memory start of the DMA registers.
302  * @phy_size: Size of the DMA register map.
303  * @irq: The IRQ number.
304  * @num_phy_chans: The number of physical channels. Read from HW. This
305  * is the number of available channels for this driver, not counting "Secure
306  * mode" allocated physical channels.
307  * @num_log_chans: The number of logical channels. Calculated from
308  * num_phy_chans.
309  * @dma_both: dma_device channels that can do both memcpy and slave transfers.
310  * @dma_slave: dma_device channels that can do only do slave transfers.
311  * @dma_memcpy: dma_device channels that can do only do memcpy transfers.
312  * @phy_chans: Room for all possible physical channels in system.
313  * @log_chans: Room for all possible logical channels in system.
314  * @lookup_log_chans: Used to map interrupt number to logical channel. Points
315  * to log_chans entries.
316  * @lookup_phy_chans: Used to map interrupt number to physical channel. Points
317  * to phy_chans entries.
318  * @plat_data: Pointer to provided platform_data which is the driver
319  * configuration.
320  * @lcpa_regulator: Pointer to hold the regulator for the esram bank for lcla.
321  * @phy_res: Vector containing all physical channels.
322  * @lcla_pool: lcla pool settings and data.
323  * @lcpa_base: The virtual mapped address of LCPA.
324  * @phy_lcpa: The physical address of the LCPA.
325  * @lcpa_size: The size of the LCPA area.
326  * @desc_slab: cache for descriptors.
327  * @reg_val_backup: Here the values of some hardware registers are stored
328  * before the DMA is powered off. They are restored when the power is back on.
329  * @reg_val_backup_v3: Backup of registers that only exits on dma40 v3 and
330  * later.
331  * @reg_val_backup_chan: Backup data for standard channel parameter registers.
332  * @gcc_pwr_off_mask: Mask to maintain the channels that can be turned off.
333  * @initialized: true if the dma has been initialized
334  */
335 struct d40_base {
336         spinlock_t                       interrupt_lock;
337         spinlock_t                       execmd_lock;
338         struct device                    *dev;
339         void __iomem                     *virtbase;
340         u8                                rev:4;
341         struct clk                       *clk;
342         phys_addr_t                       phy_start;
343         resource_size_t                   phy_size;
344         int                               irq;
345         int                               num_phy_chans;
346         int                               num_log_chans;
347         struct dma_device                 dma_both;
348         struct dma_device                 dma_slave;
349         struct dma_device                 dma_memcpy;
350         struct d40_chan                  *phy_chans;
351         struct d40_chan                  *log_chans;
352         struct d40_chan                 **lookup_log_chans;
353         struct d40_chan                 **lookup_phy_chans;
354         struct stedma40_platform_data    *plat_data;
355         struct regulator                 *lcpa_regulator;
356         /* Physical half channels */
357         struct d40_phy_res               *phy_res;
358         struct d40_lcla_pool              lcla_pool;
359         void                             *lcpa_base;
360         dma_addr_t                        phy_lcpa;
361         resource_size_t                   lcpa_size;
362         struct kmem_cache                *desc_slab;
363         u32                               reg_val_backup[BACKUP_REGS_SZ];
364         u32                               reg_val_backup_v3[BACKUP_REGS_SZ_V3];
365         u32                              *reg_val_backup_chan;
366         u16                               gcc_pwr_off_mask;
367         bool                              initialized;
368 };
369
370 /**
371  * struct d40_interrupt_lookup - lookup table for interrupt handler
372  *
373  * @src: Interrupt mask register.
374  * @clr: Interrupt clear register.
375  * @is_error: true if this is an error interrupt.
376  * @offset: start delta in the lookup_log_chans in d40_base. If equals to
377  * D40_PHY_CHAN, the lookup_phy_chans shall be used instead.
378  */
379 struct d40_interrupt_lookup {
380         u32 src;
381         u32 clr;
382         bool is_error;
383         int offset;
384 };
385
386 /**
387  * struct d40_reg_val - simple lookup struct
388  *
389  * @reg: The register.
390  * @val: The value that belongs to the register in reg.
391  */
392 struct d40_reg_val {
393         unsigned int reg;
394         unsigned int val;
395 };
396
397 static struct device *chan2dev(struct d40_chan *d40c)
398 {
399         return &d40c->chan.dev->device;
400 }
401
402 static bool chan_is_physical(struct d40_chan *chan)
403 {
404         return chan->log_num == D40_PHY_CHAN;
405 }
406
407 static bool chan_is_logical(struct d40_chan *chan)
408 {
409         return !chan_is_physical(chan);
410 }
411
412 static void __iomem *chan_base(struct d40_chan *chan)
413 {
414         return chan->base->virtbase + D40_DREG_PCBASE +
415                chan->phy_chan->num * D40_DREG_PCDELTA;
416 }
417
418 #define d40_err(dev, format, arg...)            \
419         dev_err(dev, "[%s] " format, __func__, ## arg)
420
421 #define chan_err(d40c, format, arg...)          \
422         d40_err(chan2dev(d40c), format, ## arg)
423
424 static int d40_pool_lli_alloc(struct d40_chan *d40c, struct d40_desc *d40d,
425                               int lli_len)
426 {
427         bool is_log = chan_is_logical(d40c);
428         u32 align;
429         void *base;
430
431         if (is_log)
432                 align = sizeof(struct d40_log_lli);
433         else
434                 align = sizeof(struct d40_phy_lli);
435
436         if (lli_len == 1) {
437                 base = d40d->lli_pool.pre_alloc_lli;
438                 d40d->lli_pool.size = sizeof(d40d->lli_pool.pre_alloc_lli);
439                 d40d->lli_pool.base = NULL;
440         } else {
441                 d40d->lli_pool.size = lli_len * 2 * align;
442
443                 base = kmalloc(d40d->lli_pool.size + align, GFP_NOWAIT);
444                 d40d->lli_pool.base = base;
445
446                 if (d40d->lli_pool.base == NULL)
447                         return -ENOMEM;
448         }
449
450         if (is_log) {
451                 d40d->lli_log.src = PTR_ALIGN(base, align);
452                 d40d->lli_log.dst = d40d->lli_log.src + lli_len;
453
454                 d40d->lli_pool.dma_addr = 0;
455         } else {
456                 d40d->lli_phy.src = PTR_ALIGN(base, align);
457                 d40d->lli_phy.dst = d40d->lli_phy.src + lli_len;
458
459                 d40d->lli_pool.dma_addr = dma_map_single(d40c->base->dev,
460                                                          d40d->lli_phy.src,
461                                                          d40d->lli_pool.size,
462                                                          DMA_TO_DEVICE);
463
464                 if (dma_mapping_error(d40c->base->dev,
465                                       d40d->lli_pool.dma_addr)) {
466                         kfree(d40d->lli_pool.base);
467                         d40d->lli_pool.base = NULL;
468                         d40d->lli_pool.dma_addr = 0;
469                         return -ENOMEM;
470                 }
471         }
472
473         return 0;
474 }
475
476 static void d40_pool_lli_free(struct d40_chan *d40c, struct d40_desc *d40d)
477 {
478         if (d40d->lli_pool.dma_addr)
479                 dma_unmap_single(d40c->base->dev, d40d->lli_pool.dma_addr,
480                                  d40d->lli_pool.size, DMA_TO_DEVICE);
481
482         kfree(d40d->lli_pool.base);
483         d40d->lli_pool.base = NULL;
484         d40d->lli_pool.size = 0;
485         d40d->lli_log.src = NULL;
486         d40d->lli_log.dst = NULL;
487         d40d->lli_phy.src = NULL;
488         d40d->lli_phy.dst = NULL;
489 }
490
491 static int d40_lcla_alloc_one(struct d40_chan *d40c,
492                               struct d40_desc *d40d)
493 {
494         unsigned long flags;
495         int i;
496         int ret = -EINVAL;
497         int p;
498
499         spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
500
501         p = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP;
502
503         /*
504          * Allocate both src and dst at the same time, therefore the half
505          * start on 1 since 0 can't be used since zero is used as end marker.
506          */
507         for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
508                 if (!d40c->base->lcla_pool.alloc_map[p + i]) {
509                         d40c->base->lcla_pool.alloc_map[p + i] = d40d;
510                         d40d->lcla_alloc++;
511                         ret = i;
512                         break;
513                 }
514         }
515
516         spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
517
518         return ret;
519 }
520
521 static int d40_lcla_free_all(struct d40_chan *d40c,
522                              struct d40_desc *d40d)
523 {
524         unsigned long flags;
525         int i;
526         int ret = -EINVAL;
527
528         if (chan_is_physical(d40c))
529                 return 0;
530
531         spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
532
533         for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
534                 if (d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num *
535                                                     D40_LCLA_LINK_PER_EVENT_GRP + i] == d40d) {
536                         d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num *
537                                                         D40_LCLA_LINK_PER_EVENT_GRP + i] = NULL;
538                         d40d->lcla_alloc--;
539                         if (d40d->lcla_alloc == 0) {
540                                 ret = 0;
541                                 break;
542                         }
543                 }
544         }
545
546         spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
547
548         return ret;
549
550 }
551
552 static void d40_desc_remove(struct d40_desc *d40d)
553 {
554         list_del(&d40d->node);
555 }
556
557 static struct d40_desc *d40_desc_get(struct d40_chan *d40c)
558 {
559         struct d40_desc *desc = NULL;
560
561         if (!list_empty(&d40c->client)) {
562                 struct d40_desc *d;
563                 struct d40_desc *_d;
564
565                 list_for_each_entry_safe(d, _d, &d40c->client, node) {
566                         if (async_tx_test_ack(&d->txd)) {
567                                 d40_desc_remove(d);
568                                 desc = d;
569                                 memset(desc, 0, sizeof(*desc));
570                                 break;
571                         }
572                 }
573         }
574
575         if (!desc)
576                 desc = kmem_cache_zalloc(d40c->base->desc_slab, GFP_NOWAIT);
577
578         if (desc)
579                 INIT_LIST_HEAD(&desc->node);
580
581         return desc;
582 }
583
584 static void d40_desc_free(struct d40_chan *d40c, struct d40_desc *d40d)
585 {
586
587         d40_pool_lli_free(d40c, d40d);
588         d40_lcla_free_all(d40c, d40d);
589         kmem_cache_free(d40c->base->desc_slab, d40d);
590 }
591
592 static void d40_desc_submit(struct d40_chan *d40c, struct d40_desc *desc)
593 {
594         list_add_tail(&desc->node, &d40c->active);
595 }
596
597 static void d40_phy_lli_load(struct d40_chan *chan, struct d40_desc *desc)
598 {
599         struct d40_phy_lli *lli_dst = desc->lli_phy.dst;
600         struct d40_phy_lli *lli_src = desc->lli_phy.src;
601         void __iomem *base = chan_base(chan);
602
603         writel(lli_src->reg_cfg, base + D40_CHAN_REG_SSCFG);
604         writel(lli_src->reg_elt, base + D40_CHAN_REG_SSELT);
605         writel(lli_src->reg_ptr, base + D40_CHAN_REG_SSPTR);
606         writel(lli_src->reg_lnk, base + D40_CHAN_REG_SSLNK);
607
608         writel(lli_dst->reg_cfg, base + D40_CHAN_REG_SDCFG);
609         writel(lli_dst->reg_elt, base + D40_CHAN_REG_SDELT);
610         writel(lli_dst->reg_ptr, base + D40_CHAN_REG_SDPTR);
611         writel(lli_dst->reg_lnk, base + D40_CHAN_REG_SDLNK);
612 }
613
614 static void d40_log_lli_to_lcxa(struct d40_chan *chan, struct d40_desc *desc)
615 {
616         struct d40_lcla_pool *pool = &chan->base->lcla_pool;
617         struct d40_log_lli_bidir *lli = &desc->lli_log;
618         int lli_current = desc->lli_current;
619         int lli_len = desc->lli_len;
620         bool cyclic = desc->cyclic;
621         int curr_lcla = -EINVAL;
622         int first_lcla = 0;
623         bool use_esram_lcla = chan->base->plat_data->use_esram_lcla;
624         bool linkback;
625
626         /*
627          * We may have partially running cyclic transfers, in case we did't get
628          * enough LCLA entries.
629          */
630         linkback = cyclic && lli_current == 0;
631
632         /*
633          * For linkback, we need one LCLA even with only one link, because we
634          * can't link back to the one in LCPA space
635          */
636         if (linkback || (lli_len - lli_current > 1)) {
637                 curr_lcla = d40_lcla_alloc_one(chan, desc);
638                 first_lcla = curr_lcla;
639         }
640
641         /*
642          * For linkback, we normally load the LCPA in the loop since we need to
643          * link it to the second LCLA and not the first.  However, if we
644          * couldn't even get a first LCLA, then we have to run in LCPA and
645          * reload manually.
646          */
647         if (!linkback || curr_lcla == -EINVAL) {
648                 unsigned int flags = 0;
649
650                 if (curr_lcla == -EINVAL)
651                         flags |= LLI_TERM_INT;
652
653                 d40_log_lli_lcpa_write(chan->lcpa,
654                                        &lli->dst[lli_current],
655                                        &lli->src[lli_current],
656                                        curr_lcla,
657                                        flags);
658                 lli_current++;
659         }
660
661         if (curr_lcla < 0)
662                 goto out;
663
664         for (; lli_current < lli_len; lli_current++) {
665                 unsigned int lcla_offset = chan->phy_chan->num * 1024 +
666                                            8 * curr_lcla * 2;
667                 struct d40_log_lli *lcla = pool->base + lcla_offset;
668                 unsigned int flags = 0;
669                 int next_lcla;
670
671                 if (lli_current + 1 < lli_len)
672                         next_lcla = d40_lcla_alloc_one(chan, desc);
673                 else
674                         next_lcla = linkback ? first_lcla : -EINVAL;
675
676                 if (cyclic || next_lcla == -EINVAL)
677                         flags |= LLI_TERM_INT;
678
679                 if (linkback && curr_lcla == first_lcla) {
680                         /* First link goes in both LCPA and LCLA */
681                         d40_log_lli_lcpa_write(chan->lcpa,
682                                                &lli->dst[lli_current],
683                                                &lli->src[lli_current],
684                                                next_lcla, flags);
685                 }
686
687                 /*
688                  * One unused LCLA in the cyclic case if the very first
689                  * next_lcla fails...
690                  */
691                 d40_log_lli_lcla_write(lcla,
692                                        &lli->dst[lli_current],
693                                        &lli->src[lli_current],
694                                        next_lcla, flags);
695
696                 /*
697                  * Cache maintenance is not needed if lcla is
698                  * mapped in esram
699                  */
700                 if (!use_esram_lcla) {
701                         dma_sync_single_range_for_device(chan->base->dev,
702                                                 pool->dma_addr, lcla_offset,
703                                                 2 * sizeof(struct d40_log_lli),
704                                                 DMA_TO_DEVICE);
705                 }
706                 curr_lcla = next_lcla;
707
708                 if (curr_lcla == -EINVAL || curr_lcla == first_lcla) {
709                         lli_current++;
710                         break;
711                 }
712         }
713
714 out:
715         desc->lli_current = lli_current;
716 }
717
718 static void d40_desc_load(struct d40_chan *d40c, struct d40_desc *d40d)
719 {
720         if (chan_is_physical(d40c)) {
721                 d40_phy_lli_load(d40c, d40d);
722                 d40d->lli_current = d40d->lli_len;
723         } else
724                 d40_log_lli_to_lcxa(d40c, d40d);
725 }
726
727 static struct d40_desc *d40_first_active_get(struct d40_chan *d40c)
728 {
729         struct d40_desc *d;
730
731         if (list_empty(&d40c->active))
732                 return NULL;
733
734         d = list_first_entry(&d40c->active,
735                              struct d40_desc,
736                              node);
737         return d;
738 }
739
740 /* remove desc from current queue and add it to the pending_queue */
741 static void d40_desc_queue(struct d40_chan *d40c, struct d40_desc *desc)
742 {
743         d40_desc_remove(desc);
744         desc->is_in_client_list = false;
745         list_add_tail(&desc->node, &d40c->pending_queue);
746 }
747
748 static struct d40_desc *d40_first_pending(struct d40_chan *d40c)
749 {
750         struct d40_desc *d;
751
752         if (list_empty(&d40c->pending_queue))
753                 return NULL;
754
755         d = list_first_entry(&d40c->pending_queue,
756                              struct d40_desc,
757                              node);
758         return d;
759 }
760
761 static struct d40_desc *d40_first_queued(struct d40_chan *d40c)
762 {
763         struct d40_desc *d;
764
765         if (list_empty(&d40c->queue))
766                 return NULL;
767
768         d = list_first_entry(&d40c->queue,
769                              struct d40_desc,
770                              node);
771         return d;
772 }
773
774 static int d40_psize_2_burst_size(bool is_log, int psize)
775 {
776         if (is_log) {
777                 if (psize == STEDMA40_PSIZE_LOG_1)
778                         return 1;
779         } else {
780                 if (psize == STEDMA40_PSIZE_PHY_1)
781                         return 1;
782         }
783
784         return 2 << psize;
785 }
786
787 /*
788  * The dma only supports transmitting packages up to
789  * STEDMA40_MAX_SEG_SIZE << data_width. Calculate the total number of
790  * dma elements required to send the entire sg list
791  */
792 static int d40_size_2_dmalen(int size, u32 data_width1, u32 data_width2)
793 {
794         int dmalen;
795         u32 max_w = max(data_width1, data_width2);
796         u32 min_w = min(data_width1, data_width2);
797         u32 seg_max = ALIGN(STEDMA40_MAX_SEG_SIZE << min_w, 1 << max_w);
798
799         if (seg_max > STEDMA40_MAX_SEG_SIZE)
800                 seg_max -= (1 << max_w);
801
802         if (!IS_ALIGNED(size, 1 << max_w))
803                 return -EINVAL;
804
805         if (size <= seg_max)
806                 dmalen = 1;
807         else {
808                 dmalen = size / seg_max;
809                 if (dmalen * seg_max < size)
810                         dmalen++;
811         }
812         return dmalen;
813 }
814
815 static int d40_sg_2_dmalen(struct scatterlist *sgl, int sg_len,
816                            u32 data_width1, u32 data_width2)
817 {
818         struct scatterlist *sg;
819         int i;
820         int len = 0;
821         int ret;
822
823         for_each_sg(sgl, sg, sg_len, i) {
824                 ret = d40_size_2_dmalen(sg_dma_len(sg),
825                                         data_width1, data_width2);
826                 if (ret < 0)
827                         return ret;
828                 len += ret;
829         }
830         return len;
831 }
832
833
834 #ifdef CONFIG_PM
835 static void dma40_backup(void __iomem *baseaddr, u32 *backup,
836                          u32 *regaddr, int num, bool save)
837 {
838         int i;
839
840         for (i = 0; i < num; i++) {
841                 void __iomem *addr = baseaddr + regaddr[i];
842
843                 if (save)
844                         backup[i] = readl_relaxed(addr);
845                 else
846                         writel_relaxed(backup[i], addr);
847         }
848 }
849
850 static void d40_save_restore_registers(struct d40_base *base, bool save)
851 {
852         int i;
853
854         /* Save/Restore channel specific registers */
855         for (i = 0; i < base->num_phy_chans; i++) {
856                 void __iomem *addr;
857                 int idx;
858
859                 if (base->phy_res[i].reserved)
860                         continue;
861
862                 addr = base->virtbase + D40_DREG_PCBASE + i * D40_DREG_PCDELTA;
863                 idx = i * ARRAY_SIZE(d40_backup_regs_chan);
864
865                 dma40_backup(addr, &base->reg_val_backup_chan[idx],
866                              d40_backup_regs_chan,
867                              ARRAY_SIZE(d40_backup_regs_chan),
868                              save);
869         }
870
871         /* Save/Restore global registers */
872         dma40_backup(base->virtbase, base->reg_val_backup,
873                      d40_backup_regs, ARRAY_SIZE(d40_backup_regs),
874                      save);
875
876         /* Save/Restore registers only existing on dma40 v3 and later */
877         if (base->rev >= 3)
878                 dma40_backup(base->virtbase, base->reg_val_backup_v3,
879                              d40_backup_regs_v3,
880                              ARRAY_SIZE(d40_backup_regs_v3),
881                              save);
882 }
883 #else
884 static void d40_save_restore_registers(struct d40_base *base, bool save)
885 {
886 }
887 #endif
888
889 static int __d40_execute_command_phy(struct d40_chan *d40c,
890                                      enum d40_command command)
891 {
892         u32 status;
893         int i;
894         void __iomem *active_reg;
895         int ret = 0;
896         unsigned long flags;
897         u32 wmask;
898
899         if (command == D40_DMA_STOP) {
900                 ret = __d40_execute_command_phy(d40c, D40_DMA_SUSPEND_REQ);
901                 if (ret)
902                         return ret;
903         }
904
905         spin_lock_irqsave(&d40c->base->execmd_lock, flags);
906
907         if (d40c->phy_chan->num % 2 == 0)
908                 active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
909         else
910                 active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
911
912         if (command == D40_DMA_SUSPEND_REQ) {
913                 status = (readl(active_reg) &
914                           D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
915                         D40_CHAN_POS(d40c->phy_chan->num);
916
917                 if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
918                         goto done;
919         }
920
921         wmask = 0xffffffff & ~(D40_CHAN_POS_MASK(d40c->phy_chan->num));
922         writel(wmask | (command << D40_CHAN_POS(d40c->phy_chan->num)),
923                active_reg);
924
925         if (command == D40_DMA_SUSPEND_REQ) {
926
927                 for (i = 0 ; i < D40_SUSPEND_MAX_IT; i++) {
928                         status = (readl(active_reg) &
929                                   D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
930                                 D40_CHAN_POS(d40c->phy_chan->num);
931
932                         cpu_relax();
933                         /*
934                          * Reduce the number of bus accesses while
935                          * waiting for the DMA to suspend.
936                          */
937                         udelay(3);
938
939                         if (status == D40_DMA_STOP ||
940                             status == D40_DMA_SUSPENDED)
941                                 break;
942                 }
943
944                 if (i == D40_SUSPEND_MAX_IT) {
945                         chan_err(d40c,
946                                 "unable to suspend the chl %d (log: %d) status %x\n",
947                                 d40c->phy_chan->num, d40c->log_num,
948                                 status);
949                         dump_stack();
950                         ret = -EBUSY;
951                 }
952
953         }
954 done:
955         spin_unlock_irqrestore(&d40c->base->execmd_lock, flags);
956         return ret;
957 }
958
959 static void d40_term_all(struct d40_chan *d40c)
960 {
961         struct d40_desc *d40d;
962         struct d40_desc *_d;
963
964         /* Release active descriptors */
965         while ((d40d = d40_first_active_get(d40c))) {
966                 d40_desc_remove(d40d);
967                 d40_desc_free(d40c, d40d);
968         }
969
970         /* Release queued descriptors waiting for transfer */
971         while ((d40d = d40_first_queued(d40c))) {
972                 d40_desc_remove(d40d);
973                 d40_desc_free(d40c, d40d);
974         }
975
976         /* Release pending descriptors */
977         while ((d40d = d40_first_pending(d40c))) {
978                 d40_desc_remove(d40d);
979                 d40_desc_free(d40c, d40d);
980         }
981
982         /* Release client owned descriptors */
983         if (!list_empty(&d40c->client))
984                 list_for_each_entry_safe(d40d, _d, &d40c->client, node) {
985                         d40_desc_remove(d40d);
986                         d40_desc_free(d40c, d40d);
987                 }
988
989         /* Release descriptors in prepare queue */
990         if (!list_empty(&d40c->prepare_queue))
991                 list_for_each_entry_safe(d40d, _d,
992                                          &d40c->prepare_queue, node) {
993                         d40_desc_remove(d40d);
994                         d40_desc_free(d40c, d40d);
995                 }
996
997         d40c->pending_tx = 0;
998 }
999
1000 static void __d40_config_set_event(struct d40_chan *d40c,
1001                                    enum d40_events event_type, u32 event,
1002                                    int reg)
1003 {
1004         void __iomem *addr = chan_base(d40c) + reg;
1005         int tries;
1006         u32 status;
1007
1008         switch (event_type) {
1009
1010         case D40_DEACTIVATE_EVENTLINE:
1011
1012                 writel((D40_DEACTIVATE_EVENTLINE << D40_EVENTLINE_POS(event))
1013                        | ~D40_EVENTLINE_MASK(event), addr);
1014                 break;
1015
1016         case D40_SUSPEND_REQ_EVENTLINE:
1017                 status = (readl(addr) & D40_EVENTLINE_MASK(event)) >>
1018                           D40_EVENTLINE_POS(event);
1019
1020                 if (status == D40_DEACTIVATE_EVENTLINE ||
1021                     status == D40_SUSPEND_REQ_EVENTLINE)
1022                         break;
1023
1024                 writel((D40_SUSPEND_REQ_EVENTLINE << D40_EVENTLINE_POS(event))
1025                        | ~D40_EVENTLINE_MASK(event), addr);
1026
1027                 for (tries = 0 ; tries < D40_SUSPEND_MAX_IT; tries++) {
1028
1029                         status = (readl(addr) & D40_EVENTLINE_MASK(event)) >>
1030                                   D40_EVENTLINE_POS(event);
1031
1032                         cpu_relax();
1033                         /*
1034                          * Reduce the number of bus accesses while
1035                          * waiting for the DMA to suspend.
1036                          */
1037                         udelay(3);
1038
1039                         if (status == D40_DEACTIVATE_EVENTLINE)
1040                                 break;
1041                 }
1042
1043                 if (tries == D40_SUSPEND_MAX_IT) {
1044                         chan_err(d40c,
1045                                 "unable to stop the event_line chl %d (log: %d)"
1046                                 "status %x\n", d40c->phy_chan->num,
1047                                  d40c->log_num, status);
1048                 }
1049                 break;
1050
1051         case D40_ACTIVATE_EVENTLINE:
1052         /*
1053          * The hardware sometimes doesn't register the enable when src and dst
1054          * event lines are active on the same logical channel.  Retry to ensure
1055          * it does.  Usually only one retry is sufficient.
1056          */
1057                 tries = 100;
1058                 while (--tries) {
1059                         writel((D40_ACTIVATE_EVENTLINE <<
1060                                 D40_EVENTLINE_POS(event)) |
1061                                 ~D40_EVENTLINE_MASK(event), addr);
1062
1063                         if (readl(addr) & D40_EVENTLINE_MASK(event))
1064                                 break;
1065                 }
1066
1067                 if (tries != 99)
1068                         dev_dbg(chan2dev(d40c),
1069                                 "[%s] workaround enable S%cLNK (%d tries)\n",
1070                                 __func__, reg == D40_CHAN_REG_SSLNK ? 'S' : 'D',
1071                                 100 - tries);
1072
1073                 WARN_ON(!tries);
1074                 break;
1075
1076         case D40_ROUND_EVENTLINE:
1077                 BUG();
1078                 break;
1079
1080         }
1081 }
1082
1083 static void d40_config_set_event(struct d40_chan *d40c,
1084                                  enum d40_events event_type)
1085 {
1086         /* Enable event line connected to device (or memcpy) */
1087         if ((d40c->dma_cfg.dir ==  STEDMA40_PERIPH_TO_MEM) ||
1088             (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH)) {
1089                 u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
1090
1091                 __d40_config_set_event(d40c, event_type, event,
1092                                        D40_CHAN_REG_SSLNK);
1093         }
1094
1095         if (d40c->dma_cfg.dir !=  STEDMA40_PERIPH_TO_MEM) {
1096                 u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
1097
1098                 __d40_config_set_event(d40c, event_type, event,
1099                                        D40_CHAN_REG_SDLNK);
1100         }
1101 }
1102
1103 static u32 d40_chan_has_events(struct d40_chan *d40c)
1104 {
1105         void __iomem *chanbase = chan_base(d40c);
1106         u32 val;
1107
1108         val = readl(chanbase + D40_CHAN_REG_SSLNK);
1109         val |= readl(chanbase + D40_CHAN_REG_SDLNK);
1110
1111         return val;
1112 }
1113
1114 static int
1115 __d40_execute_command_log(struct d40_chan *d40c, enum d40_command command)
1116 {
1117         unsigned long flags;
1118         int ret = 0;
1119         u32 active_status;
1120         void __iomem *active_reg;
1121
1122         if (d40c->phy_chan->num % 2 == 0)
1123                 active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
1124         else
1125                 active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
1126
1127
1128         spin_lock_irqsave(&d40c->phy_chan->lock, flags);
1129
1130         switch (command) {
1131         case D40_DMA_STOP:
1132         case D40_DMA_SUSPEND_REQ:
1133
1134                 active_status = (readl(active_reg) &
1135                                  D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
1136                                  D40_CHAN_POS(d40c->phy_chan->num);
1137
1138                 if (active_status == D40_DMA_RUN)
1139                         d40_config_set_event(d40c, D40_SUSPEND_REQ_EVENTLINE);
1140                 else
1141                         d40_config_set_event(d40c, D40_DEACTIVATE_EVENTLINE);
1142
1143                 if (!d40_chan_has_events(d40c) && (command == D40_DMA_STOP))
1144                         ret = __d40_execute_command_phy(d40c, command);
1145
1146                 break;
1147
1148         case D40_DMA_RUN:
1149
1150                 d40_config_set_event(d40c, D40_ACTIVATE_EVENTLINE);
1151                 ret = __d40_execute_command_phy(d40c, command);
1152                 break;
1153
1154         case D40_DMA_SUSPENDED:
1155                 BUG();
1156                 break;
1157         }
1158
1159         spin_unlock_irqrestore(&d40c->phy_chan->lock, flags);
1160         return ret;
1161 }
1162
1163 static int d40_channel_execute_command(struct d40_chan *d40c,
1164                                        enum d40_command command)
1165 {
1166         if (chan_is_logical(d40c))
1167                 return __d40_execute_command_log(d40c, command);
1168         else
1169                 return __d40_execute_command_phy(d40c, command);
1170 }
1171
1172 static u32 d40_get_prmo(struct d40_chan *d40c)
1173 {
1174         static const unsigned int phy_map[] = {
1175                 [STEDMA40_PCHAN_BASIC_MODE]
1176                         = D40_DREG_PRMO_PCHAN_BASIC,
1177                 [STEDMA40_PCHAN_MODULO_MODE]
1178                         = D40_DREG_PRMO_PCHAN_MODULO,
1179                 [STEDMA40_PCHAN_DOUBLE_DST_MODE]
1180                         = D40_DREG_PRMO_PCHAN_DOUBLE_DST,
1181         };
1182         static const unsigned int log_map[] = {
1183                 [STEDMA40_LCHAN_SRC_PHY_DST_LOG]
1184                         = D40_DREG_PRMO_LCHAN_SRC_PHY_DST_LOG,
1185                 [STEDMA40_LCHAN_SRC_LOG_DST_PHY]
1186                         = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_PHY,
1187                 [STEDMA40_LCHAN_SRC_LOG_DST_LOG]
1188                         = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_LOG,
1189         };
1190
1191         if (chan_is_physical(d40c))
1192                 return phy_map[d40c->dma_cfg.mode_opt];
1193         else
1194                 return log_map[d40c->dma_cfg.mode_opt];
1195 }
1196
1197 static void d40_config_write(struct d40_chan *d40c)
1198 {
1199         u32 addr_base;
1200         u32 var;
1201
1202         /* Odd addresses are even addresses + 4 */
1203         addr_base = (d40c->phy_chan->num % 2) * 4;
1204         /* Setup channel mode to logical or physical */
1205         var = ((u32)(chan_is_logical(d40c)) + 1) <<
1206                 D40_CHAN_POS(d40c->phy_chan->num);
1207         writel(var, d40c->base->virtbase + D40_DREG_PRMSE + addr_base);
1208
1209         /* Setup operational mode option register */
1210         var = d40_get_prmo(d40c) << D40_CHAN_POS(d40c->phy_chan->num);
1211
1212         writel(var, d40c->base->virtbase + D40_DREG_PRMOE + addr_base);
1213
1214         if (chan_is_logical(d40c)) {
1215                 int lidx = (d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS)
1216                            & D40_SREG_ELEM_LOG_LIDX_MASK;
1217                 void __iomem *chanbase = chan_base(d40c);
1218
1219                 /* Set default config for CFG reg */
1220                 writel(d40c->src_def_cfg, chanbase + D40_CHAN_REG_SSCFG);
1221                 writel(d40c->dst_def_cfg, chanbase + D40_CHAN_REG_SDCFG);
1222
1223                 /* Set LIDX for lcla */
1224                 writel(lidx, chanbase + D40_CHAN_REG_SSELT);
1225                 writel(lidx, chanbase + D40_CHAN_REG_SDELT);
1226
1227                 /* Clear LNK which will be used by d40_chan_has_events() */
1228                 writel(0, chanbase + D40_CHAN_REG_SSLNK);
1229                 writel(0, chanbase + D40_CHAN_REG_SDLNK);
1230         }
1231 }
1232
1233 static u32 d40_residue(struct d40_chan *d40c)
1234 {
1235         u32 num_elt;
1236
1237         if (chan_is_logical(d40c))
1238                 num_elt = (readl(&d40c->lcpa->lcsp2) & D40_MEM_LCSP2_ECNT_MASK)
1239                         >> D40_MEM_LCSP2_ECNT_POS;
1240         else {
1241                 u32 val = readl(chan_base(d40c) + D40_CHAN_REG_SDELT);
1242                 num_elt = (val & D40_SREG_ELEM_PHY_ECNT_MASK)
1243                           >> D40_SREG_ELEM_PHY_ECNT_POS;
1244         }
1245
1246         return num_elt * (1 << d40c->dma_cfg.dst_info.data_width);
1247 }
1248
1249 static bool d40_tx_is_linked(struct d40_chan *d40c)
1250 {
1251         bool is_link;
1252
1253         if (chan_is_logical(d40c))
1254                 is_link = readl(&d40c->lcpa->lcsp3) &  D40_MEM_LCSP3_DLOS_MASK;
1255         else
1256                 is_link = readl(chan_base(d40c) + D40_CHAN_REG_SDLNK)
1257                           & D40_SREG_LNK_PHYS_LNK_MASK;
1258
1259         return is_link;
1260 }
1261
1262 static int d40_pause(struct d40_chan *d40c)
1263 {
1264         int res = 0;
1265         unsigned long flags;
1266
1267         if (!d40c->busy)
1268                 return 0;
1269
1270         pm_runtime_get_sync(d40c->base->dev);
1271         spin_lock_irqsave(&d40c->lock, flags);
1272
1273         res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
1274
1275         pm_runtime_mark_last_busy(d40c->base->dev);
1276         pm_runtime_put_autosuspend(d40c->base->dev);
1277         spin_unlock_irqrestore(&d40c->lock, flags);
1278         return res;
1279 }
1280
1281 static int d40_resume(struct d40_chan *d40c)
1282 {
1283         int res = 0;
1284         unsigned long flags;
1285
1286         if (!d40c->busy)
1287                 return 0;
1288
1289         spin_lock_irqsave(&d40c->lock, flags);
1290         pm_runtime_get_sync(d40c->base->dev);
1291
1292         /* If bytes left to transfer or linked tx resume job */
1293         if (d40_residue(d40c) || d40_tx_is_linked(d40c))
1294                 res = d40_channel_execute_command(d40c, D40_DMA_RUN);
1295
1296         pm_runtime_mark_last_busy(d40c->base->dev);
1297         pm_runtime_put_autosuspend(d40c->base->dev);
1298         spin_unlock_irqrestore(&d40c->lock, flags);
1299         return res;
1300 }
1301
1302 static dma_cookie_t d40_tx_submit(struct dma_async_tx_descriptor *tx)
1303 {
1304         struct d40_chan *d40c = container_of(tx->chan,
1305                                              struct d40_chan,
1306                                              chan);
1307         struct d40_desc *d40d = container_of(tx, struct d40_desc, txd);
1308         unsigned long flags;
1309         dma_cookie_t cookie;
1310
1311         spin_lock_irqsave(&d40c->lock, flags);
1312         cookie = dma_cookie_assign(tx);
1313         d40_desc_queue(d40c, d40d);
1314         spin_unlock_irqrestore(&d40c->lock, flags);
1315
1316         return cookie;
1317 }
1318
1319 static int d40_start(struct d40_chan *d40c)
1320 {
1321         return d40_channel_execute_command(d40c, D40_DMA_RUN);
1322 }
1323
1324 static struct d40_desc *d40_queue_start(struct d40_chan *d40c)
1325 {
1326         struct d40_desc *d40d;
1327         int err;
1328
1329         /* Start queued jobs, if any */
1330         d40d = d40_first_queued(d40c);
1331
1332         if (d40d != NULL) {
1333                 if (!d40c->busy) {
1334                         d40c->busy = true;
1335                         pm_runtime_get_sync(d40c->base->dev);
1336                 }
1337
1338                 /* Remove from queue */
1339                 d40_desc_remove(d40d);
1340
1341                 /* Add to active queue */
1342                 d40_desc_submit(d40c, d40d);
1343
1344                 /* Initiate DMA job */
1345                 d40_desc_load(d40c, d40d);
1346
1347                 /* Start dma job */
1348                 err = d40_start(d40c);
1349
1350                 if (err)
1351                         return NULL;
1352         }
1353
1354         return d40d;
1355 }
1356
1357 /* called from interrupt context */
1358 static void dma_tc_handle(struct d40_chan *d40c)
1359 {
1360         struct d40_desc *d40d;
1361
1362         /* Get first active entry from list */
1363         d40d = d40_first_active_get(d40c);
1364
1365         if (d40d == NULL)
1366                 return;
1367
1368         if (d40d->cyclic) {
1369                 /*
1370                  * If this was a paritially loaded list, we need to reloaded
1371                  * it, and only when the list is completed.  We need to check
1372                  * for done because the interrupt will hit for every link, and
1373                  * not just the last one.
1374                  */
1375                 if (d40d->lli_current < d40d->lli_len
1376                     && !d40_tx_is_linked(d40c)
1377                     && !d40_residue(d40c)) {
1378                         d40_lcla_free_all(d40c, d40d);
1379                         d40_desc_load(d40c, d40d);
1380                         (void) d40_start(d40c);
1381
1382                         if (d40d->lli_current == d40d->lli_len)
1383                                 d40d->lli_current = 0;
1384                 }
1385         } else {
1386                 d40_lcla_free_all(d40c, d40d);
1387
1388                 if (d40d->lli_current < d40d->lli_len) {
1389                         d40_desc_load(d40c, d40d);
1390                         /* Start dma job */
1391                         (void) d40_start(d40c);
1392                         return;
1393                 }
1394
1395                 if (d40_queue_start(d40c) == NULL)
1396                         d40c->busy = false;
1397                 pm_runtime_mark_last_busy(d40c->base->dev);
1398                 pm_runtime_put_autosuspend(d40c->base->dev);
1399         }
1400
1401         d40c->pending_tx++;
1402         tasklet_schedule(&d40c->tasklet);
1403
1404 }
1405
1406 static void dma_tasklet(unsigned long data)
1407 {
1408         struct d40_chan *d40c = (struct d40_chan *) data;
1409         struct d40_desc *d40d;
1410         unsigned long flags;
1411         dma_async_tx_callback callback;
1412         void *callback_param;
1413
1414         spin_lock_irqsave(&d40c->lock, flags);
1415
1416         /* Get first active entry from list */
1417         d40d = d40_first_active_get(d40c);
1418         if (d40d == NULL)
1419                 goto err;
1420
1421         if (!d40d->cyclic)
1422                 dma_cookie_complete(&d40d->txd);
1423
1424         /*
1425          * If terminating a channel pending_tx is set to zero.
1426          * This prevents any finished active jobs to return to the client.
1427          */
1428         if (d40c->pending_tx == 0) {
1429                 spin_unlock_irqrestore(&d40c->lock, flags);
1430                 return;
1431         }
1432
1433         /* Callback to client */
1434         callback = d40d->txd.callback;
1435         callback_param = d40d->txd.callback_param;
1436
1437         if (!d40d->cyclic) {
1438                 if (async_tx_test_ack(&d40d->txd)) {
1439                         d40_desc_remove(d40d);
1440                         d40_desc_free(d40c, d40d);
1441                 } else {
1442                         if (!d40d->is_in_client_list) {
1443                                 d40_desc_remove(d40d);
1444                                 d40_lcla_free_all(d40c, d40d);
1445                                 list_add_tail(&d40d->node, &d40c->client);
1446                                 d40d->is_in_client_list = true;
1447                         }
1448                 }
1449         }
1450
1451         d40c->pending_tx--;
1452
1453         if (d40c->pending_tx)
1454                 tasklet_schedule(&d40c->tasklet);
1455
1456         spin_unlock_irqrestore(&d40c->lock, flags);
1457
1458         if (callback && (d40d->txd.flags & DMA_PREP_INTERRUPT))
1459                 callback(callback_param);
1460
1461         return;
1462
1463 err:
1464         /* Rescue manouver if receiving double interrupts */
1465         if (d40c->pending_tx > 0)
1466                 d40c->pending_tx--;
1467         spin_unlock_irqrestore(&d40c->lock, flags);
1468 }
1469
1470 static irqreturn_t d40_handle_interrupt(int irq, void *data)
1471 {
1472         static const struct d40_interrupt_lookup il[] = {
1473                 {D40_DREG_LCTIS0, D40_DREG_LCICR0, false,  0},
1474                 {D40_DREG_LCTIS1, D40_DREG_LCICR1, false, 32},
1475                 {D40_DREG_LCTIS2, D40_DREG_LCICR2, false, 64},
1476                 {D40_DREG_LCTIS3, D40_DREG_LCICR3, false, 96},
1477                 {D40_DREG_LCEIS0, D40_DREG_LCICR0, true,   0},
1478                 {D40_DREG_LCEIS1, D40_DREG_LCICR1, true,  32},
1479                 {D40_DREG_LCEIS2, D40_DREG_LCICR2, true,  64},
1480                 {D40_DREG_LCEIS3, D40_DREG_LCICR3, true,  96},
1481                 {D40_DREG_PCTIS,  D40_DREG_PCICR,  false, D40_PHY_CHAN},
1482                 {D40_DREG_PCEIS,  D40_DREG_PCICR,  true,  D40_PHY_CHAN},
1483         };
1484
1485         int i;
1486         u32 regs[ARRAY_SIZE(il)];
1487         u32 idx;
1488         u32 row;
1489         long chan = -1;
1490         struct d40_chan *d40c;
1491         unsigned long flags;
1492         struct d40_base *base = data;
1493
1494         spin_lock_irqsave(&base->interrupt_lock, flags);
1495
1496         /* Read interrupt status of both logical and physical channels */
1497         for (i = 0; i < ARRAY_SIZE(il); i++)
1498                 regs[i] = readl(base->virtbase + il[i].src);
1499
1500         for (;;) {
1501
1502                 chan = find_next_bit((unsigned long *)regs,
1503                                      BITS_PER_LONG * ARRAY_SIZE(il), chan + 1);
1504
1505                 /* No more set bits found? */
1506                 if (chan == BITS_PER_LONG * ARRAY_SIZE(il))
1507                         break;
1508
1509                 row = chan / BITS_PER_LONG;
1510                 idx = chan & (BITS_PER_LONG - 1);
1511
1512                 /* ACK interrupt */
1513                 writel(1 << idx, base->virtbase + il[row].clr);
1514
1515                 if (il[row].offset == D40_PHY_CHAN)
1516                         d40c = base->lookup_phy_chans[idx];
1517                 else
1518                         d40c = base->lookup_log_chans[il[row].offset + idx];
1519                 spin_lock(&d40c->lock);
1520
1521                 if (!il[row].is_error)
1522                         dma_tc_handle(d40c);
1523                 else
1524                         d40_err(base->dev, "IRQ chan: %ld offset %d idx %d\n",
1525                                 chan, il[row].offset, idx);
1526
1527                 spin_unlock(&d40c->lock);
1528         }
1529
1530         spin_unlock_irqrestore(&base->interrupt_lock, flags);
1531
1532         return IRQ_HANDLED;
1533 }
1534
1535 static int d40_validate_conf(struct d40_chan *d40c,
1536                              struct stedma40_chan_cfg *conf)
1537 {
1538         int res = 0;
1539         u32 dst_event_group = D40_TYPE_TO_GROUP(conf->dst_dev_type);
1540         u32 src_event_group = D40_TYPE_TO_GROUP(conf->src_dev_type);
1541         bool is_log = conf->mode == STEDMA40_MODE_LOGICAL;
1542
1543         if (!conf->dir) {
1544                 chan_err(d40c, "Invalid direction.\n");
1545                 res = -EINVAL;
1546         }
1547
1548         if (conf->dst_dev_type != STEDMA40_DEV_DST_MEMORY &&
1549             d40c->base->plat_data->dev_tx[conf->dst_dev_type] == 0 &&
1550             d40c->runtime_addr == 0) {
1551
1552                 chan_err(d40c, "Invalid TX channel address (%d)\n",
1553                          conf->dst_dev_type);
1554                 res = -EINVAL;
1555         }
1556
1557         if (conf->src_dev_type != STEDMA40_DEV_SRC_MEMORY &&
1558             d40c->base->plat_data->dev_rx[conf->src_dev_type] == 0 &&
1559             d40c->runtime_addr == 0) {
1560                 chan_err(d40c, "Invalid RX channel address (%d)\n",
1561                         conf->src_dev_type);
1562                 res = -EINVAL;
1563         }
1564
1565         if (conf->dir == STEDMA40_MEM_TO_PERIPH &&
1566             dst_event_group == STEDMA40_DEV_DST_MEMORY) {
1567                 chan_err(d40c, "Invalid dst\n");
1568                 res = -EINVAL;
1569         }
1570
1571         if (conf->dir == STEDMA40_PERIPH_TO_MEM &&
1572             src_event_group == STEDMA40_DEV_SRC_MEMORY) {
1573                 chan_err(d40c, "Invalid src\n");
1574                 res = -EINVAL;
1575         }
1576
1577         if (src_event_group == STEDMA40_DEV_SRC_MEMORY &&
1578             dst_event_group == STEDMA40_DEV_DST_MEMORY && is_log) {
1579                 chan_err(d40c, "No event line\n");
1580                 res = -EINVAL;
1581         }
1582
1583         if (conf->dir == STEDMA40_PERIPH_TO_PERIPH &&
1584             (src_event_group != dst_event_group)) {
1585                 chan_err(d40c, "Invalid event group\n");
1586                 res = -EINVAL;
1587         }
1588
1589         if (conf->dir == STEDMA40_PERIPH_TO_PERIPH) {
1590                 /*
1591                  * DMAC HW supports it. Will be added to this driver,
1592                  * in case any dma client requires it.
1593                  */
1594                 chan_err(d40c, "periph to periph not supported\n");
1595                 res = -EINVAL;
1596         }
1597
1598         if (d40_psize_2_burst_size(is_log, conf->src_info.psize) *
1599             (1 << conf->src_info.data_width) !=
1600             d40_psize_2_burst_size(is_log, conf->dst_info.psize) *
1601             (1 << conf->dst_info.data_width)) {
1602                 /*
1603                  * The DMAC hardware only supports
1604                  * src (burst x width) == dst (burst x width)
1605                  */
1606
1607                 chan_err(d40c, "src (burst x width) != dst (burst x width)\n");
1608                 res = -EINVAL;
1609         }
1610
1611         return res;
1612 }
1613
1614 static bool d40_alloc_mask_set(struct d40_phy_res *phy,
1615                                bool is_src, int log_event_line, bool is_log,
1616                                bool *first_user)
1617 {
1618         unsigned long flags;
1619         spin_lock_irqsave(&phy->lock, flags);
1620
1621         *first_user = ((phy->allocated_src | phy->allocated_dst)
1622                         == D40_ALLOC_FREE);
1623
1624         if (!is_log) {
1625                 /* Physical interrupts are masked per physical full channel */
1626                 if (phy->allocated_src == D40_ALLOC_FREE &&
1627                     phy->allocated_dst == D40_ALLOC_FREE) {
1628                         phy->allocated_dst = D40_ALLOC_PHY;
1629                         phy->allocated_src = D40_ALLOC_PHY;
1630                         goto found;
1631                 } else
1632                         goto not_found;
1633         }
1634
1635         /* Logical channel */
1636         if (is_src) {
1637                 if (phy->allocated_src == D40_ALLOC_PHY)
1638                         goto not_found;
1639
1640                 if (phy->allocated_src == D40_ALLOC_FREE)
1641                         phy->allocated_src = D40_ALLOC_LOG_FREE;
1642
1643                 if (!(phy->allocated_src & (1 << log_event_line))) {
1644                         phy->allocated_src |= 1 << log_event_line;
1645                         goto found;
1646                 } else
1647                         goto not_found;
1648         } else {
1649                 if (phy->allocated_dst == D40_ALLOC_PHY)
1650                         goto not_found;
1651
1652                 if (phy->allocated_dst == D40_ALLOC_FREE)
1653                         phy->allocated_dst = D40_ALLOC_LOG_FREE;
1654
1655                 if (!(phy->allocated_dst & (1 << log_event_line))) {
1656                         phy->allocated_dst |= 1 << log_event_line;
1657                         goto found;
1658                 } else
1659                         goto not_found;
1660         }
1661
1662 not_found:
1663         spin_unlock_irqrestore(&phy->lock, flags);
1664         return false;
1665 found:
1666         spin_unlock_irqrestore(&phy->lock, flags);
1667         return true;
1668 }
1669
1670 static bool d40_alloc_mask_free(struct d40_phy_res *phy, bool is_src,
1671                                int log_event_line)
1672 {
1673         unsigned long flags;
1674         bool is_free = false;
1675
1676         spin_lock_irqsave(&phy->lock, flags);
1677         if (!log_event_line) {
1678                 phy->allocated_dst = D40_ALLOC_FREE;
1679                 phy->allocated_src = D40_ALLOC_FREE;
1680                 is_free = true;
1681                 goto out;
1682         }
1683
1684         /* Logical channel */
1685         if (is_src) {
1686                 phy->allocated_src &= ~(1 << log_event_line);
1687                 if (phy->allocated_src == D40_ALLOC_LOG_FREE)
1688                         phy->allocated_src = D40_ALLOC_FREE;
1689         } else {
1690                 phy->allocated_dst &= ~(1 << log_event_line);
1691                 if (phy->allocated_dst == D40_ALLOC_LOG_FREE)
1692                         phy->allocated_dst = D40_ALLOC_FREE;
1693         }
1694
1695         is_free = ((phy->allocated_src | phy->allocated_dst) ==
1696                    D40_ALLOC_FREE);
1697
1698 out:
1699         spin_unlock_irqrestore(&phy->lock, flags);
1700
1701         return is_free;
1702 }
1703
1704 static int d40_allocate_channel(struct d40_chan *d40c, bool *first_phy_user)
1705 {
1706         int dev_type;
1707         int event_group;
1708         int event_line;
1709         struct d40_phy_res *phys;
1710         int i;
1711         int j;
1712         int log_num;
1713         bool is_src;
1714         bool is_log = d40c->dma_cfg.mode == STEDMA40_MODE_LOGICAL;
1715
1716         phys = d40c->base->phy_res;
1717
1718         if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
1719                 dev_type = d40c->dma_cfg.src_dev_type;
1720                 log_num = 2 * dev_type;
1721                 is_src = true;
1722         } else if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
1723                    d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
1724                 /* dst event lines are used for logical memcpy */
1725                 dev_type = d40c->dma_cfg.dst_dev_type;
1726                 log_num = 2 * dev_type + 1;
1727                 is_src = false;
1728         } else
1729                 return -EINVAL;
1730
1731         event_group = D40_TYPE_TO_GROUP(dev_type);
1732         event_line = D40_TYPE_TO_EVENT(dev_type);
1733
1734         if (!is_log) {
1735                 if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
1736                         /* Find physical half channel */
1737                         for (i = 0; i < d40c->base->num_phy_chans; i++) {
1738
1739                                 if (d40_alloc_mask_set(&phys[i], is_src,
1740                                                        0, is_log,
1741                                                        first_phy_user))
1742                                         goto found_phy;
1743                         }
1744                 } else
1745                         for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
1746                                 int phy_num = j  + event_group * 2;
1747                                 for (i = phy_num; i < phy_num + 2; i++) {
1748                                         if (d40_alloc_mask_set(&phys[i],
1749                                                                is_src,
1750                                                                0,
1751                                                                is_log,
1752                                                                first_phy_user))
1753                                                 goto found_phy;
1754                                 }
1755                         }
1756                 return -EINVAL;
1757 found_phy:
1758                 d40c->phy_chan = &phys[i];
1759                 d40c->log_num = D40_PHY_CHAN;
1760                 goto out;
1761         }
1762         if (dev_type == -1)
1763                 return -EINVAL;
1764
1765         /* Find logical channel */
1766         for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
1767                 int phy_num = j + event_group * 2;
1768
1769                 if (d40c->dma_cfg.use_fixed_channel) {
1770                         i = d40c->dma_cfg.phy_channel;
1771
1772                         if ((i != phy_num) && (i != phy_num + 1)) {
1773                                 dev_err(chan2dev(d40c),
1774                                         "invalid fixed phy channel %d\n", i);
1775                                 return -EINVAL;
1776                         }
1777
1778                         if (d40_alloc_mask_set(&phys[i], is_src, event_line,
1779                                                is_log, first_phy_user))
1780                                 goto found_log;
1781
1782                         dev_err(chan2dev(d40c),
1783                                 "could not allocate fixed phy channel %d\n", i);
1784                         return -EINVAL;
1785                 }
1786
1787                 /*
1788                  * Spread logical channels across all available physical rather
1789                  * than pack every logical channel at the first available phy
1790                  * channels.
1791                  */
1792                 if (is_src) {
1793                         for (i = phy_num; i < phy_num + 2; i++) {
1794                                 if (d40_alloc_mask_set(&phys[i], is_src,
1795                                                        event_line, is_log,
1796                                                        first_phy_user))
1797                                         goto found_log;
1798                         }
1799                 } else {
1800                         for (i = phy_num + 1; i >= phy_num; i--) {
1801                                 if (d40_alloc_mask_set(&phys[i], is_src,
1802                                                        event_line, is_log,
1803                                                        first_phy_user))
1804                                         goto found_log;
1805                         }
1806                 }
1807         }
1808         return -EINVAL;
1809
1810 found_log:
1811         d40c->phy_chan = &phys[i];
1812         d40c->log_num = log_num;
1813 out:
1814
1815         if (is_log)
1816                 d40c->base->lookup_log_chans[d40c->log_num] = d40c;
1817         else
1818                 d40c->base->lookup_phy_chans[d40c->phy_chan->num] = d40c;
1819
1820         return 0;
1821
1822 }
1823
1824 static int d40_config_memcpy(struct d40_chan *d40c)
1825 {
1826         dma_cap_mask_t cap = d40c->chan.device->cap_mask;
1827
1828         if (dma_has_cap(DMA_MEMCPY, cap) && !dma_has_cap(DMA_SLAVE, cap)) {
1829                 d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_log;
1830                 d40c->dma_cfg.src_dev_type = STEDMA40_DEV_SRC_MEMORY;
1831                 d40c->dma_cfg.dst_dev_type = d40c->base->plat_data->
1832                         memcpy[d40c->chan.chan_id];
1833
1834         } else if (dma_has_cap(DMA_MEMCPY, cap) &&
1835                    dma_has_cap(DMA_SLAVE, cap)) {
1836                 d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_phy;
1837         } else {
1838                 chan_err(d40c, "No memcpy\n");
1839                 return -EINVAL;
1840         }
1841
1842         return 0;
1843 }
1844
1845 static int d40_free_dma(struct d40_chan *d40c)
1846 {
1847
1848         int res = 0;
1849         u32 event;
1850         struct d40_phy_res *phy = d40c->phy_chan;
1851         bool is_src;
1852
1853         /* Terminate all queued and active transfers */
1854         d40_term_all(d40c);
1855
1856         if (phy == NULL) {
1857                 chan_err(d40c, "phy == null\n");
1858                 return -EINVAL;
1859         }
1860
1861         if (phy->allocated_src == D40_ALLOC_FREE &&
1862             phy->allocated_dst == D40_ALLOC_FREE) {
1863                 chan_err(d40c, "channel already free\n");
1864                 return -EINVAL;
1865         }
1866
1867         if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
1868             d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
1869                 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
1870                 is_src = false;
1871         } else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
1872                 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
1873                 is_src = true;
1874         } else {
1875                 chan_err(d40c, "Unknown direction\n");
1876                 return -EINVAL;
1877         }
1878
1879         pm_runtime_get_sync(d40c->base->dev);
1880         res = d40_channel_execute_command(d40c, D40_DMA_STOP);
1881         if (res) {
1882                 chan_err(d40c, "stop failed\n");
1883                 goto out;
1884         }
1885
1886         d40_alloc_mask_free(phy, is_src, chan_is_logical(d40c) ? event : 0);
1887
1888         if (chan_is_logical(d40c))
1889                 d40c->base->lookup_log_chans[d40c->log_num] = NULL;
1890         else
1891                 d40c->base->lookup_phy_chans[phy->num] = NULL;
1892
1893         if (d40c->busy) {
1894                 pm_runtime_mark_last_busy(d40c->base->dev);
1895                 pm_runtime_put_autosuspend(d40c->base->dev);
1896         }
1897
1898         d40c->busy = false;
1899         d40c->phy_chan = NULL;
1900         d40c->configured = false;
1901 out:
1902
1903         pm_runtime_mark_last_busy(d40c->base->dev);
1904         pm_runtime_put_autosuspend(d40c->base->dev);
1905         return res;
1906 }
1907
1908 static bool d40_is_paused(struct d40_chan *d40c)
1909 {
1910         void __iomem *chanbase = chan_base(d40c);
1911         bool is_paused = false;
1912         unsigned long flags;
1913         void __iomem *active_reg;
1914         u32 status;
1915         u32 event;
1916
1917         spin_lock_irqsave(&d40c->lock, flags);
1918
1919         if (chan_is_physical(d40c)) {
1920                 if (d40c->phy_chan->num % 2 == 0)
1921                         active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
1922                 else
1923                         active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
1924
1925                 status = (readl(active_reg) &
1926                           D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
1927                         D40_CHAN_POS(d40c->phy_chan->num);
1928                 if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
1929                         is_paused = true;
1930
1931                 goto _exit;
1932         }
1933
1934         if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
1935             d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
1936                 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
1937                 status = readl(chanbase + D40_CHAN_REG_SDLNK);
1938         } else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
1939                 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
1940                 status = readl(chanbase + D40_CHAN_REG_SSLNK);
1941         } else {
1942                 chan_err(d40c, "Unknown direction\n");
1943                 goto _exit;
1944         }
1945
1946         status = (status & D40_EVENTLINE_MASK(event)) >>
1947                 D40_EVENTLINE_POS(event);
1948
1949         if (status != D40_DMA_RUN)
1950                 is_paused = true;
1951 _exit:
1952         spin_unlock_irqrestore(&d40c->lock, flags);
1953         return is_paused;
1954
1955 }
1956
1957
1958 static u32 stedma40_residue(struct dma_chan *chan)
1959 {
1960         struct d40_chan *d40c =
1961                 container_of(chan, struct d40_chan, chan);
1962         u32 bytes_left;
1963         unsigned long flags;
1964
1965         spin_lock_irqsave(&d40c->lock, flags);
1966         bytes_left = d40_residue(d40c);
1967         spin_unlock_irqrestore(&d40c->lock, flags);
1968
1969         return bytes_left;
1970 }
1971
1972 static int
1973 d40_prep_sg_log(struct d40_chan *chan, struct d40_desc *desc,
1974                 struct scatterlist *sg_src, struct scatterlist *sg_dst,
1975                 unsigned int sg_len, dma_addr_t src_dev_addr,
1976                 dma_addr_t dst_dev_addr)
1977 {
1978         struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
1979         struct stedma40_half_channel_info *src_info = &cfg->src_info;
1980         struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
1981         int ret;
1982
1983         ret = d40_log_sg_to_lli(sg_src, sg_len,
1984                                 src_dev_addr,
1985                                 desc->lli_log.src,
1986                                 chan->log_def.lcsp1,
1987                                 src_info->data_width,
1988                                 dst_info->data_width);
1989
1990         ret = d40_log_sg_to_lli(sg_dst, sg_len,
1991                                 dst_dev_addr,
1992                                 desc->lli_log.dst,
1993                                 chan->log_def.lcsp3,
1994                                 dst_info->data_width,
1995                                 src_info->data_width);
1996
1997         return ret < 0 ? ret : 0;
1998 }
1999
2000 static int
2001 d40_prep_sg_phy(struct d40_chan *chan, struct d40_desc *desc,
2002                 struct scatterlist *sg_src, struct scatterlist *sg_dst,
2003                 unsigned int sg_len, dma_addr_t src_dev_addr,
2004                 dma_addr_t dst_dev_addr)
2005 {
2006         struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
2007         struct stedma40_half_channel_info *src_info = &cfg->src_info;
2008         struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
2009         unsigned long flags = 0;
2010         int ret;
2011
2012         if (desc->cyclic)
2013                 flags |= LLI_CYCLIC | LLI_TERM_INT;
2014
2015         ret = d40_phy_sg_to_lli(sg_src, sg_len, src_dev_addr,
2016                                 desc->lli_phy.src,
2017                                 virt_to_phys(desc->lli_phy.src),
2018                                 chan->src_def_cfg,
2019                                 src_info, dst_info, flags);
2020
2021         ret = d40_phy_sg_to_lli(sg_dst, sg_len, dst_dev_addr,
2022                                 desc->lli_phy.dst,
2023                                 virt_to_phys(desc->lli_phy.dst),
2024                                 chan->dst_def_cfg,
2025                                 dst_info, src_info, flags);
2026
2027         dma_sync_single_for_device(chan->base->dev, desc->lli_pool.dma_addr,
2028                                    desc->lli_pool.size, DMA_TO_DEVICE);
2029
2030         return ret < 0 ? ret : 0;
2031 }
2032
2033
2034 static struct d40_desc *
2035 d40_prep_desc(struct d40_chan *chan, struct scatterlist *sg,
2036               unsigned int sg_len, unsigned long dma_flags)
2037 {
2038         struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
2039         struct d40_desc *desc;
2040         int ret;
2041
2042         desc = d40_desc_get(chan);
2043         if (!desc)
2044                 return NULL;
2045
2046         desc->lli_len = d40_sg_2_dmalen(sg, sg_len, cfg->src_info.data_width,
2047                                         cfg->dst_info.data_width);
2048         if (desc->lli_len < 0) {
2049                 chan_err(chan, "Unaligned size\n");
2050                 goto err;
2051         }
2052
2053         ret = d40_pool_lli_alloc(chan, desc, desc->lli_len);
2054         if (ret < 0) {
2055                 chan_err(chan, "Could not allocate lli\n");
2056                 goto err;
2057         }
2058
2059
2060         desc->lli_current = 0;
2061         desc->txd.flags = dma_flags;
2062         desc->txd.tx_submit = d40_tx_submit;
2063
2064         dma_async_tx_descriptor_init(&desc->txd, &chan->chan);
2065
2066         return desc;
2067
2068 err:
2069         d40_desc_free(chan, desc);
2070         return NULL;
2071 }
2072
2073 static dma_addr_t
2074 d40_get_dev_addr(struct d40_chan *chan, enum dma_transfer_direction direction)
2075 {
2076         struct stedma40_platform_data *plat = chan->base->plat_data;
2077         struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
2078         dma_addr_t addr = 0;
2079
2080         if (chan->runtime_addr)
2081                 return chan->runtime_addr;
2082
2083         if (direction == DMA_DEV_TO_MEM)
2084                 addr = plat->dev_rx[cfg->src_dev_type];
2085         else if (direction == DMA_MEM_TO_DEV)
2086                 addr = plat->dev_tx[cfg->dst_dev_type];
2087
2088         return addr;
2089 }
2090
2091 static struct dma_async_tx_descriptor *
2092 d40_prep_sg(struct dma_chan *dchan, struct scatterlist *sg_src,
2093             struct scatterlist *sg_dst, unsigned int sg_len,
2094             enum dma_transfer_direction direction, unsigned long dma_flags)
2095 {
2096         struct d40_chan *chan = container_of(dchan, struct d40_chan, chan);
2097         dma_addr_t src_dev_addr = 0;
2098         dma_addr_t dst_dev_addr = 0;
2099         struct d40_desc *desc;
2100         unsigned long flags;
2101         int ret;
2102
2103         if (!chan->phy_chan) {
2104                 chan_err(chan, "Cannot prepare unallocated channel\n");
2105                 return NULL;
2106         }
2107
2108
2109         spin_lock_irqsave(&chan->lock, flags);
2110
2111         desc = d40_prep_desc(chan, sg_src, sg_len, dma_flags);
2112         if (desc == NULL)
2113                 goto err;
2114
2115         if (sg_next(&sg_src[sg_len - 1]) == sg_src)
2116                 desc->cyclic = true;
2117
2118         if (direction != DMA_TRANS_NONE) {
2119                 dma_addr_t dev_addr = d40_get_dev_addr(chan, direction);
2120
2121                 if (direction == DMA_DEV_TO_MEM)
2122                         src_dev_addr = dev_addr;
2123                 else if (direction == DMA_MEM_TO_DEV)
2124                         dst_dev_addr = dev_addr;
2125         }
2126
2127         if (chan_is_logical(chan))
2128                 ret = d40_prep_sg_log(chan, desc, sg_src, sg_dst,
2129                                       sg_len, src_dev_addr, dst_dev_addr);
2130         else
2131                 ret = d40_prep_sg_phy(chan, desc, sg_src, sg_dst,
2132                                       sg_len, src_dev_addr, dst_dev_addr);
2133
2134         if (ret) {
2135                 chan_err(chan, "Failed to prepare %s sg job: %d\n",
2136                          chan_is_logical(chan) ? "log" : "phy", ret);
2137                 goto err;
2138         }
2139
2140         /*
2141          * add descriptor to the prepare queue in order to be able
2142          * to free them later in terminate_all
2143          */
2144         list_add_tail(&desc->node, &chan->prepare_queue);
2145
2146         spin_unlock_irqrestore(&chan->lock, flags);
2147
2148         return &desc->txd;
2149
2150 err:
2151         if (desc)
2152                 d40_desc_free(chan, desc);
2153         spin_unlock_irqrestore(&chan->lock, flags);
2154         return NULL;
2155 }
2156
2157 bool stedma40_filter(struct dma_chan *chan, void *data)
2158 {
2159         struct stedma40_chan_cfg *info = data;
2160         struct d40_chan *d40c =
2161                 container_of(chan, struct d40_chan, chan);
2162         int err;
2163
2164         if (data) {
2165                 err = d40_validate_conf(d40c, info);
2166                 if (!err)
2167                         d40c->dma_cfg = *info;
2168         } else
2169                 err = d40_config_memcpy(d40c);
2170
2171         if (!err)
2172                 d40c->configured = true;
2173
2174         return err == 0;
2175 }
2176 EXPORT_SYMBOL(stedma40_filter);
2177
2178 static void __d40_set_prio_rt(struct d40_chan *d40c, int dev_type, bool src)
2179 {
2180         bool realtime = d40c->dma_cfg.realtime;
2181         bool highprio = d40c->dma_cfg.high_priority;
2182         u32 prioreg = highprio ? D40_DREG_PSEG1 : D40_DREG_PCEG1;
2183         u32 rtreg = realtime ? D40_DREG_RSEG1 : D40_DREG_RCEG1;
2184         u32 event = D40_TYPE_TO_EVENT(dev_type);
2185         u32 group = D40_TYPE_TO_GROUP(dev_type);
2186         u32 bit = 1 << event;
2187
2188         /* Destination event lines are stored in the upper halfword */
2189         if (!src)
2190                 bit <<= 16;
2191
2192         writel(bit, d40c->base->virtbase + prioreg + group * 4);
2193         writel(bit, d40c->base->virtbase + rtreg + group * 4);
2194 }
2195
2196 static void d40_set_prio_realtime(struct d40_chan *d40c)
2197 {
2198         if (d40c->base->rev < 3)
2199                 return;
2200
2201         if ((d40c->dma_cfg.dir ==  STEDMA40_PERIPH_TO_MEM) ||
2202             (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH))
2203                 __d40_set_prio_rt(d40c, d40c->dma_cfg.src_dev_type, true);
2204
2205         if ((d40c->dma_cfg.dir ==  STEDMA40_MEM_TO_PERIPH) ||
2206             (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH))
2207                 __d40_set_prio_rt(d40c, d40c->dma_cfg.dst_dev_type, false);
2208 }
2209
2210 /* DMA ENGINE functions */
2211 static int d40_alloc_chan_resources(struct dma_chan *chan)
2212 {
2213         int err;
2214         unsigned long flags;
2215         struct d40_chan *d40c =
2216                 container_of(chan, struct d40_chan, chan);
2217         bool is_free_phy;
2218         spin_lock_irqsave(&d40c->lock, flags);
2219
2220         dma_cookie_init(chan);
2221
2222         /* If no dma configuration is set use default configuration (memcpy) */
2223         if (!d40c->configured) {
2224                 err = d40_config_memcpy(d40c);
2225                 if (err) {
2226                         chan_err(d40c, "Failed to configure memcpy channel\n");
2227                         goto fail;
2228                 }
2229         }
2230
2231         err = d40_allocate_channel(d40c, &is_free_phy);
2232         if (err) {
2233                 chan_err(d40c, "Failed to allocate channel\n");
2234                 d40c->configured = false;
2235                 goto fail;
2236         }
2237
2238         pm_runtime_get_sync(d40c->base->dev);
2239         /* Fill in basic CFG register values */
2240         d40_phy_cfg(&d40c->dma_cfg, &d40c->src_def_cfg,
2241                     &d40c->dst_def_cfg, chan_is_logical(d40c));
2242
2243         d40_set_prio_realtime(d40c);
2244
2245         if (chan_is_logical(d40c)) {
2246                 d40_log_cfg(&d40c->dma_cfg,
2247                             &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
2248
2249                 if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM)
2250                         d40c->lcpa = d40c->base->lcpa_base +
2251                           d40c->dma_cfg.src_dev_type * D40_LCPA_CHAN_SIZE;
2252                 else
2253                         d40c->lcpa = d40c->base->lcpa_base +
2254                           d40c->dma_cfg.dst_dev_type *
2255                           D40_LCPA_CHAN_SIZE + D40_LCPA_CHAN_DST_DELTA;
2256         }
2257
2258         dev_dbg(chan2dev(d40c), "allocated %s channel (phy %d%s)\n",
2259                  chan_is_logical(d40c) ? "logical" : "physical",
2260                  d40c->phy_chan->num,
2261                  d40c->dma_cfg.use_fixed_channel ? ", fixed" : "");
2262
2263
2264         /*
2265          * Only write channel configuration to the DMA if the physical
2266          * resource is free. In case of multiple logical channels
2267          * on the same physical resource, only the first write is necessary.
2268          */
2269         if (is_free_phy)
2270                 d40_config_write(d40c);
2271 fail:
2272         pm_runtime_mark_last_busy(d40c->base->dev);
2273         pm_runtime_put_autosuspend(d40c->base->dev);
2274         spin_unlock_irqrestore(&d40c->lock, flags);
2275         return err;
2276 }
2277
2278 static void d40_free_chan_resources(struct dma_chan *chan)
2279 {
2280         struct d40_chan *d40c =
2281                 container_of(chan, struct d40_chan, chan);
2282         int err;
2283         unsigned long flags;
2284
2285         if (d40c->phy_chan == NULL) {
2286                 chan_err(d40c, "Cannot free unallocated channel\n");
2287                 return;
2288         }
2289
2290
2291         spin_lock_irqsave(&d40c->lock, flags);
2292
2293         err = d40_free_dma(d40c);
2294
2295         if (err)
2296                 chan_err(d40c, "Failed to free channel\n");
2297         spin_unlock_irqrestore(&d40c->lock, flags);
2298 }
2299
2300 static struct dma_async_tx_descriptor *d40_prep_memcpy(struct dma_chan *chan,
2301                                                        dma_addr_t dst,
2302                                                        dma_addr_t src,
2303                                                        size_t size,
2304                                                        unsigned long dma_flags)
2305 {
2306         struct scatterlist dst_sg;
2307         struct scatterlist src_sg;
2308
2309         sg_init_table(&dst_sg, 1);
2310         sg_init_table(&src_sg, 1);
2311
2312         sg_dma_address(&dst_sg) = dst;
2313         sg_dma_address(&src_sg) = src;
2314
2315         sg_dma_len(&dst_sg) = size;
2316         sg_dma_len(&src_sg) = size;
2317
2318         return d40_prep_sg(chan, &src_sg, &dst_sg, 1, DMA_NONE, dma_flags);
2319 }
2320
2321 static struct dma_async_tx_descriptor *
2322 d40_prep_memcpy_sg(struct dma_chan *chan,
2323                    struct scatterlist *dst_sg, unsigned int dst_nents,
2324                    struct scatterlist *src_sg, unsigned int src_nents,
2325                    unsigned long dma_flags)
2326 {
2327         if (dst_nents != src_nents)
2328                 return NULL;
2329
2330         return d40_prep_sg(chan, src_sg, dst_sg, src_nents, DMA_NONE, dma_flags);
2331 }
2332
2333 static struct dma_async_tx_descriptor *d40_prep_slave_sg(struct dma_chan *chan,
2334                                                          struct scatterlist *sgl,
2335                                                          unsigned int sg_len,
2336                                                          enum dma_transfer_direction direction,
2337                                                          unsigned long dma_flags,
2338                                                          void *context)
2339 {
2340         if (direction != DMA_DEV_TO_MEM && direction != DMA_MEM_TO_DEV)
2341                 return NULL;
2342
2343         return d40_prep_sg(chan, sgl, sgl, sg_len, direction, dma_flags);
2344 }
2345
2346 static struct dma_async_tx_descriptor *
2347 dma40_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t dma_addr,
2348                      size_t buf_len, size_t period_len,
2349                      enum dma_transfer_direction direction, unsigned long flags,
2350                      void *context)
2351 {
2352         unsigned int periods = buf_len / period_len;
2353         struct dma_async_tx_descriptor *txd;
2354         struct scatterlist *sg;
2355         int i;
2356
2357         sg = kcalloc(periods + 1, sizeof(struct scatterlist), GFP_NOWAIT);
2358         for (i = 0; i < periods; i++) {
2359                 sg_dma_address(&sg[i]) = dma_addr;
2360                 sg_dma_len(&sg[i]) = period_len;
2361                 dma_addr += period_len;
2362         }
2363
2364         sg[periods].offset = 0;
2365         sg_dma_len(&sg[periods]) = 0;
2366         sg[periods].page_link =
2367                 ((unsigned long)sg | 0x01) & ~0x02;
2368
2369         txd = d40_prep_sg(chan, sg, sg, periods, direction,
2370                           DMA_PREP_INTERRUPT);
2371
2372         kfree(sg);
2373
2374         return txd;
2375 }
2376
2377 static enum dma_status d40_tx_status(struct dma_chan *chan,
2378                                      dma_cookie_t cookie,
2379                                      struct dma_tx_state *txstate)
2380 {
2381         struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2382         enum dma_status ret;
2383
2384         if (d40c->phy_chan == NULL) {
2385                 chan_err(d40c, "Cannot read status of unallocated channel\n");
2386                 return -EINVAL;
2387         }
2388
2389         ret = dma_cookie_status(chan, cookie, txstate);
2390         if (ret != DMA_SUCCESS)
2391                 dma_set_residue(txstate, stedma40_residue(chan));
2392
2393         if (d40_is_paused(d40c))
2394                 ret = DMA_PAUSED;
2395
2396         return ret;
2397 }
2398
2399 static void d40_issue_pending(struct dma_chan *chan)
2400 {
2401         struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2402         unsigned long flags;
2403
2404         if (d40c->phy_chan == NULL) {
2405                 chan_err(d40c, "Channel is not allocated!\n");
2406                 return;
2407         }
2408
2409         spin_lock_irqsave(&d40c->lock, flags);
2410
2411         list_splice_tail_init(&d40c->pending_queue, &d40c->queue);
2412
2413         /* Busy means that queued jobs are already being processed */
2414         if (!d40c->busy)
2415                 (void) d40_queue_start(d40c);
2416
2417         spin_unlock_irqrestore(&d40c->lock, flags);
2418 }
2419
2420 static void d40_terminate_all(struct dma_chan *chan)
2421 {
2422         unsigned long flags;
2423         struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2424         int ret;
2425
2426         spin_lock_irqsave(&d40c->lock, flags);
2427
2428         pm_runtime_get_sync(d40c->base->dev);
2429         ret = d40_channel_execute_command(d40c, D40_DMA_STOP);
2430         if (ret)
2431                 chan_err(d40c, "Failed to stop channel\n");
2432
2433         d40_term_all(d40c);
2434         pm_runtime_mark_last_busy(d40c->base->dev);
2435         pm_runtime_put_autosuspend(d40c->base->dev);
2436         if (d40c->busy) {
2437                 pm_runtime_mark_last_busy(d40c->base->dev);
2438                 pm_runtime_put_autosuspend(d40c->base->dev);
2439         }
2440         d40c->busy = false;
2441
2442         spin_unlock_irqrestore(&d40c->lock, flags);
2443 }
2444
2445 static int
2446 dma40_config_to_halfchannel(struct d40_chan *d40c,
2447                             struct stedma40_half_channel_info *info,
2448                             enum dma_slave_buswidth width,
2449                             u32 maxburst)
2450 {
2451         enum stedma40_periph_data_width addr_width;
2452         int psize;
2453
2454         switch (width) {
2455         case DMA_SLAVE_BUSWIDTH_1_BYTE:
2456                 addr_width = STEDMA40_BYTE_WIDTH;
2457                 break;
2458         case DMA_SLAVE_BUSWIDTH_2_BYTES:
2459                 addr_width = STEDMA40_HALFWORD_WIDTH;
2460                 break;
2461         case DMA_SLAVE_BUSWIDTH_4_BYTES:
2462                 addr_width = STEDMA40_WORD_WIDTH;
2463                 break;
2464         case DMA_SLAVE_BUSWIDTH_8_BYTES:
2465                 addr_width = STEDMA40_DOUBLEWORD_WIDTH;
2466                 break;
2467         default:
2468                 dev_err(d40c->base->dev,
2469                         "illegal peripheral address width "
2470                         "requested (%d)\n",
2471                         width);
2472                 return -EINVAL;
2473         }
2474
2475         if (chan_is_logical(d40c)) {
2476                 if (maxburst >= 16)
2477                         psize = STEDMA40_PSIZE_LOG_16;
2478                 else if (maxburst >= 8)
2479                         psize = STEDMA40_PSIZE_LOG_8;
2480                 else if (maxburst >= 4)
2481                         psize = STEDMA40_PSIZE_LOG_4;
2482                 else
2483                         psize = STEDMA40_PSIZE_LOG_1;
2484         } else {
2485                 if (maxburst >= 16)
2486                         psize = STEDMA40_PSIZE_PHY_16;
2487                 else if (maxburst >= 8)
2488                         psize = STEDMA40_PSIZE_PHY_8;
2489                 else if (maxburst >= 4)
2490                         psize = STEDMA40_PSIZE_PHY_4;
2491                 else
2492                         psize = STEDMA40_PSIZE_PHY_1;
2493         }
2494
2495         info->data_width = addr_width;
2496         info->psize = psize;
2497         info->flow_ctrl = STEDMA40_NO_FLOW_CTRL;
2498
2499         return 0;
2500 }
2501
2502 /* Runtime reconfiguration extension */
2503 static int d40_set_runtime_config(struct dma_chan *chan,
2504                                   struct dma_slave_config *config)
2505 {
2506         struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2507         struct stedma40_chan_cfg *cfg = &d40c->dma_cfg;
2508         enum dma_slave_buswidth src_addr_width, dst_addr_width;
2509         dma_addr_t config_addr;
2510         u32 src_maxburst, dst_maxburst;
2511         int ret;
2512
2513         src_addr_width = config->src_addr_width;
2514         src_maxburst = config->src_maxburst;
2515         dst_addr_width = config->dst_addr_width;
2516         dst_maxburst = config->dst_maxburst;
2517
2518         if (config->direction == DMA_DEV_TO_MEM) {
2519                 dma_addr_t dev_addr_rx =
2520                         d40c->base->plat_data->dev_rx[cfg->src_dev_type];
2521
2522                 config_addr = config->src_addr;
2523                 if (dev_addr_rx)
2524                         dev_dbg(d40c->base->dev,
2525                                 "channel has a pre-wired RX address %08x "
2526                                 "overriding with %08x\n",
2527                                 dev_addr_rx, config_addr);
2528                 if (cfg->dir != STEDMA40_PERIPH_TO_MEM)
2529                         dev_dbg(d40c->base->dev,
2530                                 "channel was not configured for peripheral "
2531                                 "to memory transfer (%d) overriding\n",
2532                                 cfg->dir);
2533                 cfg->dir = STEDMA40_PERIPH_TO_MEM;
2534
2535                 /* Configure the memory side */
2536                 if (dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
2537                         dst_addr_width = src_addr_width;
2538                 if (dst_maxburst == 0)
2539                         dst_maxburst = src_maxburst;
2540
2541         } else if (config->direction == DMA_MEM_TO_DEV) {
2542                 dma_addr_t dev_addr_tx =
2543                         d40c->base->plat_data->dev_tx[cfg->dst_dev_type];
2544
2545                 config_addr = config->dst_addr;
2546                 if (dev_addr_tx)
2547                         dev_dbg(d40c->base->dev,
2548                                 "channel has a pre-wired TX address %08x "
2549                                 "overriding with %08x\n",
2550                                 dev_addr_tx, config_addr);
2551                 if (cfg->dir != STEDMA40_MEM_TO_PERIPH)
2552                         dev_dbg(d40c->base->dev,
2553                                 "channel was not configured for memory "
2554                                 "to peripheral transfer (%d) overriding\n",
2555                                 cfg->dir);
2556                 cfg->dir = STEDMA40_MEM_TO_PERIPH;
2557
2558                 /* Configure the memory side */
2559                 if (src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
2560                         src_addr_width = dst_addr_width;
2561                 if (src_maxburst == 0)
2562                         src_maxburst = dst_maxburst;
2563         } else {
2564                 dev_err(d40c->base->dev,
2565                         "unrecognized channel direction %d\n",
2566                         config->direction);
2567                 return -EINVAL;
2568         }
2569
2570         if (src_maxburst * src_addr_width != dst_maxburst * dst_addr_width) {
2571                 dev_err(d40c->base->dev,
2572                         "src/dst width/maxburst mismatch: %d*%d != %d*%d\n",
2573                         src_maxburst,
2574                         src_addr_width,
2575                         dst_maxburst,
2576                         dst_addr_width);
2577                 return -EINVAL;
2578         }
2579
2580         ret = dma40_config_to_halfchannel(d40c, &cfg->src_info,
2581                                           src_addr_width,
2582                                           src_maxburst);
2583         if (ret)
2584                 return ret;
2585
2586         ret = dma40_config_to_halfchannel(d40c, &cfg->dst_info,
2587                                           dst_addr_width,
2588                                           dst_maxburst);
2589         if (ret)
2590                 return ret;
2591
2592         /* Fill in register values */
2593         if (chan_is_logical(d40c))
2594                 d40_log_cfg(cfg, &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
2595         else
2596                 d40_phy_cfg(cfg, &d40c->src_def_cfg,
2597                             &d40c->dst_def_cfg, false);
2598
2599         /* These settings will take precedence later */
2600         d40c->runtime_addr = config_addr;
2601         d40c->runtime_direction = config->direction;
2602         dev_dbg(d40c->base->dev,
2603                 "configured channel %s for %s, data width %d/%d, "
2604                 "maxburst %d/%d elements, LE, no flow control\n",
2605                 dma_chan_name(chan),
2606                 (config->direction == DMA_DEV_TO_MEM) ? "RX" : "TX",
2607                 src_addr_width, dst_addr_width,
2608                 src_maxburst, dst_maxburst);
2609
2610         return 0;
2611 }
2612
2613 static int d40_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
2614                        unsigned long arg)
2615 {
2616         struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2617
2618         if (d40c->phy_chan == NULL) {
2619                 chan_err(d40c, "Channel is not allocated!\n");
2620                 return -EINVAL;
2621         }
2622
2623         switch (cmd) {
2624         case DMA_TERMINATE_ALL:
2625                 d40_terminate_all(chan);
2626                 return 0;
2627         case DMA_PAUSE:
2628                 return d40_pause(d40c);
2629         case DMA_RESUME:
2630                 return d40_resume(d40c);
2631         case DMA_SLAVE_CONFIG:
2632                 return d40_set_runtime_config(chan,
2633                         (struct dma_slave_config *) arg);
2634         default:
2635                 break;
2636         }
2637
2638         /* Other commands are unimplemented */
2639         return -ENXIO;
2640 }
2641
2642 /* Initialization functions */
2643
2644 static void __init d40_chan_init(struct d40_base *base, struct dma_device *dma,
2645                                  struct d40_chan *chans, int offset,
2646                                  int num_chans)
2647 {
2648         int i = 0;
2649         struct d40_chan *d40c;
2650
2651         INIT_LIST_HEAD(&dma->channels);
2652
2653         for (i = offset; i < offset + num_chans; i++) {
2654                 d40c = &chans[i];
2655                 d40c->base = base;
2656                 d40c->chan.device = dma;
2657
2658                 spin_lock_init(&d40c->lock);
2659
2660                 d40c->log_num = D40_PHY_CHAN;
2661
2662                 INIT_LIST_HEAD(&d40c->active);
2663                 INIT_LIST_HEAD(&d40c->queue);
2664                 INIT_LIST_HEAD(&d40c->pending_queue);
2665                 INIT_LIST_HEAD(&d40c->client);
2666                 INIT_LIST_HEAD(&d40c->prepare_queue);
2667
2668                 tasklet_init(&d40c->tasklet, dma_tasklet,
2669                              (unsigned long) d40c);
2670
2671                 list_add_tail(&d40c->chan.device_node,
2672                               &dma->channels);
2673         }
2674 }
2675
2676 static void d40_ops_init(struct d40_base *base, struct dma_device *dev)
2677 {
2678         if (dma_has_cap(DMA_SLAVE, dev->cap_mask))
2679                 dev->device_prep_slave_sg = d40_prep_slave_sg;
2680
2681         if (dma_has_cap(DMA_MEMCPY, dev->cap_mask)) {
2682                 dev->device_prep_dma_memcpy = d40_prep_memcpy;
2683
2684                 /*
2685                  * This controller can only access address at even
2686                  * 32bit boundaries, i.e. 2^2
2687                  */
2688                 dev->copy_align = 2;
2689         }
2690
2691         if (dma_has_cap(DMA_SG, dev->cap_mask))
2692                 dev->device_prep_dma_sg = d40_prep_memcpy_sg;
2693
2694         if (dma_has_cap(DMA_CYCLIC, dev->cap_mask))
2695                 dev->device_prep_dma_cyclic = dma40_prep_dma_cyclic;
2696
2697         dev->device_alloc_chan_resources = d40_alloc_chan_resources;
2698         dev->device_free_chan_resources = d40_free_chan_resources;
2699         dev->device_issue_pending = d40_issue_pending;
2700         dev->device_tx_status = d40_tx_status;
2701         dev->device_control = d40_control;
2702         dev->dev = base->dev;
2703 }
2704
2705 static int __init d40_dmaengine_init(struct d40_base *base,
2706                                      int num_reserved_chans)
2707 {
2708         int err ;
2709
2710         d40_chan_init(base, &base->dma_slave, base->log_chans,
2711                       0, base->num_log_chans);
2712
2713         dma_cap_zero(base->dma_slave.cap_mask);
2714         dma_cap_set(DMA_SLAVE, base->dma_slave.cap_mask);
2715         dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
2716
2717         d40_ops_init(base, &base->dma_slave);
2718
2719         err = dma_async_device_register(&base->dma_slave);
2720
2721         if (err) {
2722                 d40_err(base->dev, "Failed to register slave channels\n");
2723                 goto failure1;
2724         }
2725
2726         d40_chan_init(base, &base->dma_memcpy, base->log_chans,
2727                       base->num_log_chans, base->plat_data->memcpy_len);
2728
2729         dma_cap_zero(base->dma_memcpy.cap_mask);
2730         dma_cap_set(DMA_MEMCPY, base->dma_memcpy.cap_mask);
2731         dma_cap_set(DMA_SG, base->dma_memcpy.cap_mask);
2732
2733         d40_ops_init(base, &base->dma_memcpy);
2734
2735         err = dma_async_device_register(&base->dma_memcpy);
2736
2737         if (err) {
2738                 d40_err(base->dev,
2739                         "Failed to regsiter memcpy only channels\n");
2740                 goto failure2;
2741         }
2742
2743         d40_chan_init(base, &base->dma_both, base->phy_chans,
2744                       0, num_reserved_chans);
2745
2746         dma_cap_zero(base->dma_both.cap_mask);
2747         dma_cap_set(DMA_SLAVE, base->dma_both.cap_mask);
2748         dma_cap_set(DMA_MEMCPY, base->dma_both.cap_mask);
2749         dma_cap_set(DMA_SG, base->dma_both.cap_mask);
2750         dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
2751
2752         d40_ops_init(base, &base->dma_both);
2753         err = dma_async_device_register(&base->dma_both);
2754
2755         if (err) {
2756                 d40_err(base->dev,
2757                         "Failed to register logical and physical capable channels\n");
2758                 goto failure3;
2759         }
2760         return 0;
2761 failure3:
2762         dma_async_device_unregister(&base->dma_memcpy);
2763 failure2:
2764         dma_async_device_unregister(&base->dma_slave);
2765 failure1:
2766         return err;
2767 }
2768
2769 /* Suspend resume functionality */
2770 #ifdef CONFIG_PM
2771 static int dma40_pm_suspend(struct device *dev)
2772 {
2773         struct platform_device *pdev = to_platform_device(dev);
2774         struct d40_base *base = platform_get_drvdata(pdev);
2775         int ret = 0;
2776         if (!pm_runtime_suspended(dev))
2777                 return -EBUSY;
2778
2779         if (base->lcpa_regulator)
2780                 ret = regulator_disable(base->lcpa_regulator);
2781         return ret;
2782 }
2783
2784 static int dma40_runtime_suspend(struct device *dev)
2785 {
2786         struct platform_device *pdev = to_platform_device(dev);
2787         struct d40_base *base = platform_get_drvdata(pdev);
2788
2789         d40_save_restore_registers(base, true);
2790
2791         /* Don't disable/enable clocks for v1 due to HW bugs */
2792         if (base->rev != 1)
2793                 writel_relaxed(base->gcc_pwr_off_mask,
2794                                base->virtbase + D40_DREG_GCC);
2795
2796         return 0;
2797 }
2798
2799 static int dma40_runtime_resume(struct device *dev)
2800 {
2801         struct platform_device *pdev = to_platform_device(dev);
2802         struct d40_base *base = platform_get_drvdata(pdev);
2803
2804         if (base->initialized)
2805                 d40_save_restore_registers(base, false);
2806
2807         writel_relaxed(D40_DREG_GCC_ENABLE_ALL,
2808                        base->virtbase + D40_DREG_GCC);
2809         return 0;
2810 }
2811
2812 static int dma40_resume(struct device *dev)
2813 {
2814         struct platform_device *pdev = to_platform_device(dev);
2815         struct d40_base *base = platform_get_drvdata(pdev);
2816         int ret = 0;
2817
2818         if (base->lcpa_regulator)
2819                 ret = regulator_enable(base->lcpa_regulator);
2820
2821         return ret;
2822 }
2823
2824 static const struct dev_pm_ops dma40_pm_ops = {
2825         .suspend                = dma40_pm_suspend,
2826         .runtime_suspend        = dma40_runtime_suspend,
2827         .runtime_resume         = dma40_runtime_resume,
2828         .resume                 = dma40_resume,
2829 };
2830 #define DMA40_PM_OPS    (&dma40_pm_ops)
2831 #else
2832 #define DMA40_PM_OPS    NULL
2833 #endif
2834
2835 /* Initialization functions. */
2836
2837 static int __init d40_phy_res_init(struct d40_base *base)
2838 {
2839         int i;
2840         int num_phy_chans_avail = 0;
2841         u32 val[2];
2842         int odd_even_bit = -2;
2843         int gcc = D40_DREG_GCC_ENA;
2844
2845         val[0] = readl(base->virtbase + D40_DREG_PRSME);
2846         val[1] = readl(base->virtbase + D40_DREG_PRSMO);
2847
2848         for (i = 0; i < base->num_phy_chans; i++) {
2849                 base->phy_res[i].num = i;
2850                 odd_even_bit += 2 * ((i % 2) == 0);
2851                 if (((val[i % 2] >> odd_even_bit) & 3) == 1) {
2852                         /* Mark security only channels as occupied */
2853                         base->phy_res[i].allocated_src = D40_ALLOC_PHY;
2854                         base->phy_res[i].allocated_dst = D40_ALLOC_PHY;
2855                         base->phy_res[i].reserved = true;
2856                         gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(i),
2857                                                        D40_DREG_GCC_SRC);
2858                         gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(i),
2859                                                        D40_DREG_GCC_DST);
2860
2861
2862                 } else {
2863                         base->phy_res[i].allocated_src = D40_ALLOC_FREE;
2864                         base->phy_res[i].allocated_dst = D40_ALLOC_FREE;
2865                         base->phy_res[i].reserved = false;
2866                         num_phy_chans_avail++;
2867                 }
2868                 spin_lock_init(&base->phy_res[i].lock);
2869         }
2870
2871         /* Mark disabled channels as occupied */
2872         for (i = 0; base->plat_data->disabled_channels[i] != -1; i++) {
2873                 int chan = base->plat_data->disabled_channels[i];
2874
2875                 base->phy_res[chan].allocated_src = D40_ALLOC_PHY;
2876                 base->phy_res[chan].allocated_dst = D40_ALLOC_PHY;
2877                 base->phy_res[chan].reserved = true;
2878                 gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(chan),
2879                                                D40_DREG_GCC_SRC);
2880                 gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(chan),
2881                                                D40_DREG_GCC_DST);
2882                 num_phy_chans_avail--;
2883         }
2884
2885         dev_info(base->dev, "%d of %d physical DMA channels available\n",
2886                  num_phy_chans_avail, base->num_phy_chans);
2887
2888         /* Verify settings extended vs standard */
2889         val[0] = readl(base->virtbase + D40_DREG_PRTYP);
2890
2891         for (i = 0; i < base->num_phy_chans; i++) {
2892
2893                 if (base->phy_res[i].allocated_src == D40_ALLOC_FREE &&
2894                     (val[0] & 0x3) != 1)
2895                         dev_info(base->dev,
2896                                  "[%s] INFO: channel %d is misconfigured (%d)\n",
2897                                  __func__, i, val[0] & 0x3);
2898
2899                 val[0] = val[0] >> 2;
2900         }
2901
2902         /*
2903          * To keep things simple, Enable all clocks initially.
2904          * The clocks will get managed later post channel allocation.
2905          * The clocks for the event lines on which reserved channels exists
2906          * are not managed here.
2907          */
2908         writel(D40_DREG_GCC_ENABLE_ALL, base->virtbase + D40_DREG_GCC);
2909         base->gcc_pwr_off_mask = gcc;
2910
2911         return num_phy_chans_avail;
2912 }
2913
2914 static struct d40_base * __init d40_hw_detect_init(struct platform_device *pdev)
2915 {
2916         struct stedma40_platform_data *plat_data;
2917         struct clk *clk = NULL;
2918         void __iomem *virtbase = NULL;
2919         struct resource *res = NULL;
2920         struct d40_base *base = NULL;
2921         int num_log_chans = 0;
2922         int num_phy_chans;
2923         int clk_ret = -EINVAL;
2924         int i;
2925         u32 pid;
2926         u32 cid;
2927         u8 rev;
2928
2929         clk = clk_get(&pdev->dev, NULL);
2930         if (IS_ERR(clk)) {
2931                 d40_err(&pdev->dev, "No matching clock found\n");
2932                 goto failure;
2933         }
2934
2935         clk_ret = clk_prepare_enable(clk);
2936         if (clk_ret) {
2937                 d40_err(&pdev->dev, "Failed to prepare/enable clock\n");
2938                 goto failure;
2939         }
2940
2941         /* Get IO for DMAC base address */
2942         res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "base");
2943         if (!res)
2944                 goto failure;
2945
2946         if (request_mem_region(res->start, resource_size(res),
2947                                D40_NAME " I/O base") == NULL)
2948                 goto failure;
2949
2950         virtbase = ioremap(res->start, resource_size(res));
2951         if (!virtbase)
2952                 goto failure;
2953
2954         /* This is just a regular AMBA PrimeCell ID actually */
2955         for (pid = 0, i = 0; i < 4; i++)
2956                 pid |= (readl(virtbase + resource_size(res) - 0x20 + 4 * i)
2957                         & 255) << (i * 8);
2958         for (cid = 0, i = 0; i < 4; i++)
2959                 cid |= (readl(virtbase + resource_size(res) - 0x10 + 4 * i)
2960                         & 255) << (i * 8);
2961
2962         if (cid != AMBA_CID) {
2963                 d40_err(&pdev->dev, "Unknown hardware! No PrimeCell ID\n");
2964                 goto failure;
2965         }
2966         if (AMBA_MANF_BITS(pid) != AMBA_VENDOR_ST) {
2967                 d40_err(&pdev->dev, "Unknown designer! Got %x wanted %x\n",
2968                         AMBA_MANF_BITS(pid),
2969                         AMBA_VENDOR_ST);
2970                 goto failure;
2971         }
2972         /*
2973          * HW revision:
2974          * DB8500ed has revision 0
2975          * ? has revision 1
2976          * DB8500v1 has revision 2
2977          * DB8500v2 has revision 3
2978          */
2979         rev = AMBA_REV_BITS(pid);
2980
2981         /* The number of physical channels on this HW */
2982         num_phy_chans = 4 * (readl(virtbase + D40_DREG_ICFG) & 0x7) + 4;
2983
2984         dev_info(&pdev->dev, "hardware revision: %d @ 0x%x\n",
2985                  rev, res->start);
2986
2987         if (rev < 2) {
2988                 d40_err(&pdev->dev, "hardware revision: %d is not supported",
2989                         rev);
2990                 goto failure;
2991         }
2992
2993         plat_data = pdev->dev.platform_data;
2994
2995         /* Count the number of logical channels in use */
2996         for (i = 0; i < plat_data->dev_len; i++)
2997                 if (plat_data->dev_rx[i] != 0)
2998                         num_log_chans++;
2999
3000         for (i = 0; i < plat_data->dev_len; i++)
3001                 if (plat_data->dev_tx[i] != 0)
3002                         num_log_chans++;
3003
3004         base = kzalloc(ALIGN(sizeof(struct d40_base), 4) +
3005                        (num_phy_chans + num_log_chans + plat_data->memcpy_len) *
3006                        sizeof(struct d40_chan), GFP_KERNEL);
3007
3008         if (base == NULL) {
3009                 d40_err(&pdev->dev, "Out of memory\n");
3010                 goto failure;
3011         }
3012
3013         base->rev = rev;
3014         base->clk = clk;
3015         base->num_phy_chans = num_phy_chans;
3016         base->num_log_chans = num_log_chans;
3017         base->phy_start = res->start;
3018         base->phy_size = resource_size(res);
3019         base->virtbase = virtbase;
3020         base->plat_data = plat_data;
3021         base->dev = &pdev->dev;
3022         base->phy_chans = ((void *)base) + ALIGN(sizeof(struct d40_base), 4);
3023         base->log_chans = &base->phy_chans[num_phy_chans];
3024
3025         base->phy_res = kzalloc(num_phy_chans * sizeof(struct d40_phy_res),
3026                                 GFP_KERNEL);
3027         if (!base->phy_res)
3028                 goto failure;
3029
3030         base->lookup_phy_chans = kzalloc(num_phy_chans *
3031                                          sizeof(struct d40_chan *),
3032                                          GFP_KERNEL);
3033         if (!base->lookup_phy_chans)
3034                 goto failure;
3035
3036         if (num_log_chans + plat_data->memcpy_len) {
3037                 /*
3038                  * The max number of logical channels are event lines for all
3039                  * src devices and dst devices
3040                  */
3041                 base->lookup_log_chans = kzalloc(plat_data->dev_len * 2 *
3042                                                  sizeof(struct d40_chan *),
3043                                                  GFP_KERNEL);
3044                 if (!base->lookup_log_chans)
3045                         goto failure;
3046         }
3047
3048         base->reg_val_backup_chan = kmalloc(base->num_phy_chans *
3049                                             sizeof(d40_backup_regs_chan),
3050                                             GFP_KERNEL);
3051         if (!base->reg_val_backup_chan)
3052                 goto failure;
3053
3054         base->lcla_pool.alloc_map =
3055                 kzalloc(num_phy_chans * sizeof(struct d40_desc *)
3056                         * D40_LCLA_LINK_PER_EVENT_GRP, GFP_KERNEL);
3057         if (!base->lcla_pool.alloc_map)
3058                 goto failure;
3059
3060         base->desc_slab = kmem_cache_create(D40_NAME, sizeof(struct d40_desc),
3061                                             0, SLAB_HWCACHE_ALIGN,
3062                                             NULL);
3063         if (base->desc_slab == NULL)
3064                 goto failure;
3065
3066         return base;
3067
3068 failure:
3069         if (!clk_ret)
3070                 clk_disable_unprepare(clk);
3071         if (!IS_ERR(clk))
3072                 clk_put(clk);
3073         if (virtbase)
3074                 iounmap(virtbase);
3075         if (res)
3076                 release_mem_region(res->start,
3077                                    resource_size(res));
3078         if (virtbase)
3079                 iounmap(virtbase);
3080
3081         if (base) {
3082                 kfree(base->lcla_pool.alloc_map);
3083                 kfree(base->reg_val_backup_chan);
3084                 kfree(base->lookup_log_chans);
3085                 kfree(base->lookup_phy_chans);
3086                 kfree(base->phy_res);
3087                 kfree(base);
3088         }
3089
3090         return NULL;
3091 }
3092
3093 static void __init d40_hw_init(struct d40_base *base)
3094 {
3095
3096         static struct d40_reg_val dma_init_reg[] = {
3097                 /* Clock every part of the DMA block from start */
3098                 { .reg = D40_DREG_GCC,    .val = D40_DREG_GCC_ENABLE_ALL},
3099
3100                 /* Interrupts on all logical channels */
3101                 { .reg = D40_DREG_LCMIS0, .val = 0xFFFFFFFF},
3102                 { .reg = D40_DREG_LCMIS1, .val = 0xFFFFFFFF},
3103                 { .reg = D40_DREG_LCMIS2, .val = 0xFFFFFFFF},
3104                 { .reg = D40_DREG_LCMIS3, .val = 0xFFFFFFFF},
3105                 { .reg = D40_DREG_LCICR0, .val = 0xFFFFFFFF},
3106                 { .reg = D40_DREG_LCICR1, .val = 0xFFFFFFFF},
3107                 { .reg = D40_DREG_LCICR2, .val = 0xFFFFFFFF},
3108                 { .reg = D40_DREG_LCICR3, .val = 0xFFFFFFFF},
3109                 { .reg = D40_DREG_LCTIS0, .val = 0xFFFFFFFF},
3110                 { .reg = D40_DREG_LCTIS1, .val = 0xFFFFFFFF},
3111                 { .reg = D40_DREG_LCTIS2, .val = 0xFFFFFFFF},
3112                 { .reg = D40_DREG_LCTIS3, .val = 0xFFFFFFFF}
3113         };
3114         int i;
3115         u32 prmseo[2] = {0, 0};
3116         u32 activeo[2] = {0xFFFFFFFF, 0xFFFFFFFF};
3117         u32 pcmis = 0;
3118         u32 pcicr = 0;
3119
3120         for (i = 0; i < ARRAY_SIZE(dma_init_reg); i++)
3121                 writel(dma_init_reg[i].val,
3122                        base->virtbase + dma_init_reg[i].reg);
3123
3124         /* Configure all our dma channels to default settings */
3125         for (i = 0; i < base->num_phy_chans; i++) {
3126
3127                 activeo[i % 2] = activeo[i % 2] << 2;
3128
3129                 if (base->phy_res[base->num_phy_chans - i - 1].allocated_src
3130                     == D40_ALLOC_PHY) {
3131                         activeo[i % 2] |= 3;
3132                         continue;
3133                 }
3134
3135                 /* Enable interrupt # */
3136                 pcmis = (pcmis << 1) | 1;
3137
3138                 /* Clear interrupt # */
3139                 pcicr = (pcicr << 1) | 1;
3140
3141                 /* Set channel to physical mode */
3142                 prmseo[i % 2] = prmseo[i % 2] << 2;
3143                 prmseo[i % 2] |= 1;
3144
3145         }
3146
3147         writel(prmseo[1], base->virtbase + D40_DREG_PRMSE);
3148         writel(prmseo[0], base->virtbase + D40_DREG_PRMSO);
3149         writel(activeo[1], base->virtbase + D40_DREG_ACTIVE);
3150         writel(activeo[0], base->virtbase + D40_DREG_ACTIVO);
3151
3152         /* Write which interrupt to enable */
3153         writel(pcmis, base->virtbase + D40_DREG_PCMIS);
3154
3155         /* Write which interrupt to clear */
3156         writel(pcicr, base->virtbase + D40_DREG_PCICR);
3157
3158 }
3159
3160 static int __init d40_lcla_allocate(struct d40_base *base)
3161 {
3162         struct d40_lcla_pool *pool = &base->lcla_pool;
3163         unsigned long *page_list;
3164         int i, j;
3165         int ret = 0;
3166
3167         /*
3168          * This is somewhat ugly. We need 8192 bytes that are 18 bit aligned,
3169          * To full fill this hardware requirement without wasting 256 kb
3170          * we allocate pages until we get an aligned one.
3171          */
3172         page_list = kmalloc(sizeof(unsigned long) * MAX_LCLA_ALLOC_ATTEMPTS,
3173                             GFP_KERNEL);
3174
3175         if (!page_list) {
3176                 ret = -ENOMEM;
3177                 goto failure;
3178         }
3179
3180         /* Calculating how many pages that are required */
3181         base->lcla_pool.pages = SZ_1K * base->num_phy_chans / PAGE_SIZE;
3182
3183         for (i = 0; i < MAX_LCLA_ALLOC_ATTEMPTS; i++) {
3184                 page_list[i] = __get_free_pages(GFP_KERNEL,
3185                                                 base->lcla_pool.pages);
3186                 if (!page_list[i]) {
3187
3188                         d40_err(base->dev, "Failed to allocate %d pages.\n",
3189                                 base->lcla_pool.pages);
3190
3191                         for (j = 0; j < i; j++)
3192                                 free_pages(page_list[j], base->lcla_pool.pages);
3193                         goto failure;
3194                 }
3195
3196                 if ((virt_to_phys((void *)page_list[i]) &
3197                      (LCLA_ALIGNMENT - 1)) == 0)
3198                         break;
3199         }
3200
3201         for (j = 0; j < i; j++)
3202                 free_pages(page_list[j], base->lcla_pool.pages);
3203
3204         if (i < MAX_LCLA_ALLOC_ATTEMPTS) {
3205                 base->lcla_pool.base = (void *)page_list[i];
3206         } else {
3207                 /*
3208                  * After many attempts and no succees with finding the correct
3209                  * alignment, try with allocating a big buffer.
3210                  */
3211                 dev_warn(base->dev,
3212                          "[%s] Failed to get %d pages @ 18 bit align.\n",
3213                          __func__, base->lcla_pool.pages);
3214                 base->lcla_pool.base_unaligned = kmalloc(SZ_1K *
3215                                                          base->num_phy_chans +
3216                                                          LCLA_ALIGNMENT,
3217                                                          GFP_KERNEL);
3218                 if (!base->lcla_pool.base_unaligned) {
3219                         ret = -ENOMEM;
3220                         goto failure;
3221                 }
3222
3223                 base->lcla_pool.base = PTR_ALIGN(base->lcla_pool.base_unaligned,
3224                                                  LCLA_ALIGNMENT);
3225         }
3226
3227         pool->dma_addr = dma_map_single(base->dev, pool->base,
3228                                         SZ_1K * base->num_phy_chans,
3229                                         DMA_TO_DEVICE);
3230         if (dma_mapping_error(base->dev, pool->dma_addr)) {
3231                 pool->dma_addr = 0;
3232                 ret = -ENOMEM;
3233                 goto failure;
3234         }
3235
3236         writel(virt_to_phys(base->lcla_pool.base),
3237                base->virtbase + D40_DREG_LCLA);
3238 failure:
3239         kfree(page_list);
3240         return ret;
3241 }
3242
3243 static int __init d40_probe(struct platform_device *pdev)
3244 {
3245         int err;
3246         int ret = -ENOENT;
3247         struct d40_base *base;
3248         struct resource *res = NULL;
3249         int num_reserved_chans;
3250         u32 val;
3251
3252         base = d40_hw_detect_init(pdev);
3253
3254         if (!base)
3255                 goto failure;
3256
3257         num_reserved_chans = d40_phy_res_init(base);
3258
3259         platform_set_drvdata(pdev, base);
3260
3261         spin_lock_init(&base->interrupt_lock);
3262         spin_lock_init(&base->execmd_lock);
3263
3264         /* Get IO for logical channel parameter address */
3265         res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "lcpa");
3266         if (!res) {
3267                 ret = -ENOENT;
3268                 d40_err(&pdev->dev, "No \"lcpa\" memory resource\n");
3269                 goto failure;
3270         }
3271         base->lcpa_size = resource_size(res);
3272         base->phy_lcpa = res->start;
3273
3274         if (request_mem_region(res->start, resource_size(res),
3275                                D40_NAME " I/O lcpa") == NULL) {
3276                 ret = -EBUSY;
3277                 d40_err(&pdev->dev,
3278                         "Failed to request LCPA region 0x%x-0x%x\n",
3279                         res->start, res->end);
3280                 goto failure;
3281         }
3282
3283         /* We make use of ESRAM memory for this. */
3284         val = readl(base->virtbase + D40_DREG_LCPA);
3285         if (res->start != val && val != 0) {
3286                 dev_warn(&pdev->dev,
3287                          "[%s] Mismatch LCPA dma 0x%x, def 0x%x\n",
3288                          __func__, val, res->start);
3289         } else
3290                 writel(res->start, base->virtbase + D40_DREG_LCPA);
3291
3292         base->lcpa_base = ioremap(res->start, resource_size(res));
3293         if (!base->lcpa_base) {
3294                 ret = -ENOMEM;
3295                 d40_err(&pdev->dev, "Failed to ioremap LCPA region\n");
3296                 goto failure;
3297         }
3298         /* If lcla has to be located in ESRAM we don't need to allocate */
3299         if (base->plat_data->use_esram_lcla) {
3300                 res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
3301                                                         "lcla_esram");
3302                 if (!res) {
3303                         ret = -ENOENT;
3304                         d40_err(&pdev->dev,
3305                                 "No \"lcla_esram\" memory resource\n");
3306                         goto failure;
3307                 }
3308                 base->lcla_pool.base = ioremap(res->start,
3309                                                 resource_size(res));
3310                 if (!base->lcla_pool.base) {
3311                         ret = -ENOMEM;
3312                         d40_err(&pdev->dev, "Failed to ioremap LCLA region\n");
3313                         goto failure;
3314                 }
3315                 writel(res->start, base->virtbase + D40_DREG_LCLA);
3316
3317         } else {
3318                 ret = d40_lcla_allocate(base);
3319                 if (ret) {
3320                         d40_err(&pdev->dev, "Failed to allocate LCLA area\n");
3321                         goto failure;
3322                 }
3323         }
3324
3325         spin_lock_init(&base->lcla_pool.lock);
3326
3327         base->irq = platform_get_irq(pdev, 0);
3328
3329         ret = request_irq(base->irq, d40_handle_interrupt, 0, D40_NAME, base);
3330         if (ret) {
3331                 d40_err(&pdev->dev, "No IRQ defined\n");
3332                 goto failure;
3333         }
3334
3335         pm_runtime_irq_safe(base->dev);
3336         pm_runtime_set_autosuspend_delay(base->dev, DMA40_AUTOSUSPEND_DELAY);
3337         pm_runtime_use_autosuspend(base->dev);
3338         pm_runtime_enable(base->dev);
3339         pm_runtime_resume(base->dev);
3340
3341         if (base->plat_data->use_esram_lcla) {
3342
3343                 base->lcpa_regulator = regulator_get(base->dev, "lcla_esram");
3344                 if (IS_ERR(base->lcpa_regulator)) {
3345                         d40_err(&pdev->dev, "Failed to get lcpa_regulator\n");
3346                         base->lcpa_regulator = NULL;
3347                         goto failure;
3348                 }
3349
3350                 ret = regulator_enable(base->lcpa_regulator);
3351                 if (ret) {
3352                         d40_err(&pdev->dev,
3353                                 "Failed to enable lcpa_regulator\n");
3354                         regulator_put(base->lcpa_regulator);
3355                         base->lcpa_regulator = NULL;
3356                         goto failure;
3357                 }
3358         }
3359
3360         base->initialized = true;
3361         err = d40_dmaengine_init(base, num_reserved_chans);
3362         if (err)
3363                 goto failure;
3364
3365         d40_hw_init(base);
3366
3367         dev_info(base->dev, "initialized\n");
3368         return 0;
3369
3370 failure:
3371         if (base) {
3372                 if (base->desc_slab)
3373                         kmem_cache_destroy(base->desc_slab);
3374                 if (base->virtbase)
3375                         iounmap(base->virtbase);
3376
3377                 if (base->lcla_pool.base && base->plat_data->use_esram_lcla) {
3378                         iounmap(base->lcla_pool.base);
3379                         base->lcla_pool.base = NULL;
3380                 }
3381
3382                 if (base->lcla_pool.dma_addr)
3383                         dma_unmap_single(base->dev, base->lcla_pool.dma_addr,
3384                                          SZ_1K * base->num_phy_chans,
3385                                          DMA_TO_DEVICE);
3386
3387                 if (!base->lcla_pool.base_unaligned && base->lcla_pool.base)
3388                         free_pages((unsigned long)base->lcla_pool.base,
3389                                    base->lcla_pool.pages);
3390
3391                 kfree(base->lcla_pool.base_unaligned);
3392
3393                 if (base->phy_lcpa)
3394                         release_mem_region(base->phy_lcpa,
3395                                            base->lcpa_size);
3396                 if (base->phy_start)
3397                         release_mem_region(base->phy_start,
3398                                            base->phy_size);
3399                 if (base->clk) {
3400                         clk_disable(base->clk);
3401                         clk_put(base->clk);
3402                 }
3403
3404                 if (base->lcpa_regulator) {
3405                         regulator_disable(base->lcpa_regulator);
3406                         regulator_put(base->lcpa_regulator);
3407                 }
3408
3409                 kfree(base->lcla_pool.alloc_map);
3410                 kfree(base->lookup_log_chans);
3411                 kfree(base->lookup_phy_chans);
3412                 kfree(base->phy_res);
3413                 kfree(base);
3414         }
3415
3416         d40_err(&pdev->dev, "probe failed\n");
3417         return ret;
3418 }
3419
3420 static struct platform_driver d40_driver = {
3421         .driver = {
3422                 .owner = THIS_MODULE,
3423                 .name  = D40_NAME,
3424                 .pm = DMA40_PM_OPS,
3425         },
3426 };
3427
3428 static int __init stedma40_init(void)
3429 {
3430         return platform_driver_probe(&d40_driver, d40_probe);
3431 }
3432 subsys_initcall(stedma40_init);