Merge tag 'v5.15-rc2' into spi-5.15
[platform/kernel/linux-rpi.git] / drivers / dma / nbpfaxi.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2013-2014 Renesas Electronics Europe Ltd.
4  * Author: Guennadi Liakhovetski <g.liakhovetski@gmx.de>
5  */
6
7 #include <linux/bitmap.h>
8 #include <linux/bitops.h>
9 #include <linux/clk.h>
10 #include <linux/dma-mapping.h>
11 #include <linux/dmaengine.h>
12 #include <linux/err.h>
13 #include <linux/interrupt.h>
14 #include <linux/io.h>
15 #include <linux/log2.h>
16 #include <linux/module.h>
17 #include <linux/of.h>
18 #include <linux/of_device.h>
19 #include <linux/of_dma.h>
20 #include <linux/platform_device.h>
21 #include <linux/slab.h>
22
23 #include <dt-bindings/dma/nbpfaxi.h>
24
25 #include "dmaengine.h"
26
27 #define NBPF_REG_CHAN_OFFSET    0
28 #define NBPF_REG_CHAN_SIZE      0x40
29
30 /* Channel Current Transaction Byte register */
31 #define NBPF_CHAN_CUR_TR_BYTE   0x20
32
33 /* Channel Status register */
34 #define NBPF_CHAN_STAT  0x24
35 #define NBPF_CHAN_STAT_EN       1
36 #define NBPF_CHAN_STAT_TACT     4
37 #define NBPF_CHAN_STAT_ERR      0x10
38 #define NBPF_CHAN_STAT_END      0x20
39 #define NBPF_CHAN_STAT_TC       0x40
40 #define NBPF_CHAN_STAT_DER      0x400
41
42 /* Channel Control register */
43 #define NBPF_CHAN_CTRL  0x28
44 #define NBPF_CHAN_CTRL_SETEN    1
45 #define NBPF_CHAN_CTRL_CLREN    2
46 #define NBPF_CHAN_CTRL_STG      4
47 #define NBPF_CHAN_CTRL_SWRST    8
48 #define NBPF_CHAN_CTRL_CLRRQ    0x10
49 #define NBPF_CHAN_CTRL_CLREND   0x20
50 #define NBPF_CHAN_CTRL_CLRTC    0x40
51 #define NBPF_CHAN_CTRL_SETSUS   0x100
52 #define NBPF_CHAN_CTRL_CLRSUS   0x200
53
54 /* Channel Configuration register */
55 #define NBPF_CHAN_CFG   0x2c
56 #define NBPF_CHAN_CFG_SEL       7               /* terminal SELect: 0..7 */
57 #define NBPF_CHAN_CFG_REQD      8               /* REQuest Direction: DMAREQ is 0: input, 1: output */
58 #define NBPF_CHAN_CFG_LOEN      0x10            /* LOw ENable: low DMA request line is: 0: inactive, 1: active */
59 #define NBPF_CHAN_CFG_HIEN      0x20            /* HIgh ENable: high DMA request line is: 0: inactive, 1: active */
60 #define NBPF_CHAN_CFG_LVL       0x40            /* LeVeL: DMA request line is sensed as 0: edge, 1: level */
61 #define NBPF_CHAN_CFG_AM        0x700           /* ACK Mode: 0: Pulse mode, 1: Level mode, b'1x: Bus Cycle */
62 #define NBPF_CHAN_CFG_SDS       0xf000          /* Source Data Size: 0: 8 bits,... , 7: 1024 bits */
63 #define NBPF_CHAN_CFG_DDS       0xf0000         /* Destination Data Size: as above */
64 #define NBPF_CHAN_CFG_SAD       0x100000        /* Source ADdress counting: 0: increment, 1: fixed */
65 #define NBPF_CHAN_CFG_DAD       0x200000        /* Destination ADdress counting: 0: increment, 1: fixed */
66 #define NBPF_CHAN_CFG_TM        0x400000        /* Transfer Mode: 0: single, 1: block TM */
67 #define NBPF_CHAN_CFG_DEM       0x1000000       /* DMAEND interrupt Mask */
68 #define NBPF_CHAN_CFG_TCM       0x2000000       /* DMATCO interrupt Mask */
69 #define NBPF_CHAN_CFG_SBE       0x8000000       /* Sweep Buffer Enable */
70 #define NBPF_CHAN_CFG_RSEL      0x10000000      /* RM: Register Set sELect */
71 #define NBPF_CHAN_CFG_RSW       0x20000000      /* RM: Register Select sWitch */
72 #define NBPF_CHAN_CFG_REN       0x40000000      /* RM: Register Set Enable */
73 #define NBPF_CHAN_CFG_DMS       0x80000000      /* 0: register mode (RM), 1: link mode (LM) */
74
75 #define NBPF_CHAN_NXLA  0x38
76 #define NBPF_CHAN_CRLA  0x3c
77
78 /* Link Header field */
79 #define NBPF_HEADER_LV  1
80 #define NBPF_HEADER_LE  2
81 #define NBPF_HEADER_WBD 4
82 #define NBPF_HEADER_DIM 8
83
84 #define NBPF_CTRL       0x300
85 #define NBPF_CTRL_PR    1               /* 0: fixed priority, 1: round robin */
86 #define NBPF_CTRL_LVINT 2               /* DMAEND and DMAERR signalling: 0: pulse, 1: level */
87
88 #define NBPF_DSTAT_ER   0x314
89 #define NBPF_DSTAT_END  0x318
90
91 #define NBPF_DMA_BUSWIDTHS \
92         (BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) | \
93          BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
94          BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
95          BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) | \
96          BIT(DMA_SLAVE_BUSWIDTH_8_BYTES))
97
98 struct nbpf_config {
99         int num_channels;
100         int buffer_size;
101 };
102
103 /*
104  * We've got 3 types of objects, used to describe DMA transfers:
105  * 1. high-level descriptor, containing a struct dma_async_tx_descriptor object
106  *      in it, used to communicate with the user
107  * 2. hardware DMA link descriptors, that we pass to DMAC for DMA transfer
108  *      queuing, these must be DMAable, using either the streaming DMA API or
109  *      allocated from coherent memory - one per SG segment
110  * 3. one per SG segment descriptors, used to manage HW link descriptors from
111  *      (2). They do not have to be DMAable. They can either be (a) allocated
112  *      together with link descriptors as mixed (DMA / CPU) objects, or (b)
113  *      separately. Even if allocated separately it would be best to link them
114  *      to link descriptors once during channel resource allocation and always
115  *      use them as a single object.
116  * Therefore for both cases (a) and (b) at run-time objects (2) and (3) shall be
117  * treated as a single SG segment descriptor.
118  */
119
120 struct nbpf_link_reg {
121         u32     header;
122         u32     src_addr;
123         u32     dst_addr;
124         u32     transaction_size;
125         u32     config;
126         u32     interval;
127         u32     extension;
128         u32     next;
129 } __packed;
130
131 struct nbpf_device;
132 struct nbpf_channel;
133 struct nbpf_desc;
134
135 struct nbpf_link_desc {
136         struct nbpf_link_reg *hwdesc;
137         dma_addr_t hwdesc_dma_addr;
138         struct nbpf_desc *desc;
139         struct list_head node;
140 };
141
142 /**
143  * struct nbpf_desc - DMA transfer descriptor
144  * @async_tx:   dmaengine object
145  * @user_wait:  waiting for a user ack
146  * @length:     total transfer length
147  * @chan:       associated DMAC channel
148  * @sg:         list of hardware descriptors, represented by struct nbpf_link_desc
149  * @node:       member in channel descriptor lists
150  */
151 struct nbpf_desc {
152         struct dma_async_tx_descriptor async_tx;
153         bool user_wait;
154         size_t length;
155         struct nbpf_channel *chan;
156         struct list_head sg;
157         struct list_head node;
158 };
159
160 /* Take a wild guess: allocate 4 segments per descriptor */
161 #define NBPF_SEGMENTS_PER_DESC 4
162 #define NBPF_DESCS_PER_PAGE ((PAGE_SIZE - sizeof(struct list_head)) /   \
163         (sizeof(struct nbpf_desc) +                                     \
164          NBPF_SEGMENTS_PER_DESC *                                       \
165          (sizeof(struct nbpf_link_desc) + sizeof(struct nbpf_link_reg))))
166 #define NBPF_SEGMENTS_PER_PAGE (NBPF_SEGMENTS_PER_DESC * NBPF_DESCS_PER_PAGE)
167
168 struct nbpf_desc_page {
169         struct list_head node;
170         struct nbpf_desc desc[NBPF_DESCS_PER_PAGE];
171         struct nbpf_link_desc ldesc[NBPF_SEGMENTS_PER_PAGE];
172         struct nbpf_link_reg hwdesc[NBPF_SEGMENTS_PER_PAGE];
173 };
174
175 /**
176  * struct nbpf_channel - one DMAC channel
177  * @dma_chan:   standard dmaengine channel object
178  * @tasklet:    channel specific tasklet used for callbacks
179  * @base:       register address base
180  * @nbpf:       DMAC
181  * @name:       IRQ name
182  * @irq:        IRQ number
183  * @slave_src_addr:     source address for slave DMA
184  * @slave_src_width:    source slave data size in bytes
185  * @slave_src_burst:    maximum source slave burst size in bytes
186  * @slave_dst_addr:     destination address for slave DMA
187  * @slave_dst_width:    destination slave data size in bytes
188  * @slave_dst_burst:    maximum destination slave burst size in bytes
189  * @terminal:   DMA terminal, assigned to this channel
190  * @dmarq_cfg:  DMA request line configuration - high / low, edge / level for NBPF_CHAN_CFG
191  * @flags:      configuration flags from DT
192  * @lock:       protect descriptor lists
193  * @free_links: list of free link descriptors
194  * @free:       list of free descriptors
195  * @queued:     list of queued descriptors
196  * @active:     list of descriptors, scheduled for processing
197  * @done:       list of completed descriptors, waiting post-processing
198  * @desc_page:  list of additionally allocated descriptor pages - if any
199  * @running:    linked descriptor of running transaction
200  * @paused:     are translations on this channel paused?
201  */
202 struct nbpf_channel {
203         struct dma_chan dma_chan;
204         struct tasklet_struct tasklet;
205         void __iomem *base;
206         struct nbpf_device *nbpf;
207         char name[16];
208         int irq;
209         dma_addr_t slave_src_addr;
210         size_t slave_src_width;
211         size_t slave_src_burst;
212         dma_addr_t slave_dst_addr;
213         size_t slave_dst_width;
214         size_t slave_dst_burst;
215         unsigned int terminal;
216         u32 dmarq_cfg;
217         unsigned long flags;
218         spinlock_t lock;
219         struct list_head free_links;
220         struct list_head free;
221         struct list_head queued;
222         struct list_head active;
223         struct list_head done;
224         struct list_head desc_page;
225         struct nbpf_desc *running;
226         bool paused;
227 };
228
229 struct nbpf_device {
230         struct dma_device dma_dev;
231         void __iomem *base;
232         u32 max_burst_mem_read;
233         u32 max_burst_mem_write;
234         struct clk *clk;
235         const struct nbpf_config *config;
236         unsigned int eirq;
237         struct nbpf_channel chan[];
238 };
239
240 enum nbpf_model {
241         NBPF1B4,
242         NBPF1B8,
243         NBPF1B16,
244         NBPF4B4,
245         NBPF4B8,
246         NBPF4B16,
247         NBPF8B4,
248         NBPF8B8,
249         NBPF8B16,
250 };
251
252 static struct nbpf_config nbpf_cfg[] = {
253         [NBPF1B4] = {
254                 .num_channels = 1,
255                 .buffer_size = 4,
256         },
257         [NBPF1B8] = {
258                 .num_channels = 1,
259                 .buffer_size = 8,
260         },
261         [NBPF1B16] = {
262                 .num_channels = 1,
263                 .buffer_size = 16,
264         },
265         [NBPF4B4] = {
266                 .num_channels = 4,
267                 .buffer_size = 4,
268         },
269         [NBPF4B8] = {
270                 .num_channels = 4,
271                 .buffer_size = 8,
272         },
273         [NBPF4B16] = {
274                 .num_channels = 4,
275                 .buffer_size = 16,
276         },
277         [NBPF8B4] = {
278                 .num_channels = 8,
279                 .buffer_size = 4,
280         },
281         [NBPF8B8] = {
282                 .num_channels = 8,
283                 .buffer_size = 8,
284         },
285         [NBPF8B16] = {
286                 .num_channels = 8,
287                 .buffer_size = 16,
288         },
289 };
290
291 #define nbpf_to_chan(d) container_of(d, struct nbpf_channel, dma_chan)
292
293 /*
294  * dmaengine drivers seem to have a lot in common and instead of sharing more
295  * code, they reimplement those common algorithms independently. In this driver
296  * we try to separate the hardware-specific part from the (largely) generic
297  * part. This improves code readability and makes it possible in the future to
298  * reuse the generic code in form of a helper library. That generic code should
299  * be suitable for various DMA controllers, using transfer descriptors in RAM
300  * and pushing one SG list at a time to the DMA controller.
301  */
302
303 /*              Hardware-specific part          */
304
305 static inline u32 nbpf_chan_read(struct nbpf_channel *chan,
306                                  unsigned int offset)
307 {
308         u32 data = ioread32(chan->base + offset);
309         dev_dbg(chan->dma_chan.device->dev, "%s(0x%p + 0x%x) = 0x%x\n",
310                 __func__, chan->base, offset, data);
311         return data;
312 }
313
314 static inline void nbpf_chan_write(struct nbpf_channel *chan,
315                                    unsigned int offset, u32 data)
316 {
317         iowrite32(data, chan->base + offset);
318         dev_dbg(chan->dma_chan.device->dev, "%s(0x%p + 0x%x) = 0x%x\n",
319                 __func__, chan->base, offset, data);
320 }
321
322 static inline u32 nbpf_read(struct nbpf_device *nbpf,
323                             unsigned int offset)
324 {
325         u32 data = ioread32(nbpf->base + offset);
326         dev_dbg(nbpf->dma_dev.dev, "%s(0x%p + 0x%x) = 0x%x\n",
327                 __func__, nbpf->base, offset, data);
328         return data;
329 }
330
331 static inline void nbpf_write(struct nbpf_device *nbpf,
332                               unsigned int offset, u32 data)
333 {
334         iowrite32(data, nbpf->base + offset);
335         dev_dbg(nbpf->dma_dev.dev, "%s(0x%p + 0x%x) = 0x%x\n",
336                 __func__, nbpf->base, offset, data);
337 }
338
339 static void nbpf_chan_halt(struct nbpf_channel *chan)
340 {
341         nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_CLREN);
342 }
343
344 static bool nbpf_status_get(struct nbpf_channel *chan)
345 {
346         u32 status = nbpf_read(chan->nbpf, NBPF_DSTAT_END);
347
348         return status & BIT(chan - chan->nbpf->chan);
349 }
350
351 static void nbpf_status_ack(struct nbpf_channel *chan)
352 {
353         nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_CLREND);
354 }
355
356 static u32 nbpf_error_get(struct nbpf_device *nbpf)
357 {
358         return nbpf_read(nbpf, NBPF_DSTAT_ER);
359 }
360
361 static struct nbpf_channel *nbpf_error_get_channel(struct nbpf_device *nbpf, u32 error)
362 {
363         return nbpf->chan + __ffs(error);
364 }
365
366 static void nbpf_error_clear(struct nbpf_channel *chan)
367 {
368         u32 status;
369         int i;
370
371         /* Stop the channel, make sure DMA has been aborted */
372         nbpf_chan_halt(chan);
373
374         for (i = 1000; i; i--) {
375                 status = nbpf_chan_read(chan, NBPF_CHAN_STAT);
376                 if (!(status & NBPF_CHAN_STAT_TACT))
377                         break;
378                 cpu_relax();
379         }
380
381         if (!i)
382                 dev_err(chan->dma_chan.device->dev,
383                         "%s(): abort timeout, channel status 0x%x\n", __func__, status);
384
385         nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_SWRST);
386 }
387
388 static int nbpf_start(struct nbpf_desc *desc)
389 {
390         struct nbpf_channel *chan = desc->chan;
391         struct nbpf_link_desc *ldesc = list_first_entry(&desc->sg, struct nbpf_link_desc, node);
392
393         nbpf_chan_write(chan, NBPF_CHAN_NXLA, (u32)ldesc->hwdesc_dma_addr);
394         nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_SETEN | NBPF_CHAN_CTRL_CLRSUS);
395         chan->paused = false;
396
397         /* Software trigger MEMCPY - only MEMCPY uses the block mode */
398         if (ldesc->hwdesc->config & NBPF_CHAN_CFG_TM)
399                 nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_STG);
400
401         dev_dbg(chan->nbpf->dma_dev.dev, "%s(): next 0x%x, cur 0x%x\n", __func__,
402                 nbpf_chan_read(chan, NBPF_CHAN_NXLA), nbpf_chan_read(chan, NBPF_CHAN_CRLA));
403
404         return 0;
405 }
406
407 static void nbpf_chan_prepare(struct nbpf_channel *chan)
408 {
409         chan->dmarq_cfg = (chan->flags & NBPF_SLAVE_RQ_HIGH ? NBPF_CHAN_CFG_HIEN : 0) |
410                 (chan->flags & NBPF_SLAVE_RQ_LOW ? NBPF_CHAN_CFG_LOEN : 0) |
411                 (chan->flags & NBPF_SLAVE_RQ_LEVEL ?
412                  NBPF_CHAN_CFG_LVL | (NBPF_CHAN_CFG_AM & 0x200) : 0) |
413                 chan->terminal;
414 }
415
416 static void nbpf_chan_prepare_default(struct nbpf_channel *chan)
417 {
418         /* Don't output DMAACK */
419         chan->dmarq_cfg = NBPF_CHAN_CFG_AM & 0x400;
420         chan->terminal = 0;
421         chan->flags = 0;
422 }
423
424 static void nbpf_chan_configure(struct nbpf_channel *chan)
425 {
426         /*
427          * We assume, that only the link mode and DMA request line configuration
428          * have to be set in the configuration register manually. Dynamic
429          * per-transfer configuration will be loaded from transfer descriptors.
430          */
431         nbpf_chan_write(chan, NBPF_CHAN_CFG, NBPF_CHAN_CFG_DMS | chan->dmarq_cfg);
432 }
433
434 static u32 nbpf_xfer_ds(struct nbpf_device *nbpf, size_t size,
435                         enum dma_transfer_direction direction)
436 {
437         int max_burst = nbpf->config->buffer_size * 8;
438
439         if (nbpf->max_burst_mem_read || nbpf->max_burst_mem_write) {
440                 switch (direction) {
441                 case DMA_MEM_TO_MEM:
442                         max_burst = min_not_zero(nbpf->max_burst_mem_read,
443                                                  nbpf->max_burst_mem_write);
444                         break;
445                 case DMA_MEM_TO_DEV:
446                         if (nbpf->max_burst_mem_read)
447                                 max_burst = nbpf->max_burst_mem_read;
448                         break;
449                 case DMA_DEV_TO_MEM:
450                         if (nbpf->max_burst_mem_write)
451                                 max_burst = nbpf->max_burst_mem_write;
452                         break;
453                 case DMA_DEV_TO_DEV:
454                 default:
455                         break;
456                 }
457         }
458
459         /* Maximum supported bursts depend on the buffer size */
460         return min_t(int, __ffs(size), ilog2(max_burst));
461 }
462
463 static size_t nbpf_xfer_size(struct nbpf_device *nbpf,
464                              enum dma_slave_buswidth width, u32 burst)
465 {
466         size_t size;
467
468         if (!burst)
469                 burst = 1;
470
471         switch (width) {
472         case DMA_SLAVE_BUSWIDTH_8_BYTES:
473                 size = 8 * burst;
474                 break;
475
476         case DMA_SLAVE_BUSWIDTH_4_BYTES:
477                 size = 4 * burst;
478                 break;
479
480         case DMA_SLAVE_BUSWIDTH_2_BYTES:
481                 size = 2 * burst;
482                 break;
483
484         default:
485                 pr_warn("%s(): invalid bus width %u\n", __func__, width);
486                 fallthrough;
487         case DMA_SLAVE_BUSWIDTH_1_BYTE:
488                 size = burst;
489         }
490
491         return nbpf_xfer_ds(nbpf, size, DMA_TRANS_NONE);
492 }
493
494 /*
495  * We need a way to recognise slaves, whose data is sent "raw" over the bus,
496  * i.e. it isn't known in advance how many bytes will be received. Therefore
497  * the slave driver has to provide a "large enough" buffer and either read the
498  * buffer, when it is full, or detect, that some data has arrived, then wait for
499  * a timeout, if no more data arrives - receive what's already there. We want to
500  * handle such slaves in a special way to allow an optimised mode for other
501  * users, for whom the amount of data is known in advance. So far there's no way
502  * to recognise such slaves. We use a data-width check to distinguish between
503  * the SD host and the PL011 UART.
504  */
505
506 static int nbpf_prep_one(struct nbpf_link_desc *ldesc,
507                          enum dma_transfer_direction direction,
508                          dma_addr_t src, dma_addr_t dst, size_t size, bool last)
509 {
510         struct nbpf_link_reg *hwdesc = ldesc->hwdesc;
511         struct nbpf_desc *desc = ldesc->desc;
512         struct nbpf_channel *chan = desc->chan;
513         struct device *dev = chan->dma_chan.device->dev;
514         size_t mem_xfer, slave_xfer;
515         bool can_burst;
516
517         hwdesc->header = NBPF_HEADER_WBD | NBPF_HEADER_LV |
518                 (last ? NBPF_HEADER_LE : 0);
519
520         hwdesc->src_addr = src;
521         hwdesc->dst_addr = dst;
522         hwdesc->transaction_size = size;
523
524         /*
525          * set config: SAD, DAD, DDS, SDS, etc.
526          * Note on transfer sizes: the DMAC can perform unaligned DMA transfers,
527          * but it is important to have transaction size a multiple of both
528          * receiver and transmitter transfer sizes. It is also possible to use
529          * different RAM and device transfer sizes, and it does work well with
530          * some devices, e.g. with V08R07S01E SD host controllers, which can use
531          * 128 byte transfers. But this doesn't work with other devices,
532          * especially when the transaction size is unknown. This is the case,
533          * e.g. with serial drivers like amba-pl011.c. For reception it sets up
534          * the transaction size of 4K and if fewer bytes are received, it
535          * pauses DMA and reads out data received via DMA as well as those left
536          * in the Rx FIFO. For this to work with the RAM side using burst
537          * transfers we enable the SBE bit and terminate the transfer in our
538          * .device_pause handler.
539          */
540         mem_xfer = nbpf_xfer_ds(chan->nbpf, size, direction);
541
542         switch (direction) {
543         case DMA_DEV_TO_MEM:
544                 can_burst = chan->slave_src_width >= 3;
545                 slave_xfer = min(mem_xfer, can_burst ?
546                                  chan->slave_src_burst : chan->slave_src_width);
547                 /*
548                  * Is the slave narrower than 64 bits, i.e. isn't using the full
549                  * bus width and cannot use bursts?
550                  */
551                 if (mem_xfer > chan->slave_src_burst && !can_burst)
552                         mem_xfer = chan->slave_src_burst;
553                 /* Device-to-RAM DMA is unreliable without REQD set */
554                 hwdesc->config = NBPF_CHAN_CFG_SAD | (NBPF_CHAN_CFG_DDS & (mem_xfer << 16)) |
555                         (NBPF_CHAN_CFG_SDS & (slave_xfer << 12)) | NBPF_CHAN_CFG_REQD |
556                         NBPF_CHAN_CFG_SBE;
557                 break;
558
559         case DMA_MEM_TO_DEV:
560                 slave_xfer = min(mem_xfer, chan->slave_dst_width >= 3 ?
561                                  chan->slave_dst_burst : chan->slave_dst_width);
562                 hwdesc->config = NBPF_CHAN_CFG_DAD | (NBPF_CHAN_CFG_SDS & (mem_xfer << 12)) |
563                         (NBPF_CHAN_CFG_DDS & (slave_xfer << 16)) | NBPF_CHAN_CFG_REQD;
564                 break;
565
566         case DMA_MEM_TO_MEM:
567                 hwdesc->config = NBPF_CHAN_CFG_TCM | NBPF_CHAN_CFG_TM |
568                         (NBPF_CHAN_CFG_SDS & (mem_xfer << 12)) |
569                         (NBPF_CHAN_CFG_DDS & (mem_xfer << 16));
570                 break;
571
572         default:
573                 return -EINVAL;
574         }
575
576         hwdesc->config |= chan->dmarq_cfg | (last ? 0 : NBPF_CHAN_CFG_DEM) |
577                 NBPF_CHAN_CFG_DMS;
578
579         dev_dbg(dev, "%s(): desc @ %pad: hdr 0x%x, cfg 0x%x, %zu @ %pad -> %pad\n",
580                 __func__, &ldesc->hwdesc_dma_addr, hwdesc->header,
581                 hwdesc->config, size, &src, &dst);
582
583         dma_sync_single_for_device(dev, ldesc->hwdesc_dma_addr, sizeof(*hwdesc),
584                                    DMA_TO_DEVICE);
585
586         return 0;
587 }
588
589 static size_t nbpf_bytes_left(struct nbpf_channel *chan)
590 {
591         return nbpf_chan_read(chan, NBPF_CHAN_CUR_TR_BYTE);
592 }
593
594 static void nbpf_configure(struct nbpf_device *nbpf)
595 {
596         nbpf_write(nbpf, NBPF_CTRL, NBPF_CTRL_LVINT);
597 }
598
599 /*              Generic part                    */
600
601 /* DMA ENGINE functions */
602 static void nbpf_issue_pending(struct dma_chan *dchan)
603 {
604         struct nbpf_channel *chan = nbpf_to_chan(dchan);
605         unsigned long flags;
606
607         dev_dbg(dchan->device->dev, "Entry %s()\n", __func__);
608
609         spin_lock_irqsave(&chan->lock, flags);
610         if (list_empty(&chan->queued))
611                 goto unlock;
612
613         list_splice_tail_init(&chan->queued, &chan->active);
614
615         if (!chan->running) {
616                 struct nbpf_desc *desc = list_first_entry(&chan->active,
617                                                 struct nbpf_desc, node);
618                 if (!nbpf_start(desc))
619                         chan->running = desc;
620         }
621
622 unlock:
623         spin_unlock_irqrestore(&chan->lock, flags);
624 }
625
626 static enum dma_status nbpf_tx_status(struct dma_chan *dchan,
627                 dma_cookie_t cookie, struct dma_tx_state *state)
628 {
629         struct nbpf_channel *chan = nbpf_to_chan(dchan);
630         enum dma_status status = dma_cookie_status(dchan, cookie, state);
631
632         if (state) {
633                 dma_cookie_t running;
634                 unsigned long flags;
635
636                 spin_lock_irqsave(&chan->lock, flags);
637                 running = chan->running ? chan->running->async_tx.cookie : -EINVAL;
638
639                 if (cookie == running) {
640                         state->residue = nbpf_bytes_left(chan);
641                         dev_dbg(dchan->device->dev, "%s(): residue %u\n", __func__,
642                                 state->residue);
643                 } else if (status == DMA_IN_PROGRESS) {
644                         struct nbpf_desc *desc;
645                         bool found = false;
646
647                         list_for_each_entry(desc, &chan->active, node)
648                                 if (desc->async_tx.cookie == cookie) {
649                                         found = true;
650                                         break;
651                                 }
652
653                         if (!found)
654                                 list_for_each_entry(desc, &chan->queued, node)
655                                         if (desc->async_tx.cookie == cookie) {
656                                                 found = true;
657                                                 break;
658
659                                         }
660
661                         state->residue = found ? desc->length : 0;
662                 }
663
664                 spin_unlock_irqrestore(&chan->lock, flags);
665         }
666
667         if (chan->paused)
668                 status = DMA_PAUSED;
669
670         return status;
671 }
672
673 static dma_cookie_t nbpf_tx_submit(struct dma_async_tx_descriptor *tx)
674 {
675         struct nbpf_desc *desc = container_of(tx, struct nbpf_desc, async_tx);
676         struct nbpf_channel *chan = desc->chan;
677         unsigned long flags;
678         dma_cookie_t cookie;
679
680         spin_lock_irqsave(&chan->lock, flags);
681         cookie = dma_cookie_assign(tx);
682         list_add_tail(&desc->node, &chan->queued);
683         spin_unlock_irqrestore(&chan->lock, flags);
684
685         dev_dbg(chan->dma_chan.device->dev, "Entry %s(%d)\n", __func__, cookie);
686
687         return cookie;
688 }
689
690 static int nbpf_desc_page_alloc(struct nbpf_channel *chan)
691 {
692         struct dma_chan *dchan = &chan->dma_chan;
693         struct nbpf_desc_page *dpage = (void *)get_zeroed_page(GFP_KERNEL | GFP_DMA);
694         struct nbpf_link_desc *ldesc;
695         struct nbpf_link_reg *hwdesc;
696         struct nbpf_desc *desc;
697         LIST_HEAD(head);
698         LIST_HEAD(lhead);
699         int i;
700         struct device *dev = dchan->device->dev;
701
702         if (!dpage)
703                 return -ENOMEM;
704
705         dev_dbg(dev, "%s(): alloc %lu descriptors, %lu segments, total alloc %zu\n",
706                 __func__, NBPF_DESCS_PER_PAGE, NBPF_SEGMENTS_PER_PAGE, sizeof(*dpage));
707
708         for (i = 0, ldesc = dpage->ldesc, hwdesc = dpage->hwdesc;
709              i < ARRAY_SIZE(dpage->ldesc);
710              i++, ldesc++, hwdesc++) {
711                 ldesc->hwdesc = hwdesc;
712                 list_add_tail(&ldesc->node, &lhead);
713                 ldesc->hwdesc_dma_addr = dma_map_single(dchan->device->dev,
714                                         hwdesc, sizeof(*hwdesc), DMA_TO_DEVICE);
715
716                 dev_dbg(dev, "%s(): mapped 0x%p to %pad\n", __func__,
717                         hwdesc, &ldesc->hwdesc_dma_addr);
718         }
719
720         for (i = 0, desc = dpage->desc;
721              i < ARRAY_SIZE(dpage->desc);
722              i++, desc++) {
723                 dma_async_tx_descriptor_init(&desc->async_tx, dchan);
724                 desc->async_tx.tx_submit = nbpf_tx_submit;
725                 desc->chan = chan;
726                 INIT_LIST_HEAD(&desc->sg);
727                 list_add_tail(&desc->node, &head);
728         }
729
730         /*
731          * This function cannot be called from interrupt context, so, no need to
732          * save flags
733          */
734         spin_lock_irq(&chan->lock);
735         list_splice_tail(&lhead, &chan->free_links);
736         list_splice_tail(&head, &chan->free);
737         list_add(&dpage->node, &chan->desc_page);
738         spin_unlock_irq(&chan->lock);
739
740         return ARRAY_SIZE(dpage->desc);
741 }
742
743 static void nbpf_desc_put(struct nbpf_desc *desc)
744 {
745         struct nbpf_channel *chan = desc->chan;
746         struct nbpf_link_desc *ldesc, *tmp;
747         unsigned long flags;
748
749         spin_lock_irqsave(&chan->lock, flags);
750         list_for_each_entry_safe(ldesc, tmp, &desc->sg, node)
751                 list_move(&ldesc->node, &chan->free_links);
752
753         list_add(&desc->node, &chan->free);
754         spin_unlock_irqrestore(&chan->lock, flags);
755 }
756
757 static void nbpf_scan_acked(struct nbpf_channel *chan)
758 {
759         struct nbpf_desc *desc, *tmp;
760         unsigned long flags;
761         LIST_HEAD(head);
762
763         spin_lock_irqsave(&chan->lock, flags);
764         list_for_each_entry_safe(desc, tmp, &chan->done, node)
765                 if (async_tx_test_ack(&desc->async_tx) && desc->user_wait) {
766                         list_move(&desc->node, &head);
767                         desc->user_wait = false;
768                 }
769         spin_unlock_irqrestore(&chan->lock, flags);
770
771         list_for_each_entry_safe(desc, tmp, &head, node) {
772                 list_del(&desc->node);
773                 nbpf_desc_put(desc);
774         }
775 }
776
777 /*
778  * We have to allocate descriptors with the channel lock dropped. This means,
779  * before we re-acquire the lock buffers can be taken already, so we have to
780  * re-check after re-acquiring the lock and possibly retry, if buffers are gone
781  * again.
782  */
783 static struct nbpf_desc *nbpf_desc_get(struct nbpf_channel *chan, size_t len)
784 {
785         struct nbpf_desc *desc = NULL;
786         struct nbpf_link_desc *ldesc, *prev = NULL;
787
788         nbpf_scan_acked(chan);
789
790         spin_lock_irq(&chan->lock);
791
792         do {
793                 int i = 0, ret;
794
795                 if (list_empty(&chan->free)) {
796                         /* No more free descriptors */
797                         spin_unlock_irq(&chan->lock);
798                         ret = nbpf_desc_page_alloc(chan);
799                         if (ret < 0)
800                                 return NULL;
801                         spin_lock_irq(&chan->lock);
802                         continue;
803                 }
804                 desc = list_first_entry(&chan->free, struct nbpf_desc, node);
805                 list_del(&desc->node);
806
807                 do {
808                         if (list_empty(&chan->free_links)) {
809                                 /* No more free link descriptors */
810                                 spin_unlock_irq(&chan->lock);
811                                 ret = nbpf_desc_page_alloc(chan);
812                                 if (ret < 0) {
813                                         nbpf_desc_put(desc);
814                                         return NULL;
815                                 }
816                                 spin_lock_irq(&chan->lock);
817                                 continue;
818                         }
819
820                         ldesc = list_first_entry(&chan->free_links,
821                                                  struct nbpf_link_desc, node);
822                         ldesc->desc = desc;
823                         if (prev)
824                                 prev->hwdesc->next = (u32)ldesc->hwdesc_dma_addr;
825
826                         prev = ldesc;
827                         list_move_tail(&ldesc->node, &desc->sg);
828
829                         i++;
830                 } while (i < len);
831         } while (!desc);
832
833         prev->hwdesc->next = 0;
834
835         spin_unlock_irq(&chan->lock);
836
837         return desc;
838 }
839
840 static void nbpf_chan_idle(struct nbpf_channel *chan)
841 {
842         struct nbpf_desc *desc, *tmp;
843         unsigned long flags;
844         LIST_HEAD(head);
845
846         spin_lock_irqsave(&chan->lock, flags);
847
848         list_splice_init(&chan->done, &head);
849         list_splice_init(&chan->active, &head);
850         list_splice_init(&chan->queued, &head);
851
852         chan->running = NULL;
853
854         spin_unlock_irqrestore(&chan->lock, flags);
855
856         list_for_each_entry_safe(desc, tmp, &head, node) {
857                 dev_dbg(chan->nbpf->dma_dev.dev, "%s(): force-free desc %p cookie %d\n",
858                         __func__, desc, desc->async_tx.cookie);
859                 list_del(&desc->node);
860                 nbpf_desc_put(desc);
861         }
862 }
863
864 static int nbpf_pause(struct dma_chan *dchan)
865 {
866         struct nbpf_channel *chan = nbpf_to_chan(dchan);
867
868         dev_dbg(dchan->device->dev, "Entry %s\n", __func__);
869
870         chan->paused = true;
871         nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_SETSUS);
872         /* See comment in nbpf_prep_one() */
873         nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_CLREN);
874
875         return 0;
876 }
877
878 static int nbpf_terminate_all(struct dma_chan *dchan)
879 {
880         struct nbpf_channel *chan = nbpf_to_chan(dchan);
881
882         dev_dbg(dchan->device->dev, "Entry %s\n", __func__);
883         dev_dbg(dchan->device->dev, "Terminating\n");
884
885         nbpf_chan_halt(chan);
886         nbpf_chan_idle(chan);
887
888         return 0;
889 }
890
891 static int nbpf_config(struct dma_chan *dchan,
892                        struct dma_slave_config *config)
893 {
894         struct nbpf_channel *chan = nbpf_to_chan(dchan);
895
896         dev_dbg(dchan->device->dev, "Entry %s\n", __func__);
897
898         /*
899          * We could check config->slave_id to match chan->terminal here,
900          * but with DT they would be coming from the same source, so
901          * such a check would be superflous
902          */
903
904         chan->slave_dst_addr = config->dst_addr;
905         chan->slave_dst_width = nbpf_xfer_size(chan->nbpf,
906                                                config->dst_addr_width, 1);
907         chan->slave_dst_burst = nbpf_xfer_size(chan->nbpf,
908                                                config->dst_addr_width,
909                                                config->dst_maxburst);
910         chan->slave_src_addr = config->src_addr;
911         chan->slave_src_width = nbpf_xfer_size(chan->nbpf,
912                                                config->src_addr_width, 1);
913         chan->slave_src_burst = nbpf_xfer_size(chan->nbpf,
914                                                config->src_addr_width,
915                                                config->src_maxburst);
916
917         return 0;
918 }
919
920 static struct dma_async_tx_descriptor *nbpf_prep_sg(struct nbpf_channel *chan,
921                 struct scatterlist *src_sg, struct scatterlist *dst_sg,
922                 size_t len, enum dma_transfer_direction direction,
923                 unsigned long flags)
924 {
925         struct nbpf_link_desc *ldesc;
926         struct scatterlist *mem_sg;
927         struct nbpf_desc *desc;
928         bool inc_src, inc_dst;
929         size_t data_len = 0;
930         int i = 0;
931
932         switch (direction) {
933         case DMA_DEV_TO_MEM:
934                 mem_sg = dst_sg;
935                 inc_src = false;
936                 inc_dst = true;
937                 break;
938
939         case DMA_MEM_TO_DEV:
940                 mem_sg = src_sg;
941                 inc_src = true;
942                 inc_dst = false;
943                 break;
944
945         default:
946         case DMA_MEM_TO_MEM:
947                 mem_sg = src_sg;
948                 inc_src = true;
949                 inc_dst = true;
950         }
951
952         desc = nbpf_desc_get(chan, len);
953         if (!desc)
954                 return NULL;
955
956         desc->async_tx.flags = flags;
957         desc->async_tx.cookie = -EBUSY;
958         desc->user_wait = false;
959
960         /*
961          * This is a private descriptor list, and we own the descriptor. No need
962          * to lock.
963          */
964         list_for_each_entry(ldesc, &desc->sg, node) {
965                 int ret = nbpf_prep_one(ldesc, direction,
966                                         sg_dma_address(src_sg),
967                                         sg_dma_address(dst_sg),
968                                         sg_dma_len(mem_sg),
969                                         i == len - 1);
970                 if (ret < 0) {
971                         nbpf_desc_put(desc);
972                         return NULL;
973                 }
974                 data_len += sg_dma_len(mem_sg);
975                 if (inc_src)
976                         src_sg = sg_next(src_sg);
977                 if (inc_dst)
978                         dst_sg = sg_next(dst_sg);
979                 mem_sg = direction == DMA_DEV_TO_MEM ? dst_sg : src_sg;
980                 i++;
981         }
982
983         desc->length = data_len;
984
985         /* The user has to return the descriptor to us ASAP via .tx_submit() */
986         return &desc->async_tx;
987 }
988
989 static struct dma_async_tx_descriptor *nbpf_prep_memcpy(
990         struct dma_chan *dchan, dma_addr_t dst, dma_addr_t src,
991         size_t len, unsigned long flags)
992 {
993         struct nbpf_channel *chan = nbpf_to_chan(dchan);
994         struct scatterlist dst_sg;
995         struct scatterlist src_sg;
996
997         sg_init_table(&dst_sg, 1);
998         sg_init_table(&src_sg, 1);
999
1000         sg_dma_address(&dst_sg) = dst;
1001         sg_dma_address(&src_sg) = src;
1002
1003         sg_dma_len(&dst_sg) = len;
1004         sg_dma_len(&src_sg) = len;
1005
1006         dev_dbg(dchan->device->dev, "%s(): %zu @ %pad -> %pad\n",
1007                 __func__, len, &src, &dst);
1008
1009         return nbpf_prep_sg(chan, &src_sg, &dst_sg, 1,
1010                             DMA_MEM_TO_MEM, flags);
1011 }
1012
1013 static struct dma_async_tx_descriptor *nbpf_prep_slave_sg(
1014         struct dma_chan *dchan, struct scatterlist *sgl, unsigned int sg_len,
1015         enum dma_transfer_direction direction, unsigned long flags, void *context)
1016 {
1017         struct nbpf_channel *chan = nbpf_to_chan(dchan);
1018         struct scatterlist slave_sg;
1019
1020         dev_dbg(dchan->device->dev, "Entry %s()\n", __func__);
1021
1022         sg_init_table(&slave_sg, 1);
1023
1024         switch (direction) {
1025         case DMA_MEM_TO_DEV:
1026                 sg_dma_address(&slave_sg) = chan->slave_dst_addr;
1027                 return nbpf_prep_sg(chan, sgl, &slave_sg, sg_len,
1028                                     direction, flags);
1029
1030         case DMA_DEV_TO_MEM:
1031                 sg_dma_address(&slave_sg) = chan->slave_src_addr;
1032                 return nbpf_prep_sg(chan, &slave_sg, sgl, sg_len,
1033                                     direction, flags);
1034
1035         default:
1036                 return NULL;
1037         }
1038 }
1039
1040 static int nbpf_alloc_chan_resources(struct dma_chan *dchan)
1041 {
1042         struct nbpf_channel *chan = nbpf_to_chan(dchan);
1043         int ret;
1044
1045         INIT_LIST_HEAD(&chan->free);
1046         INIT_LIST_HEAD(&chan->free_links);
1047         INIT_LIST_HEAD(&chan->queued);
1048         INIT_LIST_HEAD(&chan->active);
1049         INIT_LIST_HEAD(&chan->done);
1050
1051         ret = nbpf_desc_page_alloc(chan);
1052         if (ret < 0)
1053                 return ret;
1054
1055         dev_dbg(dchan->device->dev, "Entry %s(): terminal %u\n", __func__,
1056                 chan->terminal);
1057
1058         nbpf_chan_configure(chan);
1059
1060         return ret;
1061 }
1062
1063 static void nbpf_free_chan_resources(struct dma_chan *dchan)
1064 {
1065         struct nbpf_channel *chan = nbpf_to_chan(dchan);
1066         struct nbpf_desc_page *dpage, *tmp;
1067
1068         dev_dbg(dchan->device->dev, "Entry %s()\n", __func__);
1069
1070         nbpf_chan_halt(chan);
1071         nbpf_chan_idle(chan);
1072         /* Clean up for if a channel is re-used for MEMCPY after slave DMA */
1073         nbpf_chan_prepare_default(chan);
1074
1075         list_for_each_entry_safe(dpage, tmp, &chan->desc_page, node) {
1076                 struct nbpf_link_desc *ldesc;
1077                 int i;
1078                 list_del(&dpage->node);
1079                 for (i = 0, ldesc = dpage->ldesc;
1080                      i < ARRAY_SIZE(dpage->ldesc);
1081                      i++, ldesc++)
1082                         dma_unmap_single(dchan->device->dev, ldesc->hwdesc_dma_addr,
1083                                          sizeof(*ldesc->hwdesc), DMA_TO_DEVICE);
1084                 free_page((unsigned long)dpage);
1085         }
1086 }
1087
1088 static struct dma_chan *nbpf_of_xlate(struct of_phandle_args *dma_spec,
1089                                       struct of_dma *ofdma)
1090 {
1091         struct nbpf_device *nbpf = ofdma->of_dma_data;
1092         struct dma_chan *dchan;
1093         struct nbpf_channel *chan;
1094
1095         if (dma_spec->args_count != 2)
1096                 return NULL;
1097
1098         dchan = dma_get_any_slave_channel(&nbpf->dma_dev);
1099         if (!dchan)
1100                 return NULL;
1101
1102         dev_dbg(dchan->device->dev, "Entry %s(%pOFn)\n", __func__,
1103                 dma_spec->np);
1104
1105         chan = nbpf_to_chan(dchan);
1106
1107         chan->terminal = dma_spec->args[0];
1108         chan->flags = dma_spec->args[1];
1109
1110         nbpf_chan_prepare(chan);
1111         nbpf_chan_configure(chan);
1112
1113         return dchan;
1114 }
1115
1116 static void nbpf_chan_tasklet(struct tasklet_struct *t)
1117 {
1118         struct nbpf_channel *chan = from_tasklet(chan, t, tasklet);
1119         struct nbpf_desc *desc, *tmp;
1120         struct dmaengine_desc_callback cb;
1121
1122         while (!list_empty(&chan->done)) {
1123                 bool found = false, must_put, recycling = false;
1124
1125                 spin_lock_irq(&chan->lock);
1126
1127                 list_for_each_entry_safe(desc, tmp, &chan->done, node) {
1128                         if (!desc->user_wait) {
1129                                 /* Newly completed descriptor, have to process */
1130                                 found = true;
1131                                 break;
1132                         } else if (async_tx_test_ack(&desc->async_tx)) {
1133                                 /*
1134                                  * This descriptor was waiting for a user ACK,
1135                                  * it can be recycled now.
1136                                  */
1137                                 list_del(&desc->node);
1138                                 spin_unlock_irq(&chan->lock);
1139                                 nbpf_desc_put(desc);
1140                                 recycling = true;
1141                                 break;
1142                         }
1143                 }
1144
1145                 if (recycling)
1146                         continue;
1147
1148                 if (!found) {
1149                         /* This can happen if TERMINATE_ALL has been called */
1150                         spin_unlock_irq(&chan->lock);
1151                         break;
1152                 }
1153
1154                 dma_cookie_complete(&desc->async_tx);
1155
1156                 /*
1157                  * With released lock we cannot dereference desc, maybe it's
1158                  * still on the "done" list
1159                  */
1160                 if (async_tx_test_ack(&desc->async_tx)) {
1161                         list_del(&desc->node);
1162                         must_put = true;
1163                 } else {
1164                         desc->user_wait = true;
1165                         must_put = false;
1166                 }
1167
1168                 dmaengine_desc_get_callback(&desc->async_tx, &cb);
1169
1170                 /* ack and callback completed descriptor */
1171                 spin_unlock_irq(&chan->lock);
1172
1173                 dmaengine_desc_callback_invoke(&cb, NULL);
1174
1175                 if (must_put)
1176                         nbpf_desc_put(desc);
1177         }
1178 }
1179
1180 static irqreturn_t nbpf_chan_irq(int irq, void *dev)
1181 {
1182         struct nbpf_channel *chan = dev;
1183         bool done = nbpf_status_get(chan);
1184         struct nbpf_desc *desc;
1185         irqreturn_t ret;
1186         bool bh = false;
1187
1188         if (!done)
1189                 return IRQ_NONE;
1190
1191         nbpf_status_ack(chan);
1192
1193         dev_dbg(&chan->dma_chan.dev->device, "%s()\n", __func__);
1194
1195         spin_lock(&chan->lock);
1196         desc = chan->running;
1197         if (WARN_ON(!desc)) {
1198                 ret = IRQ_NONE;
1199                 goto unlock;
1200         } else {
1201                 ret = IRQ_HANDLED;
1202                 bh = true;
1203         }
1204
1205         list_move_tail(&desc->node, &chan->done);
1206         chan->running = NULL;
1207
1208         if (!list_empty(&chan->active)) {
1209                 desc = list_first_entry(&chan->active,
1210                                         struct nbpf_desc, node);
1211                 if (!nbpf_start(desc))
1212                         chan->running = desc;
1213         }
1214
1215 unlock:
1216         spin_unlock(&chan->lock);
1217
1218         if (bh)
1219                 tasklet_schedule(&chan->tasklet);
1220
1221         return ret;
1222 }
1223
1224 static irqreturn_t nbpf_err_irq(int irq, void *dev)
1225 {
1226         struct nbpf_device *nbpf = dev;
1227         u32 error = nbpf_error_get(nbpf);
1228
1229         dev_warn(nbpf->dma_dev.dev, "DMA error IRQ %u\n", irq);
1230
1231         if (!error)
1232                 return IRQ_NONE;
1233
1234         do {
1235                 struct nbpf_channel *chan = nbpf_error_get_channel(nbpf, error);
1236                 /* On error: abort all queued transfers, no callback */
1237                 nbpf_error_clear(chan);
1238                 nbpf_chan_idle(chan);
1239                 error = nbpf_error_get(nbpf);
1240         } while (error);
1241
1242         return IRQ_HANDLED;
1243 }
1244
1245 static int nbpf_chan_probe(struct nbpf_device *nbpf, int n)
1246 {
1247         struct dma_device *dma_dev = &nbpf->dma_dev;
1248         struct nbpf_channel *chan = nbpf->chan + n;
1249         int ret;
1250
1251         chan->nbpf = nbpf;
1252         chan->base = nbpf->base + NBPF_REG_CHAN_OFFSET + NBPF_REG_CHAN_SIZE * n;
1253         INIT_LIST_HEAD(&chan->desc_page);
1254         spin_lock_init(&chan->lock);
1255         chan->dma_chan.device = dma_dev;
1256         dma_cookie_init(&chan->dma_chan);
1257         nbpf_chan_prepare_default(chan);
1258
1259         dev_dbg(dma_dev->dev, "%s(): channel %d: -> %p\n", __func__, n, chan->base);
1260
1261         snprintf(chan->name, sizeof(chan->name), "nbpf %d", n);
1262
1263         tasklet_setup(&chan->tasklet, nbpf_chan_tasklet);
1264         ret = devm_request_irq(dma_dev->dev, chan->irq,
1265                         nbpf_chan_irq, IRQF_SHARED,
1266                         chan->name, chan);
1267         if (ret < 0)
1268                 return ret;
1269
1270         /* Add the channel to DMA device channel list */
1271         list_add_tail(&chan->dma_chan.device_node,
1272                       &dma_dev->channels);
1273
1274         return 0;
1275 }
1276
1277 static const struct of_device_id nbpf_match[] = {
1278         {.compatible = "renesas,nbpfaxi64dmac1b4",      .data = &nbpf_cfg[NBPF1B4]},
1279         {.compatible = "renesas,nbpfaxi64dmac1b8",      .data = &nbpf_cfg[NBPF1B8]},
1280         {.compatible = "renesas,nbpfaxi64dmac1b16",     .data = &nbpf_cfg[NBPF1B16]},
1281         {.compatible = "renesas,nbpfaxi64dmac4b4",      .data = &nbpf_cfg[NBPF4B4]},
1282         {.compatible = "renesas,nbpfaxi64dmac4b8",      .data = &nbpf_cfg[NBPF4B8]},
1283         {.compatible = "renesas,nbpfaxi64dmac4b16",     .data = &nbpf_cfg[NBPF4B16]},
1284         {.compatible = "renesas,nbpfaxi64dmac8b4",      .data = &nbpf_cfg[NBPF8B4]},
1285         {.compatible = "renesas,nbpfaxi64dmac8b8",      .data = &nbpf_cfg[NBPF8B8]},
1286         {.compatible = "renesas,nbpfaxi64dmac8b16",     .data = &nbpf_cfg[NBPF8B16]},
1287         {}
1288 };
1289 MODULE_DEVICE_TABLE(of, nbpf_match);
1290
1291 static int nbpf_probe(struct platform_device *pdev)
1292 {
1293         struct device *dev = &pdev->dev;
1294         struct device_node *np = dev->of_node;
1295         struct nbpf_device *nbpf;
1296         struct dma_device *dma_dev;
1297         struct resource *iomem, *irq_res;
1298         const struct nbpf_config *cfg;
1299         int num_channels;
1300         int ret, irq, eirq, i;
1301         int irqbuf[9] /* maximum 8 channels + error IRQ */;
1302         unsigned int irqs = 0;
1303
1304         BUILD_BUG_ON(sizeof(struct nbpf_desc_page) > PAGE_SIZE);
1305
1306         /* DT only */
1307         if (!np)
1308                 return -ENODEV;
1309
1310         cfg = of_device_get_match_data(dev);
1311         num_channels = cfg->num_channels;
1312
1313         nbpf = devm_kzalloc(dev, struct_size(nbpf, chan, num_channels),
1314                             GFP_KERNEL);
1315         if (!nbpf)
1316                 return -ENOMEM;
1317
1318         dma_dev = &nbpf->dma_dev;
1319         dma_dev->dev = dev;
1320
1321         iomem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1322         nbpf->base = devm_ioremap_resource(dev, iomem);
1323         if (IS_ERR(nbpf->base))
1324                 return PTR_ERR(nbpf->base);
1325
1326         nbpf->clk = devm_clk_get(dev, NULL);
1327         if (IS_ERR(nbpf->clk))
1328                 return PTR_ERR(nbpf->clk);
1329
1330         of_property_read_u32(np, "max-burst-mem-read",
1331                              &nbpf->max_burst_mem_read);
1332         of_property_read_u32(np, "max-burst-mem-write",
1333                              &nbpf->max_burst_mem_write);
1334
1335         nbpf->config = cfg;
1336
1337         for (i = 0; irqs < ARRAY_SIZE(irqbuf); i++) {
1338                 irq_res = platform_get_resource(pdev, IORESOURCE_IRQ, i);
1339                 if (!irq_res)
1340                         break;
1341
1342                 for (irq = irq_res->start; irq <= irq_res->end;
1343                      irq++, irqs++)
1344                         irqbuf[irqs] = irq;
1345         }
1346
1347         /*
1348          * 3 IRQ resource schemes are supported:
1349          * 1. 1 shared IRQ for error and all channels
1350          * 2. 2 IRQs: one for error and one shared for all channels
1351          * 3. 1 IRQ for error and an own IRQ for each channel
1352          */
1353         if (irqs != 1 && irqs != 2 && irqs != num_channels + 1)
1354                 return -ENXIO;
1355
1356         if (irqs == 1) {
1357                 eirq = irqbuf[0];
1358
1359                 for (i = 0; i <= num_channels; i++)
1360                         nbpf->chan[i].irq = irqbuf[0];
1361         } else {
1362                 eirq = platform_get_irq_byname(pdev, "error");
1363                 if (eirq < 0)
1364                         return eirq;
1365
1366                 if (irqs == num_channels + 1) {
1367                         struct nbpf_channel *chan;
1368
1369                         for (i = 0, chan = nbpf->chan; i <= num_channels;
1370                              i++, chan++) {
1371                                 /* Skip the error IRQ */
1372                                 if (irqbuf[i] == eirq)
1373                                         i++;
1374                                 chan->irq = irqbuf[i];
1375                         }
1376
1377                         if (chan != nbpf->chan + num_channels)
1378                                 return -EINVAL;
1379                 } else {
1380                         /* 2 IRQs and more than one channel */
1381                         if (irqbuf[0] == eirq)
1382                                 irq = irqbuf[1];
1383                         else
1384                                 irq = irqbuf[0];
1385
1386                         for (i = 0; i <= num_channels; i++)
1387                                 nbpf->chan[i].irq = irq;
1388                 }
1389         }
1390
1391         ret = devm_request_irq(dev, eirq, nbpf_err_irq,
1392                                IRQF_SHARED, "dma error", nbpf);
1393         if (ret < 0)
1394                 return ret;
1395         nbpf->eirq = eirq;
1396
1397         INIT_LIST_HEAD(&dma_dev->channels);
1398
1399         /* Create DMA Channel */
1400         for (i = 0; i < num_channels; i++) {
1401                 ret = nbpf_chan_probe(nbpf, i);
1402                 if (ret < 0)
1403                         return ret;
1404         }
1405
1406         dma_cap_set(DMA_MEMCPY, dma_dev->cap_mask);
1407         dma_cap_set(DMA_SLAVE, dma_dev->cap_mask);
1408         dma_cap_set(DMA_PRIVATE, dma_dev->cap_mask);
1409
1410         /* Common and MEMCPY operations */
1411         dma_dev->device_alloc_chan_resources
1412                 = nbpf_alloc_chan_resources;
1413         dma_dev->device_free_chan_resources = nbpf_free_chan_resources;
1414         dma_dev->device_prep_dma_memcpy = nbpf_prep_memcpy;
1415         dma_dev->device_tx_status = nbpf_tx_status;
1416         dma_dev->device_issue_pending = nbpf_issue_pending;
1417
1418         /*
1419          * If we drop support for unaligned MEMCPY buffer addresses and / or
1420          * lengths by setting
1421          * dma_dev->copy_align = 4;
1422          * then we can set transfer length to 4 bytes in nbpf_prep_one() for
1423          * DMA_MEM_TO_MEM
1424          */
1425
1426         /* Compulsory for DMA_SLAVE fields */
1427         dma_dev->device_prep_slave_sg = nbpf_prep_slave_sg;
1428         dma_dev->device_config = nbpf_config;
1429         dma_dev->device_pause = nbpf_pause;
1430         dma_dev->device_terminate_all = nbpf_terminate_all;
1431
1432         dma_dev->src_addr_widths = NBPF_DMA_BUSWIDTHS;
1433         dma_dev->dst_addr_widths = NBPF_DMA_BUSWIDTHS;
1434         dma_dev->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1435
1436         platform_set_drvdata(pdev, nbpf);
1437
1438         ret = clk_prepare_enable(nbpf->clk);
1439         if (ret < 0)
1440                 return ret;
1441
1442         nbpf_configure(nbpf);
1443
1444         ret = dma_async_device_register(dma_dev);
1445         if (ret < 0)
1446                 goto e_clk_off;
1447
1448         ret = of_dma_controller_register(np, nbpf_of_xlate, nbpf);
1449         if (ret < 0)
1450                 goto e_dma_dev_unreg;
1451
1452         return 0;
1453
1454 e_dma_dev_unreg:
1455         dma_async_device_unregister(dma_dev);
1456 e_clk_off:
1457         clk_disable_unprepare(nbpf->clk);
1458
1459         return ret;
1460 }
1461
1462 static int nbpf_remove(struct platform_device *pdev)
1463 {
1464         struct nbpf_device *nbpf = platform_get_drvdata(pdev);
1465         int i;
1466
1467         devm_free_irq(&pdev->dev, nbpf->eirq, nbpf);
1468
1469         for (i = 0; i < nbpf->config->num_channels; i++) {
1470                 struct nbpf_channel *chan = nbpf->chan + i;
1471
1472                 devm_free_irq(&pdev->dev, chan->irq, chan);
1473
1474                 tasklet_kill(&chan->tasklet);
1475         }
1476
1477         of_dma_controller_free(pdev->dev.of_node);
1478         dma_async_device_unregister(&nbpf->dma_dev);
1479         clk_disable_unprepare(nbpf->clk);
1480
1481         return 0;
1482 }
1483
1484 static const struct platform_device_id nbpf_ids[] = {
1485         {"nbpfaxi64dmac1b4",    (kernel_ulong_t)&nbpf_cfg[NBPF1B4]},
1486         {"nbpfaxi64dmac1b8",    (kernel_ulong_t)&nbpf_cfg[NBPF1B8]},
1487         {"nbpfaxi64dmac1b16",   (kernel_ulong_t)&nbpf_cfg[NBPF1B16]},
1488         {"nbpfaxi64dmac4b4",    (kernel_ulong_t)&nbpf_cfg[NBPF4B4]},
1489         {"nbpfaxi64dmac4b8",    (kernel_ulong_t)&nbpf_cfg[NBPF4B8]},
1490         {"nbpfaxi64dmac4b16",   (kernel_ulong_t)&nbpf_cfg[NBPF4B16]},
1491         {"nbpfaxi64dmac8b4",    (kernel_ulong_t)&nbpf_cfg[NBPF8B4]},
1492         {"nbpfaxi64dmac8b8",    (kernel_ulong_t)&nbpf_cfg[NBPF8B8]},
1493         {"nbpfaxi64dmac8b16",   (kernel_ulong_t)&nbpf_cfg[NBPF8B16]},
1494         {},
1495 };
1496 MODULE_DEVICE_TABLE(platform, nbpf_ids);
1497
1498 #ifdef CONFIG_PM
1499 static int nbpf_runtime_suspend(struct device *dev)
1500 {
1501         struct nbpf_device *nbpf = dev_get_drvdata(dev);
1502         clk_disable_unprepare(nbpf->clk);
1503         return 0;
1504 }
1505
1506 static int nbpf_runtime_resume(struct device *dev)
1507 {
1508         struct nbpf_device *nbpf = dev_get_drvdata(dev);
1509         return clk_prepare_enable(nbpf->clk);
1510 }
1511 #endif
1512
1513 static const struct dev_pm_ops nbpf_pm_ops = {
1514         SET_RUNTIME_PM_OPS(nbpf_runtime_suspend, nbpf_runtime_resume, NULL)
1515 };
1516
1517 static struct platform_driver nbpf_driver = {
1518         .driver = {
1519                 .name = "dma-nbpf",
1520                 .of_match_table = nbpf_match,
1521                 .pm = &nbpf_pm_ops,
1522         },
1523         .id_table = nbpf_ids,
1524         .probe = nbpf_probe,
1525         .remove = nbpf_remove,
1526 };
1527
1528 module_platform_driver(nbpf_driver);
1529
1530 MODULE_AUTHOR("Guennadi Liakhovetski <g.liakhovetski@gmx.de>");
1531 MODULE_DESCRIPTION("dmaengine driver for NBPFAXI64* DMACs");
1532 MODULE_LICENSE("GPL v2");