2 * Copyright (C) 2006-2009 DENX Software Engineering.
4 * Author: Yuri Tikhonov <yur@emcraft.com>
6 * Further porting to arch/powerpc by
7 * Anatolij Gustschin <agust@denx.de>
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the Free
11 * Software Foundation; either version 2 of the License, or (at your option)
14 * This program is distributed in the hope that it will be useful, but WITHOUT
15 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
19 * You should have received a copy of the GNU General Public License along with
20 * this program; if not, write to the Free Software Foundation, Inc., 59
21 * Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23 * The full GNU General Public License is included in this distribution in the
24 * file called COPYING.
28 * This driver supports the asynchrounous DMA copy and RAID engines available
29 * on the AMCC PPC440SPe Processors.
30 * Based on the Intel Xscale(R) family of I/O Processors (IOP 32x, 33x, 134x)
31 * ADMA driver written by D.Williams.
34 #include <linux/init.h>
35 #include <linux/module.h>
36 #include <linux/async_tx.h>
37 #include <linux/delay.h>
38 #include <linux/dma-mapping.h>
39 #include <linux/spinlock.h>
40 #include <linux/interrupt.h>
41 #include <linux/slab.h>
42 #include <linux/uaccess.h>
43 #include <linux/proc_fs.h>
45 #include <linux/of_address.h>
46 #include <linux/of_irq.h>
47 #include <linux/of_platform.h>
49 #include <asm/dcr-regs.h>
51 #include "../dmaengine.h"
53 enum ppc_adma_init_code {
58 PPC_ADMA_INIT_COHERENT,
59 PPC_ADMA_INIT_CHANNEL,
62 PPC_ADMA_INIT_REGISTER
65 static char *ppc_adma_errors[] = {
66 [PPC_ADMA_INIT_OK] = "ok",
67 [PPC_ADMA_INIT_MEMRES] = "failed to get memory resource",
68 [PPC_ADMA_INIT_MEMREG] = "failed to request memory region",
69 [PPC_ADMA_INIT_ALLOC] = "failed to allocate memory for adev "
71 [PPC_ADMA_INIT_COHERENT] = "failed to allocate coherent memory for "
72 "hardware descriptors",
73 [PPC_ADMA_INIT_CHANNEL] = "failed to allocate memory for channel",
74 [PPC_ADMA_INIT_IRQ1] = "failed to request first irq",
75 [PPC_ADMA_INIT_IRQ2] = "failed to request second irq",
76 [PPC_ADMA_INIT_REGISTER] = "failed to register dma async device",
79 static enum ppc_adma_init_code
80 ppc440spe_adma_devices[PPC440SPE_ADMA_ENGINES_NUM];
82 struct ppc_dma_chan_ref {
83 struct dma_chan *chan;
84 struct list_head node;
87 /* The list of channels exported by ppc440spe ADMA */
89 ppc440spe_adma_chan_list = LIST_HEAD_INIT(ppc440spe_adma_chan_list);
91 /* This flag is set when want to refetch the xor chain in the interrupt
94 static u32 do_xor_refetch;
96 /* Pointer to DMA0, DMA1 CP/CS FIFO */
97 static void *ppc440spe_dma_fifo_buf;
99 /* Pointers to last submitted to DMA0, DMA1 CDBs */
100 static struct ppc440spe_adma_desc_slot *chan_last_sub[3];
101 static struct ppc440spe_adma_desc_slot *chan_first_cdb[3];
103 /* Pointer to last linked and submitted xor CB */
104 static struct ppc440spe_adma_desc_slot *xor_last_linked;
105 static struct ppc440spe_adma_desc_slot *xor_last_submit;
107 /* This array is used in data-check operations for storing a pattern */
108 static char ppc440spe_qword[16];
110 static atomic_t ppc440spe_adma_err_irq_ref;
111 static dcr_host_t ppc440spe_mq_dcr_host;
112 static unsigned int ppc440spe_mq_dcr_len;
114 /* Since RXOR operations use the common register (MQ0_CF2H) for setting-up
115 * the block size in transactions, then we do not allow to activate more than
116 * only one RXOR transactions simultaneously. So use this var to store
117 * the information about is RXOR currently active (PPC440SPE_RXOR_RUN bit is
118 * set) or not (PPC440SPE_RXOR_RUN is clear).
120 static unsigned long ppc440spe_rxor_state;
122 /* These are used in enable & check routines
124 static u32 ppc440spe_r6_enabled;
125 static struct ppc440spe_adma_chan *ppc440spe_r6_tchan;
126 static struct completion ppc440spe_r6_test_comp;
128 static int ppc440spe_adma_dma2rxor_prep_src(
129 struct ppc440spe_adma_desc_slot *desc,
130 struct ppc440spe_rxor *cursor, int index,
131 int src_cnt, u32 addr);
132 static void ppc440spe_adma_dma2rxor_set_src(
133 struct ppc440spe_adma_desc_slot *desc,
134 int index, dma_addr_t addr);
135 static void ppc440spe_adma_dma2rxor_set_mult(
136 struct ppc440spe_adma_desc_slot *desc,
140 #define ADMA_LL_DBG(x) ({ if (1) x; 0; })
142 #define ADMA_LL_DBG(x) ({ if (0) x; 0; })
145 static void print_cb(struct ppc440spe_adma_chan *chan, void *block)
151 switch (chan->device->id) {
156 pr_debug("CDB at %p [%d]:\n"
157 "\t attr 0x%02x opc 0x%02x cnt 0x%08x\n"
158 "\t sg1u 0x%08x sg1l 0x%08x\n"
159 "\t sg2u 0x%08x sg2l 0x%08x\n"
160 "\t sg3u 0x%08x sg3l 0x%08x\n",
161 cdb, chan->device->id,
162 cdb->attr, cdb->opc, le32_to_cpu(cdb->cnt),
163 le32_to_cpu(cdb->sg1u), le32_to_cpu(cdb->sg1l),
164 le32_to_cpu(cdb->sg2u), le32_to_cpu(cdb->sg2l),
165 le32_to_cpu(cdb->sg3u), le32_to_cpu(cdb->sg3l)
171 pr_debug("CB at %p [%d]:\n"
172 "\t cbc 0x%08x cbbc 0x%08x cbs 0x%08x\n"
173 "\t cbtah 0x%08x cbtal 0x%08x\n"
174 "\t cblah 0x%08x cblal 0x%08x\n",
175 cb, chan->device->id,
176 cb->cbc, cb->cbbc, cb->cbs,
177 cb->cbtah, cb->cbtal,
178 cb->cblah, cb->cblal);
179 for (i = 0; i < 16; i++) {
180 if (i && !cb->ops[i].h && !cb->ops[i].l)
182 pr_debug("\t ops[%2d]: h 0x%08x l 0x%08x\n",
183 i, cb->ops[i].h, cb->ops[i].l);
189 static void print_cb_list(struct ppc440spe_adma_chan *chan,
190 struct ppc440spe_adma_desc_slot *iter)
192 for (; iter; iter = iter->hw_next)
193 print_cb(chan, iter->hw_desc);
196 static void prep_dma_xor_dbg(int id, dma_addr_t dst, dma_addr_t *src,
197 unsigned int src_cnt)
201 pr_debug("\n%s(%d):\nsrc: ", __func__, id);
202 for (i = 0; i < src_cnt; i++)
203 pr_debug("\t0x%016llx ", src[i]);
204 pr_debug("dst:\n\t0x%016llx\n", dst);
207 static void prep_dma_pq_dbg(int id, dma_addr_t *dst, dma_addr_t *src,
208 unsigned int src_cnt)
212 pr_debug("\n%s(%d):\nsrc: ", __func__, id);
213 for (i = 0; i < src_cnt; i++)
214 pr_debug("\t0x%016llx ", src[i]);
216 for (i = 0; i < 2; i++)
217 pr_debug("\t0x%016llx ", dst[i]);
220 static void prep_dma_pqzero_sum_dbg(int id, dma_addr_t *src,
221 unsigned int src_cnt,
222 const unsigned char *scf)
226 pr_debug("\n%s(%d):\nsrc(coef): ", __func__, id);
228 for (i = 0; i < src_cnt; i++)
229 pr_debug("\t0x%016llx(0x%02x) ", src[i], scf[i]);
231 for (i = 0; i < src_cnt; i++)
232 pr_debug("\t0x%016llx(no) ", src[i]);
236 for (i = 0; i < 2; i++)
237 pr_debug("\t0x%016llx ", src[src_cnt + i]);
240 /******************************************************************************
241 * Command (Descriptor) Blocks low-level routines
242 ******************************************************************************/
244 * ppc440spe_desc_init_interrupt - initialize the descriptor for INTERRUPT
247 static void ppc440spe_desc_init_interrupt(struct ppc440spe_adma_desc_slot *desc,
248 struct ppc440spe_adma_chan *chan)
252 switch (chan->device->id) {
253 case PPC440SPE_XOR_ID:
255 memset(desc->hw_desc, 0, sizeof(struct xor_cb));
256 /* NOP with Command Block Complete Enable */
257 p->cbc = XOR_CBCR_CBCE_BIT;
259 case PPC440SPE_DMA0_ID:
260 case PPC440SPE_DMA1_ID:
261 memset(desc->hw_desc, 0, sizeof(struct dma_cdb));
262 /* NOP with interrupt */
263 set_bit(PPC440SPE_DESC_INT, &desc->flags);
266 printk(KERN_ERR "Unsupported id %d in %s\n", chan->device->id,
273 * ppc440spe_desc_init_null_xor - initialize the descriptor for NULL XOR
276 static void ppc440spe_desc_init_null_xor(struct ppc440spe_adma_desc_slot *desc)
278 memset(desc->hw_desc, 0, sizeof(struct xor_cb));
279 desc->hw_next = NULL;
285 * ppc440spe_desc_init_xor - initialize the descriptor for XOR operation
287 static void ppc440spe_desc_init_xor(struct ppc440spe_adma_desc_slot *desc,
288 int src_cnt, unsigned long flags)
290 struct xor_cb *hw_desc = desc->hw_desc;
292 memset(desc->hw_desc, 0, sizeof(struct xor_cb));
293 desc->hw_next = NULL;
294 desc->src_cnt = src_cnt;
297 hw_desc->cbc = XOR_CBCR_TGT_BIT | src_cnt;
298 if (flags & DMA_PREP_INTERRUPT)
299 /* Enable interrupt on completion */
300 hw_desc->cbc |= XOR_CBCR_CBCE_BIT;
304 * ppc440spe_desc_init_dma2pq - initialize the descriptor for PQ
305 * operation in DMA2 controller
307 static void ppc440spe_desc_init_dma2pq(struct ppc440spe_adma_desc_slot *desc,
308 int dst_cnt, int src_cnt, unsigned long flags)
310 struct xor_cb *hw_desc = desc->hw_desc;
312 memset(desc->hw_desc, 0, sizeof(struct xor_cb));
313 desc->hw_next = NULL;
314 desc->src_cnt = src_cnt;
315 desc->dst_cnt = dst_cnt;
316 memset(desc->reverse_flags, 0, sizeof(desc->reverse_flags));
317 desc->descs_per_op = 0;
319 hw_desc->cbc = XOR_CBCR_TGT_BIT;
320 if (flags & DMA_PREP_INTERRUPT)
321 /* Enable interrupt on completion */
322 hw_desc->cbc |= XOR_CBCR_CBCE_BIT;
325 #define DMA_CTRL_FLAGS_LAST DMA_PREP_FENCE
326 #define DMA_PREP_ZERO_P (DMA_CTRL_FLAGS_LAST << 1)
327 #define DMA_PREP_ZERO_Q (DMA_PREP_ZERO_P << 1)
330 * ppc440spe_desc_init_dma01pq - initialize the descriptors for PQ operation
333 static void ppc440spe_desc_init_dma01pq(struct ppc440spe_adma_desc_slot *desc,
334 int dst_cnt, int src_cnt, unsigned long flags,
337 struct dma_cdb *hw_desc;
338 struct ppc440spe_adma_desc_slot *iter;
341 /* Common initialization of a PQ descriptors chain */
342 set_bits(op, &desc->flags);
343 desc->src_cnt = src_cnt;
344 desc->dst_cnt = dst_cnt;
346 /* WXOR MULTICAST if both P and Q are being computed
347 * MV_SG1_SG2 if Q only
349 dopc = (desc->dst_cnt == DMA_DEST_MAX_NUM) ?
350 DMA_CDB_OPC_MULTICAST : DMA_CDB_OPC_MV_SG1_SG2;
352 list_for_each_entry(iter, &desc->group_list, chain_node) {
353 hw_desc = iter->hw_desc;
354 memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
356 if (likely(!list_is_last(&iter->chain_node,
357 &desc->group_list))) {
358 /* set 'next' pointer */
359 iter->hw_next = list_entry(iter->chain_node.next,
360 struct ppc440spe_adma_desc_slot, chain_node);
361 clear_bit(PPC440SPE_DESC_INT, &iter->flags);
363 /* this is the last descriptor.
364 * this slot will be pasted from ADMA level
365 * each time it wants to configure parameters
366 * of the transaction (src, dst, ...)
368 iter->hw_next = NULL;
369 if (flags & DMA_PREP_INTERRUPT)
370 set_bit(PPC440SPE_DESC_INT, &iter->flags);
372 clear_bit(PPC440SPE_DESC_INT, &iter->flags);
376 /* Set OPS depending on WXOR/RXOR type of operation */
377 if (!test_bit(PPC440SPE_DESC_RXOR, &desc->flags)) {
378 /* This is a WXOR only chain:
379 * - first descriptors are for zeroing destinations
380 * if PPC440SPE_ZERO_P/Q set;
381 * - descriptors remained are for GF-XOR operations.
383 iter = list_first_entry(&desc->group_list,
384 struct ppc440spe_adma_desc_slot,
387 if (test_bit(PPC440SPE_ZERO_P, &desc->flags)) {
388 hw_desc = iter->hw_desc;
389 hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
390 iter = list_first_entry(&iter->chain_node,
391 struct ppc440spe_adma_desc_slot,
395 if (test_bit(PPC440SPE_ZERO_Q, &desc->flags)) {
396 hw_desc = iter->hw_desc;
397 hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
398 iter = list_first_entry(&iter->chain_node,
399 struct ppc440spe_adma_desc_slot,
403 list_for_each_entry_from(iter, &desc->group_list, chain_node) {
404 hw_desc = iter->hw_desc;
408 /* This is either RXOR-only or mixed RXOR/WXOR */
410 /* The first 1 or 2 slots in chain are always RXOR,
411 * if need to calculate P & Q, then there are two
412 * RXOR slots; if only P or only Q, then there is one
414 iter = list_first_entry(&desc->group_list,
415 struct ppc440spe_adma_desc_slot,
417 hw_desc = iter->hw_desc;
418 hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
420 if (desc->dst_cnt == DMA_DEST_MAX_NUM) {
421 iter = list_first_entry(&iter->chain_node,
422 struct ppc440spe_adma_desc_slot,
424 hw_desc = iter->hw_desc;
425 hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
428 /* The remaining descs (if any) are WXORs */
429 if (test_bit(PPC440SPE_DESC_WXOR, &desc->flags)) {
430 iter = list_first_entry(&iter->chain_node,
431 struct ppc440spe_adma_desc_slot,
433 list_for_each_entry_from(iter, &desc->group_list,
435 hw_desc = iter->hw_desc;
443 * ppc440spe_desc_init_dma01pqzero_sum - initialize the descriptor
444 * for PQ_ZERO_SUM operation
446 static void ppc440spe_desc_init_dma01pqzero_sum(
447 struct ppc440spe_adma_desc_slot *desc,
448 int dst_cnt, int src_cnt)
450 struct dma_cdb *hw_desc;
451 struct ppc440spe_adma_desc_slot *iter;
453 u8 dopc = (dst_cnt == 2) ? DMA_CDB_OPC_MULTICAST :
454 DMA_CDB_OPC_MV_SG1_SG2;
456 * Initialize starting from 2nd or 3rd descriptor dependent
457 * on dst_cnt. First one or two slots are for cloning P
458 * and/or Q to chan->pdest and/or chan->qdest as we have
459 * to preserve original P/Q.
461 iter = list_first_entry(&desc->group_list,
462 struct ppc440spe_adma_desc_slot, chain_node);
463 iter = list_entry(iter->chain_node.next,
464 struct ppc440spe_adma_desc_slot, chain_node);
467 iter = list_entry(iter->chain_node.next,
468 struct ppc440spe_adma_desc_slot, chain_node);
470 /* initialize each source descriptor in chain */
471 list_for_each_entry_from(iter, &desc->group_list, chain_node) {
472 hw_desc = iter->hw_desc;
473 memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
477 /* This is a ZERO_SUM operation:
478 * - <src_cnt> descriptors starting from 2nd or 3rd
479 * descriptor are for GF-XOR operations;
480 * - remaining <dst_cnt> descriptors are for checking the result
483 /* MV_SG1_SG2 if only Q is being verified
484 * MULTICAST if both P and Q are being verified
488 /* DMA_CDB_OPC_DCHECK128 operation */
489 hw_desc->opc = DMA_CDB_OPC_DCHECK128;
491 if (likely(!list_is_last(&iter->chain_node,
492 &desc->group_list))) {
493 /* set 'next' pointer */
494 iter->hw_next = list_entry(iter->chain_node.next,
495 struct ppc440spe_adma_desc_slot,
498 /* this is the last descriptor.
499 * this slot will be pasted from ADMA level
500 * each time it wants to configure parameters
501 * of the transaction (src, dst, ...)
503 iter->hw_next = NULL;
504 /* always enable interrupt generation since we get
505 * the status of pqzero from the handler
507 set_bit(PPC440SPE_DESC_INT, &iter->flags);
510 desc->src_cnt = src_cnt;
511 desc->dst_cnt = dst_cnt;
515 * ppc440spe_desc_init_memcpy - initialize the descriptor for MEMCPY operation
517 static void ppc440spe_desc_init_memcpy(struct ppc440spe_adma_desc_slot *desc,
520 struct dma_cdb *hw_desc = desc->hw_desc;
522 memset(desc->hw_desc, 0, sizeof(struct dma_cdb));
523 desc->hw_next = NULL;
527 if (flags & DMA_PREP_INTERRUPT)
528 set_bit(PPC440SPE_DESC_INT, &desc->flags);
530 clear_bit(PPC440SPE_DESC_INT, &desc->flags);
532 hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
536 * ppc440spe_desc_init_memset - initialize the descriptor for MEMSET operation
538 static void ppc440spe_desc_init_memset(struct ppc440spe_adma_desc_slot *desc,
539 int value, unsigned long flags)
541 struct dma_cdb *hw_desc = desc->hw_desc;
543 memset(desc->hw_desc, 0, sizeof(struct dma_cdb));
544 desc->hw_next = NULL;
548 if (flags & DMA_PREP_INTERRUPT)
549 set_bit(PPC440SPE_DESC_INT, &desc->flags);
551 clear_bit(PPC440SPE_DESC_INT, &desc->flags);
553 hw_desc->sg1u = hw_desc->sg1l = cpu_to_le32((u32)value);
554 hw_desc->sg3u = hw_desc->sg3l = cpu_to_le32((u32)value);
555 hw_desc->opc = DMA_CDB_OPC_DFILL128;
559 * ppc440spe_desc_set_src_addr - set source address into the descriptor
561 static void ppc440spe_desc_set_src_addr(struct ppc440spe_adma_desc_slot *desc,
562 struct ppc440spe_adma_chan *chan,
563 int src_idx, dma_addr_t addrh,
566 struct dma_cdb *dma_hw_desc;
567 struct xor_cb *xor_hw_desc;
568 phys_addr_t addr64, tmplow, tmphi;
570 switch (chan->device->id) {
571 case PPC440SPE_DMA0_ID:
572 case PPC440SPE_DMA1_ID:
575 tmphi = (addr64 >> 32);
576 tmplow = (addr64 & 0xFFFFFFFF);
581 dma_hw_desc = desc->hw_desc;
582 dma_hw_desc->sg1l = cpu_to_le32((u32)tmplow);
583 dma_hw_desc->sg1u |= cpu_to_le32((u32)tmphi);
585 case PPC440SPE_XOR_ID:
586 xor_hw_desc = desc->hw_desc;
587 xor_hw_desc->ops[src_idx].l = addrl;
588 xor_hw_desc->ops[src_idx].h |= addrh;
594 * ppc440spe_desc_set_src_mult - set source address mult into the descriptor
596 static void ppc440spe_desc_set_src_mult(struct ppc440spe_adma_desc_slot *desc,
597 struct ppc440spe_adma_chan *chan, u32 mult_index,
598 int sg_index, unsigned char mult_value)
600 struct dma_cdb *dma_hw_desc;
601 struct xor_cb *xor_hw_desc;
604 switch (chan->device->id) {
605 case PPC440SPE_DMA0_ID:
606 case PPC440SPE_DMA1_ID:
607 dma_hw_desc = desc->hw_desc;
610 /* for RXOR operations set multiplier
611 * into source cued address
614 psgu = &dma_hw_desc->sg1u;
616 /* for WXOR operations set multiplier
617 * into destination cued address(es)
619 case DMA_CDB_SG_DST1:
620 psgu = &dma_hw_desc->sg2u;
622 case DMA_CDB_SG_DST2:
623 psgu = &dma_hw_desc->sg3u;
629 *psgu |= cpu_to_le32(mult_value << mult_index);
631 case PPC440SPE_XOR_ID:
632 xor_hw_desc = desc->hw_desc;
640 * ppc440spe_desc_set_dest_addr - set destination address into the descriptor
642 static void ppc440spe_desc_set_dest_addr(struct ppc440spe_adma_desc_slot *desc,
643 struct ppc440spe_adma_chan *chan,
644 dma_addr_t addrh, dma_addr_t addrl,
647 struct dma_cdb *dma_hw_desc;
648 struct xor_cb *xor_hw_desc;
649 phys_addr_t addr64, tmphi, tmplow;
652 switch (chan->device->id) {
653 case PPC440SPE_DMA0_ID:
654 case PPC440SPE_DMA1_ID:
657 tmphi = (addr64 >> 32);
658 tmplow = (addr64 & 0xFFFFFFFF);
663 dma_hw_desc = desc->hw_desc;
665 psgu = dst_idx ? &dma_hw_desc->sg3u : &dma_hw_desc->sg2u;
666 psgl = dst_idx ? &dma_hw_desc->sg3l : &dma_hw_desc->sg2l;
668 *psgl = cpu_to_le32((u32)tmplow);
669 *psgu |= cpu_to_le32((u32)tmphi);
671 case PPC440SPE_XOR_ID:
672 xor_hw_desc = desc->hw_desc;
673 xor_hw_desc->cbtal = addrl;
674 xor_hw_desc->cbtah |= addrh;
680 * ppc440spe_desc_set_byte_count - set number of data bytes involved
683 static void ppc440spe_desc_set_byte_count(struct ppc440spe_adma_desc_slot *desc,
684 struct ppc440spe_adma_chan *chan,
687 struct dma_cdb *dma_hw_desc;
688 struct xor_cb *xor_hw_desc;
690 switch (chan->device->id) {
691 case PPC440SPE_DMA0_ID:
692 case PPC440SPE_DMA1_ID:
693 dma_hw_desc = desc->hw_desc;
694 dma_hw_desc->cnt = cpu_to_le32(byte_count);
696 case PPC440SPE_XOR_ID:
697 xor_hw_desc = desc->hw_desc;
698 xor_hw_desc->cbbc = byte_count;
704 * ppc440spe_desc_set_rxor_block_size - set RXOR block size
706 static inline void ppc440spe_desc_set_rxor_block_size(u32 byte_count)
708 /* assume that byte_count is aligned on the 512-boundary;
709 * thus write it directly to the register (bits 23:31 are
712 dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_CF2H, byte_count);
716 * ppc440spe_desc_set_dcheck - set CHECK pattern
718 static void ppc440spe_desc_set_dcheck(struct ppc440spe_adma_desc_slot *desc,
719 struct ppc440spe_adma_chan *chan, u8 *qword)
721 struct dma_cdb *dma_hw_desc;
723 switch (chan->device->id) {
724 case PPC440SPE_DMA0_ID:
725 case PPC440SPE_DMA1_ID:
726 dma_hw_desc = desc->hw_desc;
727 iowrite32(qword[0], &dma_hw_desc->sg3l);
728 iowrite32(qword[4], &dma_hw_desc->sg3u);
729 iowrite32(qword[8], &dma_hw_desc->sg2l);
730 iowrite32(qword[12], &dma_hw_desc->sg2u);
738 * ppc440spe_xor_set_link - set link address in xor CB
740 static void ppc440spe_xor_set_link(struct ppc440spe_adma_desc_slot *prev_desc,
741 struct ppc440spe_adma_desc_slot *next_desc)
743 struct xor_cb *xor_hw_desc = prev_desc->hw_desc;
745 if (unlikely(!next_desc || !(next_desc->phys))) {
746 printk(KERN_ERR "%s: next_desc=0x%p; next_desc->phys=0x%llx\n",
748 next_desc ? next_desc->phys : 0);
752 xor_hw_desc->cbs = 0;
753 xor_hw_desc->cblal = next_desc->phys;
754 xor_hw_desc->cblah = 0;
755 xor_hw_desc->cbc |= XOR_CBCR_LNK_BIT;
759 * ppc440spe_desc_set_link - set the address of descriptor following this
760 * descriptor in chain
762 static void ppc440spe_desc_set_link(struct ppc440spe_adma_chan *chan,
763 struct ppc440spe_adma_desc_slot *prev_desc,
764 struct ppc440spe_adma_desc_slot *next_desc)
767 struct ppc440spe_adma_desc_slot *tail = next_desc;
769 if (unlikely(!prev_desc || !next_desc ||
770 (prev_desc->hw_next && prev_desc->hw_next != next_desc))) {
771 /* If previous next is overwritten something is wrong.
772 * though we may refetch from append to initiate list
773 * processing; in this case - it's ok.
775 printk(KERN_ERR "%s: prev_desc=0x%p; next_desc=0x%p; "
776 "prev->hw_next=0x%p\n", __func__, prev_desc,
777 next_desc, prev_desc ? prev_desc->hw_next : 0);
781 local_irq_save(flags);
783 /* do s/w chaining both for DMA and XOR descriptors */
784 prev_desc->hw_next = next_desc;
786 switch (chan->device->id) {
787 case PPC440SPE_DMA0_ID:
788 case PPC440SPE_DMA1_ID:
790 case PPC440SPE_XOR_ID:
791 /* bind descriptor to the chain */
792 while (tail->hw_next)
793 tail = tail->hw_next;
794 xor_last_linked = tail;
796 if (prev_desc == xor_last_submit)
797 /* do not link to the last submitted CB */
799 ppc440spe_xor_set_link(prev_desc, next_desc);
803 local_irq_restore(flags);
807 * ppc440spe_desc_get_src_addr - extract the source address from the descriptor
809 static u32 ppc440spe_desc_get_src_addr(struct ppc440spe_adma_desc_slot *desc,
810 struct ppc440spe_adma_chan *chan, int src_idx)
812 struct dma_cdb *dma_hw_desc;
813 struct xor_cb *xor_hw_desc;
815 switch (chan->device->id) {
816 case PPC440SPE_DMA0_ID:
817 case PPC440SPE_DMA1_ID:
818 dma_hw_desc = desc->hw_desc;
819 /* May have 0, 1, 2, or 3 sources */
820 switch (dma_hw_desc->opc) {
821 case DMA_CDB_OPC_NO_OP:
822 case DMA_CDB_OPC_DFILL128:
824 case DMA_CDB_OPC_DCHECK128:
825 if (unlikely(src_idx)) {
826 printk(KERN_ERR "%s: try to get %d source for"
827 " DCHECK128\n", __func__, src_idx);
830 return le32_to_cpu(dma_hw_desc->sg1l);
831 case DMA_CDB_OPC_MULTICAST:
832 case DMA_CDB_OPC_MV_SG1_SG2:
833 if (unlikely(src_idx > 2)) {
834 printk(KERN_ERR "%s: try to get %d source from"
835 " DMA descr\n", __func__, src_idx);
839 if (le32_to_cpu(dma_hw_desc->sg1u) &
840 DMA_CUED_XOR_WIN_MSK) {
848 region = (le32_to_cpu(
849 dma_hw_desc->sg1u)) >>
852 region &= DMA_CUED_REGION_MSK;
857 (desc->unmap_len << 1);
861 (desc->unmap_len * 3);
865 (desc->unmap_len << 2);
869 " get src3 for region %02x"
870 "PPC440SPE_DESC_RXOR12?\n",
877 " source for non-cued descr\n",
882 return le32_to_cpu(dma_hw_desc->sg1l);
884 printk(KERN_ERR "%s: unknown OPC 0x%02x\n",
885 __func__, dma_hw_desc->opc);
888 return le32_to_cpu(dma_hw_desc->sg1l);
889 case PPC440SPE_XOR_ID:
890 /* May have up to 16 sources */
891 xor_hw_desc = desc->hw_desc;
892 return xor_hw_desc->ops[src_idx].l;
898 * ppc440spe_desc_get_dest_addr - extract the destination address from the
901 static u32 ppc440spe_desc_get_dest_addr(struct ppc440spe_adma_desc_slot *desc,
902 struct ppc440spe_adma_chan *chan, int idx)
904 struct dma_cdb *dma_hw_desc;
905 struct xor_cb *xor_hw_desc;
907 switch (chan->device->id) {
908 case PPC440SPE_DMA0_ID:
909 case PPC440SPE_DMA1_ID:
910 dma_hw_desc = desc->hw_desc;
913 return le32_to_cpu(dma_hw_desc->sg2l);
914 return le32_to_cpu(dma_hw_desc->sg3l);
915 case PPC440SPE_XOR_ID:
916 xor_hw_desc = desc->hw_desc;
917 return xor_hw_desc->cbtal;
923 * ppc440spe_desc_get_src_num - extract the number of source addresses from
926 static u32 ppc440spe_desc_get_src_num(struct ppc440spe_adma_desc_slot *desc,
927 struct ppc440spe_adma_chan *chan)
929 struct dma_cdb *dma_hw_desc;
930 struct xor_cb *xor_hw_desc;
932 switch (chan->device->id) {
933 case PPC440SPE_DMA0_ID:
934 case PPC440SPE_DMA1_ID:
935 dma_hw_desc = desc->hw_desc;
937 switch (dma_hw_desc->opc) {
938 case DMA_CDB_OPC_NO_OP:
939 case DMA_CDB_OPC_DFILL128:
941 case DMA_CDB_OPC_DCHECK128:
943 case DMA_CDB_OPC_MV_SG1_SG2:
944 case DMA_CDB_OPC_MULTICAST:
946 * Only for RXOR operations we have more than
949 if (le32_to_cpu(dma_hw_desc->sg1u) &
950 DMA_CUED_XOR_WIN_MSK) {
951 /* RXOR op, there are 2 or 3 sources */
952 if (((le32_to_cpu(dma_hw_desc->sg1u) >>
953 DMA_CUED_REGION_OFF) &
954 DMA_CUED_REGION_MSK) == DMA_RXOR12) {
958 /* RXOR 1-2-3/1-2-4/1-2-5 */
964 printk(KERN_ERR "%s: unknown OPC 0x%02x\n",
965 __func__, dma_hw_desc->opc);
968 case PPC440SPE_XOR_ID:
969 /* up to 16 sources */
970 xor_hw_desc = desc->hw_desc;
971 return xor_hw_desc->cbc & XOR_CDCR_OAC_MSK;
979 * ppc440spe_desc_get_dst_num - get the number of destination addresses in
982 static u32 ppc440spe_desc_get_dst_num(struct ppc440spe_adma_desc_slot *desc,
983 struct ppc440spe_adma_chan *chan)
985 struct dma_cdb *dma_hw_desc;
987 switch (chan->device->id) {
988 case PPC440SPE_DMA0_ID:
989 case PPC440SPE_DMA1_ID:
990 /* May be 1 or 2 destinations */
991 dma_hw_desc = desc->hw_desc;
992 switch (dma_hw_desc->opc) {
993 case DMA_CDB_OPC_NO_OP:
994 case DMA_CDB_OPC_DCHECK128:
996 case DMA_CDB_OPC_MV_SG1_SG2:
997 case DMA_CDB_OPC_DFILL128:
999 case DMA_CDB_OPC_MULTICAST:
1000 if (desc->dst_cnt == 2)
1005 printk(KERN_ERR "%s: unknown OPC 0x%02x\n",
1006 __func__, dma_hw_desc->opc);
1009 case PPC440SPE_XOR_ID:
1010 /* Always only 1 destination */
1019 * ppc440spe_desc_get_link - get the address of the descriptor that
1022 static inline u32 ppc440spe_desc_get_link(struct ppc440spe_adma_desc_slot *desc,
1023 struct ppc440spe_adma_chan *chan)
1028 return desc->hw_next->phys;
1032 * ppc440spe_desc_is_aligned - check alignment
1034 static inline int ppc440spe_desc_is_aligned(
1035 struct ppc440spe_adma_desc_slot *desc, int num_slots)
1037 return (desc->idx & (num_slots - 1)) ? 0 : 1;
1041 * ppc440spe_chan_xor_slot_count - get the number of slots necessary for
1044 static int ppc440spe_chan_xor_slot_count(size_t len, int src_cnt,
1049 /* each XOR descriptor provides up to 16 source operands */
1050 slot_cnt = *slots_per_op = (src_cnt + XOR_MAX_OPS - 1)/XOR_MAX_OPS;
1052 if (likely(len <= PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT))
1055 printk(KERN_ERR "%s: len %d > max %d !!\n",
1056 __func__, len, PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT);
1062 * ppc440spe_dma2_pq_slot_count - get the number of slots necessary for
1065 static int ppc440spe_dma2_pq_slot_count(dma_addr_t *srcs,
1066 int src_cnt, size_t len)
1068 signed long long order = 0;
1072 for (i = 1; i < src_cnt; i++) {
1073 dma_addr_t cur_addr = srcs[i];
1074 dma_addr_t old_addr = srcs[i-1];
1077 if (cur_addr == old_addr + len) {
1083 } else if (old_addr == cur_addr + len) {
1094 if (i == src_cnt-2 || (order == -1
1095 && cur_addr != old_addr - len)) {
1099 } else if (cur_addr == old_addr + len*order) {
1103 } else if (cur_addr == old_addr + 2*len) {
1107 } else if (cur_addr == old_addr + 3*len) {
1126 if (src_cnt <= 1 || (state != 1 && state != 2)) {
1127 pr_err("%s: src_cnt=%d, state=%d, addr_count=%d, order=%lld\n",
1128 __func__, src_cnt, state, addr_count, order);
1129 for (i = 0; i < src_cnt; i++)
1130 pr_err("\t[%d] 0x%llx \n", i, srcs[i]);
1134 return (addr_count + XOR_MAX_OPS - 1) / XOR_MAX_OPS;
1138 /******************************************************************************
1139 * ADMA channel low-level routines
1140 ******************************************************************************/
1143 ppc440spe_chan_get_current_descriptor(struct ppc440spe_adma_chan *chan);
1144 static void ppc440spe_chan_append(struct ppc440spe_adma_chan *chan);
1147 * ppc440spe_adma_device_clear_eot_status - interrupt ack to XOR or DMA engine
1149 static void ppc440spe_adma_device_clear_eot_status(
1150 struct ppc440spe_adma_chan *chan)
1152 struct dma_regs *dma_reg;
1153 struct xor_regs *xor_reg;
1154 u8 *p = chan->device->dma_desc_pool_virt;
1155 struct dma_cdb *cdb;
1158 switch (chan->device->id) {
1159 case PPC440SPE_DMA0_ID:
1160 case PPC440SPE_DMA1_ID:
1161 /* read FIFO to ack */
1162 dma_reg = chan->device->dma_reg;
1163 while ((rv = ioread32(&dma_reg->csfpl))) {
1164 i = rv & DMA_CDB_ADDR_MSK;
1165 cdb = (struct dma_cdb *)&p[i -
1166 (u32)chan->device->dma_desc_pool];
1168 /* Clear opcode to ack. This is necessary for
1169 * ZeroSum operations only
1173 if (test_bit(PPC440SPE_RXOR_RUN,
1174 &ppc440spe_rxor_state)) {
1175 /* probably this is a completed RXOR op,
1176 * get pointer to CDB using the fact that
1177 * physical and virtual addresses of CDB
1178 * in pools have the same offsets
1180 if (le32_to_cpu(cdb->sg1u) &
1181 DMA_CUED_XOR_BASE) {
1182 /* this is a RXOR */
1183 clear_bit(PPC440SPE_RXOR_RUN,
1184 &ppc440spe_rxor_state);
1188 if (rv & DMA_CDB_STATUS_MSK) {
1189 /* ZeroSum check failed
1191 struct ppc440spe_adma_desc_slot *iter;
1192 dma_addr_t phys = rv & ~DMA_CDB_MSK;
1195 * Update the status of corresponding
1198 list_for_each_entry(iter, &chan->chain,
1200 if (iter->phys == phys)
1204 * if cannot find the corresponding
1207 BUG_ON(&iter->chain_node == &chan->chain);
1209 if (iter->xor_check_result) {
1210 if (test_bit(PPC440SPE_DESC_PCHECK,
1212 *iter->xor_check_result |=
1215 if (test_bit(PPC440SPE_DESC_QCHECK,
1217 *iter->xor_check_result |=
1225 rv = ioread32(&dma_reg->dsts);
1227 pr_err("DMA%d err status: 0x%x\n",
1228 chan->device->id, rv);
1229 /* write back to clear */
1230 iowrite32(rv, &dma_reg->dsts);
1233 case PPC440SPE_XOR_ID:
1234 /* reset status bits to ack */
1235 xor_reg = chan->device->xor_reg;
1236 rv = ioread32be(&xor_reg->sr);
1237 iowrite32be(rv, &xor_reg->sr);
1239 if (rv & (XOR_IE_ICBIE_BIT|XOR_IE_ICIE_BIT|XOR_IE_RPTIE_BIT)) {
1240 if (rv & XOR_IE_RPTIE_BIT) {
1241 /* Read PLB Timeout Error.
1242 * Try to resubmit the CB
1244 u32 val = ioread32be(&xor_reg->ccbalr);
1246 iowrite32be(val, &xor_reg->cblalr);
1248 val = ioread32be(&xor_reg->crsr);
1249 iowrite32be(val | XOR_CRSR_XAE_BIT,
1252 pr_err("XOR ERR 0x%x status\n", rv);
1256 /* if the XORcore is idle, but there are unprocessed CBs
1257 * then refetch the s/w chain here
1259 if (!(ioread32be(&xor_reg->sr) & XOR_SR_XCP_BIT) &&
1261 ppc440spe_chan_append(chan);
1267 * ppc440spe_chan_is_busy - get the channel status
1269 static int ppc440spe_chan_is_busy(struct ppc440spe_adma_chan *chan)
1271 struct dma_regs *dma_reg;
1272 struct xor_regs *xor_reg;
1275 switch (chan->device->id) {
1276 case PPC440SPE_DMA0_ID:
1277 case PPC440SPE_DMA1_ID:
1278 dma_reg = chan->device->dma_reg;
1279 /* if command FIFO's head and tail pointers are equal and
1280 * status tail is the same as command, then channel is free
1282 if (ioread16(&dma_reg->cpfhp) != ioread16(&dma_reg->cpftp) ||
1283 ioread16(&dma_reg->cpftp) != ioread16(&dma_reg->csftp))
1286 case PPC440SPE_XOR_ID:
1287 /* use the special status bit for the XORcore
1289 xor_reg = chan->device->xor_reg;
1290 busy = (ioread32be(&xor_reg->sr) & XOR_SR_XCP_BIT) ? 1 : 0;
1298 * ppc440spe_chan_set_first_xor_descriptor - init XORcore chain
1300 static void ppc440spe_chan_set_first_xor_descriptor(
1301 struct ppc440spe_adma_chan *chan,
1302 struct ppc440spe_adma_desc_slot *next_desc)
1304 struct xor_regs *xor_reg = chan->device->xor_reg;
1306 if (ioread32be(&xor_reg->sr) & XOR_SR_XCP_BIT)
1307 printk(KERN_INFO "%s: Warn: XORcore is running "
1308 "when try to set the first CDB!\n",
1311 xor_last_submit = xor_last_linked = next_desc;
1313 iowrite32be(XOR_CRSR_64BA_BIT, &xor_reg->crsr);
1315 iowrite32be(next_desc->phys, &xor_reg->cblalr);
1316 iowrite32be(0, &xor_reg->cblahr);
1317 iowrite32be(ioread32be(&xor_reg->cbcr) | XOR_CBCR_LNK_BIT,
1320 chan->hw_chain_inited = 1;
1324 * ppc440spe_dma_put_desc - put DMA0,1 descriptor to FIFO.
1325 * called with irqs disabled
1327 static void ppc440spe_dma_put_desc(struct ppc440spe_adma_chan *chan,
1328 struct ppc440spe_adma_desc_slot *desc)
1331 struct dma_regs *dma_reg = chan->device->dma_reg;
1334 if (!test_bit(PPC440SPE_DESC_INT, &desc->flags))
1335 pcdb |= DMA_CDB_NO_INT;
1337 chan_last_sub[chan->device->id] = desc;
1339 ADMA_LL_DBG(print_cb(chan, desc->hw_desc));
1341 iowrite32(pcdb, &dma_reg->cpfpl);
1345 * ppc440spe_chan_append - update the h/w chain in the channel
1347 static void ppc440spe_chan_append(struct ppc440spe_adma_chan *chan)
1349 struct xor_regs *xor_reg;
1350 struct ppc440spe_adma_desc_slot *iter;
1353 unsigned long flags;
1355 local_irq_save(flags);
1357 switch (chan->device->id) {
1358 case PPC440SPE_DMA0_ID:
1359 case PPC440SPE_DMA1_ID:
1360 cur_desc = ppc440spe_chan_get_current_descriptor(chan);
1362 if (likely(cur_desc)) {
1363 iter = chan_last_sub[chan->device->id];
1367 iter = chan_first_cdb[chan->device->id];
1369 ppc440spe_dma_put_desc(chan, iter);
1370 chan->hw_chain_inited = 1;
1373 /* is there something new to append */
1377 /* flush descriptors from the s/w queue to fifo */
1378 list_for_each_entry_continue(iter, &chan->chain, chain_node) {
1379 ppc440spe_dma_put_desc(chan, iter);
1384 case PPC440SPE_XOR_ID:
1385 /* update h/w links and refetch */
1386 if (!xor_last_submit->hw_next)
1389 xor_reg = chan->device->xor_reg;
1390 /* the last linked CDB has to generate an interrupt
1391 * that we'd be able to append the next lists to h/w
1392 * regardless of the XOR engine state at the moment of
1393 * appending of these next lists
1395 xcb = xor_last_linked->hw_desc;
1396 xcb->cbc |= XOR_CBCR_CBCE_BIT;
1398 if (!(ioread32be(&xor_reg->sr) & XOR_SR_XCP_BIT)) {
1399 /* XORcore is idle. Refetch now */
1401 ppc440spe_xor_set_link(xor_last_submit,
1402 xor_last_submit->hw_next);
1404 ADMA_LL_DBG(print_cb_list(chan,
1405 xor_last_submit->hw_next));
1407 xor_last_submit = xor_last_linked;
1408 iowrite32be(ioread32be(&xor_reg->crsr) |
1409 XOR_CRSR_RCBE_BIT | XOR_CRSR_64BA_BIT,
1412 /* XORcore is running. Refetch later in the handler */
1419 local_irq_restore(flags);
1423 * ppc440spe_chan_get_current_descriptor - get the currently executed descriptor
1426 ppc440spe_chan_get_current_descriptor(struct ppc440spe_adma_chan *chan)
1428 struct dma_regs *dma_reg;
1429 struct xor_regs *xor_reg;
1431 if (unlikely(!chan->hw_chain_inited))
1432 /* h/w descriptor chain is not initialized yet */
1435 switch (chan->device->id) {
1436 case PPC440SPE_DMA0_ID:
1437 case PPC440SPE_DMA1_ID:
1438 dma_reg = chan->device->dma_reg;
1439 return ioread32(&dma_reg->acpl) & (~DMA_CDB_MSK);
1440 case PPC440SPE_XOR_ID:
1441 xor_reg = chan->device->xor_reg;
1442 return ioread32be(&xor_reg->ccbalr);
1448 * ppc440spe_chan_run - enable the channel
1450 static void ppc440spe_chan_run(struct ppc440spe_adma_chan *chan)
1452 struct xor_regs *xor_reg;
1454 switch (chan->device->id) {
1455 case PPC440SPE_DMA0_ID:
1456 case PPC440SPE_DMA1_ID:
1457 /* DMAs are always enabled, do nothing */
1459 case PPC440SPE_XOR_ID:
1460 /* drain write buffer */
1461 xor_reg = chan->device->xor_reg;
1463 /* fetch descriptor pointed to in <link> */
1464 iowrite32be(XOR_CRSR_64BA_BIT | XOR_CRSR_XAE_BIT,
1470 /******************************************************************************
1472 ******************************************************************************/
1474 static void ppc440spe_chan_start_null_xor(struct ppc440spe_adma_chan *chan);
1475 static int ppc440spe_adma_alloc_chan_resources(struct dma_chan *chan);
1478 ppc440spe_adma_tx_submit(struct dma_async_tx_descriptor *tx);
1480 static void ppc440spe_adma_set_dest(struct ppc440spe_adma_desc_slot *tx,
1481 dma_addr_t addr, int index);
1483 ppc440spe_adma_memcpy_xor_set_src(struct ppc440spe_adma_desc_slot *tx,
1484 dma_addr_t addr, int index);
1487 ppc440spe_adma_pq_set_dest(struct ppc440spe_adma_desc_slot *tx,
1488 dma_addr_t *paddr, unsigned long flags);
1490 ppc440spe_adma_pq_set_src(struct ppc440spe_adma_desc_slot *tx,
1491 dma_addr_t addr, int index);
1493 ppc440spe_adma_pq_set_src_mult(struct ppc440spe_adma_desc_slot *tx,
1494 unsigned char mult, int index, int dst_pos);
1496 ppc440spe_adma_pqzero_sum_set_dest(struct ppc440spe_adma_desc_slot *tx,
1497 dma_addr_t paddr, dma_addr_t qaddr);
1499 static struct page *ppc440spe_rxor_srcs[32];
1502 * ppc440spe_can_rxor - check if the operands may be processed with RXOR
1504 static int ppc440spe_can_rxor(struct page **srcs, int src_cnt, size_t len)
1506 int i, order = 0, state = 0;
1509 if (unlikely(!(src_cnt > 1)))
1512 BUG_ON(src_cnt > ARRAY_SIZE(ppc440spe_rxor_srcs));
1514 /* Skip holes in the source list before checking */
1515 for (i = 0; i < src_cnt; i++) {
1518 ppc440spe_rxor_srcs[idx++] = srcs[i];
1522 for (i = 1; i < src_cnt; i++) {
1523 char *cur_addr = page_address(ppc440spe_rxor_srcs[i]);
1524 char *old_addr = page_address(ppc440spe_rxor_srcs[i - 1]);
1528 if (cur_addr == old_addr + len) {
1532 } else if (old_addr == cur_addr + len) {
1540 if ((i == src_cnt - 2) ||
1541 (order == -1 && cur_addr != old_addr - len)) {
1544 } else if ((cur_addr == old_addr + len * order) ||
1545 (cur_addr == old_addr + 2 * len) ||
1546 (cur_addr == old_addr + 3 * len)) {
1561 if (state == 1 || state == 2)
1568 * ppc440spe_adma_device_estimate - estimate the efficiency of processing
1569 * the operation given on this channel. It's assumed that 'chan' is
1570 * capable to process 'cap' type of operation.
1571 * @chan: channel to use
1572 * @cap: type of transaction
1573 * @dst_lst: array of destination pointers
1574 * @dst_cnt: number of destination operands
1575 * @src_lst: array of source pointers
1576 * @src_cnt: number of source operands
1577 * @src_sz: size of each source operand
1579 static int ppc440spe_adma_estimate(struct dma_chan *chan,
1580 enum dma_transaction_type cap, struct page **dst_lst, int dst_cnt,
1581 struct page **src_lst, int src_cnt, size_t src_sz)
1585 if (cap == DMA_PQ || cap == DMA_PQ_VAL) {
1586 /* If RAID-6 capabilities were not activated don't try
1589 if (unlikely(!ppc440spe_r6_enabled))
1592 /* In the current implementation of ppc440spe ADMA driver it
1593 * makes sense to pick out only pq case, because it may be
1595 * (1) either using Biskup method on DMA2;
1597 * Thus we give a favour to (1) if the sources are suitable;
1598 * else let it be processed on one of the DMA0/1 engines.
1599 * In the sum_product case where destination is also the
1600 * source process it on DMA0/1 only.
1602 if (cap == DMA_PQ && chan->chan_id == PPC440SPE_XOR_ID) {
1604 if (dst_cnt == 1 && src_cnt == 2 && dst_lst[0] == src_lst[1])
1605 ef = 0; /* sum_product case, process on DMA0/1 */
1606 else if (ppc440spe_can_rxor(src_lst, src_cnt, src_sz))
1607 ef = 3; /* override (DMA0/1 + idle) */
1609 ef = 0; /* can't process on DMA2 if !rxor */
1612 /* channel idleness increases the priority */
1614 !ppc440spe_chan_is_busy(to_ppc440spe_adma_chan(chan)))
1621 ppc440spe_async_tx_find_best_channel(enum dma_transaction_type cap,
1622 struct page **dst_lst, int dst_cnt, struct page **src_lst,
1623 int src_cnt, size_t src_sz)
1625 struct dma_chan *best_chan = NULL;
1626 struct ppc_dma_chan_ref *ref;
1629 if (unlikely(!src_sz))
1631 if (src_sz > PAGE_SIZE) {
1633 * should a user of the api ever pass > PAGE_SIZE requests
1634 * we sort out cases where temporary page-sized buffers
1639 if (src_cnt == 1 && dst_lst[1] == src_lst[0])
1641 if (src_cnt == 2 && dst_lst[1] == src_lst[1])
1652 list_for_each_entry(ref, &ppc440spe_adma_chan_list, node) {
1653 if (dma_has_cap(cap, ref->chan->device->cap_mask)) {
1656 rank = ppc440spe_adma_estimate(ref->chan, cap, dst_lst,
1657 dst_cnt, src_lst, src_cnt, src_sz);
1658 if (rank > best_rank) {
1660 best_chan = ref->chan;
1667 EXPORT_SYMBOL_GPL(ppc440spe_async_tx_find_best_channel);
1670 * ppc440spe_get_group_entry - get group entry with index idx
1671 * @tdesc: is the last allocated slot in the group.
1673 static struct ppc440spe_adma_desc_slot *
1674 ppc440spe_get_group_entry(struct ppc440spe_adma_desc_slot *tdesc, u32 entry_idx)
1676 struct ppc440spe_adma_desc_slot *iter = tdesc->group_head;
1679 if (entry_idx < 0 || entry_idx >= (tdesc->src_cnt + tdesc->dst_cnt)) {
1680 printk("%s: entry_idx %d, src_cnt %d, dst_cnt %d\n",
1681 __func__, entry_idx, tdesc->src_cnt, tdesc->dst_cnt);
1685 list_for_each_entry(iter, &tdesc->group_list, chain_node) {
1686 if (i++ == entry_idx)
1693 * ppc440spe_adma_free_slots - flags descriptor slots for reuse
1694 * @slot: Slot to free
1695 * Caller must hold &ppc440spe_chan->lock while calling this function
1697 static void ppc440spe_adma_free_slots(struct ppc440spe_adma_desc_slot *slot,
1698 struct ppc440spe_adma_chan *chan)
1700 int stride = slot->slots_per_op;
1703 slot->slots_per_op = 0;
1704 slot = list_entry(slot->slot_node.next,
1705 struct ppc440spe_adma_desc_slot,
1710 static void ppc440spe_adma_unmap(struct ppc440spe_adma_chan *chan,
1711 struct ppc440spe_adma_desc_slot *desc)
1713 u32 src_cnt, dst_cnt;
1717 * get the number of sources & destination
1718 * included in this descriptor and unmap
1721 src_cnt = ppc440spe_desc_get_src_num(desc, chan);
1722 dst_cnt = ppc440spe_desc_get_dst_num(desc, chan);
1724 /* unmap destinations */
1725 if (!(desc->async_tx.flags & DMA_COMPL_SKIP_DEST_UNMAP)) {
1727 addr = ppc440spe_desc_get_dest_addr(
1728 desc, chan, dst_cnt);
1729 dma_unmap_page(chan->device->dev,
1730 addr, desc->unmap_len,
1736 if (!(desc->async_tx.flags & DMA_COMPL_SKIP_SRC_UNMAP)) {
1738 addr = ppc440spe_desc_get_src_addr(
1739 desc, chan, src_cnt);
1740 dma_unmap_page(chan->device->dev,
1741 addr, desc->unmap_len,
1748 * ppc440spe_adma_run_tx_complete_actions - call functions to be called
1751 static dma_cookie_t ppc440spe_adma_run_tx_complete_actions(
1752 struct ppc440spe_adma_desc_slot *desc,
1753 struct ppc440spe_adma_chan *chan,
1754 dma_cookie_t cookie)
1758 BUG_ON(desc->async_tx.cookie < 0);
1759 if (desc->async_tx.cookie > 0) {
1760 cookie = desc->async_tx.cookie;
1761 desc->async_tx.cookie = 0;
1763 /* call the callback (must not sleep or submit new
1764 * operations to this channel)
1766 if (desc->async_tx.callback)
1767 desc->async_tx.callback(
1768 desc->async_tx.callback_param);
1770 /* unmap dma addresses
1771 * (unmap_single vs unmap_page?)
1773 * actually, ppc's dma_unmap_page() functions are empty, so
1774 * the following code is just for the sake of completeness
1776 if (chan && chan->needs_unmap && desc->group_head &&
1778 struct ppc440spe_adma_desc_slot *unmap =
1780 /* assume 1 slot per op always */
1781 u32 slot_count = unmap->slot_cnt;
1783 /* Run through the group list and unmap addresses */
1784 for (i = 0; i < slot_count; i++) {
1786 ppc440spe_adma_unmap(chan, unmap);
1787 unmap = unmap->hw_next;
1792 /* run dependent operations */
1793 dma_run_dependencies(&desc->async_tx);
1799 * ppc440spe_adma_clean_slot - clean up CDB slot (if ack is set)
1801 static int ppc440spe_adma_clean_slot(struct ppc440spe_adma_desc_slot *desc,
1802 struct ppc440spe_adma_chan *chan)
1804 /* the client is allowed to attach dependent operations
1805 * until 'ack' is set
1807 if (!async_tx_test_ack(&desc->async_tx))
1810 /* leave the last descriptor in the chain
1811 * so we can append to it
1813 if (list_is_last(&desc->chain_node, &chan->chain) ||
1814 desc->phys == ppc440spe_chan_get_current_descriptor(chan))
1817 if (chan->device->id != PPC440SPE_XOR_ID) {
1818 /* our DMA interrupt handler clears opc field of
1819 * each processed descriptor. For all types of
1820 * operations except for ZeroSum we do not actually
1821 * need ack from the interrupt handler. ZeroSum is a
1822 * special case since the result of this operation
1823 * is available from the handler only, so if we see
1824 * such type of descriptor (which is unprocessed yet)
1825 * then leave it in chain.
1827 struct dma_cdb *cdb = desc->hw_desc;
1828 if (cdb->opc == DMA_CDB_OPC_DCHECK128)
1832 dev_dbg(chan->device->common.dev, "\tfree slot %llx: %d stride: %d\n",
1833 desc->phys, desc->idx, desc->slots_per_op);
1835 list_del(&desc->chain_node);
1836 ppc440spe_adma_free_slots(desc, chan);
1841 * __ppc440spe_adma_slot_cleanup - this is the common clean-up routine
1842 * which runs through the channel CDBs list until reach the descriptor
1843 * currently processed. When routine determines that all CDBs of group
1844 * are completed then corresponding callbacks (if any) are called and slots
1847 static void __ppc440spe_adma_slot_cleanup(struct ppc440spe_adma_chan *chan)
1849 struct ppc440spe_adma_desc_slot *iter, *_iter, *group_start = NULL;
1850 dma_cookie_t cookie = 0;
1851 u32 current_desc = ppc440spe_chan_get_current_descriptor(chan);
1852 int busy = ppc440spe_chan_is_busy(chan);
1853 int seen_current = 0, slot_cnt = 0, slots_per_op = 0;
1855 dev_dbg(chan->device->common.dev, "ppc440spe adma%d: %s\n",
1856 chan->device->id, __func__);
1858 if (!current_desc) {
1859 /* There were no transactions yet, so
1865 /* free completed slots from the chain starting with
1866 * the oldest descriptor
1868 list_for_each_entry_safe(iter, _iter, &chan->chain,
1870 dev_dbg(chan->device->common.dev, "\tcookie: %d slot: %d "
1871 "busy: %d this_desc: %#llx next_desc: %#x "
1872 "cur: %#x ack: %d\n",
1873 iter->async_tx.cookie, iter->idx, busy, iter->phys,
1874 ppc440spe_desc_get_link(iter, chan), current_desc,
1875 async_tx_test_ack(&iter->async_tx));
1877 prefetch(&_iter->async_tx);
1879 /* do not advance past the current descriptor loaded into the
1880 * hardware channel,subsequent descriptors are either in process
1881 * or have not been submitted
1886 /* stop the search if we reach the current descriptor and the
1887 * channel is busy, or if it appears that the current descriptor
1888 * needs to be re-read (i.e. has been appended to)
1890 if (iter->phys == current_desc) {
1891 BUG_ON(seen_current++);
1892 if (busy || ppc440spe_desc_get_link(iter, chan)) {
1893 /* not all descriptors of the group have
1894 * been completed; exit.
1900 /* detect the start of a group transaction */
1901 if (!slot_cnt && !slots_per_op) {
1902 slot_cnt = iter->slot_cnt;
1903 slots_per_op = iter->slots_per_op;
1904 if (slot_cnt <= slots_per_op) {
1913 slot_cnt -= slots_per_op;
1916 /* all the members of a group are complete */
1917 if (slots_per_op != 0 && slot_cnt == 0) {
1918 struct ppc440spe_adma_desc_slot *grp_iter, *_grp_iter;
1919 int end_of_chain = 0;
1921 /* clean up the group */
1922 slot_cnt = group_start->slot_cnt;
1923 grp_iter = group_start;
1924 list_for_each_entry_safe_from(grp_iter, _grp_iter,
1925 &chan->chain, chain_node) {
1927 cookie = ppc440spe_adma_run_tx_complete_actions(
1928 grp_iter, chan, cookie);
1930 slot_cnt -= slots_per_op;
1931 end_of_chain = ppc440spe_adma_clean_slot(
1933 if (end_of_chain && slot_cnt) {
1934 /* Should wait for ZeroSum completion */
1936 chan->common.completed_cookie = cookie;
1940 if (slot_cnt == 0 || end_of_chain)
1944 /* the group should be complete at this point */
1953 } else if (slots_per_op) /* wait for group completion */
1956 cookie = ppc440spe_adma_run_tx_complete_actions(iter, chan,
1959 if (ppc440spe_adma_clean_slot(iter, chan))
1963 BUG_ON(!seen_current);
1966 chan->common.completed_cookie = cookie;
1967 pr_debug("\tcompleted cookie %d\n", cookie);
1973 * ppc440spe_adma_tasklet - clean up watch-dog initiator
1975 static void ppc440spe_adma_tasklet(unsigned long data)
1977 struct ppc440spe_adma_chan *chan = (struct ppc440spe_adma_chan *) data;
1979 spin_lock_nested(&chan->lock, SINGLE_DEPTH_NESTING);
1980 __ppc440spe_adma_slot_cleanup(chan);
1981 spin_unlock(&chan->lock);
1985 * ppc440spe_adma_slot_cleanup - clean up scheduled initiator
1987 static void ppc440spe_adma_slot_cleanup(struct ppc440spe_adma_chan *chan)
1989 spin_lock_bh(&chan->lock);
1990 __ppc440spe_adma_slot_cleanup(chan);
1991 spin_unlock_bh(&chan->lock);
1995 * ppc440spe_adma_alloc_slots - allocate free slots (if any)
1997 static struct ppc440spe_adma_desc_slot *ppc440spe_adma_alloc_slots(
1998 struct ppc440spe_adma_chan *chan, int num_slots,
2001 struct ppc440spe_adma_desc_slot *iter = NULL, *_iter;
2002 struct ppc440spe_adma_desc_slot *alloc_start = NULL;
2003 struct list_head chain = LIST_HEAD_INIT(chain);
2004 int slots_found, retry = 0;
2007 BUG_ON(!num_slots || !slots_per_op);
2008 /* start search from the last allocated descrtiptor
2009 * if a contiguous allocation can not be found start searching
2010 * from the beginning of the list
2015 iter = chan->last_used;
2017 iter = list_entry(&chan->all_slots,
2018 struct ppc440spe_adma_desc_slot,
2020 list_for_each_entry_safe_continue(iter, _iter, &chan->all_slots,
2023 prefetch(&_iter->async_tx);
2024 if (iter->slots_per_op) {
2029 /* start the allocation if the slot is correctly aligned */
2033 if (slots_found == num_slots) {
2034 struct ppc440spe_adma_desc_slot *alloc_tail = NULL;
2035 struct ppc440spe_adma_desc_slot *last_used = NULL;
2040 /* pre-ack all but the last descriptor */
2041 if (num_slots != slots_per_op)
2042 async_tx_ack(&iter->async_tx);
2044 list_add_tail(&iter->chain_node, &chain);
2046 iter->async_tx.cookie = 0;
2047 iter->hw_next = NULL;
2049 iter->slot_cnt = num_slots;
2050 iter->xor_check_result = NULL;
2051 for (i = 0; i < slots_per_op; i++) {
2052 iter->slots_per_op = slots_per_op - i;
2054 iter = list_entry(iter->slot_node.next,
2055 struct ppc440spe_adma_desc_slot,
2058 num_slots -= slots_per_op;
2060 alloc_tail->group_head = alloc_start;
2061 alloc_tail->async_tx.cookie = -EBUSY;
2062 list_splice(&chain, &alloc_tail->group_list);
2063 chan->last_used = last_used;
2070 /* try to free some slots if the allocation fails */
2071 tasklet_schedule(&chan->irq_tasklet);
2076 * ppc440spe_adma_alloc_chan_resources - allocate pools for CDB slots
2078 static int ppc440spe_adma_alloc_chan_resources(struct dma_chan *chan)
2080 struct ppc440spe_adma_chan *ppc440spe_chan;
2081 struct ppc440spe_adma_desc_slot *slot = NULL;
2086 ppc440spe_chan = to_ppc440spe_adma_chan(chan);
2087 init = ppc440spe_chan->slots_allocated ? 0 : 1;
2088 chan->chan_id = ppc440spe_chan->device->id;
2090 /* Allocate descriptor slots */
2091 i = ppc440spe_chan->slots_allocated;
2092 if (ppc440spe_chan->device->id != PPC440SPE_XOR_ID)
2093 db_sz = sizeof(struct dma_cdb);
2095 db_sz = sizeof(struct xor_cb);
2097 for (; i < (ppc440spe_chan->device->pool_size / db_sz); i++) {
2098 slot = kzalloc(sizeof(struct ppc440spe_adma_desc_slot),
2101 printk(KERN_INFO "SPE ADMA Channel only initialized"
2102 " %d descriptor slots", i--);
2106 hw_desc = (char *) ppc440spe_chan->device->dma_desc_pool_virt;
2107 slot->hw_desc = (void *) &hw_desc[i * db_sz];
2108 dma_async_tx_descriptor_init(&slot->async_tx, chan);
2109 slot->async_tx.tx_submit = ppc440spe_adma_tx_submit;
2110 INIT_LIST_HEAD(&slot->chain_node);
2111 INIT_LIST_HEAD(&slot->slot_node);
2112 INIT_LIST_HEAD(&slot->group_list);
2113 slot->phys = ppc440spe_chan->device->dma_desc_pool + i * db_sz;
2116 spin_lock_bh(&ppc440spe_chan->lock);
2117 ppc440spe_chan->slots_allocated++;
2118 list_add_tail(&slot->slot_node, &ppc440spe_chan->all_slots);
2119 spin_unlock_bh(&ppc440spe_chan->lock);
2122 if (i && !ppc440spe_chan->last_used) {
2123 ppc440spe_chan->last_used =
2124 list_entry(ppc440spe_chan->all_slots.next,
2125 struct ppc440spe_adma_desc_slot,
2129 dev_dbg(ppc440spe_chan->device->common.dev,
2130 "ppc440spe adma%d: allocated %d descriptor slots\n",
2131 ppc440spe_chan->device->id, i);
2133 /* initialize the channel and the chain with a null operation */
2135 switch (ppc440spe_chan->device->id) {
2136 case PPC440SPE_DMA0_ID:
2137 case PPC440SPE_DMA1_ID:
2138 ppc440spe_chan->hw_chain_inited = 0;
2139 /* Use WXOR for self-testing */
2140 if (!ppc440spe_r6_tchan)
2141 ppc440spe_r6_tchan = ppc440spe_chan;
2143 case PPC440SPE_XOR_ID:
2144 ppc440spe_chan_start_null_xor(ppc440spe_chan);
2149 ppc440spe_chan->needs_unmap = 1;
2152 return (i > 0) ? i : -ENOMEM;
2156 * ppc440spe_rxor_set_region_data -
2158 static void ppc440spe_rxor_set_region(struct ppc440spe_adma_desc_slot *desc,
2159 u8 xor_arg_no, u32 mask)
2161 struct xor_cb *xcb = desc->hw_desc;
2163 xcb->ops[xor_arg_no].h |= mask;
2167 * ppc440spe_rxor_set_src -
2169 static void ppc440spe_rxor_set_src(struct ppc440spe_adma_desc_slot *desc,
2170 u8 xor_arg_no, dma_addr_t addr)
2172 struct xor_cb *xcb = desc->hw_desc;
2174 xcb->ops[xor_arg_no].h |= DMA_CUED_XOR_BASE;
2175 xcb->ops[xor_arg_no].l = addr;
2179 * ppc440spe_rxor_set_mult -
2181 static void ppc440spe_rxor_set_mult(struct ppc440spe_adma_desc_slot *desc,
2182 u8 xor_arg_no, u8 idx, u8 mult)
2184 struct xor_cb *xcb = desc->hw_desc;
2186 xcb->ops[xor_arg_no].h |= mult << (DMA_CUED_MULT1_OFF + idx * 8);
2190 * ppc440spe_adma_check_threshold - append CDBs to h/w chain if threshold
2193 static void ppc440spe_adma_check_threshold(struct ppc440spe_adma_chan *chan)
2195 dev_dbg(chan->device->common.dev, "ppc440spe adma%d: pending: %d\n",
2196 chan->device->id, chan->pending);
2198 if (chan->pending >= PPC440SPE_ADMA_THRESHOLD) {
2200 ppc440spe_chan_append(chan);
2205 * ppc440spe_adma_tx_submit - submit new descriptor group to the channel
2206 * (it's not necessary that descriptors will be submitted to the h/w
2207 * chains too right now)
2209 static dma_cookie_t ppc440spe_adma_tx_submit(struct dma_async_tx_descriptor *tx)
2211 struct ppc440spe_adma_desc_slot *sw_desc;
2212 struct ppc440spe_adma_chan *chan = to_ppc440spe_adma_chan(tx->chan);
2213 struct ppc440spe_adma_desc_slot *group_start, *old_chain_tail;
2216 dma_cookie_t cookie;
2218 sw_desc = tx_to_ppc440spe_adma_slot(tx);
2220 group_start = sw_desc->group_head;
2221 slot_cnt = group_start->slot_cnt;
2222 slots_per_op = group_start->slots_per_op;
2224 spin_lock_bh(&chan->lock);
2225 cookie = dma_cookie_assign(tx);
2227 if (unlikely(list_empty(&chan->chain))) {
2229 list_splice_init(&sw_desc->group_list, &chan->chain);
2230 chan_first_cdb[chan->device->id] = group_start;
2232 /* isn't first peer, bind CDBs to chain */
2233 old_chain_tail = list_entry(chan->chain.prev,
2234 struct ppc440spe_adma_desc_slot,
2236 list_splice_init(&sw_desc->group_list,
2237 &old_chain_tail->chain_node);
2238 /* fix up the hardware chain */
2239 ppc440spe_desc_set_link(chan, old_chain_tail, group_start);
2242 /* increment the pending count by the number of operations */
2243 chan->pending += slot_cnt / slots_per_op;
2244 ppc440spe_adma_check_threshold(chan);
2245 spin_unlock_bh(&chan->lock);
2247 dev_dbg(chan->device->common.dev,
2248 "ppc440spe adma%d: %s cookie: %d slot: %d tx %p\n",
2249 chan->device->id, __func__,
2250 sw_desc->async_tx.cookie, sw_desc->idx, sw_desc);
2256 * ppc440spe_adma_prep_dma_interrupt - prepare CDB for a pseudo DMA operation
2258 static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_interrupt(
2259 struct dma_chan *chan, unsigned long flags)
2261 struct ppc440spe_adma_chan *ppc440spe_chan;
2262 struct ppc440spe_adma_desc_slot *sw_desc, *group_start;
2263 int slot_cnt, slots_per_op;
2265 ppc440spe_chan = to_ppc440spe_adma_chan(chan);
2267 dev_dbg(ppc440spe_chan->device->common.dev,
2268 "ppc440spe adma%d: %s\n", ppc440spe_chan->device->id,
2271 spin_lock_bh(&ppc440spe_chan->lock);
2272 slot_cnt = slots_per_op = 1;
2273 sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt,
2276 group_start = sw_desc->group_head;
2277 ppc440spe_desc_init_interrupt(group_start, ppc440spe_chan);
2278 group_start->unmap_len = 0;
2279 sw_desc->async_tx.flags = flags;
2281 spin_unlock_bh(&ppc440spe_chan->lock);
2283 return sw_desc ? &sw_desc->async_tx : NULL;
2287 * ppc440spe_adma_prep_dma_memcpy - prepare CDB for a MEMCPY operation
2289 static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_memcpy(
2290 struct dma_chan *chan, dma_addr_t dma_dest,
2291 dma_addr_t dma_src, size_t len, unsigned long flags)
2293 struct ppc440spe_adma_chan *ppc440spe_chan;
2294 struct ppc440spe_adma_desc_slot *sw_desc, *group_start;
2295 int slot_cnt, slots_per_op;
2297 ppc440spe_chan = to_ppc440spe_adma_chan(chan);
2302 BUG_ON(len > PPC440SPE_ADMA_DMA_MAX_BYTE_COUNT);
2304 spin_lock_bh(&ppc440spe_chan->lock);
2306 dev_dbg(ppc440spe_chan->device->common.dev,
2307 "ppc440spe adma%d: %s len: %u int_en %d\n",
2308 ppc440spe_chan->device->id, __func__, len,
2309 flags & DMA_PREP_INTERRUPT ? 1 : 0);
2310 slot_cnt = slots_per_op = 1;
2311 sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt,
2314 group_start = sw_desc->group_head;
2315 ppc440spe_desc_init_memcpy(group_start, flags);
2316 ppc440spe_adma_set_dest(group_start, dma_dest, 0);
2317 ppc440spe_adma_memcpy_xor_set_src(group_start, dma_src, 0);
2318 ppc440spe_desc_set_byte_count(group_start, ppc440spe_chan, len);
2319 sw_desc->unmap_len = len;
2320 sw_desc->async_tx.flags = flags;
2322 spin_unlock_bh(&ppc440spe_chan->lock);
2324 return sw_desc ? &sw_desc->async_tx : NULL;
2328 * ppc440spe_adma_prep_dma_xor - prepare CDB for a XOR operation
2330 static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_xor(
2331 struct dma_chan *chan, dma_addr_t dma_dest,
2332 dma_addr_t *dma_src, u32 src_cnt, size_t len,
2333 unsigned long flags)
2335 struct ppc440spe_adma_chan *ppc440spe_chan;
2336 struct ppc440spe_adma_desc_slot *sw_desc, *group_start;
2337 int slot_cnt, slots_per_op;
2339 ppc440spe_chan = to_ppc440spe_adma_chan(chan);
2341 ADMA_LL_DBG(prep_dma_xor_dbg(ppc440spe_chan->device->id,
2342 dma_dest, dma_src, src_cnt));
2345 BUG_ON(len > PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT);
2347 dev_dbg(ppc440spe_chan->device->common.dev,
2348 "ppc440spe adma%d: %s src_cnt: %d len: %u int_en: %d\n",
2349 ppc440spe_chan->device->id, __func__, src_cnt, len,
2350 flags & DMA_PREP_INTERRUPT ? 1 : 0);
2352 spin_lock_bh(&ppc440spe_chan->lock);
2353 slot_cnt = ppc440spe_chan_xor_slot_count(len, src_cnt, &slots_per_op);
2354 sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt,
2357 group_start = sw_desc->group_head;
2358 ppc440spe_desc_init_xor(group_start, src_cnt, flags);
2359 ppc440spe_adma_set_dest(group_start, dma_dest, 0);
2361 ppc440spe_adma_memcpy_xor_set_src(group_start,
2362 dma_src[src_cnt], src_cnt);
2363 ppc440spe_desc_set_byte_count(group_start, ppc440spe_chan, len);
2364 sw_desc->unmap_len = len;
2365 sw_desc->async_tx.flags = flags;
2367 spin_unlock_bh(&ppc440spe_chan->lock);
2369 return sw_desc ? &sw_desc->async_tx : NULL;
2373 ppc440spe_desc_set_xor_src_cnt(struct ppc440spe_adma_desc_slot *desc,
2375 static void ppc440spe_init_rxor_cursor(struct ppc440spe_rxor *cursor);
2378 * ppc440spe_adma_init_dma2rxor_slot -
2380 static void ppc440spe_adma_init_dma2rxor_slot(
2381 struct ppc440spe_adma_desc_slot *desc,
2382 dma_addr_t *src, int src_cnt)
2386 /* initialize CDB */
2387 for (i = 0; i < src_cnt; i++) {
2388 ppc440spe_adma_dma2rxor_prep_src(desc, &desc->rxor_cursor, i,
2389 desc->src_cnt, (u32)src[i]);
2394 * ppc440spe_dma01_prep_mult -
2395 * for Q operation where destination is also the source
2397 static struct ppc440spe_adma_desc_slot *ppc440spe_dma01_prep_mult(
2398 struct ppc440spe_adma_chan *ppc440spe_chan,
2399 dma_addr_t *dst, int dst_cnt, dma_addr_t *src, int src_cnt,
2400 const unsigned char *scf, size_t len, unsigned long flags)
2402 struct ppc440spe_adma_desc_slot *sw_desc = NULL;
2403 unsigned long op = 0;
2406 set_bit(PPC440SPE_DESC_WXOR, &op);
2409 spin_lock_bh(&ppc440spe_chan->lock);
2411 /* use WXOR, each descriptor occupies one slot */
2412 sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, 1);
2414 struct ppc440spe_adma_chan *chan;
2415 struct ppc440spe_adma_desc_slot *iter;
2416 struct dma_cdb *hw_desc;
2418 chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
2419 set_bits(op, &sw_desc->flags);
2420 sw_desc->src_cnt = src_cnt;
2421 sw_desc->dst_cnt = dst_cnt;
2422 /* First descriptor, zero data in the destination and copy it
2423 * to q page using MULTICAST transfer.
2425 iter = list_first_entry(&sw_desc->group_list,
2426 struct ppc440spe_adma_desc_slot,
2428 memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
2429 /* set 'next' pointer */
2430 iter->hw_next = list_entry(iter->chain_node.next,
2431 struct ppc440spe_adma_desc_slot,
2433 clear_bit(PPC440SPE_DESC_INT, &iter->flags);
2434 hw_desc = iter->hw_desc;
2435 hw_desc->opc = DMA_CDB_OPC_MULTICAST;
2437 ppc440spe_desc_set_dest_addr(iter, chan,
2438 DMA_CUED_XOR_BASE, dst[0], 0);
2439 ppc440spe_desc_set_dest_addr(iter, chan, 0, dst[1], 1);
2440 ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB,
2442 ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len);
2443 iter->unmap_len = len;
2446 * Second descriptor, multiply data from the q page
2447 * and store the result in real destination.
2449 iter = list_first_entry(&iter->chain_node,
2450 struct ppc440spe_adma_desc_slot,
2452 memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
2453 iter->hw_next = NULL;
2454 if (flags & DMA_PREP_INTERRUPT)
2455 set_bit(PPC440SPE_DESC_INT, &iter->flags);
2457 clear_bit(PPC440SPE_DESC_INT, &iter->flags);
2459 hw_desc = iter->hw_desc;
2460 hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
2461 ppc440spe_desc_set_src_addr(iter, chan, 0,
2462 DMA_CUED_XOR_HB, dst[1]);
2463 ppc440spe_desc_set_dest_addr(iter, chan,
2464 DMA_CUED_XOR_BASE, dst[0], 0);
2466 ppc440spe_desc_set_src_mult(iter, chan, DMA_CUED_MULT1_OFF,
2467 DMA_CDB_SG_DST1, scf[0]);
2468 ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len);
2469 iter->unmap_len = len;
2470 sw_desc->async_tx.flags = flags;
2473 spin_unlock_bh(&ppc440spe_chan->lock);
2479 * ppc440spe_dma01_prep_sum_product -
2480 * Dx = A*(P+Pxy) + B*(Q+Qxy) operation where destination is also
2483 static struct ppc440spe_adma_desc_slot *ppc440spe_dma01_prep_sum_product(
2484 struct ppc440spe_adma_chan *ppc440spe_chan,
2485 dma_addr_t *dst, dma_addr_t *src, int src_cnt,
2486 const unsigned char *scf, size_t len, unsigned long flags)
2488 struct ppc440spe_adma_desc_slot *sw_desc = NULL;
2489 unsigned long op = 0;
2492 set_bit(PPC440SPE_DESC_WXOR, &op);
2495 spin_lock_bh(&ppc440spe_chan->lock);
2497 /* WXOR, each descriptor occupies one slot */
2498 sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, 1);
2500 struct ppc440spe_adma_chan *chan;
2501 struct ppc440spe_adma_desc_slot *iter;
2502 struct dma_cdb *hw_desc;
2504 chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
2505 set_bits(op, &sw_desc->flags);
2506 sw_desc->src_cnt = src_cnt;
2507 sw_desc->dst_cnt = 1;
2508 /* 1st descriptor, src[1] data to q page and zero destination */
2509 iter = list_first_entry(&sw_desc->group_list,
2510 struct ppc440spe_adma_desc_slot,
2512 memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
2513 iter->hw_next = list_entry(iter->chain_node.next,
2514 struct ppc440spe_adma_desc_slot,
2516 clear_bit(PPC440SPE_DESC_INT, &iter->flags);
2517 hw_desc = iter->hw_desc;
2518 hw_desc->opc = DMA_CDB_OPC_MULTICAST;
2520 ppc440spe_desc_set_dest_addr(iter, chan, DMA_CUED_XOR_BASE,
2522 ppc440spe_desc_set_dest_addr(iter, chan, 0,
2523 ppc440spe_chan->qdest, 1);
2524 ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB,
2526 ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len);
2527 iter->unmap_len = len;
2529 /* 2nd descriptor, multiply src[1] data and store the
2530 * result in destination */
2531 iter = list_first_entry(&iter->chain_node,
2532 struct ppc440spe_adma_desc_slot,
2534 memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
2535 /* set 'next' pointer */
2536 iter->hw_next = list_entry(iter->chain_node.next,
2537 struct ppc440spe_adma_desc_slot,
2539 if (flags & DMA_PREP_INTERRUPT)
2540 set_bit(PPC440SPE_DESC_INT, &iter->flags);
2542 clear_bit(PPC440SPE_DESC_INT, &iter->flags);
2544 hw_desc = iter->hw_desc;
2545 hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
2546 ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB,
2547 ppc440spe_chan->qdest);
2548 ppc440spe_desc_set_dest_addr(iter, chan, DMA_CUED_XOR_BASE,
2550 ppc440spe_desc_set_src_mult(iter, chan, DMA_CUED_MULT1_OFF,
2551 DMA_CDB_SG_DST1, scf[1]);
2552 ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len);
2553 iter->unmap_len = len;
2556 * 3rd descriptor, multiply src[0] data and xor it
2559 iter = list_first_entry(&iter->chain_node,
2560 struct ppc440spe_adma_desc_slot,
2562 memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
2563 iter->hw_next = NULL;
2564 if (flags & DMA_PREP_INTERRUPT)
2565 set_bit(PPC440SPE_DESC_INT, &iter->flags);
2567 clear_bit(PPC440SPE_DESC_INT, &iter->flags);
2569 hw_desc = iter->hw_desc;
2570 hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
2571 ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB,
2573 ppc440spe_desc_set_dest_addr(iter, chan, DMA_CUED_XOR_BASE,
2575 ppc440spe_desc_set_src_mult(iter, chan, DMA_CUED_MULT1_OFF,
2576 DMA_CDB_SG_DST1, scf[0]);
2577 ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len);
2578 iter->unmap_len = len;
2579 sw_desc->async_tx.flags = flags;
2582 spin_unlock_bh(&ppc440spe_chan->lock);
2587 static struct ppc440spe_adma_desc_slot *ppc440spe_dma01_prep_pq(
2588 struct ppc440spe_adma_chan *ppc440spe_chan,
2589 dma_addr_t *dst, int dst_cnt, dma_addr_t *src, int src_cnt,
2590 const unsigned char *scf, size_t len, unsigned long flags)
2593 struct ppc440spe_adma_desc_slot *sw_desc = NULL, *iter;
2594 unsigned long op = 0;
2595 unsigned char mult = 1;
2597 pr_debug("%s: dst_cnt %d, src_cnt %d, len %d\n",
2598 __func__, dst_cnt, src_cnt, len);
2599 /* select operations WXOR/RXOR depending on the
2600 * source addresses of operators and the number
2601 * of destinations (RXOR support only Q-parity calculations)
2603 set_bit(PPC440SPE_DESC_WXOR, &op);
2604 if (!test_and_set_bit(PPC440SPE_RXOR_RUN, &ppc440spe_rxor_state)) {
2607 * - there are more than 1 source,
2608 * - len is aligned on 512-byte boundary,
2609 * - source addresses fit to one of 4 possible regions.
2612 !(len & MQ0_CF2H_RXOR_BS_MASK) &&
2613 (src[0] + len) == src[1]) {
2614 /* may do RXOR R1 R2 */
2615 set_bit(PPC440SPE_DESC_RXOR, &op);
2617 /* may try to enhance region of RXOR */
2618 if ((src[1] + len) == src[2]) {
2619 /* do RXOR R1 R2 R3 */
2620 set_bit(PPC440SPE_DESC_RXOR123,
2622 } else if ((src[1] + len * 2) == src[2]) {
2623 /* do RXOR R1 R2 R4 */
2624 set_bit(PPC440SPE_DESC_RXOR124, &op);
2625 } else if ((src[1] + len * 3) == src[2]) {
2626 /* do RXOR R1 R2 R5 */
2627 set_bit(PPC440SPE_DESC_RXOR125,
2631 set_bit(PPC440SPE_DESC_RXOR12,
2636 set_bit(PPC440SPE_DESC_RXOR12, &op);
2640 if (!test_bit(PPC440SPE_DESC_RXOR, &op)) {
2641 /* can not do this operation with RXOR */
2642 clear_bit(PPC440SPE_RXOR_RUN,
2643 &ppc440spe_rxor_state);
2645 /* can do; set block size right now */
2646 ppc440spe_desc_set_rxor_block_size(len);
2650 /* Number of necessary slots depends on operation type selected */
2651 if (!test_bit(PPC440SPE_DESC_RXOR, &op)) {
2652 /* This is a WXOR only chain. Need descriptors for each
2653 * source to GF-XOR them with WXOR, and need descriptors
2654 * for each destination to zero them with WXOR
2658 if (flags & DMA_PREP_ZERO_P) {
2660 set_bit(PPC440SPE_ZERO_P, &op);
2662 if (flags & DMA_PREP_ZERO_Q) {
2664 set_bit(PPC440SPE_ZERO_Q, &op);
2667 /* Need 1/2 descriptor for RXOR operation, and
2668 * need (src_cnt - (2 or 3)) for WXOR of sources
2673 if (flags & DMA_PREP_ZERO_P)
2674 set_bit(PPC440SPE_ZERO_P, &op);
2675 if (flags & DMA_PREP_ZERO_Q)
2676 set_bit(PPC440SPE_ZERO_Q, &op);
2678 if (test_bit(PPC440SPE_DESC_RXOR12, &op))
2679 slot_cnt += src_cnt - 2;
2681 slot_cnt += src_cnt - 3;
2683 /* Thus we have either RXOR only chain or
2686 if (slot_cnt == dst_cnt)
2687 /* RXOR only chain */
2688 clear_bit(PPC440SPE_DESC_WXOR, &op);
2691 spin_lock_bh(&ppc440spe_chan->lock);
2692 /* for both RXOR/WXOR each descriptor occupies one slot */
2693 sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, 1);
2695 ppc440spe_desc_init_dma01pq(sw_desc, dst_cnt, src_cnt,
2698 /* setup dst/src/mult */
2699 pr_debug("%s: set dst descriptor 0, 1: 0x%016llx, 0x%016llx\n",
2700 __func__, dst[0], dst[1]);
2701 ppc440spe_adma_pq_set_dest(sw_desc, dst, flags);
2703 ppc440spe_adma_pq_set_src(sw_desc, src[src_cnt],
2706 /* NOTE: "Multi = 0 is equivalent to = 1" as it
2707 * stated in 440SPSPe_RAID6_Addendum_UM_1_17.pdf
2708 * doesn't work for RXOR with DMA0/1! Instead, multi=0
2709 * leads to zeroing source data after RXOR.
2710 * So, for P case set-up mult=1 explicitly.
2712 if (!(flags & DMA_PREP_PQ_DISABLE_Q))
2713 mult = scf[src_cnt];
2714 ppc440spe_adma_pq_set_src_mult(sw_desc,
2715 mult, src_cnt, dst_cnt - 1);
2718 /* Setup byte count foreach slot just allocated */
2719 sw_desc->async_tx.flags = flags;
2720 list_for_each_entry(iter, &sw_desc->group_list,
2722 ppc440spe_desc_set_byte_count(iter,
2723 ppc440spe_chan, len);
2724 iter->unmap_len = len;
2727 spin_unlock_bh(&ppc440spe_chan->lock);
2732 static struct ppc440spe_adma_desc_slot *ppc440spe_dma2_prep_pq(
2733 struct ppc440spe_adma_chan *ppc440spe_chan,
2734 dma_addr_t *dst, int dst_cnt, dma_addr_t *src, int src_cnt,
2735 const unsigned char *scf, size_t len, unsigned long flags)
2737 int slot_cnt, descs_per_op;
2738 struct ppc440spe_adma_desc_slot *sw_desc = NULL, *iter;
2739 unsigned long op = 0;
2740 unsigned char mult = 1;
2743 /*pr_debug("%s: dst_cnt %d, src_cnt %d, len %d\n",
2744 __func__, dst_cnt, src_cnt, len);*/
2746 spin_lock_bh(&ppc440spe_chan->lock);
2747 descs_per_op = ppc440spe_dma2_pq_slot_count(src, src_cnt, len);
2748 if (descs_per_op < 0) {
2749 spin_unlock_bh(&ppc440spe_chan->lock);
2753 /* depending on number of sources we have 1 or 2 RXOR chains */
2754 slot_cnt = descs_per_op * dst_cnt;
2756 sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, 1);
2759 sw_desc->async_tx.flags = flags;
2760 list_for_each_entry(iter, &sw_desc->group_list, chain_node) {
2761 ppc440spe_desc_init_dma2pq(iter, dst_cnt, src_cnt,
2763 ppc440spe_desc_set_byte_count(iter, ppc440spe_chan,
2765 iter->unmap_len = len;
2767 ppc440spe_init_rxor_cursor(&(iter->rxor_cursor));
2768 iter->rxor_cursor.len = len;
2769 iter->descs_per_op = descs_per_op;
2772 list_for_each_entry(iter, &sw_desc->group_list, chain_node) {
2774 if (op % descs_per_op == 0)
2775 ppc440spe_adma_init_dma2rxor_slot(iter, src,
2777 if (likely(!list_is_last(&iter->chain_node,
2778 &sw_desc->group_list))) {
2779 /* set 'next' pointer */
2781 list_entry(iter->chain_node.next,
2782 struct ppc440spe_adma_desc_slot,
2784 ppc440spe_xor_set_link(iter, iter->hw_next);
2786 /* this is the last descriptor. */
2787 iter->hw_next = NULL;
2791 /* fixup head descriptor */
2792 sw_desc->dst_cnt = dst_cnt;
2793 if (flags & DMA_PREP_ZERO_P)
2794 set_bit(PPC440SPE_ZERO_P, &sw_desc->flags);
2795 if (flags & DMA_PREP_ZERO_Q)
2796 set_bit(PPC440SPE_ZERO_Q, &sw_desc->flags);
2798 /* setup dst/src/mult */
2799 ppc440spe_adma_pq_set_dest(sw_desc, dst, flags);
2802 /* handle descriptors (if dst_cnt == 2) inside
2803 * the ppc440spe_adma_pq_set_srcxxx() functions
2805 ppc440spe_adma_pq_set_src(sw_desc, src[src_cnt],
2807 if (!(flags & DMA_PREP_PQ_DISABLE_Q))
2808 mult = scf[src_cnt];
2809 ppc440spe_adma_pq_set_src_mult(sw_desc,
2810 mult, src_cnt, dst_cnt - 1);
2813 spin_unlock_bh(&ppc440spe_chan->lock);
2814 ppc440spe_desc_set_rxor_block_size(len);
2819 * ppc440spe_adma_prep_dma_pq - prepare CDB (group) for a GF-XOR operation
2821 static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_pq(
2822 struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src,
2823 unsigned int src_cnt, const unsigned char *scf,
2824 size_t len, unsigned long flags)
2826 struct ppc440spe_adma_chan *ppc440spe_chan;
2827 struct ppc440spe_adma_desc_slot *sw_desc = NULL;
2830 ppc440spe_chan = to_ppc440spe_adma_chan(chan);
2832 ADMA_LL_DBG(prep_dma_pq_dbg(ppc440spe_chan->device->id,
2833 dst, src, src_cnt));
2835 BUG_ON(len > PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT);
2838 if (src_cnt == 1 && dst[1] == src[0]) {
2841 /* dst[1] is real destination (Q) */
2843 /* this is the page to multicast source data to */
2844 dest[1] = ppc440spe_chan->qdest;
2845 sw_desc = ppc440spe_dma01_prep_mult(ppc440spe_chan,
2846 dest, 2, src, src_cnt, scf, len, flags);
2847 return sw_desc ? &sw_desc->async_tx : NULL;
2850 if (src_cnt == 2 && dst[1] == src[1]) {
2851 sw_desc = ppc440spe_dma01_prep_sum_product(ppc440spe_chan,
2852 &dst[1], src, 2, scf, len, flags);
2853 return sw_desc ? &sw_desc->async_tx : NULL;
2856 if (!(flags & DMA_PREP_PQ_DISABLE_P)) {
2859 flags |= DMA_PREP_ZERO_P;
2862 if (!(flags & DMA_PREP_PQ_DISABLE_Q)) {
2865 flags |= DMA_PREP_ZERO_Q;
2870 dev_dbg(ppc440spe_chan->device->common.dev,
2871 "ppc440spe adma%d: %s src_cnt: %d len: %u int_en: %d\n",
2872 ppc440spe_chan->device->id, __func__, src_cnt, len,
2873 flags & DMA_PREP_INTERRUPT ? 1 : 0);
2875 switch (ppc440spe_chan->device->id) {
2876 case PPC440SPE_DMA0_ID:
2877 case PPC440SPE_DMA1_ID:
2878 sw_desc = ppc440spe_dma01_prep_pq(ppc440spe_chan,
2879 dst, dst_cnt, src, src_cnt, scf,
2883 case PPC440SPE_XOR_ID:
2884 sw_desc = ppc440spe_dma2_prep_pq(ppc440spe_chan,
2885 dst, dst_cnt, src, src_cnt, scf,
2890 return sw_desc ? &sw_desc->async_tx : NULL;
2894 * ppc440spe_adma_prep_dma_pqzero_sum - prepare CDB group for
2895 * a PQ_ZERO_SUM operation
2897 static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_pqzero_sum(
2898 struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src,
2899 unsigned int src_cnt, const unsigned char *scf, size_t len,
2900 enum sum_check_flags *pqres, unsigned long flags)
2902 struct ppc440spe_adma_chan *ppc440spe_chan;
2903 struct ppc440spe_adma_desc_slot *sw_desc, *iter;
2904 dma_addr_t pdest, qdest;
2905 int slot_cnt, slots_per_op, idst, dst_cnt;
2907 ppc440spe_chan = to_ppc440spe_adma_chan(chan);
2909 if (flags & DMA_PREP_PQ_DISABLE_P)
2914 if (flags & DMA_PREP_PQ_DISABLE_Q)
2919 ADMA_LL_DBG(prep_dma_pqzero_sum_dbg(ppc440spe_chan->device->id,
2920 src, src_cnt, scf));
2922 /* Always use WXOR for P/Q calculations (two destinations).
2923 * Need 1 or 2 extra slots to verify results are zero.
2925 idst = dst_cnt = (pdest && qdest) ? 2 : 1;
2927 /* One additional slot per destination to clone P/Q
2928 * before calculation (we have to preserve destinations).
2930 slot_cnt = src_cnt + dst_cnt * 2;
2933 spin_lock_bh(&ppc440spe_chan->lock);
2934 sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt,
2937 ppc440spe_desc_init_dma01pqzero_sum(sw_desc, dst_cnt, src_cnt);
2939 /* Setup byte count for each slot just allocated */
2940 sw_desc->async_tx.flags = flags;
2941 list_for_each_entry(iter, &sw_desc->group_list, chain_node) {
2942 ppc440spe_desc_set_byte_count(iter, ppc440spe_chan,
2944 iter->unmap_len = len;
2948 struct dma_cdb *hw_desc;
2949 struct ppc440spe_adma_chan *chan;
2951 iter = sw_desc->group_head;
2952 chan = to_ppc440spe_adma_chan(iter->async_tx.chan);
2953 memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
2954 iter->hw_next = list_entry(iter->chain_node.next,
2955 struct ppc440spe_adma_desc_slot,
2957 hw_desc = iter->hw_desc;
2958 hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
2961 ppc440spe_desc_set_dest_addr(iter, chan, 0,
2962 ppc440spe_chan->pdest, 0);
2963 ppc440spe_desc_set_src_addr(iter, chan, 0, 0, pdest);
2964 ppc440spe_desc_set_byte_count(iter, ppc440spe_chan,
2966 iter->unmap_len = 0;
2967 /* override pdest to preserve original P */
2968 pdest = ppc440spe_chan->pdest;
2971 struct dma_cdb *hw_desc;
2972 struct ppc440spe_adma_chan *chan;
2974 iter = list_first_entry(&sw_desc->group_list,
2975 struct ppc440spe_adma_desc_slot,
2977 chan = to_ppc440spe_adma_chan(iter->async_tx.chan);
2980 iter = list_entry(iter->chain_node.next,
2981 struct ppc440spe_adma_desc_slot,
2985 memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
2986 iter->hw_next = list_entry(iter->chain_node.next,
2987 struct ppc440spe_adma_desc_slot,
2989 hw_desc = iter->hw_desc;
2990 hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
2993 ppc440spe_desc_set_dest_addr(iter, chan, 0,
2994 ppc440spe_chan->qdest, 0);
2995 ppc440spe_desc_set_src_addr(iter, chan, 0, 0, qdest);
2996 ppc440spe_desc_set_byte_count(iter, ppc440spe_chan,
2998 iter->unmap_len = 0;
2999 /* override qdest to preserve original Q */
3000 qdest = ppc440spe_chan->qdest;
3003 /* Setup destinations for P/Q ops */
3004 ppc440spe_adma_pqzero_sum_set_dest(sw_desc, pdest, qdest);
3006 /* Setup zero QWORDs into DCHECK CDBs */
3008 list_for_each_entry_reverse(iter, &sw_desc->group_list,
3011 * The last CDB corresponds to Q-parity check,
3012 * the one before last CDB corresponds
3015 if (idst == DMA_DEST_MAX_NUM) {
3016 if (idst == dst_cnt) {
3017 set_bit(PPC440SPE_DESC_QCHECK,
3020 set_bit(PPC440SPE_DESC_PCHECK,
3025 set_bit(PPC440SPE_DESC_QCHECK,
3028 set_bit(PPC440SPE_DESC_PCHECK,
3032 iter->xor_check_result = pqres;
3035 * set it to zero, if check fail then result will
3038 *iter->xor_check_result = 0;
3039 ppc440spe_desc_set_dcheck(iter, ppc440spe_chan,
3046 /* Setup sources and mults for P/Q ops */
3047 list_for_each_entry_continue_reverse(iter, &sw_desc->group_list,
3049 struct ppc440spe_adma_chan *chan;
3052 chan = to_ppc440spe_adma_chan(iter->async_tx.chan);
3053 ppc440spe_desc_set_src_addr(iter, chan, 0,
3057 mult_dst = (dst_cnt - 1) ? DMA_CDB_SG_DST2 :
3059 ppc440spe_desc_set_src_mult(iter, chan,
3068 spin_unlock_bh(&ppc440spe_chan->lock);
3069 return sw_desc ? &sw_desc->async_tx : NULL;
3073 * ppc440spe_adma_prep_dma_xor_zero_sum - prepare CDB group for
3074 * XOR ZERO_SUM operation
3076 static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_xor_zero_sum(
3077 struct dma_chan *chan, dma_addr_t *src, unsigned int src_cnt,
3078 size_t len, enum sum_check_flags *result, unsigned long flags)
3080 struct dma_async_tx_descriptor *tx;
3083 /* validate P, disable Q */
3086 flags |= DMA_PREP_PQ_DISABLE_Q;
3088 tx = ppc440spe_adma_prep_dma_pqzero_sum(chan, pq, &src[1],
3089 src_cnt - 1, 0, len,
3095 * ppc440spe_adma_set_dest - set destination address into descriptor
3097 static void ppc440spe_adma_set_dest(struct ppc440spe_adma_desc_slot *sw_desc,
3098 dma_addr_t addr, int index)
3100 struct ppc440spe_adma_chan *chan;
3102 BUG_ON(index >= sw_desc->dst_cnt);
3104 chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
3106 switch (chan->device->id) {
3107 case PPC440SPE_DMA0_ID:
3108 case PPC440SPE_DMA1_ID:
3109 /* to do: support transfers lengths >
3110 * PPC440SPE_ADMA_DMA/XOR_MAX_BYTE_COUNT
3112 ppc440spe_desc_set_dest_addr(sw_desc->group_head,
3113 chan, 0, addr, index);
3115 case PPC440SPE_XOR_ID:
3116 sw_desc = ppc440spe_get_group_entry(sw_desc, index);
3117 ppc440spe_desc_set_dest_addr(sw_desc,
3118 chan, 0, addr, index);
3123 static void ppc440spe_adma_pq_zero_op(struct ppc440spe_adma_desc_slot *iter,
3124 struct ppc440spe_adma_chan *chan, dma_addr_t addr)
3126 /* To clear destinations update the descriptor
3127 * (P or Q depending on index) as follows:
3128 * addr is destination (0 corresponds to SG2):
3130 ppc440spe_desc_set_dest_addr(iter, chan, DMA_CUED_XOR_BASE, addr, 0);
3132 /* ... and the addr is source: */
3133 ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB, addr);
3135 /* addr is always SG2 then the mult is always DST1 */
3136 ppc440spe_desc_set_src_mult(iter, chan, DMA_CUED_MULT1_OFF,
3137 DMA_CDB_SG_DST1, 1);
3141 * ppc440spe_adma_pq_set_dest - set destination address into descriptor
3142 * for the PQXOR operation
3144 static void ppc440spe_adma_pq_set_dest(struct ppc440spe_adma_desc_slot *sw_desc,
3145 dma_addr_t *addrs, unsigned long flags)
3147 struct ppc440spe_adma_desc_slot *iter;
3148 struct ppc440spe_adma_chan *chan;
3149 dma_addr_t paddr, qaddr;
3150 dma_addr_t addr = 0, ppath, qpath;
3153 chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
3155 if (flags & DMA_PREP_PQ_DISABLE_P)
3160 if (flags & DMA_PREP_PQ_DISABLE_Q)
3165 if (!paddr || !qaddr)
3166 addr = paddr ? paddr : qaddr;
3168 switch (chan->device->id) {
3169 case PPC440SPE_DMA0_ID:
3170 case PPC440SPE_DMA1_ID:
3171 /* walk through the WXOR source list and set P/Q-destinations
3174 if (!test_bit(PPC440SPE_DESC_RXOR, &sw_desc->flags)) {
3175 /* This is WXOR-only chain; may have 1/2 zero descs */
3176 if (test_bit(PPC440SPE_ZERO_P, &sw_desc->flags))
3178 if (test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags))
3181 iter = ppc440spe_get_group_entry(sw_desc, index);
3183 /* one destination */
3184 list_for_each_entry_from(iter,
3185 &sw_desc->group_list, chain_node)
3186 ppc440spe_desc_set_dest_addr(iter, chan,
3187 DMA_CUED_XOR_BASE, addr, 0);
3189 /* two destinations */
3190 list_for_each_entry_from(iter,
3191 &sw_desc->group_list, chain_node) {
3192 ppc440spe_desc_set_dest_addr(iter, chan,
3193 DMA_CUED_XOR_BASE, paddr, 0);
3194 ppc440spe_desc_set_dest_addr(iter, chan,
3195 DMA_CUED_XOR_BASE, qaddr, 1);
3200 /* To clear destinations update the descriptor
3201 * (1st,2nd, or both depending on flags)
3204 if (test_bit(PPC440SPE_ZERO_P,
3206 iter = ppc440spe_get_group_entry(
3208 ppc440spe_adma_pq_zero_op(iter, chan,
3212 if (test_bit(PPC440SPE_ZERO_Q,
3214 iter = ppc440spe_get_group_entry(
3216 ppc440spe_adma_pq_zero_op(iter, chan,
3223 /* This is RXOR-only or RXOR/WXOR mixed chain */
3225 /* If we want to include destination into calculations,
3226 * then make dest addresses cued with mult=1 (XOR).
3228 ppath = test_bit(PPC440SPE_ZERO_P, &sw_desc->flags) ?
3231 (1 << DMA_CUED_MULT1_OFF);
3232 qpath = test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags) ?
3235 (1 << DMA_CUED_MULT1_OFF);
3237 /* Setup destination(s) in RXOR slot(s) */
3238 iter = ppc440spe_get_group_entry(sw_desc, index++);
3239 ppc440spe_desc_set_dest_addr(iter, chan,
3240 paddr ? ppath : qpath,
3241 paddr ? paddr : qaddr, 0);
3243 /* two destinations */
3244 iter = ppc440spe_get_group_entry(sw_desc,
3246 ppc440spe_desc_set_dest_addr(iter, chan,
3250 if (test_bit(PPC440SPE_DESC_WXOR, &sw_desc->flags)) {
3251 /* Setup destination(s) in remaining WXOR
3254 iter = ppc440spe_get_group_entry(sw_desc,
3257 /* one destination */
3258 list_for_each_entry_from(iter,
3259 &sw_desc->group_list,
3261 ppc440spe_desc_set_dest_addr(
3267 /* two destinations */
3268 list_for_each_entry_from(iter,
3269 &sw_desc->group_list,
3271 ppc440spe_desc_set_dest_addr(
3275 ppc440spe_desc_set_dest_addr(
3286 case PPC440SPE_XOR_ID:
3287 /* DMA2 descriptors have only 1 destination, so there are
3288 * two chains - one for each dest.
3289 * If we want to include destination into calculations,
3290 * then make dest addresses cued with mult=1 (XOR).
3292 ppath = test_bit(PPC440SPE_ZERO_P, &sw_desc->flags) ?
3295 (1 << DMA_CUED_MULT1_OFF);
3297 qpath = test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags) ?
3300 (1 << DMA_CUED_MULT1_OFF);
3302 iter = ppc440spe_get_group_entry(sw_desc, 0);
3303 for (i = 0; i < sw_desc->descs_per_op; i++) {
3304 ppc440spe_desc_set_dest_addr(iter, chan,
3305 paddr ? ppath : qpath,
3306 paddr ? paddr : qaddr, 0);
3307 iter = list_entry(iter->chain_node.next,
3308 struct ppc440spe_adma_desc_slot,
3313 /* Two destinations; setup Q here */
3314 iter = ppc440spe_get_group_entry(sw_desc,
3315 sw_desc->descs_per_op);
3316 for (i = 0; i < sw_desc->descs_per_op; i++) {
3317 ppc440spe_desc_set_dest_addr(iter,
3318 chan, qpath, qaddr, 0);
3319 iter = list_entry(iter->chain_node.next,
3320 struct ppc440spe_adma_desc_slot,
3330 * ppc440spe_adma_pq_zero_sum_set_dest - set destination address into descriptor
3331 * for the PQ_ZERO_SUM operation
3333 static void ppc440spe_adma_pqzero_sum_set_dest(
3334 struct ppc440spe_adma_desc_slot *sw_desc,
3335 dma_addr_t paddr, dma_addr_t qaddr)
3337 struct ppc440spe_adma_desc_slot *iter, *end;
3338 struct ppc440spe_adma_chan *chan;
3339 dma_addr_t addr = 0;
3342 chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
3344 /* walk through the WXOR source list and set P/Q-destinations
3347 idx = (paddr && qaddr) ? 2 : 1;
3349 list_for_each_entry_reverse(end, &sw_desc->group_list,
3355 idx = (paddr && qaddr) ? 2 : 1;
3356 iter = ppc440spe_get_group_entry(sw_desc, idx);
3358 if (paddr && qaddr) {
3359 /* two destinations */
3360 list_for_each_entry_from(iter, &sw_desc->group_list,
3362 if (unlikely(iter == end))
3364 ppc440spe_desc_set_dest_addr(iter, chan,
3365 DMA_CUED_XOR_BASE, paddr, 0);
3366 ppc440spe_desc_set_dest_addr(iter, chan,
3367 DMA_CUED_XOR_BASE, qaddr, 1);
3370 /* one destination */
3371 addr = paddr ? paddr : qaddr;
3372 list_for_each_entry_from(iter, &sw_desc->group_list,
3374 if (unlikely(iter == end))
3376 ppc440spe_desc_set_dest_addr(iter, chan,
3377 DMA_CUED_XOR_BASE, addr, 0);
3381 /* The remaining descriptors are DATACHECK. These have no need in
3382 * destination. Actually, these destinations are used there
3383 * as sources for check operation. So, set addr as source.
3385 ppc440spe_desc_set_src_addr(end, chan, 0, 0, addr ? addr : paddr);
3388 end = list_entry(end->chain_node.next,
3389 struct ppc440spe_adma_desc_slot, chain_node);
3390 ppc440spe_desc_set_src_addr(end, chan, 0, 0, qaddr);
3395 * ppc440spe_desc_set_xor_src_cnt - set source count into descriptor
3397 static inline void ppc440spe_desc_set_xor_src_cnt(
3398 struct ppc440spe_adma_desc_slot *desc,
3401 struct xor_cb *hw_desc = desc->hw_desc;
3403 hw_desc->cbc &= ~XOR_CDCR_OAC_MSK;
3404 hw_desc->cbc |= src_cnt;
3408 * ppc440spe_adma_pq_set_src - set source address into descriptor
3410 static void ppc440spe_adma_pq_set_src(struct ppc440spe_adma_desc_slot *sw_desc,
3411 dma_addr_t addr, int index)
3413 struct ppc440spe_adma_chan *chan;
3414 dma_addr_t haddr = 0;
3415 struct ppc440spe_adma_desc_slot *iter = NULL;
3417 chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
3419 switch (chan->device->id) {
3420 case PPC440SPE_DMA0_ID:
3421 case PPC440SPE_DMA1_ID:
3422 /* DMA0,1 may do: WXOR, RXOR, RXOR+WXORs chain
3424 if (test_bit(PPC440SPE_DESC_RXOR, &sw_desc->flags)) {
3425 /* RXOR-only or RXOR/WXOR operation */
3426 int iskip = test_bit(PPC440SPE_DESC_RXOR12,
3427 &sw_desc->flags) ? 2 : 3;
3430 /* 1st slot (RXOR) */
3431 /* setup sources region (R1-2-3, R1-2-4,
3434 if (test_bit(PPC440SPE_DESC_RXOR12,
3436 haddr = DMA_RXOR12 <<
3437 DMA_CUED_REGION_OFF;
3438 else if (test_bit(PPC440SPE_DESC_RXOR123,
3440 haddr = DMA_RXOR123 <<
3441 DMA_CUED_REGION_OFF;
3442 else if (test_bit(PPC440SPE_DESC_RXOR124,
3444 haddr = DMA_RXOR124 <<
3445 DMA_CUED_REGION_OFF;
3446 else if (test_bit(PPC440SPE_DESC_RXOR125,
3448 haddr = DMA_RXOR125 <<
3449 DMA_CUED_REGION_OFF;
3452 haddr |= DMA_CUED_XOR_BASE;
3453 iter = ppc440spe_get_group_entry(sw_desc, 0);
3454 } else if (index < iskip) {
3456 * shall actually set source address only once
3457 * instead of first <iskip>
3461 /* 2nd/3d and next slots (WXOR);
3462 * skip first slot with RXOR
3464 haddr = DMA_CUED_XOR_HB;
3465 iter = ppc440spe_get_group_entry(sw_desc,
3466 index - iskip + sw_desc->dst_cnt);
3471 /* WXOR-only operation; skip first slots with
3472 * zeroing destinations
3474 if (test_bit(PPC440SPE_ZERO_P, &sw_desc->flags))
3476 if (test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags))
3479 haddr = DMA_CUED_XOR_HB;
3480 iter = ppc440spe_get_group_entry(sw_desc,
3485 ppc440spe_desc_set_src_addr(iter, chan, 0, haddr, addr);
3488 test_bit(PPC440SPE_DESC_RXOR, &sw_desc->flags) &&
3489 sw_desc->dst_cnt == 2) {
3490 /* if we have two destinations for RXOR, then
3491 * setup source in the second descr too
3493 iter = ppc440spe_get_group_entry(sw_desc, 1);
3494 ppc440spe_desc_set_src_addr(iter, chan, 0,
3500 case PPC440SPE_XOR_ID:
3501 /* DMA2 may do Biskup */
3502 iter = sw_desc->group_head;
3503 if (iter->dst_cnt == 2) {
3504 /* both P & Q calculations required; set P src here */
3505 ppc440spe_adma_dma2rxor_set_src(iter, index, addr);
3508 iter = ppc440spe_get_group_entry(sw_desc,
3509 sw_desc->descs_per_op);
3511 ppc440spe_adma_dma2rxor_set_src(iter, index, addr);
3517 * ppc440spe_adma_memcpy_xor_set_src - set source address into descriptor
3519 static void ppc440spe_adma_memcpy_xor_set_src(
3520 struct ppc440spe_adma_desc_slot *sw_desc,
3521 dma_addr_t addr, int index)
3523 struct ppc440spe_adma_chan *chan;
3525 chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
3526 sw_desc = sw_desc->group_head;
3528 if (likely(sw_desc))
3529 ppc440spe_desc_set_src_addr(sw_desc, chan, index, 0, addr);
3533 * ppc440spe_adma_dma2rxor_inc_addr -
3535 static void ppc440spe_adma_dma2rxor_inc_addr(
3536 struct ppc440spe_adma_desc_slot *desc,
3537 struct ppc440spe_rxor *cursor, int index, int src_cnt)
3539 cursor->addr_count++;
3540 if (index == src_cnt - 1) {
3541 ppc440spe_desc_set_xor_src_cnt(desc, cursor->addr_count);
3542 } else if (cursor->addr_count == XOR_MAX_OPS) {
3543 ppc440spe_desc_set_xor_src_cnt(desc, cursor->addr_count);
3544 cursor->addr_count = 0;
3545 cursor->desc_count++;
3550 * ppc440spe_adma_dma2rxor_prep_src - setup RXOR types in DMA2 CDB
3552 static int ppc440spe_adma_dma2rxor_prep_src(
3553 struct ppc440spe_adma_desc_slot *hdesc,
3554 struct ppc440spe_rxor *cursor, int index,
3555 int src_cnt, u32 addr)
3559 struct ppc440spe_adma_desc_slot *desc = hdesc;
3562 for (i = 0; i < cursor->desc_count; i++) {
3563 desc = list_entry(hdesc->chain_node.next,
3564 struct ppc440spe_adma_desc_slot,
3568 switch (cursor->state) {
3570 if (addr == cursor->addrl + cursor->len) {
3573 cursor->xor_count++;
3574 if (index == src_cnt-1) {
3575 ppc440spe_rxor_set_region(desc,
3577 DMA_RXOR12 << DMA_CUED_REGION_OFF);
3578 ppc440spe_adma_dma2rxor_inc_addr(
3579 desc, cursor, index, src_cnt);
3581 } else if (cursor->addrl == addr + cursor->len) {
3584 cursor->xor_count++;
3585 set_bit(cursor->addr_count, &desc->reverse_flags[0]);
3586 if (index == src_cnt-1) {
3587 ppc440spe_rxor_set_region(desc,
3589 DMA_RXOR12 << DMA_CUED_REGION_OFF);
3590 ppc440spe_adma_dma2rxor_inc_addr(
3591 desc, cursor, index, src_cnt);
3594 printk(KERN_ERR "Cannot build "
3595 "DMA2 RXOR command block.\n");
3600 sign = test_bit(cursor->addr_count,
3601 desc->reverse_flags)
3603 if (index == src_cnt-2 || (sign == -1
3604 && addr != cursor->addrl - 2*cursor->len)) {
3606 cursor->xor_count = 1;
3607 cursor->addrl = addr;
3608 ppc440spe_rxor_set_region(desc,
3610 DMA_RXOR12 << DMA_CUED_REGION_OFF);
3611 ppc440spe_adma_dma2rxor_inc_addr(
3612 desc, cursor, index, src_cnt);
3613 } else if (addr == cursor->addrl + 2*sign*cursor->len) {
3615 cursor->xor_count = 0;
3616 ppc440spe_rxor_set_region(desc,
3618 DMA_RXOR123 << DMA_CUED_REGION_OFF);
3619 if (index == src_cnt-1) {
3620 ppc440spe_adma_dma2rxor_inc_addr(
3621 desc, cursor, index, src_cnt);
3623 } else if (addr == cursor->addrl + 3*cursor->len) {
3625 cursor->xor_count = 0;
3626 ppc440spe_rxor_set_region(desc,
3628 DMA_RXOR124 << DMA_CUED_REGION_OFF);
3629 if (index == src_cnt-1) {
3630 ppc440spe_adma_dma2rxor_inc_addr(
3631 desc, cursor, index, src_cnt);
3633 } else if (addr == cursor->addrl + 4*cursor->len) {
3635 cursor->xor_count = 0;
3636 ppc440spe_rxor_set_region(desc,
3638 DMA_RXOR125 << DMA_CUED_REGION_OFF);
3639 if (index == src_cnt-1) {
3640 ppc440spe_adma_dma2rxor_inc_addr(
3641 desc, cursor, index, src_cnt);
3645 cursor->xor_count = 1;
3646 cursor->addrl = addr;
3647 ppc440spe_rxor_set_region(desc,
3649 DMA_RXOR12 << DMA_CUED_REGION_OFF);
3650 ppc440spe_adma_dma2rxor_inc_addr(
3651 desc, cursor, index, src_cnt);
3656 cursor->addrl = addr;
3657 cursor->xor_count++;
3659 ppc440spe_adma_dma2rxor_inc_addr(
3660 desc, cursor, index, src_cnt);
3669 * ppc440spe_adma_dma2rxor_set_src - set RXOR source address; it's assumed that
3670 * ppc440spe_adma_dma2rxor_prep_src() has already done prior this call
3672 static void ppc440spe_adma_dma2rxor_set_src(
3673 struct ppc440spe_adma_desc_slot *desc,
3674 int index, dma_addr_t addr)
3676 struct xor_cb *xcb = desc->hw_desc;
3677 int k = 0, op = 0, lop = 0;
3679 /* get the RXOR operand which corresponds to index addr */
3680 while (op <= index) {
3682 if (k == XOR_MAX_OPS) {
3684 desc = list_entry(desc->chain_node.next,
3685 struct ppc440spe_adma_desc_slot, chain_node);
3686 xcb = desc->hw_desc;
3689 if ((xcb->ops[k++].h & (DMA_RXOR12 << DMA_CUED_REGION_OFF)) ==
3690 (DMA_RXOR12 << DMA_CUED_REGION_OFF))
3698 if (test_bit(k-1, desc->reverse_flags)) {
3699 /* reverse operand order; put last op in RXOR group */
3700 if (index == op - 1)
3701 ppc440spe_rxor_set_src(desc, k - 1, addr);
3703 /* direct operand order; put first op in RXOR group */
3705 ppc440spe_rxor_set_src(desc, k - 1, addr);
3710 * ppc440spe_adma_dma2rxor_set_mult - set RXOR multipliers; it's assumed that
3711 * ppc440spe_adma_dma2rxor_prep_src() has already done prior this call
3713 static void ppc440spe_adma_dma2rxor_set_mult(
3714 struct ppc440spe_adma_desc_slot *desc,
3717 struct xor_cb *xcb = desc->hw_desc;
3718 int k = 0, op = 0, lop = 0;
3720 /* get the RXOR operand which corresponds to index mult */
3721 while (op <= index) {
3723 if (k == XOR_MAX_OPS) {
3725 desc = list_entry(desc->chain_node.next,
3726 struct ppc440spe_adma_desc_slot,
3728 xcb = desc->hw_desc;
3731 if ((xcb->ops[k++].h & (DMA_RXOR12 << DMA_CUED_REGION_OFF)) ==
3732 (DMA_RXOR12 << DMA_CUED_REGION_OFF))
3739 if (test_bit(k-1, desc->reverse_flags)) {
3741 ppc440spe_rxor_set_mult(desc, k - 1, op - index - 1, mult);
3744 ppc440spe_rxor_set_mult(desc, k - 1, index - lop, mult);
3749 * ppc440spe_init_rxor_cursor -
3751 static void ppc440spe_init_rxor_cursor(struct ppc440spe_rxor *cursor)
3753 memset(cursor, 0, sizeof(struct ppc440spe_rxor));
3758 * ppc440spe_adma_pq_set_src_mult - set multiplication coefficient into
3759 * descriptor for the PQXOR operation
3761 static void ppc440spe_adma_pq_set_src_mult(
3762 struct ppc440spe_adma_desc_slot *sw_desc,
3763 unsigned char mult, int index, int dst_pos)
3765 struct ppc440spe_adma_chan *chan;
3766 u32 mult_idx, mult_dst;
3767 struct ppc440spe_adma_desc_slot *iter = NULL, *iter1 = NULL;
3769 chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
3771 switch (chan->device->id) {
3772 case PPC440SPE_DMA0_ID:
3773 case PPC440SPE_DMA1_ID:
3774 if (test_bit(PPC440SPE_DESC_RXOR, &sw_desc->flags)) {
3775 int region = test_bit(PPC440SPE_DESC_RXOR12,
3776 &sw_desc->flags) ? 2 : 3;
3778 if (index < region) {
3779 /* RXOR multipliers */
3780 iter = ppc440spe_get_group_entry(sw_desc,
3781 sw_desc->dst_cnt - 1);
3782 if (sw_desc->dst_cnt == 2)
3783 iter1 = ppc440spe_get_group_entry(
3786 mult_idx = DMA_CUED_MULT1_OFF + (index << 3);
3787 mult_dst = DMA_CDB_SG_SRC;
3789 /* WXOR multiplier */
3790 iter = ppc440spe_get_group_entry(sw_desc,
3793 mult_idx = DMA_CUED_MULT1_OFF;
3794 mult_dst = dst_pos ? DMA_CDB_SG_DST2 :
3801 * skip first slots with destinations (if ZERO_DST has
3804 if (test_bit(PPC440SPE_ZERO_P, &sw_desc->flags))
3806 if (test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags))
3809 iter = ppc440spe_get_group_entry(sw_desc, index + znum);
3810 mult_idx = DMA_CUED_MULT1_OFF;
3811 mult_dst = dst_pos ? DMA_CDB_SG_DST2 : DMA_CDB_SG_DST1;
3815 ppc440spe_desc_set_src_mult(iter, chan,
3816 mult_idx, mult_dst, mult);
3818 if (unlikely(iter1)) {
3819 /* if we have two destinations for RXOR, then
3820 * we've just set Q mult. Set-up P now.
3822 ppc440spe_desc_set_src_mult(iter1, chan,
3823 mult_idx, mult_dst, 1);
3829 case PPC440SPE_XOR_ID:
3830 iter = sw_desc->group_head;
3831 if (sw_desc->dst_cnt == 2) {
3832 /* both P & Q calculations required; set P mult here */
3833 ppc440spe_adma_dma2rxor_set_mult(iter, index, 1);
3835 /* and then set Q mult */
3836 iter = ppc440spe_get_group_entry(sw_desc,
3837 sw_desc->descs_per_op);
3839 ppc440spe_adma_dma2rxor_set_mult(iter, index, mult);
3845 * ppc440spe_adma_free_chan_resources - free the resources allocated
3847 static void ppc440spe_adma_free_chan_resources(struct dma_chan *chan)
3849 struct ppc440spe_adma_chan *ppc440spe_chan;
3850 struct ppc440spe_adma_desc_slot *iter, *_iter;
3851 int in_use_descs = 0;
3853 ppc440spe_chan = to_ppc440spe_adma_chan(chan);
3854 ppc440spe_adma_slot_cleanup(ppc440spe_chan);
3856 spin_lock_bh(&ppc440spe_chan->lock);
3857 list_for_each_entry_safe(iter, _iter, &ppc440spe_chan->chain,
3860 list_del(&iter->chain_node);
3862 list_for_each_entry_safe_reverse(iter, _iter,
3863 &ppc440spe_chan->all_slots, slot_node) {
3864 list_del(&iter->slot_node);
3866 ppc440spe_chan->slots_allocated--;
3868 ppc440spe_chan->last_used = NULL;
3870 dev_dbg(ppc440spe_chan->device->common.dev,
3871 "ppc440spe adma%d %s slots_allocated %d\n",
3872 ppc440spe_chan->device->id,
3873 __func__, ppc440spe_chan->slots_allocated);
3874 spin_unlock_bh(&ppc440spe_chan->lock);
3876 /* one is ok since we left it on there on purpose */
3877 if (in_use_descs > 1)
3878 printk(KERN_ERR "SPE: Freeing %d in use descriptors!\n",
3883 * ppc440spe_adma_tx_status - poll the status of an ADMA transaction
3884 * @chan: ADMA channel handle
3885 * @cookie: ADMA transaction identifier
3886 * @txstate: a holder for the current state of the channel
3888 static enum dma_status ppc440spe_adma_tx_status(struct dma_chan *chan,
3889 dma_cookie_t cookie, struct dma_tx_state *txstate)
3891 struct ppc440spe_adma_chan *ppc440spe_chan;
3892 enum dma_status ret;
3894 ppc440spe_chan = to_ppc440spe_adma_chan(chan);
3895 ret = dma_cookie_status(chan, cookie, txstate);
3896 if (ret == DMA_SUCCESS)
3899 ppc440spe_adma_slot_cleanup(ppc440spe_chan);
3901 return dma_cookie_status(chan, cookie, txstate);
3905 * ppc440spe_adma_eot_handler - end of transfer interrupt handler
3907 static irqreturn_t ppc440spe_adma_eot_handler(int irq, void *data)
3909 struct ppc440spe_adma_chan *chan = data;
3911 dev_dbg(chan->device->common.dev,
3912 "ppc440spe adma%d: %s\n", chan->device->id, __func__);
3914 tasklet_schedule(&chan->irq_tasklet);
3915 ppc440spe_adma_device_clear_eot_status(chan);
3921 * ppc440spe_adma_err_handler - DMA error interrupt handler;
3922 * do the same things as a eot handler
3924 static irqreturn_t ppc440spe_adma_err_handler(int irq, void *data)
3926 struct ppc440spe_adma_chan *chan = data;
3928 dev_dbg(chan->device->common.dev,
3929 "ppc440spe adma%d: %s\n", chan->device->id, __func__);
3931 tasklet_schedule(&chan->irq_tasklet);
3932 ppc440spe_adma_device_clear_eot_status(chan);
3938 * ppc440spe_test_callback - called when test operation has been done
3940 static void ppc440spe_test_callback(void *unused)
3942 complete(&ppc440spe_r6_test_comp);
3946 * ppc440spe_adma_issue_pending - flush all pending descriptors to h/w
3948 static void ppc440spe_adma_issue_pending(struct dma_chan *chan)
3950 struct ppc440spe_adma_chan *ppc440spe_chan;
3952 ppc440spe_chan = to_ppc440spe_adma_chan(chan);
3953 dev_dbg(ppc440spe_chan->device->common.dev,
3954 "ppc440spe adma%d: %s %d \n", ppc440spe_chan->device->id,
3955 __func__, ppc440spe_chan->pending);
3957 if (ppc440spe_chan->pending) {
3958 ppc440spe_chan->pending = 0;
3959 ppc440spe_chan_append(ppc440spe_chan);
3964 * ppc440spe_chan_start_null_xor - initiate the first XOR operation (DMA engines
3965 * use FIFOs (as opposite to chains used in XOR) so this is a XOR
3966 * specific operation)
3968 static void ppc440spe_chan_start_null_xor(struct ppc440spe_adma_chan *chan)
3970 struct ppc440spe_adma_desc_slot *sw_desc, *group_start;
3971 dma_cookie_t cookie;
3972 int slot_cnt, slots_per_op;
3974 dev_dbg(chan->device->common.dev,
3975 "ppc440spe adma%d: %s\n", chan->device->id, __func__);
3977 spin_lock_bh(&chan->lock);
3978 slot_cnt = ppc440spe_chan_xor_slot_count(0, 2, &slots_per_op);
3979 sw_desc = ppc440spe_adma_alloc_slots(chan, slot_cnt, slots_per_op);
3981 group_start = sw_desc->group_head;
3982 list_splice_init(&sw_desc->group_list, &chan->chain);
3983 async_tx_ack(&sw_desc->async_tx);
3984 ppc440spe_desc_init_null_xor(group_start);
3986 cookie = dma_cookie_assign(&sw_desc->async_tx);
3988 /* initialize the completed cookie to be less than
3989 * the most recently used cookie
3991 chan->common.completed_cookie = cookie - 1;
3993 /* channel should not be busy */
3994 BUG_ON(ppc440spe_chan_is_busy(chan));
3996 /* set the descriptor address */
3997 ppc440spe_chan_set_first_xor_descriptor(chan, sw_desc);
3999 /* run the descriptor */
4000 ppc440spe_chan_run(chan);
4002 printk(KERN_ERR "ppc440spe adma%d"
4003 " failed to allocate null descriptor\n",
4005 spin_unlock_bh(&chan->lock);
4009 * ppc440spe_test_raid6 - test are RAID-6 capabilities enabled successfully.
4010 * For this we just perform one WXOR operation with the same source
4011 * and destination addresses, the GF-multiplier is 1; so if RAID-6
4012 * capabilities are enabled then we'll get src/dst filled with zero.
4014 static int ppc440spe_test_raid6(struct ppc440spe_adma_chan *chan)
4016 struct ppc440spe_adma_desc_slot *sw_desc, *iter;
4019 dma_addr_t dma_addr, addrs[2];
4020 unsigned long op = 0;
4023 set_bit(PPC440SPE_DESC_WXOR, &op);
4025 pg = alloc_page(GFP_KERNEL);
4029 spin_lock_bh(&chan->lock);
4030 sw_desc = ppc440spe_adma_alloc_slots(chan, 1, 1);
4032 /* 1 src, 1 dsr, int_ena, WXOR */
4033 ppc440spe_desc_init_dma01pq(sw_desc, 1, 1, 1, op);
4034 list_for_each_entry(iter, &sw_desc->group_list, chain_node) {
4035 ppc440spe_desc_set_byte_count(iter, chan, PAGE_SIZE);
4036 iter->unmap_len = PAGE_SIZE;
4040 spin_unlock_bh(&chan->lock);
4043 spin_unlock_bh(&chan->lock);
4045 /* Fill the test page with ones */
4046 memset(page_address(pg), 0xFF, PAGE_SIZE);
4047 dma_addr = dma_map_page(chan->device->dev, pg, 0,
4048 PAGE_SIZE, DMA_BIDIRECTIONAL);
4050 /* Setup addresses */
4051 ppc440spe_adma_pq_set_src(sw_desc, dma_addr, 0);
4052 ppc440spe_adma_pq_set_src_mult(sw_desc, 1, 0, 0);
4053 addrs[0] = dma_addr;
4055 ppc440spe_adma_pq_set_dest(sw_desc, addrs, DMA_PREP_PQ_DISABLE_Q);
4057 async_tx_ack(&sw_desc->async_tx);
4058 sw_desc->async_tx.callback = ppc440spe_test_callback;
4059 sw_desc->async_tx.callback_param = NULL;
4061 init_completion(&ppc440spe_r6_test_comp);
4063 ppc440spe_adma_tx_submit(&sw_desc->async_tx);
4064 ppc440spe_adma_issue_pending(&chan->common);
4066 wait_for_completion(&ppc440spe_r6_test_comp);
4068 /* Now check if the test page is zeroed */
4069 a = page_address(pg);
4070 if ((*(u32 *)a) == 0 && memcmp(a, a+4, PAGE_SIZE-4) == 0) {
4071 /* page is zero - RAID-6 enabled */
4074 /* RAID-6 was not enabled */
4082 static void ppc440spe_adma_init_capabilities(struct ppc440spe_adma_device *adev)
4085 case PPC440SPE_DMA0_ID:
4086 case PPC440SPE_DMA1_ID:
4087 dma_cap_set(DMA_MEMCPY, adev->common.cap_mask);
4088 dma_cap_set(DMA_INTERRUPT, adev->common.cap_mask);
4089 dma_cap_set(DMA_PQ, adev->common.cap_mask);
4090 dma_cap_set(DMA_PQ_VAL, adev->common.cap_mask);
4091 dma_cap_set(DMA_XOR_VAL, adev->common.cap_mask);
4093 case PPC440SPE_XOR_ID:
4094 dma_cap_set(DMA_XOR, adev->common.cap_mask);
4095 dma_cap_set(DMA_PQ, adev->common.cap_mask);
4096 dma_cap_set(DMA_INTERRUPT, adev->common.cap_mask);
4097 adev->common.cap_mask = adev->common.cap_mask;
4101 /* Set base routines */
4102 adev->common.device_alloc_chan_resources =
4103 ppc440spe_adma_alloc_chan_resources;
4104 adev->common.device_free_chan_resources =
4105 ppc440spe_adma_free_chan_resources;
4106 adev->common.device_tx_status = ppc440spe_adma_tx_status;
4107 adev->common.device_issue_pending = ppc440spe_adma_issue_pending;
4109 /* Set prep routines based on capability */
4110 if (dma_has_cap(DMA_MEMCPY, adev->common.cap_mask)) {
4111 adev->common.device_prep_dma_memcpy =
4112 ppc440spe_adma_prep_dma_memcpy;
4114 if (dma_has_cap(DMA_XOR, adev->common.cap_mask)) {
4115 adev->common.max_xor = XOR_MAX_OPS;
4116 adev->common.device_prep_dma_xor =
4117 ppc440spe_adma_prep_dma_xor;
4119 if (dma_has_cap(DMA_PQ, adev->common.cap_mask)) {
4121 case PPC440SPE_DMA0_ID:
4122 dma_set_maxpq(&adev->common,
4123 DMA0_FIFO_SIZE / sizeof(struct dma_cdb), 0);
4125 case PPC440SPE_DMA1_ID:
4126 dma_set_maxpq(&adev->common,
4127 DMA1_FIFO_SIZE / sizeof(struct dma_cdb), 0);
4129 case PPC440SPE_XOR_ID:
4130 adev->common.max_pq = XOR_MAX_OPS * 3;
4133 adev->common.device_prep_dma_pq =
4134 ppc440spe_adma_prep_dma_pq;
4136 if (dma_has_cap(DMA_PQ_VAL, adev->common.cap_mask)) {
4138 case PPC440SPE_DMA0_ID:
4139 adev->common.max_pq = DMA0_FIFO_SIZE /
4140 sizeof(struct dma_cdb);
4142 case PPC440SPE_DMA1_ID:
4143 adev->common.max_pq = DMA1_FIFO_SIZE /
4144 sizeof(struct dma_cdb);
4147 adev->common.device_prep_dma_pq_val =
4148 ppc440spe_adma_prep_dma_pqzero_sum;
4150 if (dma_has_cap(DMA_XOR_VAL, adev->common.cap_mask)) {
4152 case PPC440SPE_DMA0_ID:
4153 adev->common.max_xor = DMA0_FIFO_SIZE /
4154 sizeof(struct dma_cdb);
4156 case PPC440SPE_DMA1_ID:
4157 adev->common.max_xor = DMA1_FIFO_SIZE /
4158 sizeof(struct dma_cdb);
4161 adev->common.device_prep_dma_xor_val =
4162 ppc440spe_adma_prep_dma_xor_zero_sum;
4164 if (dma_has_cap(DMA_INTERRUPT, adev->common.cap_mask)) {
4165 adev->common.device_prep_dma_interrupt =
4166 ppc440spe_adma_prep_dma_interrupt;
4168 pr_info("%s: AMCC(R) PPC440SP(E) ADMA Engine: "
4169 "( %s%s%s%s%s%s%s)\n",
4170 dev_name(adev->dev),
4171 dma_has_cap(DMA_PQ, adev->common.cap_mask) ? "pq " : "",
4172 dma_has_cap(DMA_PQ_VAL, adev->common.cap_mask) ? "pq_val " : "",
4173 dma_has_cap(DMA_XOR, adev->common.cap_mask) ? "xor " : "",
4174 dma_has_cap(DMA_XOR_VAL, adev->common.cap_mask) ? "xor_val " : "",
4175 dma_has_cap(DMA_MEMCPY, adev->common.cap_mask) ? "memcpy " : "",
4176 dma_has_cap(DMA_INTERRUPT, adev->common.cap_mask) ? "intr " : "");
4179 static int ppc440spe_adma_setup_irqs(struct ppc440spe_adma_device *adev,
4180 struct ppc440spe_adma_chan *chan,
4183 struct platform_device *ofdev;
4184 struct device_node *np;
4187 ofdev = container_of(adev->dev, struct platform_device, dev);
4188 np = ofdev->dev.of_node;
4189 if (adev->id != PPC440SPE_XOR_ID) {
4190 adev->err_irq = irq_of_parse_and_map(np, 1);
4191 if (adev->err_irq == NO_IRQ) {
4192 dev_warn(adev->dev, "no err irq resource?\n");
4193 *initcode = PPC_ADMA_INIT_IRQ2;
4194 adev->err_irq = -ENXIO;
4196 atomic_inc(&ppc440spe_adma_err_irq_ref);
4198 adev->err_irq = -ENXIO;
4201 adev->irq = irq_of_parse_and_map(np, 0);
4202 if (adev->irq == NO_IRQ) {
4203 dev_err(adev->dev, "no irq resource\n");
4204 *initcode = PPC_ADMA_INIT_IRQ1;
4208 dev_dbg(adev->dev, "irq %d, err irq %d\n",
4209 adev->irq, adev->err_irq);
4211 ret = request_irq(adev->irq, ppc440spe_adma_eot_handler,
4212 0, dev_driver_string(adev->dev), chan);
4214 dev_err(adev->dev, "can't request irq %d\n",
4216 *initcode = PPC_ADMA_INIT_IRQ1;
4221 /* only DMA engines have a separate error IRQ
4222 * so it's Ok if err_irq < 0 in XOR engine case.
4224 if (adev->err_irq > 0) {
4225 /* both DMA engines share common error IRQ */
4226 ret = request_irq(adev->err_irq,
4227 ppc440spe_adma_err_handler,
4229 dev_driver_string(adev->dev),
4232 dev_err(adev->dev, "can't request irq %d\n",
4234 *initcode = PPC_ADMA_INIT_IRQ2;
4240 if (adev->id == PPC440SPE_XOR_ID) {
4241 /* enable XOR engine interrupts */
4242 iowrite32be(XOR_IE_CBCIE_BIT | XOR_IE_ICBIE_BIT |
4243 XOR_IE_ICIE_BIT | XOR_IE_RPTIE_BIT,
4244 &adev->xor_reg->ier);
4248 np = of_find_compatible_node(NULL, NULL, "ibm,i2o-440spe");
4250 pr_err("%s: can't find I2O device tree node\n",
4255 adev->i2o_reg = of_iomap(np, 0);
4256 if (!adev->i2o_reg) {
4257 pr_err("%s: failed to map I2O registers\n", __func__);
4263 /* Unmask 'CS FIFO Attention' interrupts and
4264 * enable generating interrupts on errors
4266 enable = (adev->id == PPC440SPE_DMA0_ID) ?
4267 ~(I2O_IOPIM_P0SNE | I2O_IOPIM_P0EM) :
4268 ~(I2O_IOPIM_P1SNE | I2O_IOPIM_P1EM);
4269 mask = ioread32(&adev->i2o_reg->iopim) & enable;
4270 iowrite32(mask, &adev->i2o_reg->iopim);
4275 free_irq(adev->irq, chan);
4277 irq_dispose_mapping(adev->irq);
4279 if (adev->err_irq > 0) {
4280 if (atomic_dec_and_test(&ppc440spe_adma_err_irq_ref))
4281 irq_dispose_mapping(adev->err_irq);
4286 static void ppc440spe_adma_release_irqs(struct ppc440spe_adma_device *adev,
4287 struct ppc440spe_adma_chan *chan)
4291 if (adev->id == PPC440SPE_XOR_ID) {
4292 /* disable XOR engine interrupts */
4293 mask = ioread32be(&adev->xor_reg->ier);
4294 mask &= ~(XOR_IE_CBCIE_BIT | XOR_IE_ICBIE_BIT |
4295 XOR_IE_ICIE_BIT | XOR_IE_RPTIE_BIT);
4296 iowrite32be(mask, &adev->xor_reg->ier);
4298 /* disable DMAx engine interrupts */
4299 disable = (adev->id == PPC440SPE_DMA0_ID) ?
4300 (I2O_IOPIM_P0SNE | I2O_IOPIM_P0EM) :
4301 (I2O_IOPIM_P1SNE | I2O_IOPIM_P1EM);
4302 mask = ioread32(&adev->i2o_reg->iopim) | disable;
4303 iowrite32(mask, &adev->i2o_reg->iopim);
4305 free_irq(adev->irq, chan);
4306 irq_dispose_mapping(adev->irq);
4307 if (adev->err_irq > 0) {
4308 free_irq(adev->err_irq, chan);
4309 if (atomic_dec_and_test(&ppc440spe_adma_err_irq_ref)) {
4310 irq_dispose_mapping(adev->err_irq);
4311 iounmap(adev->i2o_reg);
4317 * ppc440spe_adma_probe - probe the asynch device
4319 static int ppc440spe_adma_probe(struct platform_device *ofdev)
4321 struct device_node *np = ofdev->dev.of_node;
4322 struct resource res;
4323 struct ppc440spe_adma_device *adev;
4324 struct ppc440spe_adma_chan *chan;
4325 struct ppc_dma_chan_ref *ref, *_ref;
4326 int ret = 0, initcode = PPC_ADMA_INIT_OK;
4332 if (of_device_is_compatible(np, "amcc,xor-accelerator")) {
4333 id = PPC440SPE_XOR_ID;
4334 /* As far as the XOR engine is concerned, it does not
4335 * use FIFOs but uses linked list. So there is no dependency
4336 * between pool size to allocate and the engine configuration.
4338 pool_size = PAGE_SIZE << 1;
4340 /* it is DMA0 or DMA1 */
4341 idx = of_get_property(np, "cell-index", &len);
4342 if (!idx || (len != sizeof(u32))) {
4343 dev_err(&ofdev->dev, "Device node %s has missing "
4344 "or invalid cell-index property\n",
4349 /* DMA0,1 engines use FIFO to maintain CDBs, so we
4350 * should allocate the pool accordingly to size of this
4351 * FIFO. Thus, the pool size depends on the FIFO depth:
4352 * how much CDBs pointers the FIFO may contain then so
4353 * much CDBs we should provide in the pool.
4356 * CDBs number = (DMA0_FIFO_SIZE >> 3);
4357 * Pool size = CDBs number * CDB size =
4358 * = (DMA0_FIFO_SIZE >> 3) << 5 = DMA0_FIFO_SIZE << 2.
4360 pool_size = (id == PPC440SPE_DMA0_ID) ?
4361 DMA0_FIFO_SIZE : DMA1_FIFO_SIZE;
4365 if (of_address_to_resource(np, 0, &res)) {
4366 dev_err(&ofdev->dev, "failed to get memory resource\n");
4367 initcode = PPC_ADMA_INIT_MEMRES;
4372 if (!request_mem_region(res.start, resource_size(&res),
4373 dev_driver_string(&ofdev->dev))) {
4374 dev_err(&ofdev->dev, "failed to request memory region %pR\n",
4376 initcode = PPC_ADMA_INIT_MEMREG;
4381 /* create a device */
4382 adev = kzalloc(sizeof(*adev), GFP_KERNEL);
4384 dev_err(&ofdev->dev, "failed to allocate device\n");
4385 initcode = PPC_ADMA_INIT_ALLOC;
4387 goto err_adev_alloc;
4391 adev->pool_size = pool_size;
4392 /* allocate coherent memory for hardware descriptors */
4393 adev->dma_desc_pool_virt = dma_alloc_coherent(&ofdev->dev,
4394 adev->pool_size, &adev->dma_desc_pool,
4396 if (adev->dma_desc_pool_virt == NULL) {
4397 dev_err(&ofdev->dev, "failed to allocate %d bytes of coherent "
4398 "memory for hardware descriptors\n",
4400 initcode = PPC_ADMA_INIT_COHERENT;
4404 dev_dbg(&ofdev->dev, "allocated descriptor pool virt 0x%p phys 0x%llx\n",
4405 adev->dma_desc_pool_virt, (u64)adev->dma_desc_pool);
4407 regs = ioremap(res.start, resource_size(&res));
4409 dev_err(&ofdev->dev, "failed to ioremap regs!\n");
4410 goto err_regs_alloc;
4413 if (adev->id == PPC440SPE_XOR_ID) {
4414 adev->xor_reg = regs;
4416 iowrite32be(XOR_CRSR_XASR_BIT, &adev->xor_reg->crsr);
4417 iowrite32be(XOR_CRSR_64BA_BIT, &adev->xor_reg->crrr);
4419 size_t fifo_size = (adev->id == PPC440SPE_DMA0_ID) ?
4420 DMA0_FIFO_SIZE : DMA1_FIFO_SIZE;
4421 adev->dma_reg = regs;
4422 /* DMAx_FIFO_SIZE is defined in bytes,
4423 * <fsiz> - is defined in number of CDB pointers (8byte).
4424 * DMA FIFO Length = CSlength + CPlength, where
4425 * CSlength = CPlength = (fsiz + 1) * 8.
4427 iowrite32(DMA_FIFO_ENABLE | ((fifo_size >> 3) - 2),
4428 &adev->dma_reg->fsiz);
4429 /* Configure DMA engine */
4430 iowrite32(DMA_CFG_DXEPR_HP | DMA_CFG_DFMPP_HP | DMA_CFG_FALGN,
4431 &adev->dma_reg->cfg);
4433 iowrite32(~0, &adev->dma_reg->dsts);
4436 adev->dev = &ofdev->dev;
4437 adev->common.dev = &ofdev->dev;
4438 INIT_LIST_HEAD(&adev->common.channels);
4439 platform_set_drvdata(ofdev, adev);
4441 /* create a channel */
4442 chan = kzalloc(sizeof(*chan), GFP_KERNEL);
4444 dev_err(&ofdev->dev, "can't allocate channel structure\n");
4445 initcode = PPC_ADMA_INIT_CHANNEL;
4447 goto err_chan_alloc;
4450 spin_lock_init(&chan->lock);
4451 INIT_LIST_HEAD(&chan->chain);
4452 INIT_LIST_HEAD(&chan->all_slots);
4453 chan->device = adev;
4454 chan->common.device = &adev->common;
4455 dma_cookie_init(&chan->common);
4456 list_add_tail(&chan->common.device_node, &adev->common.channels);
4457 tasklet_init(&chan->irq_tasklet, ppc440spe_adma_tasklet,
4458 (unsigned long)chan);
4460 /* allocate and map helper pages for async validation or
4461 * async_mult/async_sum_product operations on DMA0/1.
4463 if (adev->id != PPC440SPE_XOR_ID) {
4464 chan->pdest_page = alloc_page(GFP_KERNEL);
4465 chan->qdest_page = alloc_page(GFP_KERNEL);
4466 if (!chan->pdest_page ||
4467 !chan->qdest_page) {
4468 if (chan->pdest_page)
4469 __free_page(chan->pdest_page);
4470 if (chan->qdest_page)
4471 __free_page(chan->qdest_page);
4473 goto err_page_alloc;
4475 chan->pdest = dma_map_page(&ofdev->dev, chan->pdest_page, 0,
4476 PAGE_SIZE, DMA_BIDIRECTIONAL);
4477 chan->qdest = dma_map_page(&ofdev->dev, chan->qdest_page, 0,
4478 PAGE_SIZE, DMA_BIDIRECTIONAL);
4481 ref = kmalloc(sizeof(*ref), GFP_KERNEL);
4483 ref->chan = &chan->common;
4484 INIT_LIST_HEAD(&ref->node);
4485 list_add_tail(&ref->node, &ppc440spe_adma_chan_list);
4487 dev_err(&ofdev->dev, "failed to allocate channel reference!\n");
4492 ret = ppc440spe_adma_setup_irqs(adev, chan, &initcode);
4496 ppc440spe_adma_init_capabilities(adev);
4498 ret = dma_async_device_register(&adev->common);
4500 initcode = PPC_ADMA_INIT_REGISTER;
4501 dev_err(&ofdev->dev, "failed to register dma device\n");
4508 ppc440spe_adma_release_irqs(adev, chan);
4510 list_for_each_entry_safe(ref, _ref, &ppc440spe_adma_chan_list, node) {
4511 if (chan == to_ppc440spe_adma_chan(ref->chan)) {
4512 list_del(&ref->node);
4517 if (adev->id != PPC440SPE_XOR_ID) {
4518 dma_unmap_page(&ofdev->dev, chan->pdest,
4519 PAGE_SIZE, DMA_BIDIRECTIONAL);
4520 dma_unmap_page(&ofdev->dev, chan->qdest,
4521 PAGE_SIZE, DMA_BIDIRECTIONAL);
4522 __free_page(chan->pdest_page);
4523 __free_page(chan->qdest_page);
4528 if (adev->id == PPC440SPE_XOR_ID)
4529 iounmap(adev->xor_reg);
4531 iounmap(adev->dma_reg);
4533 dma_free_coherent(adev->dev, adev->pool_size,
4534 adev->dma_desc_pool_virt,
4535 adev->dma_desc_pool);
4539 release_mem_region(res.start, resource_size(&res));
4541 if (id < PPC440SPE_ADMA_ENGINES_NUM)
4542 ppc440spe_adma_devices[id] = initcode;
4548 * ppc440spe_adma_remove - remove the asynch device
4550 static int ppc440spe_adma_remove(struct platform_device *ofdev)
4552 struct ppc440spe_adma_device *adev = platform_get_drvdata(ofdev);
4553 struct device_node *np = ofdev->dev.of_node;
4554 struct resource res;
4555 struct dma_chan *chan, *_chan;
4556 struct ppc_dma_chan_ref *ref, *_ref;
4557 struct ppc440spe_adma_chan *ppc440spe_chan;
4559 if (adev->id < PPC440SPE_ADMA_ENGINES_NUM)
4560 ppc440spe_adma_devices[adev->id] = -1;
4562 dma_async_device_unregister(&adev->common);
4564 list_for_each_entry_safe(chan, _chan, &adev->common.channels,
4566 ppc440spe_chan = to_ppc440spe_adma_chan(chan);
4567 ppc440spe_adma_release_irqs(adev, ppc440spe_chan);
4568 tasklet_kill(&ppc440spe_chan->irq_tasklet);
4569 if (adev->id != PPC440SPE_XOR_ID) {
4570 dma_unmap_page(&ofdev->dev, ppc440spe_chan->pdest,
4571 PAGE_SIZE, DMA_BIDIRECTIONAL);
4572 dma_unmap_page(&ofdev->dev, ppc440spe_chan->qdest,
4573 PAGE_SIZE, DMA_BIDIRECTIONAL);
4574 __free_page(ppc440spe_chan->pdest_page);
4575 __free_page(ppc440spe_chan->qdest_page);
4577 list_for_each_entry_safe(ref, _ref, &ppc440spe_adma_chan_list,
4579 if (ppc440spe_chan ==
4580 to_ppc440spe_adma_chan(ref->chan)) {
4581 list_del(&ref->node);
4585 list_del(&chan->device_node);
4586 kfree(ppc440spe_chan);
4589 dma_free_coherent(adev->dev, adev->pool_size,
4590 adev->dma_desc_pool_virt, adev->dma_desc_pool);
4591 if (adev->id == PPC440SPE_XOR_ID)
4592 iounmap(adev->xor_reg);
4594 iounmap(adev->dma_reg);
4595 of_address_to_resource(np, 0, &res);
4596 release_mem_region(res.start, resource_size(&res));
4602 * /sys driver interface to enable h/w RAID-6 capabilities
4603 * Files created in e.g. /sys/devices/plb.0/400100100.dma0/driver/
4604 * directory are "devices", "enable" and "poly".
4605 * "devices" shows available engines.
4606 * "enable" is used to enable RAID-6 capabilities or to check
4607 * whether these has been activated.
4608 * "poly" allows setting/checking used polynomial (for PPC440SPe only).
4611 static ssize_t show_ppc440spe_devices(struct device_driver *dev, char *buf)
4616 for (i = 0; i < PPC440SPE_ADMA_ENGINES_NUM; i++) {
4617 if (ppc440spe_adma_devices[i] == -1)
4619 size += snprintf(buf + size, PAGE_SIZE - size,
4620 "PPC440SP(E)-ADMA.%d: %s\n", i,
4621 ppc_adma_errors[ppc440spe_adma_devices[i]]);
4626 static ssize_t show_ppc440spe_r6enable(struct device_driver *dev, char *buf)
4628 return snprintf(buf, PAGE_SIZE,
4629 "PPC440SP(e) RAID-6 capabilities are %sABLED.\n",
4630 ppc440spe_r6_enabled ? "EN" : "DIS");
4633 static ssize_t store_ppc440spe_r6enable(struct device_driver *dev,
4634 const char *buf, size_t count)
4638 if (!count || count > 11)
4641 if (!ppc440spe_r6_tchan)
4645 sscanf(buf, "%lx", &val);
4646 dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_XORBA, val);
4649 /* Verify whether it really works now */
4650 if (ppc440spe_test_raid6(ppc440spe_r6_tchan) == 0) {
4651 pr_info("PPC440SP(e) RAID-6 has been activated "
4653 ppc440spe_r6_enabled = 1;
4655 pr_info("PPC440SP(e) RAID-6 hasn't been activated!"
4657 ppc440spe_r6_enabled = 0;
4662 static ssize_t show_ppc440spe_r6poly(struct device_driver *dev, char *buf)
4668 /* 440SP has fixed polynomial */
4671 reg = dcr_read(ppc440spe_mq_dcr_host, DCRN_MQ0_CFBHL);
4672 reg >>= MQ0_CFBHL_POLY;
4676 size = snprintf(buf, PAGE_SIZE, "PPC440SP(e) RAID-6 driver "
4677 "uses 0x1%02x polynomial.\n", reg);
4681 static ssize_t store_ppc440spe_r6poly(struct device_driver *dev,
4682 const char *buf, size_t count)
4684 unsigned long reg, val;
4687 /* 440SP uses default 0x14D polynomial only */
4691 if (!count || count > 6)
4694 /* e.g., 0x14D or 0x11D */
4695 sscanf(buf, "%lx", &val);
4701 reg = dcr_read(ppc440spe_mq_dcr_host, DCRN_MQ0_CFBHL);
4702 reg &= ~(0xFF << MQ0_CFBHL_POLY);
4703 reg |= val << MQ0_CFBHL_POLY;
4704 dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_CFBHL, reg);
4709 static DRIVER_ATTR(devices, S_IRUGO, show_ppc440spe_devices, NULL);
4710 static DRIVER_ATTR(enable, S_IRUGO | S_IWUSR, show_ppc440spe_r6enable,
4711 store_ppc440spe_r6enable);
4712 static DRIVER_ATTR(poly, S_IRUGO | S_IWUSR, show_ppc440spe_r6poly,
4713 store_ppc440spe_r6poly);
4716 * Common initialisation for RAID engines; allocate memory for
4717 * DMAx FIFOs, perform configuration common for all DMA engines.
4718 * Further DMA engine specific configuration is done at probe time.
4720 static int ppc440spe_configure_raid_devices(void)
4722 struct device_node *np;
4723 struct resource i2o_res;
4724 struct i2o_regs __iomem *i2o_reg;
4725 dcr_host_t i2o_dcr_host;
4726 unsigned int dcr_base, dcr_len;
4729 np = of_find_compatible_node(NULL, NULL, "ibm,i2o-440spe");
4731 pr_err("%s: can't find I2O device tree node\n",
4736 if (of_address_to_resource(np, 0, &i2o_res)) {
4741 i2o_reg = of_iomap(np, 0);
4743 pr_err("%s: failed to map I2O registers\n", __func__);
4748 /* Get I2O DCRs base */
4749 dcr_base = dcr_resource_start(np, 0);
4750 dcr_len = dcr_resource_len(np, 0);
4751 if (!dcr_base && !dcr_len) {
4752 pr_err("%s: can't get DCR registers base/len!\n",
4759 i2o_dcr_host = dcr_map(np, dcr_base, dcr_len);
4760 if (!DCR_MAP_OK(i2o_dcr_host)) {
4761 pr_err("%s: failed to map DCRs!\n", np->full_name);
4768 /* Provide memory regions for DMA's FIFOs: I2O, DMA0 and DMA1 share
4769 * the base address of FIFO memory space.
4770 * Actually we need twice more physical memory than programmed in the
4771 * <fsiz> register (because there are two FIFOs for each DMA: CP and CS)
4773 ppc440spe_dma_fifo_buf = kmalloc((DMA0_FIFO_SIZE + DMA1_FIFO_SIZE) << 1,
4775 if (!ppc440spe_dma_fifo_buf) {
4776 pr_err("%s: DMA FIFO buffer allocation failed.\n", __func__);
4778 dcr_unmap(i2o_dcr_host, dcr_len);
4786 mtdcri(SDR0, DCRN_SDR0_SRST, DCRN_SDR0_SRST_I2ODMA);
4787 mtdcri(SDR0, DCRN_SDR0_SRST, 0);
4789 /* Setup the base address of mmaped registers */
4790 dcr_write(i2o_dcr_host, DCRN_I2O0_IBAH, (u32)(i2o_res.start >> 32));
4791 dcr_write(i2o_dcr_host, DCRN_I2O0_IBAL, (u32)(i2o_res.start) |
4793 dcr_unmap(i2o_dcr_host, dcr_len);
4795 /* Setup FIFO memory space base address */
4796 iowrite32(0, &i2o_reg->ifbah);
4797 iowrite32(((u32)__pa(ppc440spe_dma_fifo_buf)), &i2o_reg->ifbal);
4799 /* set zero FIFO size for I2O, so the whole
4800 * ppc440spe_dma_fifo_buf is used by DMAs.
4801 * DMAx_FIFOs will be configured while probe.
4803 iowrite32(0, &i2o_reg->ifsiz);
4806 /* To prepare WXOR/RXOR functionality we need access to
4807 * Memory Queue Module DCRs (finally it will be enabled
4808 * via /sys interface of the ppc440spe ADMA driver).
4810 np = of_find_compatible_node(NULL, NULL, "ibm,mq-440spe");
4812 pr_err("%s: can't find MQ device tree node\n",
4818 /* Get MQ DCRs base */
4819 dcr_base = dcr_resource_start(np, 0);
4820 dcr_len = dcr_resource_len(np, 0);
4821 if (!dcr_base && !dcr_len) {
4822 pr_err("%s: can't get DCR registers base/len!\n",
4828 ppc440spe_mq_dcr_host = dcr_map(np, dcr_base, dcr_len);
4829 if (!DCR_MAP_OK(ppc440spe_mq_dcr_host)) {
4830 pr_err("%s: failed to map DCRs!\n", np->full_name);
4835 ppc440spe_mq_dcr_len = dcr_len;
4838 dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_BAUH, DMA_CUED_XOR_HB);
4841 * - LL transaction passing limit to 1;
4842 * - Memory controller cycle limit to 1;
4843 * - Galois Polynomial to 0x14d (default)
4845 dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_CFBHL,
4846 (1 << MQ0_CFBHL_TPLM) | (1 << MQ0_CFBHL_HBCL) |
4847 (PPC440SPE_DEFAULT_POLY << MQ0_CFBHL_POLY));
4849 atomic_set(&ppc440spe_adma_err_irq_ref, 0);
4850 for (i = 0; i < PPC440SPE_ADMA_ENGINES_NUM; i++)
4851 ppc440spe_adma_devices[i] = -1;
4858 kfree(ppc440spe_dma_fifo_buf);
4862 static const struct of_device_id ppc440spe_adma_of_match[] = {
4863 { .compatible = "ibm,dma-440spe", },
4864 { .compatible = "amcc,xor-accelerator", },
4867 MODULE_DEVICE_TABLE(of, ppc440spe_adma_of_match);
4869 static struct platform_driver ppc440spe_adma_driver = {
4870 .probe = ppc440spe_adma_probe,
4871 .remove = ppc440spe_adma_remove,
4873 .name = "PPC440SP(E)-ADMA",
4874 .owner = THIS_MODULE,
4875 .of_match_table = ppc440spe_adma_of_match,
4879 static __init int ppc440spe_adma_init(void)
4883 ret = ppc440spe_configure_raid_devices();
4887 ret = platform_driver_register(&ppc440spe_adma_driver);
4889 pr_err("%s: failed to register platform driver\n",
4894 /* Initialization status */
4895 ret = driver_create_file(&ppc440spe_adma_driver.driver,
4896 &driver_attr_devices);
4900 /* RAID-6 h/w enable entry */
4901 ret = driver_create_file(&ppc440spe_adma_driver.driver,
4902 &driver_attr_enable);
4906 /* GF polynomial to use */
4907 ret = driver_create_file(&ppc440spe_adma_driver.driver,
4912 driver_remove_file(&ppc440spe_adma_driver.driver,
4913 &driver_attr_enable);
4915 driver_remove_file(&ppc440spe_adma_driver.driver,
4916 &driver_attr_devices);
4918 /* User will not be able to enable h/w RAID-6 */
4919 pr_err("%s: failed to create RAID-6 driver interface\n",
4921 platform_driver_unregister(&ppc440spe_adma_driver);
4923 dcr_unmap(ppc440spe_mq_dcr_host, ppc440spe_mq_dcr_len);
4924 kfree(ppc440spe_dma_fifo_buf);
4928 static void __exit ppc440spe_adma_exit(void)
4930 driver_remove_file(&ppc440spe_adma_driver.driver,
4932 driver_remove_file(&ppc440spe_adma_driver.driver,
4933 &driver_attr_enable);
4934 driver_remove_file(&ppc440spe_adma_driver.driver,
4935 &driver_attr_devices);
4936 platform_driver_unregister(&ppc440spe_adma_driver);
4937 dcr_unmap(ppc440spe_mq_dcr_host, ppc440spe_mq_dcr_len);
4938 kfree(ppc440spe_dma_fifo_buf);
4941 arch_initcall(ppc440spe_adma_init);
4942 module_exit(ppc440spe_adma_exit);
4944 MODULE_AUTHOR("Yuri Tikhonov <yur@emcraft.com>");
4945 MODULE_DESCRIPTION("PPC440SPE ADMA Engine Driver");
4946 MODULE_LICENSE("GPL");