Merge patch series "Some style cleanups for recent extension additions"
[platform/kernel/linux-starfive.git] / drivers / dma / imx-sdma.c
1 // SPDX-License-Identifier: GPL-2.0+
2 //
3 // drivers/dma/imx-sdma.c
4 //
5 // This file contains a driver for the Freescale Smart DMA engine
6 //
7 // Copyright 2010 Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>
8 //
9 // Based on code from Freescale:
10 //
11 // Copyright 2004-2009 Freescale Semiconductor, Inc. All Rights Reserved.
12
13 #include <linux/init.h>
14 #include <linux/iopoll.h>
15 #include <linux/module.h>
16 #include <linux/types.h>
17 #include <linux/bitfield.h>
18 #include <linux/bitops.h>
19 #include <linux/mm.h>
20 #include <linux/interrupt.h>
21 #include <linux/clk.h>
22 #include <linux/delay.h>
23 #include <linux/sched.h>
24 #include <linux/semaphore.h>
25 #include <linux/spinlock.h>
26 #include <linux/device.h>
27 #include <linux/dma-mapping.h>
28 #include <linux/firmware.h>
29 #include <linux/slab.h>
30 #include <linux/platform_device.h>
31 #include <linux/dmaengine.h>
32 #include <linux/of.h>
33 #include <linux/of_address.h>
34 #include <linux/of_device.h>
35 #include <linux/of_dma.h>
36 #include <linux/workqueue.h>
37
38 #include <asm/irq.h>
39 #include <linux/dma/imx-dma.h>
40 #include <linux/regmap.h>
41 #include <linux/mfd/syscon.h>
42 #include <linux/mfd/syscon/imx6q-iomuxc-gpr.h>
43
44 #include "dmaengine.h"
45 #include "virt-dma.h"
46
47 /* SDMA registers */
48 #define SDMA_H_C0PTR            0x000
49 #define SDMA_H_INTR             0x004
50 #define SDMA_H_STATSTOP         0x008
51 #define SDMA_H_START            0x00c
52 #define SDMA_H_EVTOVR           0x010
53 #define SDMA_H_DSPOVR           0x014
54 #define SDMA_H_HOSTOVR          0x018
55 #define SDMA_H_EVTPEND          0x01c
56 #define SDMA_H_DSPENBL          0x020
57 #define SDMA_H_RESET            0x024
58 #define SDMA_H_EVTERR           0x028
59 #define SDMA_H_INTRMSK          0x02c
60 #define SDMA_H_PSW              0x030
61 #define SDMA_H_EVTERRDBG        0x034
62 #define SDMA_H_CONFIG           0x038
63 #define SDMA_ONCE_ENB           0x040
64 #define SDMA_ONCE_DATA          0x044
65 #define SDMA_ONCE_INSTR         0x048
66 #define SDMA_ONCE_STAT          0x04c
67 #define SDMA_ONCE_CMD           0x050
68 #define SDMA_EVT_MIRROR         0x054
69 #define SDMA_ILLINSTADDR        0x058
70 #define SDMA_CHN0ADDR           0x05c
71 #define SDMA_ONCE_RTB           0x060
72 #define SDMA_XTRIG_CONF1        0x070
73 #define SDMA_XTRIG_CONF2        0x074
74 #define SDMA_CHNENBL0_IMX35     0x200
75 #define SDMA_CHNENBL0_IMX31     0x080
76 #define SDMA_CHNPRI_0           0x100
77 #define SDMA_DONE0_CONFIG       0x1000
78
79 /*
80  * Buffer descriptor status values.
81  */
82 #define BD_DONE  0x01
83 #define BD_WRAP  0x02
84 #define BD_CONT  0x04
85 #define BD_INTR  0x08
86 #define BD_RROR  0x10
87 #define BD_LAST  0x20
88 #define BD_EXTD  0x80
89
90 /*
91  * Data Node descriptor status values.
92  */
93 #define DND_END_OF_FRAME  0x80
94 #define DND_END_OF_XFER   0x40
95 #define DND_DONE          0x20
96 #define DND_UNUSED        0x01
97
98 /*
99  * IPCV2 descriptor status values.
100  */
101 #define BD_IPCV2_END_OF_FRAME  0x40
102
103 #define IPCV2_MAX_NODES        50
104 /*
105  * Error bit set in the CCB status field by the SDMA,
106  * in setbd routine, in case of a transfer error
107  */
108 #define DATA_ERROR  0x10000000
109
110 /*
111  * Buffer descriptor commands.
112  */
113 #define C0_ADDR             0x01
114 #define C0_LOAD             0x02
115 #define C0_DUMP             0x03
116 #define C0_SETCTX           0x07
117 #define C0_GETCTX           0x03
118 #define C0_SETDM            0x01
119 #define C0_SETPM            0x04
120 #define C0_GETDM            0x02
121 #define C0_GETPM            0x08
122 /*
123  * Change endianness indicator in the BD command field
124  */
125 #define CHANGE_ENDIANNESS   0x80
126
127 /*
128  *  p_2_p watermark_level description
129  *      Bits            Name                    Description
130  *      0-7             Lower WML               Lower watermark level
131  *      8               PS                      1: Pad Swallowing
132  *                                              0: No Pad Swallowing
133  *      9               PA                      1: Pad Adding
134  *                                              0: No Pad Adding
135  *      10              SPDIF                   If this bit is set both source
136  *                                              and destination are on SPBA
137  *      11              Source Bit(SP)          1: Source on SPBA
138  *                                              0: Source on AIPS
139  *      12              Destination Bit(DP)     1: Destination on SPBA
140  *                                              0: Destination on AIPS
141  *      13-15           ---------               MUST BE 0
142  *      16-23           Higher WML              HWML
143  *      24-27           N                       Total number of samples after
144  *                                              which Pad adding/Swallowing
145  *                                              must be done. It must be odd.
146  *      28              Lower WML Event(LWE)    SDMA events reg to check for
147  *                                              LWML event mask
148  *                                              0: LWE in EVENTS register
149  *                                              1: LWE in EVENTS2 register
150  *      29              Higher WML Event(HWE)   SDMA events reg to check for
151  *                                              HWML event mask
152  *                                              0: HWE in EVENTS register
153  *                                              1: HWE in EVENTS2 register
154  *      30              ---------               MUST BE 0
155  *      31              CONT                    1: Amount of samples to be
156  *                                              transferred is unknown and
157  *                                              script will keep on
158  *                                              transferring samples as long as
159  *                                              both events are detected and
160  *                                              script must be manually stopped
161  *                                              by the application
162  *                                              0: The amount of samples to be
163  *                                              transferred is equal to the
164  *                                              count field of mode word
165  */
166 #define SDMA_WATERMARK_LEVEL_LWML       0xFF
167 #define SDMA_WATERMARK_LEVEL_PS         BIT(8)
168 #define SDMA_WATERMARK_LEVEL_PA         BIT(9)
169 #define SDMA_WATERMARK_LEVEL_SPDIF      BIT(10)
170 #define SDMA_WATERMARK_LEVEL_SP         BIT(11)
171 #define SDMA_WATERMARK_LEVEL_DP         BIT(12)
172 #define SDMA_WATERMARK_LEVEL_HWML       (0xFF << 16)
173 #define SDMA_WATERMARK_LEVEL_LWE        BIT(28)
174 #define SDMA_WATERMARK_LEVEL_HWE        BIT(29)
175 #define SDMA_WATERMARK_LEVEL_CONT       BIT(31)
176
177 #define SDMA_DMA_BUSWIDTHS      (BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
178                                  BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
179                                  BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
180
181 #define SDMA_DMA_DIRECTIONS     (BIT(DMA_DEV_TO_MEM) | \
182                                  BIT(DMA_MEM_TO_DEV) | \
183                                  BIT(DMA_DEV_TO_DEV))
184
185 #define SDMA_WATERMARK_LEVEL_N_FIFOS    GENMASK(15, 12)
186 #define SDMA_WATERMARK_LEVEL_OFF_FIFOS  GENMASK(19, 16)
187 #define SDMA_WATERMARK_LEVEL_WORDS_PER_FIFO   GENMASK(31, 28)
188 #define SDMA_WATERMARK_LEVEL_SW_DONE    BIT(23)
189
190 #define SDMA_DONE0_CONFIG_DONE_SEL      BIT(7)
191 #define SDMA_DONE0_CONFIG_DONE_DIS      BIT(6)
192
193 /*
194  * struct sdma_script_start_addrs - SDMA script start pointers
195  *
196  * start addresses of the different functions in the physical
197  * address space of the SDMA engine.
198  */
199 struct sdma_script_start_addrs {
200         s32 ap_2_ap_addr;
201         s32 ap_2_bp_addr;
202         s32 ap_2_ap_fixed_addr;
203         s32 bp_2_ap_addr;
204         s32 loopback_on_dsp_side_addr;
205         s32 mcu_interrupt_only_addr;
206         s32 firi_2_per_addr;
207         s32 firi_2_mcu_addr;
208         s32 per_2_firi_addr;
209         s32 mcu_2_firi_addr;
210         s32 uart_2_per_addr;
211         s32 uart_2_mcu_addr;
212         s32 per_2_app_addr;
213         s32 mcu_2_app_addr;
214         s32 per_2_per_addr;
215         s32 uartsh_2_per_addr;
216         s32 uartsh_2_mcu_addr;
217         s32 per_2_shp_addr;
218         s32 mcu_2_shp_addr;
219         s32 ata_2_mcu_addr;
220         s32 mcu_2_ata_addr;
221         s32 app_2_per_addr;
222         s32 app_2_mcu_addr;
223         s32 shp_2_per_addr;
224         s32 shp_2_mcu_addr;
225         s32 mshc_2_mcu_addr;
226         s32 mcu_2_mshc_addr;
227         s32 spdif_2_mcu_addr;
228         s32 mcu_2_spdif_addr;
229         s32 asrc_2_mcu_addr;
230         s32 ext_mem_2_ipu_addr;
231         s32 descrambler_addr;
232         s32 dptc_dvfs_addr;
233         s32 utra_addr;
234         s32 ram_code_start_addr;
235         /* End of v1 array */
236         s32 mcu_2_ssish_addr;
237         s32 ssish_2_mcu_addr;
238         s32 hdmi_dma_addr;
239         /* End of v2 array */
240         s32 zcanfd_2_mcu_addr;
241         s32 zqspi_2_mcu_addr;
242         s32 mcu_2_ecspi_addr;
243         s32 mcu_2_sai_addr;
244         s32 sai_2_mcu_addr;
245         s32 uart_2_mcu_rom_addr;
246         s32 uartsh_2_mcu_rom_addr;
247         /* End of v3 array */
248         s32 mcu_2_zqspi_addr;
249         /* End of v4 array */
250 };
251
252 /*
253  * Mode/Count of data node descriptors - IPCv2
254  */
255 struct sdma_mode_count {
256 #define SDMA_BD_MAX_CNT 0xffff
257         u32 count   : 16; /* size of the buffer pointed by this BD */
258         u32 status  :  8; /* E,R,I,C,W,D status bits stored here */
259         u32 command :  8; /* command mostly used for channel 0 */
260 };
261
262 /*
263  * Buffer descriptor
264  */
265 struct sdma_buffer_descriptor {
266         struct sdma_mode_count  mode;
267         u32 buffer_addr;        /* address of the buffer described */
268         u32 ext_buffer_addr;    /* extended buffer address */
269 } __attribute__ ((packed));
270
271 /**
272  * struct sdma_channel_control - Channel control Block
273  *
274  * @current_bd_ptr:     current buffer descriptor processed
275  * @base_bd_ptr:        first element of buffer descriptor array
276  * @unused:             padding. The SDMA engine expects an array of 128 byte
277  *                      control blocks
278  */
279 struct sdma_channel_control {
280         u32 current_bd_ptr;
281         u32 base_bd_ptr;
282         u32 unused[2];
283 } __attribute__ ((packed));
284
285 /**
286  * struct sdma_state_registers - SDMA context for a channel
287  *
288  * @pc:         program counter
289  * @unused1:    unused
290  * @t:          test bit: status of arithmetic & test instruction
291  * @rpc:        return program counter
292  * @unused0:    unused
293  * @sf:         source fault while loading data
294  * @spc:        loop start program counter
295  * @unused2:    unused
296  * @df:         destination fault while storing data
297  * @epc:        loop end program counter
298  * @lm:         loop mode
299  */
300 struct sdma_state_registers {
301         u32 pc     :14;
302         u32 unused1: 1;
303         u32 t      : 1;
304         u32 rpc    :14;
305         u32 unused0: 1;
306         u32 sf     : 1;
307         u32 spc    :14;
308         u32 unused2: 1;
309         u32 df     : 1;
310         u32 epc    :14;
311         u32 lm     : 2;
312 } __attribute__ ((packed));
313
314 /**
315  * struct sdma_context_data - sdma context specific to a channel
316  *
317  * @channel_state:      channel state bits
318  * @gReg:               general registers
319  * @mda:                burst dma destination address register
320  * @msa:                burst dma source address register
321  * @ms:                 burst dma status register
322  * @md:                 burst dma data register
323  * @pda:                peripheral dma destination address register
324  * @psa:                peripheral dma source address register
325  * @ps:                 peripheral dma status register
326  * @pd:                 peripheral dma data register
327  * @ca:                 CRC polynomial register
328  * @cs:                 CRC accumulator register
329  * @dda:                dedicated core destination address register
330  * @dsa:                dedicated core source address register
331  * @ds:                 dedicated core status register
332  * @dd:                 dedicated core data register
333  * @scratch0:           1st word of dedicated ram for context switch
334  * @scratch1:           2nd word of dedicated ram for context switch
335  * @scratch2:           3rd word of dedicated ram for context switch
336  * @scratch3:           4th word of dedicated ram for context switch
337  * @scratch4:           5th word of dedicated ram for context switch
338  * @scratch5:           6th word of dedicated ram for context switch
339  * @scratch6:           7th word of dedicated ram for context switch
340  * @scratch7:           8th word of dedicated ram for context switch
341  */
342 struct sdma_context_data {
343         struct sdma_state_registers  channel_state;
344         u32  gReg[8];
345         u32  mda;
346         u32  msa;
347         u32  ms;
348         u32  md;
349         u32  pda;
350         u32  psa;
351         u32  ps;
352         u32  pd;
353         u32  ca;
354         u32  cs;
355         u32  dda;
356         u32  dsa;
357         u32  ds;
358         u32  dd;
359         u32  scratch0;
360         u32  scratch1;
361         u32  scratch2;
362         u32  scratch3;
363         u32  scratch4;
364         u32  scratch5;
365         u32  scratch6;
366         u32  scratch7;
367 } __attribute__ ((packed));
368
369
370 struct sdma_engine;
371
372 /**
373  * struct sdma_desc - descriptor structor for one transfer
374  * @vd:                 descriptor for virt dma
375  * @num_bd:             number of descriptors currently handling
376  * @bd_phys:            physical address of bd
377  * @buf_tail:           ID of the buffer that was processed
378  * @buf_ptail:          ID of the previous buffer that was processed
379  * @period_len:         period length, used in cyclic.
380  * @chn_real_count:     the real count updated from bd->mode.count
381  * @chn_count:          the transfer count set
382  * @sdmac:              sdma_channel pointer
383  * @bd:                 pointer of allocate bd
384  */
385 struct sdma_desc {
386         struct virt_dma_desc    vd;
387         unsigned int            num_bd;
388         dma_addr_t              bd_phys;
389         unsigned int            buf_tail;
390         unsigned int            buf_ptail;
391         unsigned int            period_len;
392         unsigned int            chn_real_count;
393         unsigned int            chn_count;
394         struct sdma_channel     *sdmac;
395         struct sdma_buffer_descriptor *bd;
396 };
397
398 /**
399  * struct sdma_channel - housekeeping for a SDMA channel
400  *
401  * @vc:                 virt_dma base structure
402  * @desc:               sdma description including vd and other special member
403  * @sdma:               pointer to the SDMA engine for this channel
404  * @channel:            the channel number, matches dmaengine chan_id + 1
405  * @direction:          transfer type. Needed for setting SDMA script
406  * @slave_config:       Slave configuration
407  * @peripheral_type:    Peripheral type. Needed for setting SDMA script
408  * @event_id0:          aka dma request line
409  * @event_id1:          for channels that use 2 events
410  * @word_size:          peripheral access size
411  * @pc_from_device:     script address for those device_2_memory
412  * @pc_to_device:       script address for those memory_2_device
413  * @device_to_device:   script address for those device_2_device
414  * @pc_to_pc:           script address for those memory_2_memory
415  * @flags:              loop mode or not
416  * @per_address:        peripheral source or destination address in common case
417  *                      destination address in p_2_p case
418  * @per_address2:       peripheral source address in p_2_p case
419  * @event_mask:         event mask used in p_2_p script
420  * @watermark_level:    value for gReg[7], some script will extend it from
421  *                      basic watermark such as p_2_p
422  * @shp_addr:           value for gReg[6]
423  * @per_addr:           value for gReg[2]
424  * @status:             status of dma channel
425  * @context_loaded:     ensure context is only loaded once
426  * @data:               specific sdma interface structure
427  * @bd_pool:            dma_pool for bd
428  * @terminate_worker:   used to call back into terminate work function
429  * @terminated:         terminated list
430  * @is_ram_script:      flag for script in ram
431  * @n_fifos_src:        number of source device fifos
432  * @n_fifos_dst:        number of destination device fifos
433  * @sw_done:            software done flag
434  * @stride_fifos_src:   stride for source device FIFOs
435  * @stride_fifos_dst:   stride for destination device FIFOs
436  * @words_per_fifo:     copy number of words one time for one FIFO
437  */
438 struct sdma_channel {
439         struct virt_dma_chan            vc;
440         struct sdma_desc                *desc;
441         struct sdma_engine              *sdma;
442         unsigned int                    channel;
443         enum dma_transfer_direction             direction;
444         struct dma_slave_config         slave_config;
445         enum sdma_peripheral_type       peripheral_type;
446         unsigned int                    event_id0;
447         unsigned int                    event_id1;
448         enum dma_slave_buswidth         word_size;
449         unsigned int                    pc_from_device, pc_to_device;
450         unsigned int                    device_to_device;
451         unsigned int                    pc_to_pc;
452         unsigned long                   flags;
453         dma_addr_t                      per_address, per_address2;
454         unsigned long                   event_mask[2];
455         unsigned long                   watermark_level;
456         u32                             shp_addr, per_addr;
457         enum dma_status                 status;
458         struct imx_dma_data             data;
459         struct work_struct              terminate_worker;
460         struct list_head                terminated;
461         bool                            is_ram_script;
462         unsigned int                    n_fifos_src;
463         unsigned int                    n_fifos_dst;
464         unsigned int                    stride_fifos_src;
465         unsigned int                    stride_fifos_dst;
466         unsigned int                    words_per_fifo;
467         bool                            sw_done;
468 };
469
470 #define IMX_DMA_SG_LOOP         BIT(0)
471
472 #define MAX_DMA_CHANNELS 32
473 #define MXC_SDMA_DEFAULT_PRIORITY 1
474 #define MXC_SDMA_MIN_PRIORITY 1
475 #define MXC_SDMA_MAX_PRIORITY 7
476
477 #define SDMA_FIRMWARE_MAGIC 0x414d4453
478
479 /**
480  * struct sdma_firmware_header - Layout of the firmware image
481  *
482  * @magic:              "SDMA"
483  * @version_major:      increased whenever layout of struct
484  *                      sdma_script_start_addrs changes.
485  * @version_minor:      firmware minor version (for binary compatible changes)
486  * @script_addrs_start: offset of struct sdma_script_start_addrs in this image
487  * @num_script_addrs:   Number of script addresses in this image
488  * @ram_code_start:     offset of SDMA ram image in this firmware image
489  * @ram_code_size:      size of SDMA ram image
490  * @script_addrs:       Stores the start address of the SDMA scripts
491  *                      (in SDMA memory space)
492  */
493 struct sdma_firmware_header {
494         u32     magic;
495         u32     version_major;
496         u32     version_minor;
497         u32     script_addrs_start;
498         u32     num_script_addrs;
499         u32     ram_code_start;
500         u32     ram_code_size;
501 };
502
503 struct sdma_driver_data {
504         int chnenbl0;
505         int num_events;
506         struct sdma_script_start_addrs  *script_addrs;
507         bool check_ratio;
508         /*
509          * ecspi ERR009165 fixed should be done in sdma script
510          * and it has been fixed in soc from i.mx6ul.
511          * please get more information from the below link:
512          * https://www.nxp.com/docs/en/errata/IMX6DQCE.pdf
513          */
514         bool ecspi_fixed;
515 };
516
517 struct sdma_engine {
518         struct device                   *dev;
519         struct sdma_channel             channel[MAX_DMA_CHANNELS];
520         struct sdma_channel_control     *channel_control;
521         void __iomem                    *regs;
522         struct sdma_context_data        *context;
523         dma_addr_t                      context_phys;
524         struct dma_device               dma_device;
525         struct clk                      *clk_ipg;
526         struct clk                      *clk_ahb;
527         spinlock_t                      channel_0_lock;
528         u32                             script_number;
529         struct sdma_script_start_addrs  *script_addrs;
530         const struct sdma_driver_data   *drvdata;
531         u32                             spba_start_addr;
532         u32                             spba_end_addr;
533         unsigned int                    irq;
534         dma_addr_t                      bd0_phys;
535         struct sdma_buffer_descriptor   *bd0;
536         /* clock ratio for AHB:SDMA core. 1:1 is 1, 2:1 is 0*/
537         bool                            clk_ratio;
538         bool                            fw_loaded;
539 };
540
541 static int sdma_config_write(struct dma_chan *chan,
542                        struct dma_slave_config *dmaengine_cfg,
543                        enum dma_transfer_direction direction);
544
545 static struct sdma_driver_data sdma_imx31 = {
546         .chnenbl0 = SDMA_CHNENBL0_IMX31,
547         .num_events = 32,
548 };
549
550 static struct sdma_script_start_addrs sdma_script_imx25 = {
551         .ap_2_ap_addr = 729,
552         .uart_2_mcu_addr = 904,
553         .per_2_app_addr = 1255,
554         .mcu_2_app_addr = 834,
555         .uartsh_2_mcu_addr = 1120,
556         .per_2_shp_addr = 1329,
557         .mcu_2_shp_addr = 1048,
558         .ata_2_mcu_addr = 1560,
559         .mcu_2_ata_addr = 1479,
560         .app_2_per_addr = 1189,
561         .app_2_mcu_addr = 770,
562         .shp_2_per_addr = 1407,
563         .shp_2_mcu_addr = 979,
564 };
565
566 static struct sdma_driver_data sdma_imx25 = {
567         .chnenbl0 = SDMA_CHNENBL0_IMX35,
568         .num_events = 48,
569         .script_addrs = &sdma_script_imx25,
570 };
571
572 static struct sdma_driver_data sdma_imx35 = {
573         .chnenbl0 = SDMA_CHNENBL0_IMX35,
574         .num_events = 48,
575 };
576
577 static struct sdma_script_start_addrs sdma_script_imx51 = {
578         .ap_2_ap_addr = 642,
579         .uart_2_mcu_addr = 817,
580         .mcu_2_app_addr = 747,
581         .mcu_2_shp_addr = 961,
582         .ata_2_mcu_addr = 1473,
583         .mcu_2_ata_addr = 1392,
584         .app_2_per_addr = 1033,
585         .app_2_mcu_addr = 683,
586         .shp_2_per_addr = 1251,
587         .shp_2_mcu_addr = 892,
588 };
589
590 static struct sdma_driver_data sdma_imx51 = {
591         .chnenbl0 = SDMA_CHNENBL0_IMX35,
592         .num_events = 48,
593         .script_addrs = &sdma_script_imx51,
594 };
595
596 static struct sdma_script_start_addrs sdma_script_imx53 = {
597         .ap_2_ap_addr = 642,
598         .app_2_mcu_addr = 683,
599         .mcu_2_app_addr = 747,
600         .uart_2_mcu_addr = 817,
601         .shp_2_mcu_addr = 891,
602         .mcu_2_shp_addr = 960,
603         .uartsh_2_mcu_addr = 1032,
604         .spdif_2_mcu_addr = 1100,
605         .mcu_2_spdif_addr = 1134,
606         .firi_2_mcu_addr = 1193,
607         .mcu_2_firi_addr = 1290,
608 };
609
610 static struct sdma_driver_data sdma_imx53 = {
611         .chnenbl0 = SDMA_CHNENBL0_IMX35,
612         .num_events = 48,
613         .script_addrs = &sdma_script_imx53,
614 };
615
616 static struct sdma_script_start_addrs sdma_script_imx6q = {
617         .ap_2_ap_addr = 642,
618         .uart_2_mcu_addr = 817,
619         .mcu_2_app_addr = 747,
620         .per_2_per_addr = 6331,
621         .uartsh_2_mcu_addr = 1032,
622         .mcu_2_shp_addr = 960,
623         .app_2_mcu_addr = 683,
624         .shp_2_mcu_addr = 891,
625         .spdif_2_mcu_addr = 1100,
626         .mcu_2_spdif_addr = 1134,
627 };
628
629 static struct sdma_driver_data sdma_imx6q = {
630         .chnenbl0 = SDMA_CHNENBL0_IMX35,
631         .num_events = 48,
632         .script_addrs = &sdma_script_imx6q,
633 };
634
635 static struct sdma_driver_data sdma_imx6ul = {
636         .chnenbl0 = SDMA_CHNENBL0_IMX35,
637         .num_events = 48,
638         .script_addrs = &sdma_script_imx6q,
639         .ecspi_fixed = true,
640 };
641
642 static struct sdma_script_start_addrs sdma_script_imx7d = {
643         .ap_2_ap_addr = 644,
644         .uart_2_mcu_addr = 819,
645         .mcu_2_app_addr = 749,
646         .uartsh_2_mcu_addr = 1034,
647         .mcu_2_shp_addr = 962,
648         .app_2_mcu_addr = 685,
649         .shp_2_mcu_addr = 893,
650         .spdif_2_mcu_addr = 1102,
651         .mcu_2_spdif_addr = 1136,
652 };
653
654 static struct sdma_driver_data sdma_imx7d = {
655         .chnenbl0 = SDMA_CHNENBL0_IMX35,
656         .num_events = 48,
657         .script_addrs = &sdma_script_imx7d,
658 };
659
660 static struct sdma_driver_data sdma_imx8mq = {
661         .chnenbl0 = SDMA_CHNENBL0_IMX35,
662         .num_events = 48,
663         .script_addrs = &sdma_script_imx7d,
664         .check_ratio = 1,
665 };
666
667 static const struct of_device_id sdma_dt_ids[] = {
668         { .compatible = "fsl,imx6q-sdma", .data = &sdma_imx6q, },
669         { .compatible = "fsl,imx53-sdma", .data = &sdma_imx53, },
670         { .compatible = "fsl,imx51-sdma", .data = &sdma_imx51, },
671         { .compatible = "fsl,imx35-sdma", .data = &sdma_imx35, },
672         { .compatible = "fsl,imx31-sdma", .data = &sdma_imx31, },
673         { .compatible = "fsl,imx25-sdma", .data = &sdma_imx25, },
674         { .compatible = "fsl,imx7d-sdma", .data = &sdma_imx7d, },
675         { .compatible = "fsl,imx6ul-sdma", .data = &sdma_imx6ul, },
676         { .compatible = "fsl,imx8mq-sdma", .data = &sdma_imx8mq, },
677         { /* sentinel */ }
678 };
679 MODULE_DEVICE_TABLE(of, sdma_dt_ids);
680
681 #define SDMA_H_CONFIG_DSPDMA    BIT(12) /* indicates if the DSPDMA is used */
682 #define SDMA_H_CONFIG_RTD_PINS  BIT(11) /* indicates if Real-Time Debug pins are enabled */
683 #define SDMA_H_CONFIG_ACR       BIT(4)  /* indicates if AHB freq /core freq = 2 or 1 */
684 #define SDMA_H_CONFIG_CSM       (3)       /* indicates which context switch mode is selected*/
685
686 static inline u32 chnenbl_ofs(struct sdma_engine *sdma, unsigned int event)
687 {
688         u32 chnenbl0 = sdma->drvdata->chnenbl0;
689         return chnenbl0 + event * 4;
690 }
691
692 static int sdma_config_ownership(struct sdma_channel *sdmac,
693                 bool event_override, bool mcu_override, bool dsp_override)
694 {
695         struct sdma_engine *sdma = sdmac->sdma;
696         int channel = sdmac->channel;
697         unsigned long evt, mcu, dsp;
698
699         if (event_override && mcu_override && dsp_override)
700                 return -EINVAL;
701
702         evt = readl_relaxed(sdma->regs + SDMA_H_EVTOVR);
703         mcu = readl_relaxed(sdma->regs + SDMA_H_HOSTOVR);
704         dsp = readl_relaxed(sdma->regs + SDMA_H_DSPOVR);
705
706         if (dsp_override)
707                 __clear_bit(channel, &dsp);
708         else
709                 __set_bit(channel, &dsp);
710
711         if (event_override)
712                 __clear_bit(channel, &evt);
713         else
714                 __set_bit(channel, &evt);
715
716         if (mcu_override)
717                 __clear_bit(channel, &mcu);
718         else
719                 __set_bit(channel, &mcu);
720
721         writel_relaxed(evt, sdma->regs + SDMA_H_EVTOVR);
722         writel_relaxed(mcu, sdma->regs + SDMA_H_HOSTOVR);
723         writel_relaxed(dsp, sdma->regs + SDMA_H_DSPOVR);
724
725         return 0;
726 }
727
728 static int is_sdma_channel_enabled(struct sdma_engine *sdma, int channel)
729 {
730         return !!(readl(sdma->regs + SDMA_H_STATSTOP) & BIT(channel));
731 }
732
733 static void sdma_enable_channel(struct sdma_engine *sdma, int channel)
734 {
735         writel(BIT(channel), sdma->regs + SDMA_H_START);
736 }
737
738 /*
739  * sdma_run_channel0 - run a channel and wait till it's done
740  */
741 static int sdma_run_channel0(struct sdma_engine *sdma)
742 {
743         int ret;
744         u32 reg;
745
746         sdma_enable_channel(sdma, 0);
747
748         ret = readl_relaxed_poll_timeout_atomic(sdma->regs + SDMA_H_STATSTOP,
749                                                 reg, !(reg & 1), 1, 500);
750         if (ret)
751                 dev_err(sdma->dev, "Timeout waiting for CH0 ready\n");
752
753         /* Set bits of CONFIG register with dynamic context switching */
754         reg = readl(sdma->regs + SDMA_H_CONFIG);
755         if ((reg & SDMA_H_CONFIG_CSM) == 0) {
756                 reg |= SDMA_H_CONFIG_CSM;
757                 writel_relaxed(reg, sdma->regs + SDMA_H_CONFIG);
758         }
759
760         return ret;
761 }
762
763 static int sdma_load_script(struct sdma_engine *sdma, void *buf, int size,
764                 u32 address)
765 {
766         struct sdma_buffer_descriptor *bd0 = sdma->bd0;
767         void *buf_virt;
768         dma_addr_t buf_phys;
769         int ret;
770         unsigned long flags;
771
772         buf_virt = dma_alloc_coherent(sdma->dev, size, &buf_phys, GFP_KERNEL);
773         if (!buf_virt)
774                 return -ENOMEM;
775
776         spin_lock_irqsave(&sdma->channel_0_lock, flags);
777
778         bd0->mode.command = C0_SETPM;
779         bd0->mode.status = BD_DONE | BD_WRAP | BD_EXTD;
780         bd0->mode.count = size / 2;
781         bd0->buffer_addr = buf_phys;
782         bd0->ext_buffer_addr = address;
783
784         memcpy(buf_virt, buf, size);
785
786         ret = sdma_run_channel0(sdma);
787
788         spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
789
790         dma_free_coherent(sdma->dev, size, buf_virt, buf_phys);
791
792         return ret;
793 }
794
795 static void sdma_event_enable(struct sdma_channel *sdmac, unsigned int event)
796 {
797         struct sdma_engine *sdma = sdmac->sdma;
798         int channel = sdmac->channel;
799         unsigned long val;
800         u32 chnenbl = chnenbl_ofs(sdma, event);
801
802         val = readl_relaxed(sdma->regs + chnenbl);
803         __set_bit(channel, &val);
804         writel_relaxed(val, sdma->regs + chnenbl);
805
806         /* Set SDMA_DONEx_CONFIG is sw_done enabled */
807         if (sdmac->sw_done) {
808                 val = readl_relaxed(sdma->regs + SDMA_DONE0_CONFIG);
809                 val |= SDMA_DONE0_CONFIG_DONE_SEL;
810                 val &= ~SDMA_DONE0_CONFIG_DONE_DIS;
811                 writel_relaxed(val, sdma->regs + SDMA_DONE0_CONFIG);
812         }
813 }
814
815 static void sdma_event_disable(struct sdma_channel *sdmac, unsigned int event)
816 {
817         struct sdma_engine *sdma = sdmac->sdma;
818         int channel = sdmac->channel;
819         u32 chnenbl = chnenbl_ofs(sdma, event);
820         unsigned long val;
821
822         val = readl_relaxed(sdma->regs + chnenbl);
823         __clear_bit(channel, &val);
824         writel_relaxed(val, sdma->regs + chnenbl);
825 }
826
827 static struct sdma_desc *to_sdma_desc(struct dma_async_tx_descriptor *t)
828 {
829         return container_of(t, struct sdma_desc, vd.tx);
830 }
831
832 static void sdma_start_desc(struct sdma_channel *sdmac)
833 {
834         struct virt_dma_desc *vd = vchan_next_desc(&sdmac->vc);
835         struct sdma_desc *desc;
836         struct sdma_engine *sdma = sdmac->sdma;
837         int channel = sdmac->channel;
838
839         if (!vd) {
840                 sdmac->desc = NULL;
841                 return;
842         }
843         sdmac->desc = desc = to_sdma_desc(&vd->tx);
844
845         list_del(&vd->node);
846
847         sdma->channel_control[channel].base_bd_ptr = desc->bd_phys;
848         sdma->channel_control[channel].current_bd_ptr = desc->bd_phys;
849         sdma_enable_channel(sdma, sdmac->channel);
850 }
851
852 static void sdma_update_channel_loop(struct sdma_channel *sdmac)
853 {
854         struct sdma_buffer_descriptor *bd;
855         int error = 0;
856         enum dma_status old_status = sdmac->status;
857
858         /*
859          * loop mode. Iterate over descriptors, re-setup them and
860          * call callback function.
861          */
862         while (sdmac->desc) {
863                 struct sdma_desc *desc = sdmac->desc;
864
865                 bd = &desc->bd[desc->buf_tail];
866
867                 if (bd->mode.status & BD_DONE)
868                         break;
869
870                 if (bd->mode.status & BD_RROR) {
871                         bd->mode.status &= ~BD_RROR;
872                         sdmac->status = DMA_ERROR;
873                         error = -EIO;
874                 }
875
876                /*
877                 * We use bd->mode.count to calculate the residue, since contains
878                 * the number of bytes present in the current buffer descriptor.
879                 */
880
881                 desc->chn_real_count = bd->mode.count;
882                 bd->mode.count = desc->period_len;
883                 desc->buf_ptail = desc->buf_tail;
884                 desc->buf_tail = (desc->buf_tail + 1) % desc->num_bd;
885
886                 /*
887                  * The callback is called from the interrupt context in order
888                  * to reduce latency and to avoid the risk of altering the
889                  * SDMA transaction status by the time the client tasklet is
890                  * executed.
891                  */
892                 spin_unlock(&sdmac->vc.lock);
893                 dmaengine_desc_get_callback_invoke(&desc->vd.tx, NULL);
894                 spin_lock(&sdmac->vc.lock);
895
896                 /* Assign buffer ownership to SDMA */
897                 bd->mode.status |= BD_DONE;
898
899                 if (error)
900                         sdmac->status = old_status;
901         }
902
903         /*
904          * SDMA stops cyclic channel when DMA request triggers a channel and no SDMA
905          * owned buffer is available (i.e. BD_DONE was set too late).
906          */
907         if (sdmac->desc && !is_sdma_channel_enabled(sdmac->sdma, sdmac->channel)) {
908                 dev_warn(sdmac->sdma->dev, "restart cyclic channel %d\n", sdmac->channel);
909                 sdma_enable_channel(sdmac->sdma, sdmac->channel);
910         }
911 }
912
913 static void mxc_sdma_handle_channel_normal(struct sdma_channel *data)
914 {
915         struct sdma_channel *sdmac = (struct sdma_channel *) data;
916         struct sdma_buffer_descriptor *bd;
917         int i, error = 0;
918
919         sdmac->desc->chn_real_count = 0;
920         /*
921          * non loop mode. Iterate over all descriptors, collect
922          * errors and call callback function
923          */
924         for (i = 0; i < sdmac->desc->num_bd; i++) {
925                 bd = &sdmac->desc->bd[i];
926
927                 if (bd->mode.status & (BD_DONE | BD_RROR))
928                         error = -EIO;
929                 sdmac->desc->chn_real_count += bd->mode.count;
930         }
931
932         if (error)
933                 sdmac->status = DMA_ERROR;
934         else
935                 sdmac->status = DMA_COMPLETE;
936 }
937
938 static irqreturn_t sdma_int_handler(int irq, void *dev_id)
939 {
940         struct sdma_engine *sdma = dev_id;
941         unsigned long stat;
942
943         stat = readl_relaxed(sdma->regs + SDMA_H_INTR);
944         writel_relaxed(stat, sdma->regs + SDMA_H_INTR);
945         /* channel 0 is special and not handled here, see run_channel0() */
946         stat &= ~1;
947
948         while (stat) {
949                 int channel = fls(stat) - 1;
950                 struct sdma_channel *sdmac = &sdma->channel[channel];
951                 struct sdma_desc *desc;
952
953                 spin_lock(&sdmac->vc.lock);
954                 desc = sdmac->desc;
955                 if (desc) {
956                         if (sdmac->flags & IMX_DMA_SG_LOOP) {
957                                 sdma_update_channel_loop(sdmac);
958                         } else {
959                                 mxc_sdma_handle_channel_normal(sdmac);
960                                 vchan_cookie_complete(&desc->vd);
961                                 sdma_start_desc(sdmac);
962                         }
963                 }
964
965                 spin_unlock(&sdmac->vc.lock);
966                 __clear_bit(channel, &stat);
967         }
968
969         return IRQ_HANDLED;
970 }
971
972 /*
973  * sets the pc of SDMA script according to the peripheral type
974  */
975 static int sdma_get_pc(struct sdma_channel *sdmac,
976                 enum sdma_peripheral_type peripheral_type)
977 {
978         struct sdma_engine *sdma = sdmac->sdma;
979         int per_2_emi = 0, emi_2_per = 0;
980         /*
981          * These are needed once we start to support transfers between
982          * two peripherals or memory-to-memory transfers
983          */
984         int per_2_per = 0, emi_2_emi = 0;
985
986         sdmac->pc_from_device = 0;
987         sdmac->pc_to_device = 0;
988         sdmac->device_to_device = 0;
989         sdmac->pc_to_pc = 0;
990         sdmac->is_ram_script = false;
991
992         switch (peripheral_type) {
993         case IMX_DMATYPE_MEMORY:
994                 emi_2_emi = sdma->script_addrs->ap_2_ap_addr;
995                 break;
996         case IMX_DMATYPE_DSP:
997                 emi_2_per = sdma->script_addrs->bp_2_ap_addr;
998                 per_2_emi = sdma->script_addrs->ap_2_bp_addr;
999                 break;
1000         case IMX_DMATYPE_FIRI:
1001                 per_2_emi = sdma->script_addrs->firi_2_mcu_addr;
1002                 emi_2_per = sdma->script_addrs->mcu_2_firi_addr;
1003                 break;
1004         case IMX_DMATYPE_UART:
1005                 per_2_emi = sdma->script_addrs->uart_2_mcu_addr;
1006                 emi_2_per = sdma->script_addrs->mcu_2_app_addr;
1007                 break;
1008         case IMX_DMATYPE_UART_SP:
1009                 per_2_emi = sdma->script_addrs->uartsh_2_mcu_addr;
1010                 emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
1011                 break;
1012         case IMX_DMATYPE_ATA:
1013                 per_2_emi = sdma->script_addrs->ata_2_mcu_addr;
1014                 emi_2_per = sdma->script_addrs->mcu_2_ata_addr;
1015                 break;
1016         case IMX_DMATYPE_CSPI:
1017                 per_2_emi = sdma->script_addrs->app_2_mcu_addr;
1018
1019                 /* Use rom script mcu_2_app if ERR009165 fixed */
1020                 if (sdmac->sdma->drvdata->ecspi_fixed) {
1021                         emi_2_per = sdma->script_addrs->mcu_2_app_addr;
1022                 } else {
1023                         emi_2_per = sdma->script_addrs->mcu_2_ecspi_addr;
1024                         sdmac->is_ram_script = true;
1025                 }
1026
1027                 break;
1028         case IMX_DMATYPE_EXT:
1029         case IMX_DMATYPE_SSI:
1030         case IMX_DMATYPE_SAI:
1031                 per_2_emi = sdma->script_addrs->app_2_mcu_addr;
1032                 emi_2_per = sdma->script_addrs->mcu_2_app_addr;
1033                 break;
1034         case IMX_DMATYPE_SSI_DUAL:
1035                 per_2_emi = sdma->script_addrs->ssish_2_mcu_addr;
1036                 emi_2_per = sdma->script_addrs->mcu_2_ssish_addr;
1037                 sdmac->is_ram_script = true;
1038                 break;
1039         case IMX_DMATYPE_SSI_SP:
1040         case IMX_DMATYPE_MMC:
1041         case IMX_DMATYPE_SDHC:
1042         case IMX_DMATYPE_CSPI_SP:
1043         case IMX_DMATYPE_ESAI:
1044         case IMX_DMATYPE_MSHC_SP:
1045                 per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
1046                 emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
1047                 break;
1048         case IMX_DMATYPE_ASRC:
1049                 per_2_emi = sdma->script_addrs->asrc_2_mcu_addr;
1050                 emi_2_per = sdma->script_addrs->asrc_2_mcu_addr;
1051                 per_2_per = sdma->script_addrs->per_2_per_addr;
1052                 sdmac->is_ram_script = true;
1053                 break;
1054         case IMX_DMATYPE_ASRC_SP:
1055                 per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
1056                 emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
1057                 per_2_per = sdma->script_addrs->per_2_per_addr;
1058                 break;
1059         case IMX_DMATYPE_MSHC:
1060                 per_2_emi = sdma->script_addrs->mshc_2_mcu_addr;
1061                 emi_2_per = sdma->script_addrs->mcu_2_mshc_addr;
1062                 break;
1063         case IMX_DMATYPE_CCM:
1064                 per_2_emi = sdma->script_addrs->dptc_dvfs_addr;
1065                 break;
1066         case IMX_DMATYPE_SPDIF:
1067                 per_2_emi = sdma->script_addrs->spdif_2_mcu_addr;
1068                 emi_2_per = sdma->script_addrs->mcu_2_spdif_addr;
1069                 break;
1070         case IMX_DMATYPE_IPU_MEMORY:
1071                 emi_2_per = sdma->script_addrs->ext_mem_2_ipu_addr;
1072                 break;
1073         case IMX_DMATYPE_MULTI_SAI:
1074                 per_2_emi = sdma->script_addrs->sai_2_mcu_addr;
1075                 emi_2_per = sdma->script_addrs->mcu_2_sai_addr;
1076                 break;
1077         default:
1078                 dev_err(sdma->dev, "Unsupported transfer type %d\n",
1079                         peripheral_type);
1080                 return -EINVAL;
1081         }
1082
1083         sdmac->pc_from_device = per_2_emi;
1084         sdmac->pc_to_device = emi_2_per;
1085         sdmac->device_to_device = per_2_per;
1086         sdmac->pc_to_pc = emi_2_emi;
1087
1088         return 0;
1089 }
1090
1091 static int sdma_load_context(struct sdma_channel *sdmac)
1092 {
1093         struct sdma_engine *sdma = sdmac->sdma;
1094         int channel = sdmac->channel;
1095         int load_address;
1096         struct sdma_context_data *context = sdma->context;
1097         struct sdma_buffer_descriptor *bd0 = sdma->bd0;
1098         int ret;
1099         unsigned long flags;
1100
1101         if (sdmac->direction == DMA_DEV_TO_MEM)
1102                 load_address = sdmac->pc_from_device;
1103         else if (sdmac->direction == DMA_DEV_TO_DEV)
1104                 load_address = sdmac->device_to_device;
1105         else if (sdmac->direction == DMA_MEM_TO_MEM)
1106                 load_address = sdmac->pc_to_pc;
1107         else
1108                 load_address = sdmac->pc_to_device;
1109
1110         if (load_address < 0)
1111                 return load_address;
1112
1113         dev_dbg(sdma->dev, "load_address = %d\n", load_address);
1114         dev_dbg(sdma->dev, "wml = 0x%08x\n", (u32)sdmac->watermark_level);
1115         dev_dbg(sdma->dev, "shp_addr = 0x%08x\n", sdmac->shp_addr);
1116         dev_dbg(sdma->dev, "per_addr = 0x%08x\n", sdmac->per_addr);
1117         dev_dbg(sdma->dev, "event_mask0 = 0x%08x\n", (u32)sdmac->event_mask[0]);
1118         dev_dbg(sdma->dev, "event_mask1 = 0x%08x\n", (u32)sdmac->event_mask[1]);
1119
1120         spin_lock_irqsave(&sdma->channel_0_lock, flags);
1121
1122         memset(context, 0, sizeof(*context));
1123         context->channel_state.pc = load_address;
1124
1125         /* Send by context the event mask,base address for peripheral
1126          * and watermark level
1127          */
1128         context->gReg[0] = sdmac->event_mask[1];
1129         context->gReg[1] = sdmac->event_mask[0];
1130         context->gReg[2] = sdmac->per_addr;
1131         context->gReg[6] = sdmac->shp_addr;
1132         context->gReg[7] = sdmac->watermark_level;
1133
1134         bd0->mode.command = C0_SETDM;
1135         bd0->mode.status = BD_DONE | BD_WRAP | BD_EXTD;
1136         bd0->mode.count = sizeof(*context) / 4;
1137         bd0->buffer_addr = sdma->context_phys;
1138         bd0->ext_buffer_addr = 2048 + (sizeof(*context) / 4) * channel;
1139         ret = sdma_run_channel0(sdma);
1140
1141         spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
1142
1143         return ret;
1144 }
1145
1146 static struct sdma_channel *to_sdma_chan(struct dma_chan *chan)
1147 {
1148         return container_of(chan, struct sdma_channel, vc.chan);
1149 }
1150
1151 static int sdma_disable_channel(struct dma_chan *chan)
1152 {
1153         struct sdma_channel *sdmac = to_sdma_chan(chan);
1154         struct sdma_engine *sdma = sdmac->sdma;
1155         int channel = sdmac->channel;
1156
1157         writel_relaxed(BIT(channel), sdma->regs + SDMA_H_STATSTOP);
1158         sdmac->status = DMA_ERROR;
1159
1160         return 0;
1161 }
1162 static void sdma_channel_terminate_work(struct work_struct *work)
1163 {
1164         struct sdma_channel *sdmac = container_of(work, struct sdma_channel,
1165                                                   terminate_worker);
1166         /*
1167          * According to NXP R&D team a delay of one BD SDMA cost time
1168          * (maximum is 1ms) should be added after disable of the channel
1169          * bit, to ensure SDMA core has really been stopped after SDMA
1170          * clients call .device_terminate_all.
1171          */
1172         usleep_range(1000, 2000);
1173
1174         vchan_dma_desc_free_list(&sdmac->vc, &sdmac->terminated);
1175 }
1176
1177 static int sdma_terminate_all(struct dma_chan *chan)
1178 {
1179         struct sdma_channel *sdmac = to_sdma_chan(chan);
1180         unsigned long flags;
1181
1182         spin_lock_irqsave(&sdmac->vc.lock, flags);
1183
1184         sdma_disable_channel(chan);
1185
1186         if (sdmac->desc) {
1187                 vchan_terminate_vdesc(&sdmac->desc->vd);
1188                 /*
1189                  * move out current descriptor into terminated list so that
1190                  * it could be free in sdma_channel_terminate_work alone
1191                  * later without potential involving next descriptor raised
1192                  * up before the last descriptor terminated.
1193                  */
1194                 vchan_get_all_descriptors(&sdmac->vc, &sdmac->terminated);
1195                 sdmac->desc = NULL;
1196                 schedule_work(&sdmac->terminate_worker);
1197         }
1198
1199         spin_unlock_irqrestore(&sdmac->vc.lock, flags);
1200
1201         return 0;
1202 }
1203
1204 static void sdma_channel_synchronize(struct dma_chan *chan)
1205 {
1206         struct sdma_channel *sdmac = to_sdma_chan(chan);
1207
1208         vchan_synchronize(&sdmac->vc);
1209
1210         flush_work(&sdmac->terminate_worker);
1211 }
1212
1213 static void sdma_set_watermarklevel_for_p2p(struct sdma_channel *sdmac)
1214 {
1215         struct sdma_engine *sdma = sdmac->sdma;
1216
1217         int lwml = sdmac->watermark_level & SDMA_WATERMARK_LEVEL_LWML;
1218         int hwml = (sdmac->watermark_level & SDMA_WATERMARK_LEVEL_HWML) >> 16;
1219
1220         set_bit(sdmac->event_id0 % 32, &sdmac->event_mask[1]);
1221         set_bit(sdmac->event_id1 % 32, &sdmac->event_mask[0]);
1222
1223         if (sdmac->event_id0 > 31)
1224                 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_LWE;
1225
1226         if (sdmac->event_id1 > 31)
1227                 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_HWE;
1228
1229         /*
1230          * If LWML(src_maxburst) > HWML(dst_maxburst), we need
1231          * swap LWML and HWML of INFO(A.3.2.5.1), also need swap
1232          * r0(event_mask[1]) and r1(event_mask[0]).
1233          */
1234         if (lwml > hwml) {
1235                 sdmac->watermark_level &= ~(SDMA_WATERMARK_LEVEL_LWML |
1236                                                 SDMA_WATERMARK_LEVEL_HWML);
1237                 sdmac->watermark_level |= hwml;
1238                 sdmac->watermark_level |= lwml << 16;
1239                 swap(sdmac->event_mask[0], sdmac->event_mask[1]);
1240         }
1241
1242         if (sdmac->per_address2 >= sdma->spba_start_addr &&
1243                         sdmac->per_address2 <= sdma->spba_end_addr)
1244                 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_SP;
1245
1246         if (sdmac->per_address >= sdma->spba_start_addr &&
1247                         sdmac->per_address <= sdma->spba_end_addr)
1248                 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_DP;
1249
1250         sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_CONT;
1251 }
1252
1253 static void sdma_set_watermarklevel_for_sais(struct sdma_channel *sdmac)
1254 {
1255         unsigned int n_fifos;
1256         unsigned int stride_fifos;
1257         unsigned int words_per_fifo;
1258
1259         if (sdmac->sw_done)
1260                 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_SW_DONE;
1261
1262         if (sdmac->direction == DMA_DEV_TO_MEM) {
1263                 n_fifos = sdmac->n_fifos_src;
1264                 stride_fifos = sdmac->stride_fifos_src;
1265         } else {
1266                 n_fifos = sdmac->n_fifos_dst;
1267                 stride_fifos = sdmac->stride_fifos_dst;
1268         }
1269
1270         words_per_fifo = sdmac->words_per_fifo;
1271
1272         sdmac->watermark_level |=
1273                         FIELD_PREP(SDMA_WATERMARK_LEVEL_N_FIFOS, n_fifos);
1274         sdmac->watermark_level |=
1275                         FIELD_PREP(SDMA_WATERMARK_LEVEL_OFF_FIFOS, stride_fifos);
1276         if (words_per_fifo)
1277                 sdmac->watermark_level |=
1278                         FIELD_PREP(SDMA_WATERMARK_LEVEL_WORDS_PER_FIFO, (words_per_fifo - 1));
1279 }
1280
1281 static int sdma_config_channel(struct dma_chan *chan)
1282 {
1283         struct sdma_channel *sdmac = to_sdma_chan(chan);
1284         int ret;
1285
1286         sdma_disable_channel(chan);
1287
1288         sdmac->event_mask[0] = 0;
1289         sdmac->event_mask[1] = 0;
1290         sdmac->shp_addr = 0;
1291         sdmac->per_addr = 0;
1292
1293         switch (sdmac->peripheral_type) {
1294         case IMX_DMATYPE_DSP:
1295                 sdma_config_ownership(sdmac, false, true, true);
1296                 break;
1297         case IMX_DMATYPE_MEMORY:
1298                 sdma_config_ownership(sdmac, false, true, false);
1299                 break;
1300         default:
1301                 sdma_config_ownership(sdmac, true, true, false);
1302                 break;
1303         }
1304
1305         ret = sdma_get_pc(sdmac, sdmac->peripheral_type);
1306         if (ret)
1307                 return ret;
1308
1309         if ((sdmac->peripheral_type != IMX_DMATYPE_MEMORY) &&
1310                         (sdmac->peripheral_type != IMX_DMATYPE_DSP)) {
1311                 /* Handle multiple event channels differently */
1312                 if (sdmac->event_id1) {
1313                         if (sdmac->peripheral_type == IMX_DMATYPE_ASRC_SP ||
1314                             sdmac->peripheral_type == IMX_DMATYPE_ASRC)
1315                                 sdma_set_watermarklevel_for_p2p(sdmac);
1316                 } else {
1317                         if (sdmac->peripheral_type ==
1318                                         IMX_DMATYPE_MULTI_SAI)
1319                                 sdma_set_watermarklevel_for_sais(sdmac);
1320
1321                         __set_bit(sdmac->event_id0, sdmac->event_mask);
1322                 }
1323
1324                 /* Address */
1325                 sdmac->shp_addr = sdmac->per_address;
1326                 sdmac->per_addr = sdmac->per_address2;
1327         } else {
1328                 sdmac->watermark_level = 0; /* FIXME: M3_BASE_ADDRESS */
1329         }
1330
1331         return 0;
1332 }
1333
1334 static int sdma_set_channel_priority(struct sdma_channel *sdmac,
1335                                      unsigned int priority)
1336 {
1337         struct sdma_engine *sdma = sdmac->sdma;
1338         int channel = sdmac->channel;
1339
1340         if (priority < MXC_SDMA_MIN_PRIORITY
1341             || priority > MXC_SDMA_MAX_PRIORITY) {
1342                 return -EINVAL;
1343         }
1344
1345         writel_relaxed(priority, sdma->regs + SDMA_CHNPRI_0 + 4 * channel);
1346
1347         return 0;
1348 }
1349
1350 static int sdma_request_channel0(struct sdma_engine *sdma)
1351 {
1352         int ret = -EBUSY;
1353
1354         sdma->bd0 = dma_alloc_coherent(sdma->dev, PAGE_SIZE, &sdma->bd0_phys,
1355                                        GFP_NOWAIT);
1356         if (!sdma->bd0) {
1357                 ret = -ENOMEM;
1358                 goto out;
1359         }
1360
1361         sdma->channel_control[0].base_bd_ptr = sdma->bd0_phys;
1362         sdma->channel_control[0].current_bd_ptr = sdma->bd0_phys;
1363
1364         sdma_set_channel_priority(&sdma->channel[0], MXC_SDMA_DEFAULT_PRIORITY);
1365         return 0;
1366 out:
1367
1368         return ret;
1369 }
1370
1371
1372 static int sdma_alloc_bd(struct sdma_desc *desc)
1373 {
1374         u32 bd_size = desc->num_bd * sizeof(struct sdma_buffer_descriptor);
1375         int ret = 0;
1376
1377         desc->bd = dma_alloc_coherent(desc->sdmac->sdma->dev, bd_size,
1378                                       &desc->bd_phys, GFP_NOWAIT);
1379         if (!desc->bd) {
1380                 ret = -ENOMEM;
1381                 goto out;
1382         }
1383 out:
1384         return ret;
1385 }
1386
1387 static void sdma_free_bd(struct sdma_desc *desc)
1388 {
1389         u32 bd_size = desc->num_bd * sizeof(struct sdma_buffer_descriptor);
1390
1391         dma_free_coherent(desc->sdmac->sdma->dev, bd_size, desc->bd,
1392                           desc->bd_phys);
1393 }
1394
1395 static void sdma_desc_free(struct virt_dma_desc *vd)
1396 {
1397         struct sdma_desc *desc = container_of(vd, struct sdma_desc, vd);
1398
1399         sdma_free_bd(desc);
1400         kfree(desc);
1401 }
1402
1403 static int sdma_alloc_chan_resources(struct dma_chan *chan)
1404 {
1405         struct sdma_channel *sdmac = to_sdma_chan(chan);
1406         struct imx_dma_data *data = chan->private;
1407         struct imx_dma_data mem_data;
1408         int prio, ret;
1409
1410         /*
1411          * MEMCPY may never setup chan->private by filter function such as
1412          * dmatest, thus create 'struct imx_dma_data mem_data' for this case.
1413          * Please note in any other slave case, you have to setup chan->private
1414          * with 'struct imx_dma_data' in your own filter function if you want to
1415          * request dma channel by dma_request_channel() rather than
1416          * dma_request_slave_channel(). Othwise, 'MEMCPY in case?' will appear
1417          * to warn you to correct your filter function.
1418          */
1419         if (!data) {
1420                 dev_dbg(sdmac->sdma->dev, "MEMCPY in case?\n");
1421                 mem_data.priority = 2;
1422                 mem_data.peripheral_type = IMX_DMATYPE_MEMORY;
1423                 mem_data.dma_request = 0;
1424                 mem_data.dma_request2 = 0;
1425                 data = &mem_data;
1426
1427                 ret = sdma_get_pc(sdmac, IMX_DMATYPE_MEMORY);
1428                 if (ret)
1429                         return ret;
1430         }
1431
1432         switch (data->priority) {
1433         case DMA_PRIO_HIGH:
1434                 prio = 3;
1435                 break;
1436         case DMA_PRIO_MEDIUM:
1437                 prio = 2;
1438                 break;
1439         case DMA_PRIO_LOW:
1440         default:
1441                 prio = 1;
1442                 break;
1443         }
1444
1445         sdmac->peripheral_type = data->peripheral_type;
1446         sdmac->event_id0 = data->dma_request;
1447         sdmac->event_id1 = data->dma_request2;
1448
1449         ret = clk_enable(sdmac->sdma->clk_ipg);
1450         if (ret)
1451                 return ret;
1452         ret = clk_enable(sdmac->sdma->clk_ahb);
1453         if (ret)
1454                 goto disable_clk_ipg;
1455
1456         ret = sdma_set_channel_priority(sdmac, prio);
1457         if (ret)
1458                 goto disable_clk_ahb;
1459
1460         return 0;
1461
1462 disable_clk_ahb:
1463         clk_disable(sdmac->sdma->clk_ahb);
1464 disable_clk_ipg:
1465         clk_disable(sdmac->sdma->clk_ipg);
1466         return ret;
1467 }
1468
1469 static void sdma_free_chan_resources(struct dma_chan *chan)
1470 {
1471         struct sdma_channel *sdmac = to_sdma_chan(chan);
1472         struct sdma_engine *sdma = sdmac->sdma;
1473
1474         sdma_terminate_all(chan);
1475
1476         sdma_channel_synchronize(chan);
1477
1478         sdma_event_disable(sdmac, sdmac->event_id0);
1479         if (sdmac->event_id1)
1480                 sdma_event_disable(sdmac, sdmac->event_id1);
1481
1482         sdmac->event_id0 = 0;
1483         sdmac->event_id1 = 0;
1484
1485         sdma_set_channel_priority(sdmac, 0);
1486
1487         clk_disable(sdma->clk_ipg);
1488         clk_disable(sdma->clk_ahb);
1489 }
1490
1491 static struct sdma_desc *sdma_transfer_init(struct sdma_channel *sdmac,
1492                                 enum dma_transfer_direction direction, u32 bds)
1493 {
1494         struct sdma_desc *desc;
1495
1496         if (!sdmac->sdma->fw_loaded && sdmac->is_ram_script) {
1497                 dev_warn_once(sdmac->sdma->dev, "sdma firmware not ready!\n");
1498                 goto err_out;
1499         }
1500
1501         desc = kzalloc((sizeof(*desc)), GFP_NOWAIT);
1502         if (!desc)
1503                 goto err_out;
1504
1505         sdmac->status = DMA_IN_PROGRESS;
1506         sdmac->direction = direction;
1507         sdmac->flags = 0;
1508
1509         desc->chn_count = 0;
1510         desc->chn_real_count = 0;
1511         desc->buf_tail = 0;
1512         desc->buf_ptail = 0;
1513         desc->sdmac = sdmac;
1514         desc->num_bd = bds;
1515
1516         if (sdma_alloc_bd(desc))
1517                 goto err_desc_out;
1518
1519         /* No slave_config called in MEMCPY case, so do here */
1520         if (direction == DMA_MEM_TO_MEM)
1521                 sdma_config_ownership(sdmac, false, true, false);
1522
1523         if (sdma_load_context(sdmac))
1524                 goto err_desc_out;
1525
1526         return desc;
1527
1528 err_desc_out:
1529         kfree(desc);
1530 err_out:
1531         return NULL;
1532 }
1533
1534 static struct dma_async_tx_descriptor *sdma_prep_memcpy(
1535                 struct dma_chan *chan, dma_addr_t dma_dst,
1536                 dma_addr_t dma_src, size_t len, unsigned long flags)
1537 {
1538         struct sdma_channel *sdmac = to_sdma_chan(chan);
1539         struct sdma_engine *sdma = sdmac->sdma;
1540         int channel = sdmac->channel;
1541         size_t count;
1542         int i = 0, param;
1543         struct sdma_buffer_descriptor *bd;
1544         struct sdma_desc *desc;
1545
1546         if (!chan || !len)
1547                 return NULL;
1548
1549         dev_dbg(sdma->dev, "memcpy: %pad->%pad, len=%zu, channel=%d.\n",
1550                 &dma_src, &dma_dst, len, channel);
1551
1552         desc = sdma_transfer_init(sdmac, DMA_MEM_TO_MEM,
1553                                         len / SDMA_BD_MAX_CNT + 1);
1554         if (!desc)
1555                 return NULL;
1556
1557         do {
1558                 count = min_t(size_t, len, SDMA_BD_MAX_CNT);
1559                 bd = &desc->bd[i];
1560                 bd->buffer_addr = dma_src;
1561                 bd->ext_buffer_addr = dma_dst;
1562                 bd->mode.count = count;
1563                 desc->chn_count += count;
1564                 bd->mode.command = 0;
1565
1566                 dma_src += count;
1567                 dma_dst += count;
1568                 len -= count;
1569                 i++;
1570
1571                 param = BD_DONE | BD_EXTD | BD_CONT;
1572                 /* last bd */
1573                 if (!len) {
1574                         param |= BD_INTR;
1575                         param |= BD_LAST;
1576                         param &= ~BD_CONT;
1577                 }
1578
1579                 dev_dbg(sdma->dev, "entry %d: count: %zd dma: 0x%x %s%s\n",
1580                                 i, count, bd->buffer_addr,
1581                                 param & BD_WRAP ? "wrap" : "",
1582                                 param & BD_INTR ? " intr" : "");
1583
1584                 bd->mode.status = param;
1585         } while (len);
1586
1587         return vchan_tx_prep(&sdmac->vc, &desc->vd, flags);
1588 }
1589
1590 static struct dma_async_tx_descriptor *sdma_prep_slave_sg(
1591                 struct dma_chan *chan, struct scatterlist *sgl,
1592                 unsigned int sg_len, enum dma_transfer_direction direction,
1593                 unsigned long flags, void *context)
1594 {
1595         struct sdma_channel *sdmac = to_sdma_chan(chan);
1596         struct sdma_engine *sdma = sdmac->sdma;
1597         int i, count;
1598         int channel = sdmac->channel;
1599         struct scatterlist *sg;
1600         struct sdma_desc *desc;
1601
1602         sdma_config_write(chan, &sdmac->slave_config, direction);
1603
1604         desc = sdma_transfer_init(sdmac, direction, sg_len);
1605         if (!desc)
1606                 goto err_out;
1607
1608         dev_dbg(sdma->dev, "setting up %d entries for channel %d.\n",
1609                         sg_len, channel);
1610
1611         for_each_sg(sgl, sg, sg_len, i) {
1612                 struct sdma_buffer_descriptor *bd = &desc->bd[i];
1613                 int param;
1614
1615                 bd->buffer_addr = sg->dma_address;
1616
1617                 count = sg_dma_len(sg);
1618
1619                 if (count > SDMA_BD_MAX_CNT) {
1620                         dev_err(sdma->dev, "SDMA channel %d: maximum bytes for sg entry exceeded: %d > %d\n",
1621                                         channel, count, SDMA_BD_MAX_CNT);
1622                         goto err_bd_out;
1623                 }
1624
1625                 bd->mode.count = count;
1626                 desc->chn_count += count;
1627
1628                 if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES)
1629                         goto err_bd_out;
1630
1631                 switch (sdmac->word_size) {
1632                 case DMA_SLAVE_BUSWIDTH_4_BYTES:
1633                         bd->mode.command = 0;
1634                         if (count & 3 || sg->dma_address & 3)
1635                                 goto err_bd_out;
1636                         break;
1637                 case DMA_SLAVE_BUSWIDTH_2_BYTES:
1638                         bd->mode.command = 2;
1639                         if (count & 1 || sg->dma_address & 1)
1640                                 goto err_bd_out;
1641                         break;
1642                 case DMA_SLAVE_BUSWIDTH_1_BYTE:
1643                         bd->mode.command = 1;
1644                         break;
1645                 default:
1646                         goto err_bd_out;
1647                 }
1648
1649                 param = BD_DONE | BD_EXTD | BD_CONT;
1650
1651                 if (i + 1 == sg_len) {
1652                         param |= BD_INTR;
1653                         param |= BD_LAST;
1654                         param &= ~BD_CONT;
1655                 }
1656
1657                 dev_dbg(sdma->dev, "entry %d: count: %d dma: %#llx %s%s\n",
1658                                 i, count, (u64)sg->dma_address,
1659                                 param & BD_WRAP ? "wrap" : "",
1660                                 param & BD_INTR ? " intr" : "");
1661
1662                 bd->mode.status = param;
1663         }
1664
1665         return vchan_tx_prep(&sdmac->vc, &desc->vd, flags);
1666 err_bd_out:
1667         sdma_free_bd(desc);
1668         kfree(desc);
1669 err_out:
1670         sdmac->status = DMA_ERROR;
1671         return NULL;
1672 }
1673
1674 static struct dma_async_tx_descriptor *sdma_prep_dma_cyclic(
1675                 struct dma_chan *chan, dma_addr_t dma_addr, size_t buf_len,
1676                 size_t period_len, enum dma_transfer_direction direction,
1677                 unsigned long flags)
1678 {
1679         struct sdma_channel *sdmac = to_sdma_chan(chan);
1680         struct sdma_engine *sdma = sdmac->sdma;
1681         int num_periods = buf_len / period_len;
1682         int channel = sdmac->channel;
1683         int i = 0, buf = 0;
1684         struct sdma_desc *desc;
1685
1686         dev_dbg(sdma->dev, "%s channel: %d\n", __func__, channel);
1687
1688         sdma_config_write(chan, &sdmac->slave_config, direction);
1689
1690         desc = sdma_transfer_init(sdmac, direction, num_periods);
1691         if (!desc)
1692                 goto err_out;
1693
1694         desc->period_len = period_len;
1695
1696         sdmac->flags |= IMX_DMA_SG_LOOP;
1697
1698         if (period_len > SDMA_BD_MAX_CNT) {
1699                 dev_err(sdma->dev, "SDMA channel %d: maximum period size exceeded: %zu > %d\n",
1700                                 channel, period_len, SDMA_BD_MAX_CNT);
1701                 goto err_bd_out;
1702         }
1703
1704         while (buf < buf_len) {
1705                 struct sdma_buffer_descriptor *bd = &desc->bd[i];
1706                 int param;
1707
1708                 bd->buffer_addr = dma_addr;
1709
1710                 bd->mode.count = period_len;
1711
1712                 if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES)
1713                         goto err_bd_out;
1714                 if (sdmac->word_size == DMA_SLAVE_BUSWIDTH_4_BYTES)
1715                         bd->mode.command = 0;
1716                 else
1717                         bd->mode.command = sdmac->word_size;
1718
1719                 param = BD_DONE | BD_EXTD | BD_CONT | BD_INTR;
1720                 if (i + 1 == num_periods)
1721                         param |= BD_WRAP;
1722
1723                 dev_dbg(sdma->dev, "entry %d: count: %zu dma: %#llx %s%s\n",
1724                                 i, period_len, (u64)dma_addr,
1725                                 param & BD_WRAP ? "wrap" : "",
1726                                 param & BD_INTR ? " intr" : "");
1727
1728                 bd->mode.status = param;
1729
1730                 dma_addr += period_len;
1731                 buf += period_len;
1732
1733                 i++;
1734         }
1735
1736         return vchan_tx_prep(&sdmac->vc, &desc->vd, flags);
1737 err_bd_out:
1738         sdma_free_bd(desc);
1739         kfree(desc);
1740 err_out:
1741         sdmac->status = DMA_ERROR;
1742         return NULL;
1743 }
1744
1745 static int sdma_config_write(struct dma_chan *chan,
1746                        struct dma_slave_config *dmaengine_cfg,
1747                        enum dma_transfer_direction direction)
1748 {
1749         struct sdma_channel *sdmac = to_sdma_chan(chan);
1750
1751         if (direction == DMA_DEV_TO_MEM) {
1752                 sdmac->per_address = dmaengine_cfg->src_addr;
1753                 sdmac->watermark_level = dmaengine_cfg->src_maxburst *
1754                         dmaengine_cfg->src_addr_width;
1755                 sdmac->word_size = dmaengine_cfg->src_addr_width;
1756         } else if (direction == DMA_DEV_TO_DEV) {
1757                 sdmac->per_address2 = dmaengine_cfg->src_addr;
1758                 sdmac->per_address = dmaengine_cfg->dst_addr;
1759                 sdmac->watermark_level = dmaengine_cfg->src_maxburst &
1760                         SDMA_WATERMARK_LEVEL_LWML;
1761                 sdmac->watermark_level |= (dmaengine_cfg->dst_maxburst << 16) &
1762                         SDMA_WATERMARK_LEVEL_HWML;
1763                 sdmac->word_size = dmaengine_cfg->dst_addr_width;
1764         } else {
1765                 sdmac->per_address = dmaengine_cfg->dst_addr;
1766                 sdmac->watermark_level = dmaengine_cfg->dst_maxburst *
1767                         dmaengine_cfg->dst_addr_width;
1768                 sdmac->word_size = dmaengine_cfg->dst_addr_width;
1769         }
1770         sdmac->direction = direction;
1771         return sdma_config_channel(chan);
1772 }
1773
1774 static int sdma_config(struct dma_chan *chan,
1775                        struct dma_slave_config *dmaengine_cfg)
1776 {
1777         struct sdma_channel *sdmac = to_sdma_chan(chan);
1778         struct sdma_engine *sdma = sdmac->sdma;
1779
1780         memcpy(&sdmac->slave_config, dmaengine_cfg, sizeof(*dmaengine_cfg));
1781
1782         if (dmaengine_cfg->peripheral_config) {
1783                 struct sdma_peripheral_config *sdmacfg = dmaengine_cfg->peripheral_config;
1784                 if (dmaengine_cfg->peripheral_size != sizeof(struct sdma_peripheral_config)) {
1785                         dev_err(sdma->dev, "Invalid peripheral size %zu, expected %zu\n",
1786                                 dmaengine_cfg->peripheral_size,
1787                                 sizeof(struct sdma_peripheral_config));
1788                         return -EINVAL;
1789                 }
1790                 sdmac->n_fifos_src = sdmacfg->n_fifos_src;
1791                 sdmac->n_fifos_dst = sdmacfg->n_fifos_dst;
1792                 sdmac->stride_fifos_src = sdmacfg->stride_fifos_src;
1793                 sdmac->stride_fifos_dst = sdmacfg->stride_fifos_dst;
1794                 sdmac->words_per_fifo = sdmacfg->words_per_fifo;
1795                 sdmac->sw_done = sdmacfg->sw_done;
1796         }
1797
1798         /* Set ENBLn earlier to make sure dma request triggered after that */
1799         if (sdmac->event_id0 >= sdmac->sdma->drvdata->num_events)
1800                 return -EINVAL;
1801         sdma_event_enable(sdmac, sdmac->event_id0);
1802
1803         if (sdmac->event_id1) {
1804                 if (sdmac->event_id1 >= sdmac->sdma->drvdata->num_events)
1805                         return -EINVAL;
1806                 sdma_event_enable(sdmac, sdmac->event_id1);
1807         }
1808
1809         return 0;
1810 }
1811
1812 static enum dma_status sdma_tx_status(struct dma_chan *chan,
1813                                       dma_cookie_t cookie,
1814                                       struct dma_tx_state *txstate)
1815 {
1816         struct sdma_channel *sdmac = to_sdma_chan(chan);
1817         struct sdma_desc *desc = NULL;
1818         u32 residue;
1819         struct virt_dma_desc *vd;
1820         enum dma_status ret;
1821         unsigned long flags;
1822
1823         ret = dma_cookie_status(chan, cookie, txstate);
1824         if (ret == DMA_COMPLETE || !txstate)
1825                 return ret;
1826
1827         spin_lock_irqsave(&sdmac->vc.lock, flags);
1828
1829         vd = vchan_find_desc(&sdmac->vc, cookie);
1830         if (vd)
1831                 desc = to_sdma_desc(&vd->tx);
1832         else if (sdmac->desc && sdmac->desc->vd.tx.cookie == cookie)
1833                 desc = sdmac->desc;
1834
1835         if (desc) {
1836                 if (sdmac->flags & IMX_DMA_SG_LOOP)
1837                         residue = (desc->num_bd - desc->buf_ptail) *
1838                                 desc->period_len - desc->chn_real_count;
1839                 else
1840                         residue = desc->chn_count - desc->chn_real_count;
1841         } else {
1842                 residue = 0;
1843         }
1844
1845         spin_unlock_irqrestore(&sdmac->vc.lock, flags);
1846
1847         dma_set_tx_state(txstate, chan->completed_cookie, chan->cookie,
1848                          residue);
1849
1850         return sdmac->status;
1851 }
1852
1853 static void sdma_issue_pending(struct dma_chan *chan)
1854 {
1855         struct sdma_channel *sdmac = to_sdma_chan(chan);
1856         unsigned long flags;
1857
1858         spin_lock_irqsave(&sdmac->vc.lock, flags);
1859         if (vchan_issue_pending(&sdmac->vc) && !sdmac->desc)
1860                 sdma_start_desc(sdmac);
1861         spin_unlock_irqrestore(&sdmac->vc.lock, flags);
1862 }
1863
1864 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1 34
1865 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2 38
1866 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3 45
1867 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V4 46
1868
1869 static void sdma_add_scripts(struct sdma_engine *sdma,
1870                              const struct sdma_script_start_addrs *addr)
1871 {
1872         s32 *addr_arr = (u32 *)addr;
1873         s32 *saddr_arr = (u32 *)sdma->script_addrs;
1874         int i;
1875
1876         /* use the default firmware in ROM if missing external firmware */
1877         if (!sdma->script_number)
1878                 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1;
1879
1880         if (sdma->script_number > sizeof(struct sdma_script_start_addrs)
1881                                   / sizeof(s32)) {
1882                 dev_err(sdma->dev,
1883                         "SDMA script number %d not match with firmware.\n",
1884                         sdma->script_number);
1885                 return;
1886         }
1887
1888         for (i = 0; i < sdma->script_number; i++)
1889                 if (addr_arr[i] > 0)
1890                         saddr_arr[i] = addr_arr[i];
1891
1892         /*
1893          * For compatibility with NXP internal legacy kernel before 4.19 which
1894          * is based on uart ram script and mainline kernel based on uart rom
1895          * script, both uart ram/rom scripts are present in newer sdma
1896          * firmware. Use the rom versions if they are present (V3 or newer).
1897          */
1898         if (sdma->script_number >= SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3) {
1899                 if (addr->uart_2_mcu_rom_addr)
1900                         sdma->script_addrs->uart_2_mcu_addr = addr->uart_2_mcu_rom_addr;
1901                 if (addr->uartsh_2_mcu_rom_addr)
1902                         sdma->script_addrs->uartsh_2_mcu_addr = addr->uartsh_2_mcu_rom_addr;
1903         }
1904 }
1905
1906 static void sdma_load_firmware(const struct firmware *fw, void *context)
1907 {
1908         struct sdma_engine *sdma = context;
1909         const struct sdma_firmware_header *header;
1910         const struct sdma_script_start_addrs *addr;
1911         unsigned short *ram_code;
1912
1913         if (!fw) {
1914                 dev_info(sdma->dev, "external firmware not found, using ROM firmware\n");
1915                 /* In this case we just use the ROM firmware. */
1916                 return;
1917         }
1918
1919         if (fw->size < sizeof(*header))
1920                 goto err_firmware;
1921
1922         header = (struct sdma_firmware_header *)fw->data;
1923
1924         if (header->magic != SDMA_FIRMWARE_MAGIC)
1925                 goto err_firmware;
1926         if (header->ram_code_start + header->ram_code_size > fw->size)
1927                 goto err_firmware;
1928         switch (header->version_major) {
1929         case 1:
1930                 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1;
1931                 break;
1932         case 2:
1933                 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2;
1934                 break;
1935         case 3:
1936                 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3;
1937                 break;
1938         case 4:
1939                 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V4;
1940                 break;
1941         default:
1942                 dev_err(sdma->dev, "unknown firmware version\n");
1943                 goto err_firmware;
1944         }
1945
1946         addr = (void *)header + header->script_addrs_start;
1947         ram_code = (void *)header + header->ram_code_start;
1948
1949         clk_enable(sdma->clk_ipg);
1950         clk_enable(sdma->clk_ahb);
1951         /* download the RAM image for SDMA */
1952         sdma_load_script(sdma, ram_code,
1953                          header->ram_code_size,
1954                          addr->ram_code_start_addr);
1955         clk_disable(sdma->clk_ipg);
1956         clk_disable(sdma->clk_ahb);
1957
1958         sdma_add_scripts(sdma, addr);
1959
1960         sdma->fw_loaded = true;
1961
1962         dev_info(sdma->dev, "loaded firmware %d.%d\n",
1963                  header->version_major,
1964                  header->version_minor);
1965
1966 err_firmware:
1967         release_firmware(fw);
1968 }
1969
1970 #define EVENT_REMAP_CELLS 3
1971
1972 static int sdma_event_remap(struct sdma_engine *sdma)
1973 {
1974         struct device_node *np = sdma->dev->of_node;
1975         struct device_node *gpr_np = of_parse_phandle(np, "gpr", 0);
1976         struct property *event_remap;
1977         struct regmap *gpr;
1978         char propname[] = "fsl,sdma-event-remap";
1979         u32 reg, val, shift, num_map, i;
1980         int ret = 0;
1981
1982         if (IS_ERR(np) || !gpr_np)
1983                 goto out;
1984
1985         event_remap = of_find_property(np, propname, NULL);
1986         num_map = event_remap ? (event_remap->length / sizeof(u32)) : 0;
1987         if (!num_map) {
1988                 dev_dbg(sdma->dev, "no event needs to be remapped\n");
1989                 goto out;
1990         } else if (num_map % EVENT_REMAP_CELLS) {
1991                 dev_err(sdma->dev, "the property %s must modulo %d\n",
1992                                 propname, EVENT_REMAP_CELLS);
1993                 ret = -EINVAL;
1994                 goto out;
1995         }
1996
1997         gpr = syscon_node_to_regmap(gpr_np);
1998         if (IS_ERR(gpr)) {
1999                 dev_err(sdma->dev, "failed to get gpr regmap\n");
2000                 ret = PTR_ERR(gpr);
2001                 goto out;
2002         }
2003
2004         for (i = 0; i < num_map; i += EVENT_REMAP_CELLS) {
2005                 ret = of_property_read_u32_index(np, propname, i, &reg);
2006                 if (ret) {
2007                         dev_err(sdma->dev, "failed to read property %s index %d\n",
2008                                         propname, i);
2009                         goto out;
2010                 }
2011
2012                 ret = of_property_read_u32_index(np, propname, i + 1, &shift);
2013                 if (ret) {
2014                         dev_err(sdma->dev, "failed to read property %s index %d\n",
2015                                         propname, i + 1);
2016                         goto out;
2017                 }
2018
2019                 ret = of_property_read_u32_index(np, propname, i + 2, &val);
2020                 if (ret) {
2021                         dev_err(sdma->dev, "failed to read property %s index %d\n",
2022                                         propname, i + 2);
2023                         goto out;
2024                 }
2025
2026                 regmap_update_bits(gpr, reg, BIT(shift), val << shift);
2027         }
2028
2029 out:
2030         if (gpr_np)
2031                 of_node_put(gpr_np);
2032
2033         return ret;
2034 }
2035
2036 static int sdma_get_firmware(struct sdma_engine *sdma,
2037                 const char *fw_name)
2038 {
2039         int ret;
2040
2041         ret = request_firmware_nowait(THIS_MODULE,
2042                         FW_ACTION_UEVENT, fw_name, sdma->dev,
2043                         GFP_KERNEL, sdma, sdma_load_firmware);
2044
2045         return ret;
2046 }
2047
2048 static int sdma_init(struct sdma_engine *sdma)
2049 {
2050         int i, ret;
2051         dma_addr_t ccb_phys;
2052
2053         ret = clk_enable(sdma->clk_ipg);
2054         if (ret)
2055                 return ret;
2056         ret = clk_enable(sdma->clk_ahb);
2057         if (ret)
2058                 goto disable_clk_ipg;
2059
2060         if (sdma->drvdata->check_ratio &&
2061             (clk_get_rate(sdma->clk_ahb) == clk_get_rate(sdma->clk_ipg)))
2062                 sdma->clk_ratio = 1;
2063
2064         /* Be sure SDMA has not started yet */
2065         writel_relaxed(0, sdma->regs + SDMA_H_C0PTR);
2066
2067         sdma->channel_control = dma_alloc_coherent(sdma->dev,
2068                         MAX_DMA_CHANNELS * sizeof(struct sdma_channel_control) +
2069                         sizeof(struct sdma_context_data),
2070                         &ccb_phys, GFP_KERNEL);
2071
2072         if (!sdma->channel_control) {
2073                 ret = -ENOMEM;
2074                 goto err_dma_alloc;
2075         }
2076
2077         sdma->context = (void *)sdma->channel_control +
2078                 MAX_DMA_CHANNELS * sizeof(struct sdma_channel_control);
2079         sdma->context_phys = ccb_phys +
2080                 MAX_DMA_CHANNELS * sizeof(struct sdma_channel_control);
2081
2082         /* disable all channels */
2083         for (i = 0; i < sdma->drvdata->num_events; i++)
2084                 writel_relaxed(0, sdma->regs + chnenbl_ofs(sdma, i));
2085
2086         /* All channels have priority 0 */
2087         for (i = 0; i < MAX_DMA_CHANNELS; i++)
2088                 writel_relaxed(0, sdma->regs + SDMA_CHNPRI_0 + i * 4);
2089
2090         ret = sdma_request_channel0(sdma);
2091         if (ret)
2092                 goto err_dma_alloc;
2093
2094         sdma_config_ownership(&sdma->channel[0], false, true, false);
2095
2096         /* Set Command Channel (Channel Zero) */
2097         writel_relaxed(0x4050, sdma->regs + SDMA_CHN0ADDR);
2098
2099         /* Set bits of CONFIG register but with static context switching */
2100         if (sdma->clk_ratio)
2101                 writel_relaxed(SDMA_H_CONFIG_ACR, sdma->regs + SDMA_H_CONFIG);
2102         else
2103                 writel_relaxed(0, sdma->regs + SDMA_H_CONFIG);
2104
2105         writel_relaxed(ccb_phys, sdma->regs + SDMA_H_C0PTR);
2106
2107         /* Initializes channel's priorities */
2108         sdma_set_channel_priority(&sdma->channel[0], 7);
2109
2110         clk_disable(sdma->clk_ipg);
2111         clk_disable(sdma->clk_ahb);
2112
2113         return 0;
2114
2115 err_dma_alloc:
2116         clk_disable(sdma->clk_ahb);
2117 disable_clk_ipg:
2118         clk_disable(sdma->clk_ipg);
2119         dev_err(sdma->dev, "initialisation failed with %d\n", ret);
2120         return ret;
2121 }
2122
2123 static bool sdma_filter_fn(struct dma_chan *chan, void *fn_param)
2124 {
2125         struct sdma_channel *sdmac = to_sdma_chan(chan);
2126         struct imx_dma_data *data = fn_param;
2127
2128         if (!imx_dma_is_general_purpose(chan))
2129                 return false;
2130
2131         sdmac->data = *data;
2132         chan->private = &sdmac->data;
2133
2134         return true;
2135 }
2136
2137 static struct dma_chan *sdma_xlate(struct of_phandle_args *dma_spec,
2138                                    struct of_dma *ofdma)
2139 {
2140         struct sdma_engine *sdma = ofdma->of_dma_data;
2141         dma_cap_mask_t mask = sdma->dma_device.cap_mask;
2142         struct imx_dma_data data;
2143
2144         if (dma_spec->args_count != 3)
2145                 return NULL;
2146
2147         data.dma_request = dma_spec->args[0];
2148         data.peripheral_type = dma_spec->args[1];
2149         data.priority = dma_spec->args[2];
2150         /*
2151          * init dma_request2 to zero, which is not used by the dts.
2152          * For P2P, dma_request2 is init from dma_request_channel(),
2153          * chan->private will point to the imx_dma_data, and in
2154          * device_alloc_chan_resources(), imx_dma_data.dma_request2 will
2155          * be set to sdmac->event_id1.
2156          */
2157         data.dma_request2 = 0;
2158
2159         return __dma_request_channel(&mask, sdma_filter_fn, &data,
2160                                      ofdma->of_node);
2161 }
2162
2163 static int sdma_probe(struct platform_device *pdev)
2164 {
2165         struct device_node *np = pdev->dev.of_node;
2166         struct device_node *spba_bus;
2167         const char *fw_name;
2168         int ret;
2169         int irq;
2170         struct resource *iores;
2171         struct resource spba_res;
2172         int i;
2173         struct sdma_engine *sdma;
2174         s32 *saddr_arr;
2175
2176         ret = dma_coerce_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
2177         if (ret)
2178                 return ret;
2179
2180         sdma = devm_kzalloc(&pdev->dev, sizeof(*sdma), GFP_KERNEL);
2181         if (!sdma)
2182                 return -ENOMEM;
2183
2184         spin_lock_init(&sdma->channel_0_lock);
2185
2186         sdma->dev = &pdev->dev;
2187         sdma->drvdata = of_device_get_match_data(sdma->dev);
2188
2189         irq = platform_get_irq(pdev, 0);
2190         if (irq < 0)
2191                 return irq;
2192
2193         iores = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2194         sdma->regs = devm_ioremap_resource(&pdev->dev, iores);
2195         if (IS_ERR(sdma->regs))
2196                 return PTR_ERR(sdma->regs);
2197
2198         sdma->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
2199         if (IS_ERR(sdma->clk_ipg))
2200                 return PTR_ERR(sdma->clk_ipg);
2201
2202         sdma->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
2203         if (IS_ERR(sdma->clk_ahb))
2204                 return PTR_ERR(sdma->clk_ahb);
2205
2206         ret = clk_prepare(sdma->clk_ipg);
2207         if (ret)
2208                 return ret;
2209
2210         ret = clk_prepare(sdma->clk_ahb);
2211         if (ret)
2212                 goto err_clk;
2213
2214         ret = devm_request_irq(&pdev->dev, irq, sdma_int_handler, 0,
2215                                 dev_name(&pdev->dev), sdma);
2216         if (ret)
2217                 goto err_irq;
2218
2219         sdma->irq = irq;
2220
2221         sdma->script_addrs = kzalloc(sizeof(*sdma->script_addrs), GFP_KERNEL);
2222         if (!sdma->script_addrs) {
2223                 ret = -ENOMEM;
2224                 goto err_irq;
2225         }
2226
2227         /* initially no scripts available */
2228         saddr_arr = (s32 *)sdma->script_addrs;
2229         for (i = 0; i < sizeof(*sdma->script_addrs) / sizeof(s32); i++)
2230                 saddr_arr[i] = -EINVAL;
2231
2232         dma_cap_set(DMA_SLAVE, sdma->dma_device.cap_mask);
2233         dma_cap_set(DMA_CYCLIC, sdma->dma_device.cap_mask);
2234         dma_cap_set(DMA_MEMCPY, sdma->dma_device.cap_mask);
2235
2236         INIT_LIST_HEAD(&sdma->dma_device.channels);
2237         /* Initialize channel parameters */
2238         for (i = 0; i < MAX_DMA_CHANNELS; i++) {
2239                 struct sdma_channel *sdmac = &sdma->channel[i];
2240
2241                 sdmac->sdma = sdma;
2242
2243                 sdmac->channel = i;
2244                 sdmac->vc.desc_free = sdma_desc_free;
2245                 INIT_LIST_HEAD(&sdmac->terminated);
2246                 INIT_WORK(&sdmac->terminate_worker,
2247                                 sdma_channel_terminate_work);
2248                 /*
2249                  * Add the channel to the DMAC list. Do not add channel 0 though
2250                  * because we need it internally in the SDMA driver. This also means
2251                  * that channel 0 in dmaengine counting matches sdma channel 1.
2252                  */
2253                 if (i)
2254                         vchan_init(&sdmac->vc, &sdma->dma_device);
2255         }
2256
2257         ret = sdma_init(sdma);
2258         if (ret)
2259                 goto err_init;
2260
2261         ret = sdma_event_remap(sdma);
2262         if (ret)
2263                 goto err_init;
2264
2265         if (sdma->drvdata->script_addrs)
2266                 sdma_add_scripts(sdma, sdma->drvdata->script_addrs);
2267
2268         sdma->dma_device.dev = &pdev->dev;
2269
2270         sdma->dma_device.device_alloc_chan_resources = sdma_alloc_chan_resources;
2271         sdma->dma_device.device_free_chan_resources = sdma_free_chan_resources;
2272         sdma->dma_device.device_tx_status = sdma_tx_status;
2273         sdma->dma_device.device_prep_slave_sg = sdma_prep_slave_sg;
2274         sdma->dma_device.device_prep_dma_cyclic = sdma_prep_dma_cyclic;
2275         sdma->dma_device.device_config = sdma_config;
2276         sdma->dma_device.device_terminate_all = sdma_terminate_all;
2277         sdma->dma_device.device_synchronize = sdma_channel_synchronize;
2278         sdma->dma_device.src_addr_widths = SDMA_DMA_BUSWIDTHS;
2279         sdma->dma_device.dst_addr_widths = SDMA_DMA_BUSWIDTHS;
2280         sdma->dma_device.directions = SDMA_DMA_DIRECTIONS;
2281         sdma->dma_device.residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT;
2282         sdma->dma_device.device_prep_dma_memcpy = sdma_prep_memcpy;
2283         sdma->dma_device.device_issue_pending = sdma_issue_pending;
2284         sdma->dma_device.copy_align = 2;
2285         dma_set_max_seg_size(sdma->dma_device.dev, SDMA_BD_MAX_CNT);
2286
2287         platform_set_drvdata(pdev, sdma);
2288
2289         ret = dma_async_device_register(&sdma->dma_device);
2290         if (ret) {
2291                 dev_err(&pdev->dev, "unable to register\n");
2292                 goto err_init;
2293         }
2294
2295         if (np) {
2296                 ret = of_dma_controller_register(np, sdma_xlate, sdma);
2297                 if (ret) {
2298                         dev_err(&pdev->dev, "failed to register controller\n");
2299                         goto err_register;
2300                 }
2301
2302                 spba_bus = of_find_compatible_node(NULL, NULL, "fsl,spba-bus");
2303                 ret = of_address_to_resource(spba_bus, 0, &spba_res);
2304                 if (!ret) {
2305                         sdma->spba_start_addr = spba_res.start;
2306                         sdma->spba_end_addr = spba_res.end;
2307                 }
2308                 of_node_put(spba_bus);
2309         }
2310
2311         /*
2312          * Because that device tree does not encode ROM script address,
2313          * the RAM script in firmware is mandatory for device tree
2314          * probe, otherwise it fails.
2315          */
2316         ret = of_property_read_string(np, "fsl,sdma-ram-script-name",
2317                                       &fw_name);
2318         if (ret) {
2319                 dev_warn(&pdev->dev, "failed to get firmware name\n");
2320         } else {
2321                 ret = sdma_get_firmware(sdma, fw_name);
2322                 if (ret)
2323                         dev_warn(&pdev->dev, "failed to get firmware from device tree\n");
2324         }
2325
2326         return 0;
2327
2328 err_register:
2329         dma_async_device_unregister(&sdma->dma_device);
2330 err_init:
2331         kfree(sdma->script_addrs);
2332 err_irq:
2333         clk_unprepare(sdma->clk_ahb);
2334 err_clk:
2335         clk_unprepare(sdma->clk_ipg);
2336         return ret;
2337 }
2338
2339 static int sdma_remove(struct platform_device *pdev)
2340 {
2341         struct sdma_engine *sdma = platform_get_drvdata(pdev);
2342         int i;
2343
2344         devm_free_irq(&pdev->dev, sdma->irq, sdma);
2345         dma_async_device_unregister(&sdma->dma_device);
2346         kfree(sdma->script_addrs);
2347         clk_unprepare(sdma->clk_ahb);
2348         clk_unprepare(sdma->clk_ipg);
2349         /* Kill the tasklet */
2350         for (i = 0; i < MAX_DMA_CHANNELS; i++) {
2351                 struct sdma_channel *sdmac = &sdma->channel[i];
2352
2353                 tasklet_kill(&sdmac->vc.task);
2354                 sdma_free_chan_resources(&sdmac->vc.chan);
2355         }
2356
2357         platform_set_drvdata(pdev, NULL);
2358         return 0;
2359 }
2360
2361 static struct platform_driver sdma_driver = {
2362         .driver         = {
2363                 .name   = "imx-sdma",
2364                 .of_match_table = sdma_dt_ids,
2365         },
2366         .remove         = sdma_remove,
2367         .probe          = sdma_probe,
2368 };
2369
2370 module_platform_driver(sdma_driver);
2371
2372 MODULE_AUTHOR("Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>");
2373 MODULE_DESCRIPTION("i.MX SDMA driver");
2374 #if IS_ENABLED(CONFIG_SOC_IMX6Q)
2375 MODULE_FIRMWARE("imx/sdma/sdma-imx6q.bin");
2376 #endif
2377 #if IS_ENABLED(CONFIG_SOC_IMX7D) || IS_ENABLED(CONFIG_SOC_IMX8M)
2378 MODULE_FIRMWARE("imx/sdma/sdma-imx7d.bin");
2379 #endif
2380 MODULE_LICENSE("GPL");