Merge tag 'leds-6.1-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/pavel/linux...
[platform/kernel/linux-starfive.git] / drivers / dma / plx_dma.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Microsemi Switchtec(tm) PCIe Management Driver
4  * Copyright (c) 2019, Logan Gunthorpe <logang@deltatee.com>
5  * Copyright (c) 2019, GigaIO Networks, Inc
6  */
7
8 #include "dmaengine.h"
9
10 #include <linux/circ_buf.h>
11 #include <linux/dmaengine.h>
12 #include <linux/kref.h>
13 #include <linux/list.h>
14 #include <linux/module.h>
15 #include <linux/pci.h>
16
17 MODULE_DESCRIPTION("PLX ExpressLane PEX PCI Switch DMA Engine");
18 MODULE_VERSION("0.1");
19 MODULE_LICENSE("GPL");
20 MODULE_AUTHOR("Logan Gunthorpe");
21
22 #define PLX_REG_DESC_RING_ADDR                  0x214
23 #define PLX_REG_DESC_RING_ADDR_HI               0x218
24 #define PLX_REG_DESC_RING_NEXT_ADDR             0x21C
25 #define PLX_REG_DESC_RING_COUNT                 0x220
26 #define PLX_REG_DESC_RING_LAST_ADDR             0x224
27 #define PLX_REG_DESC_RING_LAST_SIZE             0x228
28 #define PLX_REG_PREF_LIMIT                      0x234
29 #define PLX_REG_CTRL                            0x238
30 #define PLX_REG_CTRL2                           0x23A
31 #define PLX_REG_INTR_CTRL                       0x23C
32 #define PLX_REG_INTR_STATUS                     0x23E
33
34 #define PLX_REG_PREF_LIMIT_PREF_FOUR            8
35
36 #define PLX_REG_CTRL_GRACEFUL_PAUSE             BIT(0)
37 #define PLX_REG_CTRL_ABORT                      BIT(1)
38 #define PLX_REG_CTRL_WRITE_BACK_EN              BIT(2)
39 #define PLX_REG_CTRL_START                      BIT(3)
40 #define PLX_REG_CTRL_RING_STOP_MODE             BIT(4)
41 #define PLX_REG_CTRL_DESC_MODE_BLOCK            (0 << 5)
42 #define PLX_REG_CTRL_DESC_MODE_ON_CHIP          (1 << 5)
43 #define PLX_REG_CTRL_DESC_MODE_OFF_CHIP         (2 << 5)
44 #define PLX_REG_CTRL_DESC_INVALID               BIT(8)
45 #define PLX_REG_CTRL_GRACEFUL_PAUSE_DONE        BIT(9)
46 #define PLX_REG_CTRL_ABORT_DONE                 BIT(10)
47 #define PLX_REG_CTRL_IMM_PAUSE_DONE             BIT(12)
48 #define PLX_REG_CTRL_IN_PROGRESS                BIT(30)
49
50 #define PLX_REG_CTRL_RESET_VAL  (PLX_REG_CTRL_DESC_INVALID | \
51                                  PLX_REG_CTRL_GRACEFUL_PAUSE_DONE | \
52                                  PLX_REG_CTRL_ABORT_DONE | \
53                                  PLX_REG_CTRL_IMM_PAUSE_DONE)
54
55 #define PLX_REG_CTRL_START_VAL  (PLX_REG_CTRL_WRITE_BACK_EN | \
56                                  PLX_REG_CTRL_DESC_MODE_OFF_CHIP | \
57                                  PLX_REG_CTRL_START | \
58                                  PLX_REG_CTRL_RESET_VAL)
59
60 #define PLX_REG_CTRL2_MAX_TXFR_SIZE_64B         0
61 #define PLX_REG_CTRL2_MAX_TXFR_SIZE_128B        1
62 #define PLX_REG_CTRL2_MAX_TXFR_SIZE_256B        2
63 #define PLX_REG_CTRL2_MAX_TXFR_SIZE_512B        3
64 #define PLX_REG_CTRL2_MAX_TXFR_SIZE_1KB         4
65 #define PLX_REG_CTRL2_MAX_TXFR_SIZE_2KB         5
66 #define PLX_REG_CTRL2_MAX_TXFR_SIZE_4B          7
67
68 #define PLX_REG_INTR_CRTL_ERROR_EN              BIT(0)
69 #define PLX_REG_INTR_CRTL_INV_DESC_EN           BIT(1)
70 #define PLX_REG_INTR_CRTL_ABORT_DONE_EN         BIT(3)
71 #define PLX_REG_INTR_CRTL_PAUSE_DONE_EN         BIT(4)
72 #define PLX_REG_INTR_CRTL_IMM_PAUSE_DONE_EN     BIT(5)
73
74 #define PLX_REG_INTR_STATUS_ERROR               BIT(0)
75 #define PLX_REG_INTR_STATUS_INV_DESC            BIT(1)
76 #define PLX_REG_INTR_STATUS_DESC_DONE           BIT(2)
77 #define PLX_REG_INTR_CRTL_ABORT_DONE            BIT(3)
78
79 struct plx_dma_hw_std_desc {
80         __le32 flags_and_size;
81         __le16 dst_addr_hi;
82         __le16 src_addr_hi;
83         __le32 dst_addr_lo;
84         __le32 src_addr_lo;
85 };
86
87 #define PLX_DESC_SIZE_MASK              0x7ffffff
88 #define PLX_DESC_FLAG_VALID             BIT(31)
89 #define PLX_DESC_FLAG_INT_WHEN_DONE     BIT(30)
90
91 #define PLX_DESC_WB_SUCCESS             BIT(30)
92 #define PLX_DESC_WB_RD_FAIL             BIT(29)
93 #define PLX_DESC_WB_WR_FAIL             BIT(28)
94
95 #define PLX_DMA_RING_COUNT              2048
96
97 struct plx_dma_desc {
98         struct dma_async_tx_descriptor txd;
99         struct plx_dma_hw_std_desc *hw;
100         u32 orig_size;
101 };
102
103 struct plx_dma_dev {
104         struct dma_device dma_dev;
105         struct dma_chan dma_chan;
106         struct pci_dev __rcu *pdev;
107         void __iomem *bar;
108         struct tasklet_struct desc_task;
109
110         spinlock_t ring_lock;
111         bool ring_active;
112         int head;
113         int tail;
114         struct plx_dma_hw_std_desc *hw_ring;
115         dma_addr_t hw_ring_dma;
116         struct plx_dma_desc **desc_ring;
117 };
118
119 static struct plx_dma_dev *chan_to_plx_dma_dev(struct dma_chan *c)
120 {
121         return container_of(c, struct plx_dma_dev, dma_chan);
122 }
123
124 static struct plx_dma_desc *to_plx_desc(struct dma_async_tx_descriptor *txd)
125 {
126         return container_of(txd, struct plx_dma_desc, txd);
127 }
128
129 static struct plx_dma_desc *plx_dma_get_desc(struct plx_dma_dev *plxdev, int i)
130 {
131         return plxdev->desc_ring[i & (PLX_DMA_RING_COUNT - 1)];
132 }
133
134 static void plx_dma_process_desc(struct plx_dma_dev *plxdev)
135 {
136         struct dmaengine_result res;
137         struct plx_dma_desc *desc;
138         u32 flags;
139
140         spin_lock(&plxdev->ring_lock);
141
142         while (plxdev->tail != plxdev->head) {
143                 desc = plx_dma_get_desc(plxdev, plxdev->tail);
144
145                 flags = le32_to_cpu(READ_ONCE(desc->hw->flags_and_size));
146
147                 if (flags & PLX_DESC_FLAG_VALID)
148                         break;
149
150                 res.residue = desc->orig_size - (flags & PLX_DESC_SIZE_MASK);
151
152                 if (flags & PLX_DESC_WB_SUCCESS)
153                         res.result = DMA_TRANS_NOERROR;
154                 else if (flags & PLX_DESC_WB_WR_FAIL)
155                         res.result = DMA_TRANS_WRITE_FAILED;
156                 else
157                         res.result = DMA_TRANS_READ_FAILED;
158
159                 dma_cookie_complete(&desc->txd);
160                 dma_descriptor_unmap(&desc->txd);
161                 dmaengine_desc_get_callback_invoke(&desc->txd, &res);
162                 desc->txd.callback = NULL;
163                 desc->txd.callback_result = NULL;
164
165                 plxdev->tail++;
166         }
167
168         spin_unlock(&plxdev->ring_lock);
169 }
170
171 static void plx_dma_abort_desc(struct plx_dma_dev *plxdev)
172 {
173         struct dmaengine_result res;
174         struct plx_dma_desc *desc;
175
176         plx_dma_process_desc(plxdev);
177
178         spin_lock_bh(&plxdev->ring_lock);
179
180         while (plxdev->tail != plxdev->head) {
181                 desc = plx_dma_get_desc(plxdev, plxdev->tail);
182
183                 res.residue = desc->orig_size;
184                 res.result = DMA_TRANS_ABORTED;
185
186                 dma_cookie_complete(&desc->txd);
187                 dma_descriptor_unmap(&desc->txd);
188                 dmaengine_desc_get_callback_invoke(&desc->txd, &res);
189                 desc->txd.callback = NULL;
190                 desc->txd.callback_result = NULL;
191
192                 plxdev->tail++;
193         }
194
195         spin_unlock_bh(&plxdev->ring_lock);
196 }
197
198 static void __plx_dma_stop(struct plx_dma_dev *plxdev)
199 {
200         unsigned long timeout = jiffies + msecs_to_jiffies(1000);
201         u32 val;
202
203         val = readl(plxdev->bar + PLX_REG_CTRL);
204         if (!(val & ~PLX_REG_CTRL_GRACEFUL_PAUSE))
205                 return;
206
207         writel(PLX_REG_CTRL_RESET_VAL | PLX_REG_CTRL_GRACEFUL_PAUSE,
208                plxdev->bar + PLX_REG_CTRL);
209
210         while (!time_after(jiffies, timeout)) {
211                 val = readl(plxdev->bar + PLX_REG_CTRL);
212                 if (val & PLX_REG_CTRL_GRACEFUL_PAUSE_DONE)
213                         break;
214
215                 cpu_relax();
216         }
217
218         if (!(val & PLX_REG_CTRL_GRACEFUL_PAUSE_DONE))
219                 dev_err(plxdev->dma_dev.dev,
220                         "Timeout waiting for graceful pause!\n");
221
222         writel(PLX_REG_CTRL_RESET_VAL | PLX_REG_CTRL_GRACEFUL_PAUSE,
223                plxdev->bar + PLX_REG_CTRL);
224
225         writel(0, plxdev->bar + PLX_REG_DESC_RING_COUNT);
226         writel(0, plxdev->bar + PLX_REG_DESC_RING_ADDR);
227         writel(0, plxdev->bar + PLX_REG_DESC_RING_ADDR_HI);
228         writel(0, plxdev->bar + PLX_REG_DESC_RING_NEXT_ADDR);
229 }
230
231 static void plx_dma_stop(struct plx_dma_dev *plxdev)
232 {
233         rcu_read_lock();
234         if (!rcu_dereference(plxdev->pdev)) {
235                 rcu_read_unlock();
236                 return;
237         }
238
239         __plx_dma_stop(plxdev);
240
241         rcu_read_unlock();
242 }
243
244 static void plx_dma_desc_task(struct tasklet_struct *t)
245 {
246         struct plx_dma_dev *plxdev = from_tasklet(plxdev, t, desc_task);
247
248         plx_dma_process_desc(plxdev);
249 }
250
251 static struct dma_async_tx_descriptor *plx_dma_prep_memcpy(struct dma_chan *c,
252                 dma_addr_t dma_dst, dma_addr_t dma_src, size_t len,
253                 unsigned long flags)
254         __acquires(plxdev->ring_lock)
255 {
256         struct plx_dma_dev *plxdev = chan_to_plx_dma_dev(c);
257         struct plx_dma_desc *plxdesc;
258
259         spin_lock_bh(&plxdev->ring_lock);
260         if (!plxdev->ring_active)
261                 goto err_unlock;
262
263         if (!CIRC_SPACE(plxdev->head, plxdev->tail, PLX_DMA_RING_COUNT))
264                 goto err_unlock;
265
266         if (len > PLX_DESC_SIZE_MASK)
267                 goto err_unlock;
268
269         plxdesc = plx_dma_get_desc(plxdev, plxdev->head);
270         plxdev->head++;
271
272         plxdesc->hw->dst_addr_lo = cpu_to_le32(lower_32_bits(dma_dst));
273         plxdesc->hw->dst_addr_hi = cpu_to_le16(upper_32_bits(dma_dst));
274         plxdesc->hw->src_addr_lo = cpu_to_le32(lower_32_bits(dma_src));
275         plxdesc->hw->src_addr_hi = cpu_to_le16(upper_32_bits(dma_src));
276
277         plxdesc->orig_size = len;
278
279         if (flags & DMA_PREP_INTERRUPT)
280                 len |= PLX_DESC_FLAG_INT_WHEN_DONE;
281
282         plxdesc->hw->flags_and_size = cpu_to_le32(len);
283         plxdesc->txd.flags = flags;
284
285         /* return with the lock held, it will be released in tx_submit */
286
287         return &plxdesc->txd;
288
289 err_unlock:
290         /*
291          * Keep sparse happy by restoring an even lock count on
292          * this lock.
293          */
294         __acquire(plxdev->ring_lock);
295
296         spin_unlock_bh(&plxdev->ring_lock);
297         return NULL;
298 }
299
300 static dma_cookie_t plx_dma_tx_submit(struct dma_async_tx_descriptor *desc)
301         __releases(plxdev->ring_lock)
302 {
303         struct plx_dma_dev *plxdev = chan_to_plx_dma_dev(desc->chan);
304         struct plx_dma_desc *plxdesc = to_plx_desc(desc);
305         dma_cookie_t cookie;
306
307         cookie = dma_cookie_assign(desc);
308
309         /*
310          * Ensure the descriptor updates are visible to the dma device
311          * before setting the valid bit.
312          */
313         wmb();
314
315         plxdesc->hw->flags_and_size |= cpu_to_le32(PLX_DESC_FLAG_VALID);
316
317         spin_unlock_bh(&plxdev->ring_lock);
318
319         return cookie;
320 }
321
322 static enum dma_status plx_dma_tx_status(struct dma_chan *chan,
323                 dma_cookie_t cookie, struct dma_tx_state *txstate)
324 {
325         struct plx_dma_dev *plxdev = chan_to_plx_dma_dev(chan);
326         enum dma_status ret;
327
328         ret = dma_cookie_status(chan, cookie, txstate);
329         if (ret == DMA_COMPLETE)
330                 return ret;
331
332         plx_dma_process_desc(plxdev);
333
334         return dma_cookie_status(chan, cookie, txstate);
335 }
336
337 static void plx_dma_issue_pending(struct dma_chan *chan)
338 {
339         struct plx_dma_dev *plxdev = chan_to_plx_dma_dev(chan);
340
341         rcu_read_lock();
342         if (!rcu_dereference(plxdev->pdev)) {
343                 rcu_read_unlock();
344                 return;
345         }
346
347         /*
348          * Ensure the valid bits are visible before starting the
349          * DMA engine.
350          */
351         wmb();
352
353         writew(PLX_REG_CTRL_START_VAL, plxdev->bar + PLX_REG_CTRL);
354
355         rcu_read_unlock();
356 }
357
358 static irqreturn_t plx_dma_isr(int irq, void *devid)
359 {
360         struct plx_dma_dev *plxdev = devid;
361         u32 status;
362
363         status = readw(plxdev->bar + PLX_REG_INTR_STATUS);
364
365         if (!status)
366                 return IRQ_NONE;
367
368         if (status & PLX_REG_INTR_STATUS_DESC_DONE && plxdev->ring_active)
369                 tasklet_schedule(&plxdev->desc_task);
370
371         writew(status, plxdev->bar + PLX_REG_INTR_STATUS);
372
373         return IRQ_HANDLED;
374 }
375
376 static int plx_dma_alloc_desc(struct plx_dma_dev *plxdev)
377 {
378         struct plx_dma_desc *desc;
379         int i;
380
381         plxdev->desc_ring = kcalloc(PLX_DMA_RING_COUNT,
382                                     sizeof(*plxdev->desc_ring), GFP_KERNEL);
383         if (!plxdev->desc_ring)
384                 return -ENOMEM;
385
386         for (i = 0; i < PLX_DMA_RING_COUNT; i++) {
387                 desc = kzalloc(sizeof(*desc), GFP_KERNEL);
388                 if (!desc)
389                         goto free_and_exit;
390
391                 dma_async_tx_descriptor_init(&desc->txd, &plxdev->dma_chan);
392                 desc->txd.tx_submit = plx_dma_tx_submit;
393                 desc->hw = &plxdev->hw_ring[i];
394
395                 plxdev->desc_ring[i] = desc;
396         }
397
398         return 0;
399
400 free_and_exit:
401         for (i = 0; i < PLX_DMA_RING_COUNT; i++)
402                 kfree(plxdev->desc_ring[i]);
403         kfree(plxdev->desc_ring);
404         return -ENOMEM;
405 }
406
407 static int plx_dma_alloc_chan_resources(struct dma_chan *chan)
408 {
409         struct plx_dma_dev *plxdev = chan_to_plx_dma_dev(chan);
410         size_t ring_sz = PLX_DMA_RING_COUNT * sizeof(*plxdev->hw_ring);
411         int rc;
412
413         plxdev->head = plxdev->tail = 0;
414         plxdev->hw_ring = dma_alloc_coherent(plxdev->dma_dev.dev, ring_sz,
415                                              &plxdev->hw_ring_dma, GFP_KERNEL);
416         if (!plxdev->hw_ring)
417                 return -ENOMEM;
418
419         rc = plx_dma_alloc_desc(plxdev);
420         if (rc)
421                 goto out_free_hw_ring;
422
423         rcu_read_lock();
424         if (!rcu_dereference(plxdev->pdev)) {
425                 rcu_read_unlock();
426                 rc = -ENODEV;
427                 goto out_free_hw_ring;
428         }
429
430         writel(PLX_REG_CTRL_RESET_VAL, plxdev->bar + PLX_REG_CTRL);
431         writel(lower_32_bits(plxdev->hw_ring_dma),
432                plxdev->bar + PLX_REG_DESC_RING_ADDR);
433         writel(upper_32_bits(plxdev->hw_ring_dma),
434                plxdev->bar + PLX_REG_DESC_RING_ADDR_HI);
435         writel(lower_32_bits(plxdev->hw_ring_dma),
436                plxdev->bar + PLX_REG_DESC_RING_NEXT_ADDR);
437         writel(PLX_DMA_RING_COUNT, plxdev->bar + PLX_REG_DESC_RING_COUNT);
438         writel(PLX_REG_PREF_LIMIT_PREF_FOUR, plxdev->bar + PLX_REG_PREF_LIMIT);
439
440         plxdev->ring_active = true;
441
442         rcu_read_unlock();
443
444         return PLX_DMA_RING_COUNT;
445
446 out_free_hw_ring:
447         dma_free_coherent(plxdev->dma_dev.dev, ring_sz, plxdev->hw_ring,
448                           plxdev->hw_ring_dma);
449         return rc;
450 }
451
452 static void plx_dma_free_chan_resources(struct dma_chan *chan)
453 {
454         struct plx_dma_dev *plxdev = chan_to_plx_dma_dev(chan);
455         size_t ring_sz = PLX_DMA_RING_COUNT * sizeof(*plxdev->hw_ring);
456         struct pci_dev *pdev;
457         int irq = -1;
458         int i;
459
460         spin_lock_bh(&plxdev->ring_lock);
461         plxdev->ring_active = false;
462         spin_unlock_bh(&plxdev->ring_lock);
463
464         plx_dma_stop(plxdev);
465
466         rcu_read_lock();
467         pdev = rcu_dereference(plxdev->pdev);
468         if (pdev)
469                 irq = pci_irq_vector(pdev, 0);
470         rcu_read_unlock();
471
472         if (irq > 0)
473                 synchronize_irq(irq);
474
475         tasklet_kill(&plxdev->desc_task);
476
477         plx_dma_abort_desc(plxdev);
478
479         for (i = 0; i < PLX_DMA_RING_COUNT; i++)
480                 kfree(plxdev->desc_ring[i]);
481
482         kfree(plxdev->desc_ring);
483         dma_free_coherent(plxdev->dma_dev.dev, ring_sz, plxdev->hw_ring,
484                           plxdev->hw_ring_dma);
485
486 }
487
488 static void plx_dma_release(struct dma_device *dma_dev)
489 {
490         struct plx_dma_dev *plxdev =
491                 container_of(dma_dev, struct plx_dma_dev, dma_dev);
492
493         put_device(dma_dev->dev);
494         kfree(plxdev);
495 }
496
497 static int plx_dma_create(struct pci_dev *pdev)
498 {
499         struct plx_dma_dev *plxdev;
500         struct dma_device *dma;
501         struct dma_chan *chan;
502         int rc;
503
504         plxdev = kzalloc(sizeof(*plxdev), GFP_KERNEL);
505         if (!plxdev)
506                 return -ENOMEM;
507
508         rc = request_irq(pci_irq_vector(pdev, 0), plx_dma_isr, 0,
509                          KBUILD_MODNAME, plxdev);
510         if (rc)
511                 goto free_plx;
512
513         spin_lock_init(&plxdev->ring_lock);
514         tasklet_setup(&plxdev->desc_task, plx_dma_desc_task);
515
516         RCU_INIT_POINTER(plxdev->pdev, pdev);
517         plxdev->bar = pcim_iomap_table(pdev)[0];
518
519         dma = &plxdev->dma_dev;
520         dma->chancnt = 1;
521         INIT_LIST_HEAD(&dma->channels);
522         dma_cap_set(DMA_MEMCPY, dma->cap_mask);
523         dma->copy_align = DMAENGINE_ALIGN_1_BYTE;
524         dma->dev = get_device(&pdev->dev);
525
526         dma->device_alloc_chan_resources = plx_dma_alloc_chan_resources;
527         dma->device_free_chan_resources = plx_dma_free_chan_resources;
528         dma->device_prep_dma_memcpy = plx_dma_prep_memcpy;
529         dma->device_issue_pending = plx_dma_issue_pending;
530         dma->device_tx_status = plx_dma_tx_status;
531         dma->device_release = plx_dma_release;
532
533         chan = &plxdev->dma_chan;
534         chan->device = dma;
535         dma_cookie_init(chan);
536         list_add_tail(&chan->device_node, &dma->channels);
537
538         rc = dma_async_device_register(dma);
539         if (rc) {
540                 pci_err(pdev, "Failed to register dma device: %d\n", rc);
541                 goto put_device;
542         }
543
544         pci_set_drvdata(pdev, plxdev);
545
546         return 0;
547
548 put_device:
549         put_device(&pdev->dev);
550         free_irq(pci_irq_vector(pdev, 0),  plxdev);
551 free_plx:
552         kfree(plxdev);
553
554         return rc;
555 }
556
557 static int plx_dma_probe(struct pci_dev *pdev,
558                          const struct pci_device_id *id)
559 {
560         int rc;
561
562         rc = pcim_enable_device(pdev);
563         if (rc)
564                 return rc;
565
566         rc = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(48));
567         if (rc)
568                 rc = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
569         if (rc)
570                 return rc;
571
572         rc = pcim_iomap_regions(pdev, 1, KBUILD_MODNAME);
573         if (rc)
574                 return rc;
575
576         rc = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
577         if (rc <= 0)
578                 return rc;
579
580         pci_set_master(pdev);
581
582         rc = plx_dma_create(pdev);
583         if (rc)
584                 goto err_free_irq_vectors;
585
586         pci_info(pdev, "PLX DMA Channel Registered\n");
587
588         return 0;
589
590 err_free_irq_vectors:
591         pci_free_irq_vectors(pdev);
592         return rc;
593 }
594
595 static void plx_dma_remove(struct pci_dev *pdev)
596 {
597         struct plx_dma_dev *plxdev = pci_get_drvdata(pdev);
598
599         free_irq(pci_irq_vector(pdev, 0),  plxdev);
600
601         rcu_assign_pointer(plxdev->pdev, NULL);
602         synchronize_rcu();
603
604         spin_lock_bh(&plxdev->ring_lock);
605         plxdev->ring_active = false;
606         spin_unlock_bh(&plxdev->ring_lock);
607
608         __plx_dma_stop(plxdev);
609         plx_dma_abort_desc(plxdev);
610
611         plxdev->bar = NULL;
612         dma_async_device_unregister(&plxdev->dma_dev);
613
614         pci_free_irq_vectors(pdev);
615 }
616
617 static const struct pci_device_id plx_dma_pci_tbl[] = {
618         {
619                 .vendor         = PCI_VENDOR_ID_PLX,
620                 .device         = 0x87D0,
621                 .subvendor      = PCI_ANY_ID,
622                 .subdevice      = PCI_ANY_ID,
623                 .class          = PCI_CLASS_SYSTEM_OTHER << 8,
624                 .class_mask     = 0xFFFFFFFF,
625         },
626         {0}
627 };
628 MODULE_DEVICE_TABLE(pci, plx_dma_pci_tbl);
629
630 static struct pci_driver plx_dma_pci_driver = {
631         .name           = KBUILD_MODNAME,
632         .id_table       = plx_dma_pci_tbl,
633         .probe          = plx_dma_probe,
634         .remove         = plx_dma_remove,
635 };
636 module_pci_driver(plx_dma_pci_driver);