1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2013-2014 Renesas Electronics Europe Ltd.
4 * Author: Guennadi Liakhovetski <g.liakhovetski@gmx.de>
7 #include <linux/bitmap.h>
8 #include <linux/bitops.h>
10 #include <linux/dma-mapping.h>
11 #include <linux/dmaengine.h>
12 #include <linux/err.h>
13 #include <linux/interrupt.h>
15 #include <linux/log2.h>
16 #include <linux/module.h>
18 #include <linux/of_device.h>
19 #include <linux/of_dma.h>
20 #include <linux/platform_device.h>
21 #include <linux/slab.h>
23 #include <dt-bindings/dma/nbpfaxi.h>
25 #include "dmaengine.h"
27 #define NBPF_REG_CHAN_OFFSET 0
28 #define NBPF_REG_CHAN_SIZE 0x40
30 /* Channel Current Transaction Byte register */
31 #define NBPF_CHAN_CUR_TR_BYTE 0x20
33 /* Channel Status register */
34 #define NBPF_CHAN_STAT 0x24
35 #define NBPF_CHAN_STAT_EN 1
36 #define NBPF_CHAN_STAT_TACT 4
37 #define NBPF_CHAN_STAT_ERR 0x10
38 #define NBPF_CHAN_STAT_END 0x20
39 #define NBPF_CHAN_STAT_TC 0x40
40 #define NBPF_CHAN_STAT_DER 0x400
42 /* Channel Control register */
43 #define NBPF_CHAN_CTRL 0x28
44 #define NBPF_CHAN_CTRL_SETEN 1
45 #define NBPF_CHAN_CTRL_CLREN 2
46 #define NBPF_CHAN_CTRL_STG 4
47 #define NBPF_CHAN_CTRL_SWRST 8
48 #define NBPF_CHAN_CTRL_CLRRQ 0x10
49 #define NBPF_CHAN_CTRL_CLREND 0x20
50 #define NBPF_CHAN_CTRL_CLRTC 0x40
51 #define NBPF_CHAN_CTRL_SETSUS 0x100
52 #define NBPF_CHAN_CTRL_CLRSUS 0x200
54 /* Channel Configuration register */
55 #define NBPF_CHAN_CFG 0x2c
56 #define NBPF_CHAN_CFG_SEL 7 /* terminal SELect: 0..7 */
57 #define NBPF_CHAN_CFG_REQD 8 /* REQuest Direction: DMAREQ is 0: input, 1: output */
58 #define NBPF_CHAN_CFG_LOEN 0x10 /* LOw ENable: low DMA request line is: 0: inactive, 1: active */
59 #define NBPF_CHAN_CFG_HIEN 0x20 /* HIgh ENable: high DMA request line is: 0: inactive, 1: active */
60 #define NBPF_CHAN_CFG_LVL 0x40 /* LeVeL: DMA request line is sensed as 0: edge, 1: level */
61 #define NBPF_CHAN_CFG_AM 0x700 /* ACK Mode: 0: Pulse mode, 1: Level mode, b'1x: Bus Cycle */
62 #define NBPF_CHAN_CFG_SDS 0xf000 /* Source Data Size: 0: 8 bits,... , 7: 1024 bits */
63 #define NBPF_CHAN_CFG_DDS 0xf0000 /* Destination Data Size: as above */
64 #define NBPF_CHAN_CFG_SAD 0x100000 /* Source ADdress counting: 0: increment, 1: fixed */
65 #define NBPF_CHAN_CFG_DAD 0x200000 /* Destination ADdress counting: 0: increment, 1: fixed */
66 #define NBPF_CHAN_CFG_TM 0x400000 /* Transfer Mode: 0: single, 1: block TM */
67 #define NBPF_CHAN_CFG_DEM 0x1000000 /* DMAEND interrupt Mask */
68 #define NBPF_CHAN_CFG_TCM 0x2000000 /* DMATCO interrupt Mask */
69 #define NBPF_CHAN_CFG_SBE 0x8000000 /* Sweep Buffer Enable */
70 #define NBPF_CHAN_CFG_RSEL 0x10000000 /* RM: Register Set sELect */
71 #define NBPF_CHAN_CFG_RSW 0x20000000 /* RM: Register Select sWitch */
72 #define NBPF_CHAN_CFG_REN 0x40000000 /* RM: Register Set Enable */
73 #define NBPF_CHAN_CFG_DMS 0x80000000 /* 0: register mode (RM), 1: link mode (LM) */
75 #define NBPF_CHAN_NXLA 0x38
76 #define NBPF_CHAN_CRLA 0x3c
78 /* Link Header field */
79 #define NBPF_HEADER_LV 1
80 #define NBPF_HEADER_LE 2
81 #define NBPF_HEADER_WBD 4
82 #define NBPF_HEADER_DIM 8
84 #define NBPF_CTRL 0x300
85 #define NBPF_CTRL_PR 1 /* 0: fixed priority, 1: round robin */
86 #define NBPF_CTRL_LVINT 2 /* DMAEND and DMAERR signalling: 0: pulse, 1: level */
88 #define NBPF_DSTAT_ER 0x314
89 #define NBPF_DSTAT_END 0x318
91 #define NBPF_DMA_BUSWIDTHS \
92 (BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) | \
93 BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
94 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
95 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) | \
96 BIT(DMA_SLAVE_BUSWIDTH_8_BYTES))
104 * We've got 3 types of objects, used to describe DMA transfers:
105 * 1. high-level descriptor, containing a struct dma_async_tx_descriptor object
106 * in it, used to communicate with the user
107 * 2. hardware DMA link descriptors, that we pass to DMAC for DMA transfer
108 * queuing, these must be DMAable, using either the streaming DMA API or
109 * allocated from coherent memory - one per SG segment
110 * 3. one per SG segment descriptors, used to manage HW link descriptors from
111 * (2). They do not have to be DMAable. They can either be (a) allocated
112 * together with link descriptors as mixed (DMA / CPU) objects, or (b)
113 * separately. Even if allocated separately it would be best to link them
114 * to link descriptors once during channel resource allocation and always
115 * use them as a single object.
116 * Therefore for both cases (a) and (b) at run-time objects (2) and (3) shall be
117 * treated as a single SG segment descriptor.
120 struct nbpf_link_reg {
124 u32 transaction_size;
135 struct nbpf_link_desc {
136 struct nbpf_link_reg *hwdesc;
137 dma_addr_t hwdesc_dma_addr;
138 struct nbpf_desc *desc;
139 struct list_head node;
143 * struct nbpf_desc - DMA transfer descriptor
144 * @async_tx: dmaengine object
145 * @user_wait: waiting for a user ack
146 * @length: total transfer length
147 * @chan: associated DMAC channel
148 * @sg: list of hardware descriptors, represented by struct nbpf_link_desc
149 * @node: member in channel descriptor lists
152 struct dma_async_tx_descriptor async_tx;
155 struct nbpf_channel *chan;
157 struct list_head node;
160 /* Take a wild guess: allocate 4 segments per descriptor */
161 #define NBPF_SEGMENTS_PER_DESC 4
162 #define NBPF_DESCS_PER_PAGE ((PAGE_SIZE - sizeof(struct list_head)) / \
163 (sizeof(struct nbpf_desc) + \
164 NBPF_SEGMENTS_PER_DESC * \
165 (sizeof(struct nbpf_link_desc) + sizeof(struct nbpf_link_reg))))
166 #define NBPF_SEGMENTS_PER_PAGE (NBPF_SEGMENTS_PER_DESC * NBPF_DESCS_PER_PAGE)
168 struct nbpf_desc_page {
169 struct list_head node;
170 struct nbpf_desc desc[NBPF_DESCS_PER_PAGE];
171 struct nbpf_link_desc ldesc[NBPF_SEGMENTS_PER_PAGE];
172 struct nbpf_link_reg hwdesc[NBPF_SEGMENTS_PER_PAGE];
176 * struct nbpf_channel - one DMAC channel
177 * @dma_chan: standard dmaengine channel object
178 * @tasklet: channel specific tasklet used for callbacks
179 * @base: register address base
183 * @slave_src_addr: source address for slave DMA
184 * @slave_src_width: source slave data size in bytes
185 * @slave_src_burst: maximum source slave burst size in bytes
186 * @slave_dst_addr: destination address for slave DMA
187 * @slave_dst_width: destination slave data size in bytes
188 * @slave_dst_burst: maximum destination slave burst size in bytes
189 * @terminal: DMA terminal, assigned to this channel
190 * @dmarq_cfg: DMA request line configuration - high / low, edge / level for NBPF_CHAN_CFG
191 * @flags: configuration flags from DT
192 * @lock: protect descriptor lists
193 * @free_links: list of free link descriptors
194 * @free: list of free descriptors
195 * @queued: list of queued descriptors
196 * @active: list of descriptors, scheduled for processing
197 * @done: list of completed descriptors, waiting post-processing
198 * @desc_page: list of additionally allocated descriptor pages - if any
199 * @running: linked descriptor of running transaction
200 * @paused: are translations on this channel paused?
202 struct nbpf_channel {
203 struct dma_chan dma_chan;
204 struct tasklet_struct tasklet;
206 struct nbpf_device *nbpf;
209 dma_addr_t slave_src_addr;
210 size_t slave_src_width;
211 size_t slave_src_burst;
212 dma_addr_t slave_dst_addr;
213 size_t slave_dst_width;
214 size_t slave_dst_burst;
215 unsigned int terminal;
219 struct list_head free_links;
220 struct list_head free;
221 struct list_head queued;
222 struct list_head active;
223 struct list_head done;
224 struct list_head desc_page;
225 struct nbpf_desc *running;
230 struct dma_device dma_dev;
232 u32 max_burst_mem_read;
233 u32 max_burst_mem_write;
235 const struct nbpf_config *config;
237 struct nbpf_channel chan[];
252 static struct nbpf_config nbpf_cfg[] = {
291 #define nbpf_to_chan(d) container_of(d, struct nbpf_channel, dma_chan)
294 * dmaengine drivers seem to have a lot in common and instead of sharing more
295 * code, they reimplement those common algorithms independently. In this driver
296 * we try to separate the hardware-specific part from the (largely) generic
297 * part. This improves code readability and makes it possible in the future to
298 * reuse the generic code in form of a helper library. That generic code should
299 * be suitable for various DMA controllers, using transfer descriptors in RAM
300 * and pushing one SG list at a time to the DMA controller.
303 /* Hardware-specific part */
305 static inline u32 nbpf_chan_read(struct nbpf_channel *chan,
308 u32 data = ioread32(chan->base + offset);
309 dev_dbg(chan->dma_chan.device->dev, "%s(0x%p + 0x%x) = 0x%x\n",
310 __func__, chan->base, offset, data);
314 static inline void nbpf_chan_write(struct nbpf_channel *chan,
315 unsigned int offset, u32 data)
317 iowrite32(data, chan->base + offset);
318 dev_dbg(chan->dma_chan.device->dev, "%s(0x%p + 0x%x) = 0x%x\n",
319 __func__, chan->base, offset, data);
322 static inline u32 nbpf_read(struct nbpf_device *nbpf,
325 u32 data = ioread32(nbpf->base + offset);
326 dev_dbg(nbpf->dma_dev.dev, "%s(0x%p + 0x%x) = 0x%x\n",
327 __func__, nbpf->base, offset, data);
331 static inline void nbpf_write(struct nbpf_device *nbpf,
332 unsigned int offset, u32 data)
334 iowrite32(data, nbpf->base + offset);
335 dev_dbg(nbpf->dma_dev.dev, "%s(0x%p + 0x%x) = 0x%x\n",
336 __func__, nbpf->base, offset, data);
339 static void nbpf_chan_halt(struct nbpf_channel *chan)
341 nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_CLREN);
344 static bool nbpf_status_get(struct nbpf_channel *chan)
346 u32 status = nbpf_read(chan->nbpf, NBPF_DSTAT_END);
348 return status & BIT(chan - chan->nbpf->chan);
351 static void nbpf_status_ack(struct nbpf_channel *chan)
353 nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_CLREND);
356 static u32 nbpf_error_get(struct nbpf_device *nbpf)
358 return nbpf_read(nbpf, NBPF_DSTAT_ER);
361 static struct nbpf_channel *nbpf_error_get_channel(struct nbpf_device *nbpf, u32 error)
363 return nbpf->chan + __ffs(error);
366 static void nbpf_error_clear(struct nbpf_channel *chan)
371 /* Stop the channel, make sure DMA has been aborted */
372 nbpf_chan_halt(chan);
374 for (i = 1000; i; i--) {
375 status = nbpf_chan_read(chan, NBPF_CHAN_STAT);
376 if (!(status & NBPF_CHAN_STAT_TACT))
382 dev_err(chan->dma_chan.device->dev,
383 "%s(): abort timeout, channel status 0x%x\n", __func__, status);
385 nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_SWRST);
388 static int nbpf_start(struct nbpf_desc *desc)
390 struct nbpf_channel *chan = desc->chan;
391 struct nbpf_link_desc *ldesc = list_first_entry(&desc->sg, struct nbpf_link_desc, node);
393 nbpf_chan_write(chan, NBPF_CHAN_NXLA, (u32)ldesc->hwdesc_dma_addr);
394 nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_SETEN | NBPF_CHAN_CTRL_CLRSUS);
395 chan->paused = false;
397 /* Software trigger MEMCPY - only MEMCPY uses the block mode */
398 if (ldesc->hwdesc->config & NBPF_CHAN_CFG_TM)
399 nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_STG);
401 dev_dbg(chan->nbpf->dma_dev.dev, "%s(): next 0x%x, cur 0x%x\n", __func__,
402 nbpf_chan_read(chan, NBPF_CHAN_NXLA), nbpf_chan_read(chan, NBPF_CHAN_CRLA));
407 static void nbpf_chan_prepare(struct nbpf_channel *chan)
409 chan->dmarq_cfg = (chan->flags & NBPF_SLAVE_RQ_HIGH ? NBPF_CHAN_CFG_HIEN : 0) |
410 (chan->flags & NBPF_SLAVE_RQ_LOW ? NBPF_CHAN_CFG_LOEN : 0) |
411 (chan->flags & NBPF_SLAVE_RQ_LEVEL ?
412 NBPF_CHAN_CFG_LVL | (NBPF_CHAN_CFG_AM & 0x200) : 0) |
416 static void nbpf_chan_prepare_default(struct nbpf_channel *chan)
418 /* Don't output DMAACK */
419 chan->dmarq_cfg = NBPF_CHAN_CFG_AM & 0x400;
424 static void nbpf_chan_configure(struct nbpf_channel *chan)
427 * We assume, that only the link mode and DMA request line configuration
428 * have to be set in the configuration register manually. Dynamic
429 * per-transfer configuration will be loaded from transfer descriptors.
431 nbpf_chan_write(chan, NBPF_CHAN_CFG, NBPF_CHAN_CFG_DMS | chan->dmarq_cfg);
434 static u32 nbpf_xfer_ds(struct nbpf_device *nbpf, size_t size,
435 enum dma_transfer_direction direction)
437 int max_burst = nbpf->config->buffer_size * 8;
439 if (nbpf->max_burst_mem_read || nbpf->max_burst_mem_write) {
442 max_burst = min_not_zero(nbpf->max_burst_mem_read,
443 nbpf->max_burst_mem_write);
446 if (nbpf->max_burst_mem_read)
447 max_burst = nbpf->max_burst_mem_read;
450 if (nbpf->max_burst_mem_write)
451 max_burst = nbpf->max_burst_mem_write;
459 /* Maximum supported bursts depend on the buffer size */
460 return min_t(int, __ffs(size), ilog2(max_burst));
463 static size_t nbpf_xfer_size(struct nbpf_device *nbpf,
464 enum dma_slave_buswidth width, u32 burst)
472 case DMA_SLAVE_BUSWIDTH_8_BYTES:
476 case DMA_SLAVE_BUSWIDTH_4_BYTES:
480 case DMA_SLAVE_BUSWIDTH_2_BYTES:
485 pr_warn("%s(): invalid bus width %u\n", __func__, width);
487 case DMA_SLAVE_BUSWIDTH_1_BYTE:
491 return nbpf_xfer_ds(nbpf, size, DMA_TRANS_NONE);
495 * We need a way to recognise slaves, whose data is sent "raw" over the bus,
496 * i.e. it isn't known in advance how many bytes will be received. Therefore
497 * the slave driver has to provide a "large enough" buffer and either read the
498 * buffer, when it is full, or detect, that some data has arrived, then wait for
499 * a timeout, if no more data arrives - receive what's already there. We want to
500 * handle such slaves in a special way to allow an optimised mode for other
501 * users, for whom the amount of data is known in advance. So far there's no way
502 * to recognise such slaves. We use a data-width check to distinguish between
503 * the SD host and the PL011 UART.
506 static int nbpf_prep_one(struct nbpf_link_desc *ldesc,
507 enum dma_transfer_direction direction,
508 dma_addr_t src, dma_addr_t dst, size_t size, bool last)
510 struct nbpf_link_reg *hwdesc = ldesc->hwdesc;
511 struct nbpf_desc *desc = ldesc->desc;
512 struct nbpf_channel *chan = desc->chan;
513 struct device *dev = chan->dma_chan.device->dev;
514 size_t mem_xfer, slave_xfer;
517 hwdesc->header = NBPF_HEADER_WBD | NBPF_HEADER_LV |
518 (last ? NBPF_HEADER_LE : 0);
520 hwdesc->src_addr = src;
521 hwdesc->dst_addr = dst;
522 hwdesc->transaction_size = size;
525 * set config: SAD, DAD, DDS, SDS, etc.
526 * Note on transfer sizes: the DMAC can perform unaligned DMA transfers,
527 * but it is important to have transaction size a multiple of both
528 * receiver and transmitter transfer sizes. It is also possible to use
529 * different RAM and device transfer sizes, and it does work well with
530 * some devices, e.g. with V08R07S01E SD host controllers, which can use
531 * 128 byte transfers. But this doesn't work with other devices,
532 * especially when the transaction size is unknown. This is the case,
533 * e.g. with serial drivers like amba-pl011.c. For reception it sets up
534 * the transaction size of 4K and if fewer bytes are received, it
535 * pauses DMA and reads out data received via DMA as well as those left
536 * in the Rx FIFO. For this to work with the RAM side using burst
537 * transfers we enable the SBE bit and terminate the transfer in our
538 * .device_pause handler.
540 mem_xfer = nbpf_xfer_ds(chan->nbpf, size, direction);
544 can_burst = chan->slave_src_width >= 3;
545 slave_xfer = min(mem_xfer, can_burst ?
546 chan->slave_src_burst : chan->slave_src_width);
548 * Is the slave narrower than 64 bits, i.e. isn't using the full
549 * bus width and cannot use bursts?
551 if (mem_xfer > chan->slave_src_burst && !can_burst)
552 mem_xfer = chan->slave_src_burst;
553 /* Device-to-RAM DMA is unreliable without REQD set */
554 hwdesc->config = NBPF_CHAN_CFG_SAD | (NBPF_CHAN_CFG_DDS & (mem_xfer << 16)) |
555 (NBPF_CHAN_CFG_SDS & (slave_xfer << 12)) | NBPF_CHAN_CFG_REQD |
560 slave_xfer = min(mem_xfer, chan->slave_dst_width >= 3 ?
561 chan->slave_dst_burst : chan->slave_dst_width);
562 hwdesc->config = NBPF_CHAN_CFG_DAD | (NBPF_CHAN_CFG_SDS & (mem_xfer << 12)) |
563 (NBPF_CHAN_CFG_DDS & (slave_xfer << 16)) | NBPF_CHAN_CFG_REQD;
567 hwdesc->config = NBPF_CHAN_CFG_TCM | NBPF_CHAN_CFG_TM |
568 (NBPF_CHAN_CFG_SDS & (mem_xfer << 12)) |
569 (NBPF_CHAN_CFG_DDS & (mem_xfer << 16));
576 hwdesc->config |= chan->dmarq_cfg | (last ? 0 : NBPF_CHAN_CFG_DEM) |
579 dev_dbg(dev, "%s(): desc @ %pad: hdr 0x%x, cfg 0x%x, %zu @ %pad -> %pad\n",
580 __func__, &ldesc->hwdesc_dma_addr, hwdesc->header,
581 hwdesc->config, size, &src, &dst);
583 dma_sync_single_for_device(dev, ldesc->hwdesc_dma_addr, sizeof(*hwdesc),
589 static size_t nbpf_bytes_left(struct nbpf_channel *chan)
591 return nbpf_chan_read(chan, NBPF_CHAN_CUR_TR_BYTE);
594 static void nbpf_configure(struct nbpf_device *nbpf)
596 nbpf_write(nbpf, NBPF_CTRL, NBPF_CTRL_LVINT);
601 /* DMA ENGINE functions */
602 static void nbpf_issue_pending(struct dma_chan *dchan)
604 struct nbpf_channel *chan = nbpf_to_chan(dchan);
607 dev_dbg(dchan->device->dev, "Entry %s()\n", __func__);
609 spin_lock_irqsave(&chan->lock, flags);
610 if (list_empty(&chan->queued))
613 list_splice_tail_init(&chan->queued, &chan->active);
615 if (!chan->running) {
616 struct nbpf_desc *desc = list_first_entry(&chan->active,
617 struct nbpf_desc, node);
618 if (!nbpf_start(desc))
619 chan->running = desc;
623 spin_unlock_irqrestore(&chan->lock, flags);
626 static enum dma_status nbpf_tx_status(struct dma_chan *dchan,
627 dma_cookie_t cookie, struct dma_tx_state *state)
629 struct nbpf_channel *chan = nbpf_to_chan(dchan);
630 enum dma_status status = dma_cookie_status(dchan, cookie, state);
633 dma_cookie_t running;
636 spin_lock_irqsave(&chan->lock, flags);
637 running = chan->running ? chan->running->async_tx.cookie : -EINVAL;
639 if (cookie == running) {
640 state->residue = nbpf_bytes_left(chan);
641 dev_dbg(dchan->device->dev, "%s(): residue %u\n", __func__,
643 } else if (status == DMA_IN_PROGRESS) {
644 struct nbpf_desc *desc;
647 list_for_each_entry(desc, &chan->active, node)
648 if (desc->async_tx.cookie == cookie) {
654 list_for_each_entry(desc, &chan->queued, node)
655 if (desc->async_tx.cookie == cookie) {
661 state->residue = found ? desc->length : 0;
664 spin_unlock_irqrestore(&chan->lock, flags);
673 static dma_cookie_t nbpf_tx_submit(struct dma_async_tx_descriptor *tx)
675 struct nbpf_desc *desc = container_of(tx, struct nbpf_desc, async_tx);
676 struct nbpf_channel *chan = desc->chan;
680 spin_lock_irqsave(&chan->lock, flags);
681 cookie = dma_cookie_assign(tx);
682 list_add_tail(&desc->node, &chan->queued);
683 spin_unlock_irqrestore(&chan->lock, flags);
685 dev_dbg(chan->dma_chan.device->dev, "Entry %s(%d)\n", __func__, cookie);
690 static int nbpf_desc_page_alloc(struct nbpf_channel *chan)
692 struct dma_chan *dchan = &chan->dma_chan;
693 struct nbpf_desc_page *dpage = (void *)get_zeroed_page(GFP_KERNEL | GFP_DMA);
694 struct nbpf_link_desc *ldesc;
695 struct nbpf_link_reg *hwdesc;
696 struct nbpf_desc *desc;
700 struct device *dev = dchan->device->dev;
705 dev_dbg(dev, "%s(): alloc %lu descriptors, %lu segments, total alloc %zu\n",
706 __func__, NBPF_DESCS_PER_PAGE, NBPF_SEGMENTS_PER_PAGE, sizeof(*dpage));
708 for (i = 0, ldesc = dpage->ldesc, hwdesc = dpage->hwdesc;
709 i < ARRAY_SIZE(dpage->ldesc);
710 i++, ldesc++, hwdesc++) {
711 ldesc->hwdesc = hwdesc;
712 list_add_tail(&ldesc->node, &lhead);
713 ldesc->hwdesc_dma_addr = dma_map_single(dchan->device->dev,
714 hwdesc, sizeof(*hwdesc), DMA_TO_DEVICE);
716 dev_dbg(dev, "%s(): mapped 0x%p to %pad\n", __func__,
717 hwdesc, &ldesc->hwdesc_dma_addr);
720 for (i = 0, desc = dpage->desc;
721 i < ARRAY_SIZE(dpage->desc);
723 dma_async_tx_descriptor_init(&desc->async_tx, dchan);
724 desc->async_tx.tx_submit = nbpf_tx_submit;
726 INIT_LIST_HEAD(&desc->sg);
727 list_add_tail(&desc->node, &head);
731 * This function cannot be called from interrupt context, so, no need to
734 spin_lock_irq(&chan->lock);
735 list_splice_tail(&lhead, &chan->free_links);
736 list_splice_tail(&head, &chan->free);
737 list_add(&dpage->node, &chan->desc_page);
738 spin_unlock_irq(&chan->lock);
740 return ARRAY_SIZE(dpage->desc);
743 static void nbpf_desc_put(struct nbpf_desc *desc)
745 struct nbpf_channel *chan = desc->chan;
746 struct nbpf_link_desc *ldesc, *tmp;
749 spin_lock_irqsave(&chan->lock, flags);
750 list_for_each_entry_safe(ldesc, tmp, &desc->sg, node)
751 list_move(&ldesc->node, &chan->free_links);
753 list_add(&desc->node, &chan->free);
754 spin_unlock_irqrestore(&chan->lock, flags);
757 static void nbpf_scan_acked(struct nbpf_channel *chan)
759 struct nbpf_desc *desc, *tmp;
763 spin_lock_irqsave(&chan->lock, flags);
764 list_for_each_entry_safe(desc, tmp, &chan->done, node)
765 if (async_tx_test_ack(&desc->async_tx) && desc->user_wait) {
766 list_move(&desc->node, &head);
767 desc->user_wait = false;
769 spin_unlock_irqrestore(&chan->lock, flags);
771 list_for_each_entry_safe(desc, tmp, &head, node) {
772 list_del(&desc->node);
778 * We have to allocate descriptors with the channel lock dropped. This means,
779 * before we re-acquire the lock buffers can be taken already, so we have to
780 * re-check after re-acquiring the lock and possibly retry, if buffers are gone
783 static struct nbpf_desc *nbpf_desc_get(struct nbpf_channel *chan, size_t len)
785 struct nbpf_desc *desc = NULL;
786 struct nbpf_link_desc *ldesc, *prev = NULL;
788 nbpf_scan_acked(chan);
790 spin_lock_irq(&chan->lock);
795 if (list_empty(&chan->free)) {
796 /* No more free descriptors */
797 spin_unlock_irq(&chan->lock);
798 ret = nbpf_desc_page_alloc(chan);
801 spin_lock_irq(&chan->lock);
804 desc = list_first_entry(&chan->free, struct nbpf_desc, node);
805 list_del(&desc->node);
808 if (list_empty(&chan->free_links)) {
809 /* No more free link descriptors */
810 spin_unlock_irq(&chan->lock);
811 ret = nbpf_desc_page_alloc(chan);
816 spin_lock_irq(&chan->lock);
820 ldesc = list_first_entry(&chan->free_links,
821 struct nbpf_link_desc, node);
824 prev->hwdesc->next = (u32)ldesc->hwdesc_dma_addr;
827 list_move_tail(&ldesc->node, &desc->sg);
833 prev->hwdesc->next = 0;
835 spin_unlock_irq(&chan->lock);
840 static void nbpf_chan_idle(struct nbpf_channel *chan)
842 struct nbpf_desc *desc, *tmp;
846 spin_lock_irqsave(&chan->lock, flags);
848 list_splice_init(&chan->done, &head);
849 list_splice_init(&chan->active, &head);
850 list_splice_init(&chan->queued, &head);
852 chan->running = NULL;
854 spin_unlock_irqrestore(&chan->lock, flags);
856 list_for_each_entry_safe(desc, tmp, &head, node) {
857 dev_dbg(chan->nbpf->dma_dev.dev, "%s(): force-free desc %p cookie %d\n",
858 __func__, desc, desc->async_tx.cookie);
859 list_del(&desc->node);
864 static int nbpf_pause(struct dma_chan *dchan)
866 struct nbpf_channel *chan = nbpf_to_chan(dchan);
868 dev_dbg(dchan->device->dev, "Entry %s\n", __func__);
871 nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_SETSUS);
872 /* See comment in nbpf_prep_one() */
873 nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_CLREN);
878 static int nbpf_terminate_all(struct dma_chan *dchan)
880 struct nbpf_channel *chan = nbpf_to_chan(dchan);
882 dev_dbg(dchan->device->dev, "Entry %s\n", __func__);
883 dev_dbg(dchan->device->dev, "Terminating\n");
885 nbpf_chan_halt(chan);
886 nbpf_chan_idle(chan);
891 static int nbpf_config(struct dma_chan *dchan,
892 struct dma_slave_config *config)
894 struct nbpf_channel *chan = nbpf_to_chan(dchan);
896 dev_dbg(dchan->device->dev, "Entry %s\n", __func__);
899 * We could check config->slave_id to match chan->terminal here,
900 * but with DT they would be coming from the same source, so
901 * such a check would be superflous
904 chan->slave_dst_addr = config->dst_addr;
905 chan->slave_dst_width = nbpf_xfer_size(chan->nbpf,
906 config->dst_addr_width, 1);
907 chan->slave_dst_burst = nbpf_xfer_size(chan->nbpf,
908 config->dst_addr_width,
909 config->dst_maxburst);
910 chan->slave_src_addr = config->src_addr;
911 chan->slave_src_width = nbpf_xfer_size(chan->nbpf,
912 config->src_addr_width, 1);
913 chan->slave_src_burst = nbpf_xfer_size(chan->nbpf,
914 config->src_addr_width,
915 config->src_maxburst);
920 static struct dma_async_tx_descriptor *nbpf_prep_sg(struct nbpf_channel *chan,
921 struct scatterlist *src_sg, struct scatterlist *dst_sg,
922 size_t len, enum dma_transfer_direction direction,
925 struct nbpf_link_desc *ldesc;
926 struct scatterlist *mem_sg;
927 struct nbpf_desc *desc;
928 bool inc_src, inc_dst;
952 desc = nbpf_desc_get(chan, len);
956 desc->async_tx.flags = flags;
957 desc->async_tx.cookie = -EBUSY;
958 desc->user_wait = false;
961 * This is a private descriptor list, and we own the descriptor. No need
964 list_for_each_entry(ldesc, &desc->sg, node) {
965 int ret = nbpf_prep_one(ldesc, direction,
966 sg_dma_address(src_sg),
967 sg_dma_address(dst_sg),
974 data_len += sg_dma_len(mem_sg);
976 src_sg = sg_next(src_sg);
978 dst_sg = sg_next(dst_sg);
979 mem_sg = direction == DMA_DEV_TO_MEM ? dst_sg : src_sg;
983 desc->length = data_len;
985 /* The user has to return the descriptor to us ASAP via .tx_submit() */
986 return &desc->async_tx;
989 static struct dma_async_tx_descriptor *nbpf_prep_memcpy(
990 struct dma_chan *dchan, dma_addr_t dst, dma_addr_t src,
991 size_t len, unsigned long flags)
993 struct nbpf_channel *chan = nbpf_to_chan(dchan);
994 struct scatterlist dst_sg;
995 struct scatterlist src_sg;
997 sg_init_table(&dst_sg, 1);
998 sg_init_table(&src_sg, 1);
1000 sg_dma_address(&dst_sg) = dst;
1001 sg_dma_address(&src_sg) = src;
1003 sg_dma_len(&dst_sg) = len;
1004 sg_dma_len(&src_sg) = len;
1006 dev_dbg(dchan->device->dev, "%s(): %zu @ %pad -> %pad\n",
1007 __func__, len, &src, &dst);
1009 return nbpf_prep_sg(chan, &src_sg, &dst_sg, 1,
1010 DMA_MEM_TO_MEM, flags);
1013 static struct dma_async_tx_descriptor *nbpf_prep_slave_sg(
1014 struct dma_chan *dchan, struct scatterlist *sgl, unsigned int sg_len,
1015 enum dma_transfer_direction direction, unsigned long flags, void *context)
1017 struct nbpf_channel *chan = nbpf_to_chan(dchan);
1018 struct scatterlist slave_sg;
1020 dev_dbg(dchan->device->dev, "Entry %s()\n", __func__);
1022 sg_init_table(&slave_sg, 1);
1024 switch (direction) {
1025 case DMA_MEM_TO_DEV:
1026 sg_dma_address(&slave_sg) = chan->slave_dst_addr;
1027 return nbpf_prep_sg(chan, sgl, &slave_sg, sg_len,
1030 case DMA_DEV_TO_MEM:
1031 sg_dma_address(&slave_sg) = chan->slave_src_addr;
1032 return nbpf_prep_sg(chan, &slave_sg, sgl, sg_len,
1040 static int nbpf_alloc_chan_resources(struct dma_chan *dchan)
1042 struct nbpf_channel *chan = nbpf_to_chan(dchan);
1045 INIT_LIST_HEAD(&chan->free);
1046 INIT_LIST_HEAD(&chan->free_links);
1047 INIT_LIST_HEAD(&chan->queued);
1048 INIT_LIST_HEAD(&chan->active);
1049 INIT_LIST_HEAD(&chan->done);
1051 ret = nbpf_desc_page_alloc(chan);
1055 dev_dbg(dchan->device->dev, "Entry %s(): terminal %u\n", __func__,
1058 nbpf_chan_configure(chan);
1063 static void nbpf_free_chan_resources(struct dma_chan *dchan)
1065 struct nbpf_channel *chan = nbpf_to_chan(dchan);
1066 struct nbpf_desc_page *dpage, *tmp;
1068 dev_dbg(dchan->device->dev, "Entry %s()\n", __func__);
1070 nbpf_chan_halt(chan);
1071 nbpf_chan_idle(chan);
1072 /* Clean up for if a channel is re-used for MEMCPY after slave DMA */
1073 nbpf_chan_prepare_default(chan);
1075 list_for_each_entry_safe(dpage, tmp, &chan->desc_page, node) {
1076 struct nbpf_link_desc *ldesc;
1078 list_del(&dpage->node);
1079 for (i = 0, ldesc = dpage->ldesc;
1080 i < ARRAY_SIZE(dpage->ldesc);
1082 dma_unmap_single(dchan->device->dev, ldesc->hwdesc_dma_addr,
1083 sizeof(*ldesc->hwdesc), DMA_TO_DEVICE);
1084 free_page((unsigned long)dpage);
1088 static struct dma_chan *nbpf_of_xlate(struct of_phandle_args *dma_spec,
1089 struct of_dma *ofdma)
1091 struct nbpf_device *nbpf = ofdma->of_dma_data;
1092 struct dma_chan *dchan;
1093 struct nbpf_channel *chan;
1095 if (dma_spec->args_count != 2)
1098 dchan = dma_get_any_slave_channel(&nbpf->dma_dev);
1102 dev_dbg(dchan->device->dev, "Entry %s(%pOFn)\n", __func__,
1105 chan = nbpf_to_chan(dchan);
1107 chan->terminal = dma_spec->args[0];
1108 chan->flags = dma_spec->args[1];
1110 nbpf_chan_prepare(chan);
1111 nbpf_chan_configure(chan);
1116 static void nbpf_chan_tasklet(struct tasklet_struct *t)
1118 struct nbpf_channel *chan = from_tasklet(chan, t, tasklet);
1119 struct nbpf_desc *desc, *tmp;
1120 struct dmaengine_desc_callback cb;
1122 while (!list_empty(&chan->done)) {
1123 bool found = false, must_put, recycling = false;
1125 spin_lock_irq(&chan->lock);
1127 list_for_each_entry_safe(desc, tmp, &chan->done, node) {
1128 if (!desc->user_wait) {
1129 /* Newly completed descriptor, have to process */
1132 } else if (async_tx_test_ack(&desc->async_tx)) {
1134 * This descriptor was waiting for a user ACK,
1135 * it can be recycled now.
1137 list_del(&desc->node);
1138 spin_unlock_irq(&chan->lock);
1139 nbpf_desc_put(desc);
1149 /* This can happen if TERMINATE_ALL has been called */
1150 spin_unlock_irq(&chan->lock);
1154 dma_cookie_complete(&desc->async_tx);
1157 * With released lock we cannot dereference desc, maybe it's
1158 * still on the "done" list
1160 if (async_tx_test_ack(&desc->async_tx)) {
1161 list_del(&desc->node);
1164 desc->user_wait = true;
1168 dmaengine_desc_get_callback(&desc->async_tx, &cb);
1170 /* ack and callback completed descriptor */
1171 spin_unlock_irq(&chan->lock);
1173 dmaengine_desc_callback_invoke(&cb, NULL);
1176 nbpf_desc_put(desc);
1180 static irqreturn_t nbpf_chan_irq(int irq, void *dev)
1182 struct nbpf_channel *chan = dev;
1183 bool done = nbpf_status_get(chan);
1184 struct nbpf_desc *desc;
1191 nbpf_status_ack(chan);
1193 dev_dbg(&chan->dma_chan.dev->device, "%s()\n", __func__);
1195 spin_lock(&chan->lock);
1196 desc = chan->running;
1197 if (WARN_ON(!desc)) {
1205 list_move_tail(&desc->node, &chan->done);
1206 chan->running = NULL;
1208 if (!list_empty(&chan->active)) {
1209 desc = list_first_entry(&chan->active,
1210 struct nbpf_desc, node);
1211 if (!nbpf_start(desc))
1212 chan->running = desc;
1216 spin_unlock(&chan->lock);
1219 tasklet_schedule(&chan->tasklet);
1224 static irqreturn_t nbpf_err_irq(int irq, void *dev)
1226 struct nbpf_device *nbpf = dev;
1227 u32 error = nbpf_error_get(nbpf);
1229 dev_warn(nbpf->dma_dev.dev, "DMA error IRQ %u\n", irq);
1235 struct nbpf_channel *chan = nbpf_error_get_channel(nbpf, error);
1236 /* On error: abort all queued transfers, no callback */
1237 nbpf_error_clear(chan);
1238 nbpf_chan_idle(chan);
1239 error = nbpf_error_get(nbpf);
1245 static int nbpf_chan_probe(struct nbpf_device *nbpf, int n)
1247 struct dma_device *dma_dev = &nbpf->dma_dev;
1248 struct nbpf_channel *chan = nbpf->chan + n;
1252 chan->base = nbpf->base + NBPF_REG_CHAN_OFFSET + NBPF_REG_CHAN_SIZE * n;
1253 INIT_LIST_HEAD(&chan->desc_page);
1254 spin_lock_init(&chan->lock);
1255 chan->dma_chan.device = dma_dev;
1256 dma_cookie_init(&chan->dma_chan);
1257 nbpf_chan_prepare_default(chan);
1259 dev_dbg(dma_dev->dev, "%s(): channel %d: -> %p\n", __func__, n, chan->base);
1261 snprintf(chan->name, sizeof(chan->name), "nbpf %d", n);
1263 tasklet_setup(&chan->tasklet, nbpf_chan_tasklet);
1264 ret = devm_request_irq(dma_dev->dev, chan->irq,
1265 nbpf_chan_irq, IRQF_SHARED,
1270 /* Add the channel to DMA device channel list */
1271 list_add_tail(&chan->dma_chan.device_node,
1272 &dma_dev->channels);
1277 static const struct of_device_id nbpf_match[] = {
1278 {.compatible = "renesas,nbpfaxi64dmac1b4", .data = &nbpf_cfg[NBPF1B4]},
1279 {.compatible = "renesas,nbpfaxi64dmac1b8", .data = &nbpf_cfg[NBPF1B8]},
1280 {.compatible = "renesas,nbpfaxi64dmac1b16", .data = &nbpf_cfg[NBPF1B16]},
1281 {.compatible = "renesas,nbpfaxi64dmac4b4", .data = &nbpf_cfg[NBPF4B4]},
1282 {.compatible = "renesas,nbpfaxi64dmac4b8", .data = &nbpf_cfg[NBPF4B8]},
1283 {.compatible = "renesas,nbpfaxi64dmac4b16", .data = &nbpf_cfg[NBPF4B16]},
1284 {.compatible = "renesas,nbpfaxi64dmac8b4", .data = &nbpf_cfg[NBPF8B4]},
1285 {.compatible = "renesas,nbpfaxi64dmac8b8", .data = &nbpf_cfg[NBPF8B8]},
1286 {.compatible = "renesas,nbpfaxi64dmac8b16", .data = &nbpf_cfg[NBPF8B16]},
1289 MODULE_DEVICE_TABLE(of, nbpf_match);
1291 static int nbpf_probe(struct platform_device *pdev)
1293 struct device *dev = &pdev->dev;
1294 struct device_node *np = dev->of_node;
1295 struct nbpf_device *nbpf;
1296 struct dma_device *dma_dev;
1297 struct resource *iomem, *irq_res;
1298 const struct nbpf_config *cfg;
1300 int ret, irq, eirq, i;
1301 int irqbuf[9] /* maximum 8 channels + error IRQ */;
1302 unsigned int irqs = 0;
1304 BUILD_BUG_ON(sizeof(struct nbpf_desc_page) > PAGE_SIZE);
1310 cfg = of_device_get_match_data(dev);
1311 num_channels = cfg->num_channels;
1313 nbpf = devm_kzalloc(dev, struct_size(nbpf, chan, num_channels),
1318 dma_dev = &nbpf->dma_dev;
1321 iomem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1322 nbpf->base = devm_ioremap_resource(dev, iomem);
1323 if (IS_ERR(nbpf->base))
1324 return PTR_ERR(nbpf->base);
1326 nbpf->clk = devm_clk_get(dev, NULL);
1327 if (IS_ERR(nbpf->clk))
1328 return PTR_ERR(nbpf->clk);
1330 of_property_read_u32(np, "max-burst-mem-read",
1331 &nbpf->max_burst_mem_read);
1332 of_property_read_u32(np, "max-burst-mem-write",
1333 &nbpf->max_burst_mem_write);
1337 for (i = 0; irqs < ARRAY_SIZE(irqbuf); i++) {
1338 irq_res = platform_get_resource(pdev, IORESOURCE_IRQ, i);
1342 for (irq = irq_res->start; irq <= irq_res->end;
1348 * 3 IRQ resource schemes are supported:
1349 * 1. 1 shared IRQ for error and all channels
1350 * 2. 2 IRQs: one for error and one shared for all channels
1351 * 3. 1 IRQ for error and an own IRQ for each channel
1353 if (irqs != 1 && irqs != 2 && irqs != num_channels + 1)
1359 for (i = 0; i <= num_channels; i++)
1360 nbpf->chan[i].irq = irqbuf[0];
1362 eirq = platform_get_irq_byname(pdev, "error");
1366 if (irqs == num_channels + 1) {
1367 struct nbpf_channel *chan;
1369 for (i = 0, chan = nbpf->chan; i <= num_channels;
1371 /* Skip the error IRQ */
1372 if (irqbuf[i] == eirq)
1374 chan->irq = irqbuf[i];
1377 if (chan != nbpf->chan + num_channels)
1380 /* 2 IRQs and more than one channel */
1381 if (irqbuf[0] == eirq)
1386 for (i = 0; i <= num_channels; i++)
1387 nbpf->chan[i].irq = irq;
1391 ret = devm_request_irq(dev, eirq, nbpf_err_irq,
1392 IRQF_SHARED, "dma error", nbpf);
1397 INIT_LIST_HEAD(&dma_dev->channels);
1399 /* Create DMA Channel */
1400 for (i = 0; i < num_channels; i++) {
1401 ret = nbpf_chan_probe(nbpf, i);
1406 dma_cap_set(DMA_MEMCPY, dma_dev->cap_mask);
1407 dma_cap_set(DMA_SLAVE, dma_dev->cap_mask);
1408 dma_cap_set(DMA_PRIVATE, dma_dev->cap_mask);
1410 /* Common and MEMCPY operations */
1411 dma_dev->device_alloc_chan_resources
1412 = nbpf_alloc_chan_resources;
1413 dma_dev->device_free_chan_resources = nbpf_free_chan_resources;
1414 dma_dev->device_prep_dma_memcpy = nbpf_prep_memcpy;
1415 dma_dev->device_tx_status = nbpf_tx_status;
1416 dma_dev->device_issue_pending = nbpf_issue_pending;
1419 * If we drop support for unaligned MEMCPY buffer addresses and / or
1420 * lengths by setting
1421 * dma_dev->copy_align = 4;
1422 * then we can set transfer length to 4 bytes in nbpf_prep_one() for
1426 /* Compulsory for DMA_SLAVE fields */
1427 dma_dev->device_prep_slave_sg = nbpf_prep_slave_sg;
1428 dma_dev->device_config = nbpf_config;
1429 dma_dev->device_pause = nbpf_pause;
1430 dma_dev->device_terminate_all = nbpf_terminate_all;
1432 dma_dev->src_addr_widths = NBPF_DMA_BUSWIDTHS;
1433 dma_dev->dst_addr_widths = NBPF_DMA_BUSWIDTHS;
1434 dma_dev->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1436 platform_set_drvdata(pdev, nbpf);
1438 ret = clk_prepare_enable(nbpf->clk);
1442 nbpf_configure(nbpf);
1444 ret = dma_async_device_register(dma_dev);
1448 ret = of_dma_controller_register(np, nbpf_of_xlate, nbpf);
1450 goto e_dma_dev_unreg;
1455 dma_async_device_unregister(dma_dev);
1457 clk_disable_unprepare(nbpf->clk);
1462 static int nbpf_remove(struct platform_device *pdev)
1464 struct nbpf_device *nbpf = platform_get_drvdata(pdev);
1467 devm_free_irq(&pdev->dev, nbpf->eirq, nbpf);
1469 for (i = 0; i < nbpf->config->num_channels; i++) {
1470 struct nbpf_channel *chan = nbpf->chan + i;
1472 devm_free_irq(&pdev->dev, chan->irq, chan);
1474 tasklet_kill(&chan->tasklet);
1477 of_dma_controller_free(pdev->dev.of_node);
1478 dma_async_device_unregister(&nbpf->dma_dev);
1479 clk_disable_unprepare(nbpf->clk);
1484 static const struct platform_device_id nbpf_ids[] = {
1485 {"nbpfaxi64dmac1b4", (kernel_ulong_t)&nbpf_cfg[NBPF1B4]},
1486 {"nbpfaxi64dmac1b8", (kernel_ulong_t)&nbpf_cfg[NBPF1B8]},
1487 {"nbpfaxi64dmac1b16", (kernel_ulong_t)&nbpf_cfg[NBPF1B16]},
1488 {"nbpfaxi64dmac4b4", (kernel_ulong_t)&nbpf_cfg[NBPF4B4]},
1489 {"nbpfaxi64dmac4b8", (kernel_ulong_t)&nbpf_cfg[NBPF4B8]},
1490 {"nbpfaxi64dmac4b16", (kernel_ulong_t)&nbpf_cfg[NBPF4B16]},
1491 {"nbpfaxi64dmac8b4", (kernel_ulong_t)&nbpf_cfg[NBPF8B4]},
1492 {"nbpfaxi64dmac8b8", (kernel_ulong_t)&nbpf_cfg[NBPF8B8]},
1493 {"nbpfaxi64dmac8b16", (kernel_ulong_t)&nbpf_cfg[NBPF8B16]},
1496 MODULE_DEVICE_TABLE(platform, nbpf_ids);
1499 static int nbpf_runtime_suspend(struct device *dev)
1501 struct nbpf_device *nbpf = dev_get_drvdata(dev);
1502 clk_disable_unprepare(nbpf->clk);
1506 static int nbpf_runtime_resume(struct device *dev)
1508 struct nbpf_device *nbpf = dev_get_drvdata(dev);
1509 return clk_prepare_enable(nbpf->clk);
1513 static const struct dev_pm_ops nbpf_pm_ops = {
1514 SET_RUNTIME_PM_OPS(nbpf_runtime_suspend, nbpf_runtime_resume, NULL)
1517 static struct platform_driver nbpf_driver = {
1520 .of_match_table = nbpf_match,
1523 .id_table = nbpf_ids,
1524 .probe = nbpf_probe,
1525 .remove = nbpf_remove,
1528 module_platform_driver(nbpf_driver);
1530 MODULE_AUTHOR("Guennadi Liakhovetski <g.liakhovetski@gmx.de>");
1531 MODULE_DESCRIPTION("dmaengine driver for NBPFAXI64* DMACs");
1532 MODULE_LICENSE("GPL v2");