1 // SPDX-License-Identifier: GPL-2.0+
3 // drivers/dma/imx-sdma.c
5 // This file contains a driver for the Freescale Smart DMA engine
7 // Copyright 2010 Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>
9 // Based on code from Freescale:
11 // Copyright 2004-2009 Freescale Semiconductor, Inc. All Rights Reserved.
13 #include <linux/init.h>
14 #include <linux/iopoll.h>
15 #include <linux/module.h>
16 #include <linux/types.h>
17 #include <linux/bitfield.h>
18 #include <linux/bitops.h>
20 #include <linux/interrupt.h>
21 #include <linux/clk.h>
22 #include <linux/delay.h>
23 #include <linux/sched.h>
24 #include <linux/semaphore.h>
25 #include <linux/spinlock.h>
26 #include <linux/device.h>
27 #include <linux/dma-mapping.h>
28 #include <linux/firmware.h>
29 #include <linux/slab.h>
30 #include <linux/platform_device.h>
31 #include <linux/dmaengine.h>
33 #include <linux/of_address.h>
34 #include <linux/of_device.h>
35 #include <linux/of_dma.h>
36 #include <linux/workqueue.h>
39 #include <linux/dma/imx-dma.h>
40 #include <linux/regmap.h>
41 #include <linux/mfd/syscon.h>
42 #include <linux/mfd/syscon/imx6q-iomuxc-gpr.h>
44 #include "dmaengine.h"
48 #define SDMA_H_C0PTR 0x000
49 #define SDMA_H_INTR 0x004
50 #define SDMA_H_STATSTOP 0x008
51 #define SDMA_H_START 0x00c
52 #define SDMA_H_EVTOVR 0x010
53 #define SDMA_H_DSPOVR 0x014
54 #define SDMA_H_HOSTOVR 0x018
55 #define SDMA_H_EVTPEND 0x01c
56 #define SDMA_H_DSPENBL 0x020
57 #define SDMA_H_RESET 0x024
58 #define SDMA_H_EVTERR 0x028
59 #define SDMA_H_INTRMSK 0x02c
60 #define SDMA_H_PSW 0x030
61 #define SDMA_H_EVTERRDBG 0x034
62 #define SDMA_H_CONFIG 0x038
63 #define SDMA_ONCE_ENB 0x040
64 #define SDMA_ONCE_DATA 0x044
65 #define SDMA_ONCE_INSTR 0x048
66 #define SDMA_ONCE_STAT 0x04c
67 #define SDMA_ONCE_CMD 0x050
68 #define SDMA_EVT_MIRROR 0x054
69 #define SDMA_ILLINSTADDR 0x058
70 #define SDMA_CHN0ADDR 0x05c
71 #define SDMA_ONCE_RTB 0x060
72 #define SDMA_XTRIG_CONF1 0x070
73 #define SDMA_XTRIG_CONF2 0x074
74 #define SDMA_CHNENBL0_IMX35 0x200
75 #define SDMA_CHNENBL0_IMX31 0x080
76 #define SDMA_CHNPRI_0 0x100
77 #define SDMA_DONE0_CONFIG 0x1000
80 * Buffer descriptor status values.
91 * Data Node descriptor status values.
93 #define DND_END_OF_FRAME 0x80
94 #define DND_END_OF_XFER 0x40
96 #define DND_UNUSED 0x01
99 * IPCV2 descriptor status values.
101 #define BD_IPCV2_END_OF_FRAME 0x40
103 #define IPCV2_MAX_NODES 50
105 * Error bit set in the CCB status field by the SDMA,
106 * in setbd routine, in case of a transfer error
108 #define DATA_ERROR 0x10000000
111 * Buffer descriptor commands.
116 #define C0_SETCTX 0x07
117 #define C0_GETCTX 0x03
118 #define C0_SETDM 0x01
119 #define C0_SETPM 0x04
120 #define C0_GETDM 0x02
121 #define C0_GETPM 0x08
123 * Change endianness indicator in the BD command field
125 #define CHANGE_ENDIANNESS 0x80
128 * p_2_p watermark_level description
129 * Bits Name Description
130 * 0-7 Lower WML Lower watermark level
131 * 8 PS 1: Pad Swallowing
132 * 0: No Pad Swallowing
135 * 10 SPDIF If this bit is set both source
136 * and destination are on SPBA
137 * 11 Source Bit(SP) 1: Source on SPBA
139 * 12 Destination Bit(DP) 1: Destination on SPBA
140 * 0: Destination on AIPS
141 * 13-15 --------- MUST BE 0
142 * 16-23 Higher WML HWML
143 * 24-27 N Total number of samples after
144 * which Pad adding/Swallowing
145 * must be done. It must be odd.
146 * 28 Lower WML Event(LWE) SDMA events reg to check for
148 * 0: LWE in EVENTS register
149 * 1: LWE in EVENTS2 register
150 * 29 Higher WML Event(HWE) SDMA events reg to check for
152 * 0: HWE in EVENTS register
153 * 1: HWE in EVENTS2 register
154 * 30 --------- MUST BE 0
155 * 31 CONT 1: Amount of samples to be
156 * transferred is unknown and
157 * script will keep on
158 * transferring samples as long as
159 * both events are detected and
160 * script must be manually stopped
162 * 0: The amount of samples to be
163 * transferred is equal to the
164 * count field of mode word
166 #define SDMA_WATERMARK_LEVEL_LWML 0xFF
167 #define SDMA_WATERMARK_LEVEL_PS BIT(8)
168 #define SDMA_WATERMARK_LEVEL_PA BIT(9)
169 #define SDMA_WATERMARK_LEVEL_SPDIF BIT(10)
170 #define SDMA_WATERMARK_LEVEL_SP BIT(11)
171 #define SDMA_WATERMARK_LEVEL_DP BIT(12)
172 #define SDMA_WATERMARK_LEVEL_HWML (0xFF << 16)
173 #define SDMA_WATERMARK_LEVEL_LWE BIT(28)
174 #define SDMA_WATERMARK_LEVEL_HWE BIT(29)
175 #define SDMA_WATERMARK_LEVEL_CONT BIT(31)
177 #define SDMA_DMA_BUSWIDTHS (BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
178 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
179 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
181 #define SDMA_DMA_DIRECTIONS (BIT(DMA_DEV_TO_MEM) | \
182 BIT(DMA_MEM_TO_DEV) | \
185 #define SDMA_WATERMARK_LEVEL_N_FIFOS GENMASK(15, 12)
186 #define SDMA_WATERMARK_LEVEL_OFF_FIFOS GENMASK(19, 16)
187 #define SDMA_WATERMARK_LEVEL_WORDS_PER_FIFO GENMASK(31, 28)
188 #define SDMA_WATERMARK_LEVEL_SW_DONE BIT(23)
190 #define SDMA_DONE0_CONFIG_DONE_SEL BIT(7)
191 #define SDMA_DONE0_CONFIG_DONE_DIS BIT(6)
194 * struct sdma_script_start_addrs - SDMA script start pointers
196 * start addresses of the different functions in the physical
197 * address space of the SDMA engine.
199 struct sdma_script_start_addrs {
202 s32 ap_2_ap_fixed_addr;
204 s32 loopback_on_dsp_side_addr;
205 s32 mcu_interrupt_only_addr;
215 s32 uartsh_2_per_addr;
216 s32 uartsh_2_mcu_addr;
227 s32 spdif_2_mcu_addr;
228 s32 mcu_2_spdif_addr;
230 s32 ext_mem_2_ipu_addr;
231 s32 descrambler_addr;
234 s32 ram_code_start_addr;
235 /* End of v1 array */
236 s32 mcu_2_ssish_addr;
237 s32 ssish_2_mcu_addr;
239 /* End of v2 array */
240 s32 zcanfd_2_mcu_addr;
241 s32 zqspi_2_mcu_addr;
242 s32 mcu_2_ecspi_addr;
245 s32 uart_2_mcu_rom_addr;
246 s32 uartsh_2_mcu_rom_addr;
247 /* End of v3 array */
248 s32 mcu_2_zqspi_addr;
249 /* End of v4 array */
253 * Mode/Count of data node descriptors - IPCv2
255 struct sdma_mode_count {
256 #define SDMA_BD_MAX_CNT 0xffff
257 u32 count : 16; /* size of the buffer pointed by this BD */
258 u32 status : 8; /* E,R,I,C,W,D status bits stored here */
259 u32 command : 8; /* command mostly used for channel 0 */
265 struct sdma_buffer_descriptor {
266 struct sdma_mode_count mode;
267 u32 buffer_addr; /* address of the buffer described */
268 u32 ext_buffer_addr; /* extended buffer address */
269 } __attribute__ ((packed));
272 * struct sdma_channel_control - Channel control Block
274 * @current_bd_ptr: current buffer descriptor processed
275 * @base_bd_ptr: first element of buffer descriptor array
276 * @unused: padding. The SDMA engine expects an array of 128 byte
279 struct sdma_channel_control {
283 } __attribute__ ((packed));
286 * struct sdma_state_registers - SDMA context for a channel
288 * @pc: program counter
290 * @t: test bit: status of arithmetic & test instruction
291 * @rpc: return program counter
293 * @sf: source fault while loading data
294 * @spc: loop start program counter
296 * @df: destination fault while storing data
297 * @epc: loop end program counter
300 struct sdma_state_registers {
312 } __attribute__ ((packed));
315 * struct sdma_context_data - sdma context specific to a channel
317 * @channel_state: channel state bits
318 * @gReg: general registers
319 * @mda: burst dma destination address register
320 * @msa: burst dma source address register
321 * @ms: burst dma status register
322 * @md: burst dma data register
323 * @pda: peripheral dma destination address register
324 * @psa: peripheral dma source address register
325 * @ps: peripheral dma status register
326 * @pd: peripheral dma data register
327 * @ca: CRC polynomial register
328 * @cs: CRC accumulator register
329 * @dda: dedicated core destination address register
330 * @dsa: dedicated core source address register
331 * @ds: dedicated core status register
332 * @dd: dedicated core data register
333 * @scratch0: 1st word of dedicated ram for context switch
334 * @scratch1: 2nd word of dedicated ram for context switch
335 * @scratch2: 3rd word of dedicated ram for context switch
336 * @scratch3: 4th word of dedicated ram for context switch
337 * @scratch4: 5th word of dedicated ram for context switch
338 * @scratch5: 6th word of dedicated ram for context switch
339 * @scratch6: 7th word of dedicated ram for context switch
340 * @scratch7: 8th word of dedicated ram for context switch
342 struct sdma_context_data {
343 struct sdma_state_registers channel_state;
367 } __attribute__ ((packed));
373 * struct sdma_desc - descriptor structor for one transfer
374 * @vd: descriptor for virt dma
375 * @num_bd: number of descriptors currently handling
376 * @bd_phys: physical address of bd
377 * @buf_tail: ID of the buffer that was processed
378 * @buf_ptail: ID of the previous buffer that was processed
379 * @period_len: period length, used in cyclic.
380 * @chn_real_count: the real count updated from bd->mode.count
381 * @chn_count: the transfer count set
382 * @sdmac: sdma_channel pointer
383 * @bd: pointer of allocate bd
386 struct virt_dma_desc vd;
389 unsigned int buf_tail;
390 unsigned int buf_ptail;
391 unsigned int period_len;
392 unsigned int chn_real_count;
393 unsigned int chn_count;
394 struct sdma_channel *sdmac;
395 struct sdma_buffer_descriptor *bd;
399 * struct sdma_channel - housekeeping for a SDMA channel
401 * @vc: virt_dma base structure
402 * @desc: sdma description including vd and other special member
403 * @sdma: pointer to the SDMA engine for this channel
404 * @channel: the channel number, matches dmaengine chan_id + 1
405 * @direction: transfer type. Needed for setting SDMA script
406 * @slave_config: Slave configuration
407 * @peripheral_type: Peripheral type. Needed for setting SDMA script
408 * @event_id0: aka dma request line
409 * @event_id1: for channels that use 2 events
410 * @word_size: peripheral access size
411 * @pc_from_device: script address for those device_2_memory
412 * @pc_to_device: script address for those memory_2_device
413 * @device_to_device: script address for those device_2_device
414 * @pc_to_pc: script address for those memory_2_memory
415 * @flags: loop mode or not
416 * @per_address: peripheral source or destination address in common case
417 * destination address in p_2_p case
418 * @per_address2: peripheral source address in p_2_p case
419 * @event_mask: event mask used in p_2_p script
420 * @watermark_level: value for gReg[7], some script will extend it from
421 * basic watermark such as p_2_p
422 * @shp_addr: value for gReg[6]
423 * @per_addr: value for gReg[2]
424 * @status: status of dma channel
425 * @context_loaded: ensure context is only loaded once
426 * @data: specific sdma interface structure
427 * @bd_pool: dma_pool for bd
428 * @terminate_worker: used to call back into terminate work function
429 * @terminated: terminated list
430 * @is_ram_script: flag for script in ram
431 * @n_fifos_src: number of source device fifos
432 * @n_fifos_dst: number of destination device fifos
433 * @sw_done: software done flag
434 * @stride_fifos_src: stride for source device FIFOs
435 * @stride_fifos_dst: stride for destination device FIFOs
436 * @words_per_fifo: copy number of words one time for one FIFO
438 struct sdma_channel {
439 struct virt_dma_chan vc;
440 struct sdma_desc *desc;
441 struct sdma_engine *sdma;
442 unsigned int channel;
443 enum dma_transfer_direction direction;
444 struct dma_slave_config slave_config;
445 enum sdma_peripheral_type peripheral_type;
446 unsigned int event_id0;
447 unsigned int event_id1;
448 enum dma_slave_buswidth word_size;
449 unsigned int pc_from_device, pc_to_device;
450 unsigned int device_to_device;
451 unsigned int pc_to_pc;
453 dma_addr_t per_address, per_address2;
454 unsigned long event_mask[2];
455 unsigned long watermark_level;
456 u32 shp_addr, per_addr;
457 enum dma_status status;
458 struct imx_dma_data data;
459 struct work_struct terminate_worker;
460 struct list_head terminated;
462 unsigned int n_fifos_src;
463 unsigned int n_fifos_dst;
464 unsigned int stride_fifos_src;
465 unsigned int stride_fifos_dst;
466 unsigned int words_per_fifo;
470 #define IMX_DMA_SG_LOOP BIT(0)
472 #define MAX_DMA_CHANNELS 32
473 #define MXC_SDMA_DEFAULT_PRIORITY 1
474 #define MXC_SDMA_MIN_PRIORITY 1
475 #define MXC_SDMA_MAX_PRIORITY 7
477 #define SDMA_FIRMWARE_MAGIC 0x414d4453
480 * struct sdma_firmware_header - Layout of the firmware image
483 * @version_major: increased whenever layout of struct
484 * sdma_script_start_addrs changes.
485 * @version_minor: firmware minor version (for binary compatible changes)
486 * @script_addrs_start: offset of struct sdma_script_start_addrs in this image
487 * @num_script_addrs: Number of script addresses in this image
488 * @ram_code_start: offset of SDMA ram image in this firmware image
489 * @ram_code_size: size of SDMA ram image
490 * @script_addrs: Stores the start address of the SDMA scripts
491 * (in SDMA memory space)
493 struct sdma_firmware_header {
497 u32 script_addrs_start;
498 u32 num_script_addrs;
503 struct sdma_driver_data {
506 struct sdma_script_start_addrs *script_addrs;
509 * ecspi ERR009165 fixed should be done in sdma script
510 * and it has been fixed in soc from i.mx6ul.
511 * please get more information from the below link:
512 * https://www.nxp.com/docs/en/errata/IMX6DQCE.pdf
519 struct sdma_channel channel[MAX_DMA_CHANNELS];
520 struct sdma_channel_control *channel_control;
522 struct sdma_context_data *context;
523 dma_addr_t context_phys;
524 struct dma_device dma_device;
527 spinlock_t channel_0_lock;
529 struct sdma_script_start_addrs *script_addrs;
530 const struct sdma_driver_data *drvdata;
535 struct sdma_buffer_descriptor *bd0;
536 /* clock ratio for AHB:SDMA core. 1:1 is 1, 2:1 is 0*/
541 static int sdma_config_write(struct dma_chan *chan,
542 struct dma_slave_config *dmaengine_cfg,
543 enum dma_transfer_direction direction);
545 static struct sdma_driver_data sdma_imx31 = {
546 .chnenbl0 = SDMA_CHNENBL0_IMX31,
550 static struct sdma_script_start_addrs sdma_script_imx25 = {
552 .uart_2_mcu_addr = 904,
553 .per_2_app_addr = 1255,
554 .mcu_2_app_addr = 834,
555 .uartsh_2_mcu_addr = 1120,
556 .per_2_shp_addr = 1329,
557 .mcu_2_shp_addr = 1048,
558 .ata_2_mcu_addr = 1560,
559 .mcu_2_ata_addr = 1479,
560 .app_2_per_addr = 1189,
561 .app_2_mcu_addr = 770,
562 .shp_2_per_addr = 1407,
563 .shp_2_mcu_addr = 979,
566 static struct sdma_driver_data sdma_imx25 = {
567 .chnenbl0 = SDMA_CHNENBL0_IMX35,
569 .script_addrs = &sdma_script_imx25,
572 static struct sdma_driver_data sdma_imx35 = {
573 .chnenbl0 = SDMA_CHNENBL0_IMX35,
577 static struct sdma_script_start_addrs sdma_script_imx51 = {
579 .uart_2_mcu_addr = 817,
580 .mcu_2_app_addr = 747,
581 .mcu_2_shp_addr = 961,
582 .ata_2_mcu_addr = 1473,
583 .mcu_2_ata_addr = 1392,
584 .app_2_per_addr = 1033,
585 .app_2_mcu_addr = 683,
586 .shp_2_per_addr = 1251,
587 .shp_2_mcu_addr = 892,
590 static struct sdma_driver_data sdma_imx51 = {
591 .chnenbl0 = SDMA_CHNENBL0_IMX35,
593 .script_addrs = &sdma_script_imx51,
596 static struct sdma_script_start_addrs sdma_script_imx53 = {
598 .app_2_mcu_addr = 683,
599 .mcu_2_app_addr = 747,
600 .uart_2_mcu_addr = 817,
601 .shp_2_mcu_addr = 891,
602 .mcu_2_shp_addr = 960,
603 .uartsh_2_mcu_addr = 1032,
604 .spdif_2_mcu_addr = 1100,
605 .mcu_2_spdif_addr = 1134,
606 .firi_2_mcu_addr = 1193,
607 .mcu_2_firi_addr = 1290,
610 static struct sdma_driver_data sdma_imx53 = {
611 .chnenbl0 = SDMA_CHNENBL0_IMX35,
613 .script_addrs = &sdma_script_imx53,
616 static struct sdma_script_start_addrs sdma_script_imx6q = {
618 .uart_2_mcu_addr = 817,
619 .mcu_2_app_addr = 747,
620 .per_2_per_addr = 6331,
621 .uartsh_2_mcu_addr = 1032,
622 .mcu_2_shp_addr = 960,
623 .app_2_mcu_addr = 683,
624 .shp_2_mcu_addr = 891,
625 .spdif_2_mcu_addr = 1100,
626 .mcu_2_spdif_addr = 1134,
629 static struct sdma_driver_data sdma_imx6q = {
630 .chnenbl0 = SDMA_CHNENBL0_IMX35,
632 .script_addrs = &sdma_script_imx6q,
635 static struct sdma_driver_data sdma_imx6ul = {
636 .chnenbl0 = SDMA_CHNENBL0_IMX35,
638 .script_addrs = &sdma_script_imx6q,
642 static struct sdma_script_start_addrs sdma_script_imx7d = {
644 .uart_2_mcu_addr = 819,
645 .mcu_2_app_addr = 749,
646 .uartsh_2_mcu_addr = 1034,
647 .mcu_2_shp_addr = 962,
648 .app_2_mcu_addr = 685,
649 .shp_2_mcu_addr = 893,
650 .spdif_2_mcu_addr = 1102,
651 .mcu_2_spdif_addr = 1136,
654 static struct sdma_driver_data sdma_imx7d = {
655 .chnenbl0 = SDMA_CHNENBL0_IMX35,
657 .script_addrs = &sdma_script_imx7d,
660 static struct sdma_driver_data sdma_imx8mq = {
661 .chnenbl0 = SDMA_CHNENBL0_IMX35,
663 .script_addrs = &sdma_script_imx7d,
667 static const struct of_device_id sdma_dt_ids[] = {
668 { .compatible = "fsl,imx6q-sdma", .data = &sdma_imx6q, },
669 { .compatible = "fsl,imx53-sdma", .data = &sdma_imx53, },
670 { .compatible = "fsl,imx51-sdma", .data = &sdma_imx51, },
671 { .compatible = "fsl,imx35-sdma", .data = &sdma_imx35, },
672 { .compatible = "fsl,imx31-sdma", .data = &sdma_imx31, },
673 { .compatible = "fsl,imx25-sdma", .data = &sdma_imx25, },
674 { .compatible = "fsl,imx7d-sdma", .data = &sdma_imx7d, },
675 { .compatible = "fsl,imx6ul-sdma", .data = &sdma_imx6ul, },
676 { .compatible = "fsl,imx8mq-sdma", .data = &sdma_imx8mq, },
679 MODULE_DEVICE_TABLE(of, sdma_dt_ids);
681 #define SDMA_H_CONFIG_DSPDMA BIT(12) /* indicates if the DSPDMA is used */
682 #define SDMA_H_CONFIG_RTD_PINS BIT(11) /* indicates if Real-Time Debug pins are enabled */
683 #define SDMA_H_CONFIG_ACR BIT(4) /* indicates if AHB freq /core freq = 2 or 1 */
684 #define SDMA_H_CONFIG_CSM (3) /* indicates which context switch mode is selected*/
686 static inline u32 chnenbl_ofs(struct sdma_engine *sdma, unsigned int event)
688 u32 chnenbl0 = sdma->drvdata->chnenbl0;
689 return chnenbl0 + event * 4;
692 static int sdma_config_ownership(struct sdma_channel *sdmac,
693 bool event_override, bool mcu_override, bool dsp_override)
695 struct sdma_engine *sdma = sdmac->sdma;
696 int channel = sdmac->channel;
697 unsigned long evt, mcu, dsp;
699 if (event_override && mcu_override && dsp_override)
702 evt = readl_relaxed(sdma->regs + SDMA_H_EVTOVR);
703 mcu = readl_relaxed(sdma->regs + SDMA_H_HOSTOVR);
704 dsp = readl_relaxed(sdma->regs + SDMA_H_DSPOVR);
707 __clear_bit(channel, &dsp);
709 __set_bit(channel, &dsp);
712 __clear_bit(channel, &evt);
714 __set_bit(channel, &evt);
717 __clear_bit(channel, &mcu);
719 __set_bit(channel, &mcu);
721 writel_relaxed(evt, sdma->regs + SDMA_H_EVTOVR);
722 writel_relaxed(mcu, sdma->regs + SDMA_H_HOSTOVR);
723 writel_relaxed(dsp, sdma->regs + SDMA_H_DSPOVR);
728 static int is_sdma_channel_enabled(struct sdma_engine *sdma, int channel)
730 return !!(readl(sdma->regs + SDMA_H_STATSTOP) & BIT(channel));
733 static void sdma_enable_channel(struct sdma_engine *sdma, int channel)
735 writel(BIT(channel), sdma->regs + SDMA_H_START);
739 * sdma_run_channel0 - run a channel and wait till it's done
741 static int sdma_run_channel0(struct sdma_engine *sdma)
746 sdma_enable_channel(sdma, 0);
748 ret = readl_relaxed_poll_timeout_atomic(sdma->regs + SDMA_H_STATSTOP,
749 reg, !(reg & 1), 1, 500);
751 dev_err(sdma->dev, "Timeout waiting for CH0 ready\n");
753 /* Set bits of CONFIG register with dynamic context switching */
754 reg = readl(sdma->regs + SDMA_H_CONFIG);
755 if ((reg & SDMA_H_CONFIG_CSM) == 0) {
756 reg |= SDMA_H_CONFIG_CSM;
757 writel_relaxed(reg, sdma->regs + SDMA_H_CONFIG);
763 static int sdma_load_script(struct sdma_engine *sdma, void *buf, int size,
766 struct sdma_buffer_descriptor *bd0 = sdma->bd0;
772 buf_virt = dma_alloc_coherent(sdma->dev, size, &buf_phys, GFP_KERNEL);
776 spin_lock_irqsave(&sdma->channel_0_lock, flags);
778 bd0->mode.command = C0_SETPM;
779 bd0->mode.status = BD_DONE | BD_WRAP | BD_EXTD;
780 bd0->mode.count = size / 2;
781 bd0->buffer_addr = buf_phys;
782 bd0->ext_buffer_addr = address;
784 memcpy(buf_virt, buf, size);
786 ret = sdma_run_channel0(sdma);
788 spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
790 dma_free_coherent(sdma->dev, size, buf_virt, buf_phys);
795 static void sdma_event_enable(struct sdma_channel *sdmac, unsigned int event)
797 struct sdma_engine *sdma = sdmac->sdma;
798 int channel = sdmac->channel;
800 u32 chnenbl = chnenbl_ofs(sdma, event);
802 val = readl_relaxed(sdma->regs + chnenbl);
803 __set_bit(channel, &val);
804 writel_relaxed(val, sdma->regs + chnenbl);
806 /* Set SDMA_DONEx_CONFIG is sw_done enabled */
807 if (sdmac->sw_done) {
808 val = readl_relaxed(sdma->regs + SDMA_DONE0_CONFIG);
809 val |= SDMA_DONE0_CONFIG_DONE_SEL;
810 val &= ~SDMA_DONE0_CONFIG_DONE_DIS;
811 writel_relaxed(val, sdma->regs + SDMA_DONE0_CONFIG);
815 static void sdma_event_disable(struct sdma_channel *sdmac, unsigned int event)
817 struct sdma_engine *sdma = sdmac->sdma;
818 int channel = sdmac->channel;
819 u32 chnenbl = chnenbl_ofs(sdma, event);
822 val = readl_relaxed(sdma->regs + chnenbl);
823 __clear_bit(channel, &val);
824 writel_relaxed(val, sdma->regs + chnenbl);
827 static struct sdma_desc *to_sdma_desc(struct dma_async_tx_descriptor *t)
829 return container_of(t, struct sdma_desc, vd.tx);
832 static void sdma_start_desc(struct sdma_channel *sdmac)
834 struct virt_dma_desc *vd = vchan_next_desc(&sdmac->vc);
835 struct sdma_desc *desc;
836 struct sdma_engine *sdma = sdmac->sdma;
837 int channel = sdmac->channel;
843 sdmac->desc = desc = to_sdma_desc(&vd->tx);
847 sdma->channel_control[channel].base_bd_ptr = desc->bd_phys;
848 sdma->channel_control[channel].current_bd_ptr = desc->bd_phys;
849 sdma_enable_channel(sdma, sdmac->channel);
852 static void sdma_update_channel_loop(struct sdma_channel *sdmac)
854 struct sdma_buffer_descriptor *bd;
856 enum dma_status old_status = sdmac->status;
859 * loop mode. Iterate over descriptors, re-setup them and
860 * call callback function.
862 while (sdmac->desc) {
863 struct sdma_desc *desc = sdmac->desc;
865 bd = &desc->bd[desc->buf_tail];
867 if (bd->mode.status & BD_DONE)
870 if (bd->mode.status & BD_RROR) {
871 bd->mode.status &= ~BD_RROR;
872 sdmac->status = DMA_ERROR;
877 * We use bd->mode.count to calculate the residue, since contains
878 * the number of bytes present in the current buffer descriptor.
881 desc->chn_real_count = bd->mode.count;
882 bd->mode.count = desc->period_len;
883 desc->buf_ptail = desc->buf_tail;
884 desc->buf_tail = (desc->buf_tail + 1) % desc->num_bd;
887 * The callback is called from the interrupt context in order
888 * to reduce latency and to avoid the risk of altering the
889 * SDMA transaction status by the time the client tasklet is
892 spin_unlock(&sdmac->vc.lock);
893 dmaengine_desc_get_callback_invoke(&desc->vd.tx, NULL);
894 spin_lock(&sdmac->vc.lock);
896 /* Assign buffer ownership to SDMA */
897 bd->mode.status |= BD_DONE;
900 sdmac->status = old_status;
904 * SDMA stops cyclic channel when DMA request triggers a channel and no SDMA
905 * owned buffer is available (i.e. BD_DONE was set too late).
907 if (sdmac->desc && !is_sdma_channel_enabled(sdmac->sdma, sdmac->channel)) {
908 dev_warn(sdmac->sdma->dev, "restart cyclic channel %d\n", sdmac->channel);
909 sdma_enable_channel(sdmac->sdma, sdmac->channel);
913 static void mxc_sdma_handle_channel_normal(struct sdma_channel *data)
915 struct sdma_channel *sdmac = (struct sdma_channel *) data;
916 struct sdma_buffer_descriptor *bd;
919 sdmac->desc->chn_real_count = 0;
921 * non loop mode. Iterate over all descriptors, collect
922 * errors and call callback function
924 for (i = 0; i < sdmac->desc->num_bd; i++) {
925 bd = &sdmac->desc->bd[i];
927 if (bd->mode.status & (BD_DONE | BD_RROR))
929 sdmac->desc->chn_real_count += bd->mode.count;
933 sdmac->status = DMA_ERROR;
935 sdmac->status = DMA_COMPLETE;
938 static irqreturn_t sdma_int_handler(int irq, void *dev_id)
940 struct sdma_engine *sdma = dev_id;
943 stat = readl_relaxed(sdma->regs + SDMA_H_INTR);
944 writel_relaxed(stat, sdma->regs + SDMA_H_INTR);
945 /* channel 0 is special and not handled here, see run_channel0() */
949 int channel = fls(stat) - 1;
950 struct sdma_channel *sdmac = &sdma->channel[channel];
951 struct sdma_desc *desc;
953 spin_lock(&sdmac->vc.lock);
956 if (sdmac->flags & IMX_DMA_SG_LOOP) {
957 sdma_update_channel_loop(sdmac);
959 mxc_sdma_handle_channel_normal(sdmac);
960 vchan_cookie_complete(&desc->vd);
961 sdma_start_desc(sdmac);
965 spin_unlock(&sdmac->vc.lock);
966 __clear_bit(channel, &stat);
973 * sets the pc of SDMA script according to the peripheral type
975 static int sdma_get_pc(struct sdma_channel *sdmac,
976 enum sdma_peripheral_type peripheral_type)
978 struct sdma_engine *sdma = sdmac->sdma;
979 int per_2_emi = 0, emi_2_per = 0;
981 * These are needed once we start to support transfers between
982 * two peripherals or memory-to-memory transfers
984 int per_2_per = 0, emi_2_emi = 0;
986 sdmac->pc_from_device = 0;
987 sdmac->pc_to_device = 0;
988 sdmac->device_to_device = 0;
990 sdmac->is_ram_script = false;
992 switch (peripheral_type) {
993 case IMX_DMATYPE_MEMORY:
994 emi_2_emi = sdma->script_addrs->ap_2_ap_addr;
996 case IMX_DMATYPE_DSP:
997 emi_2_per = sdma->script_addrs->bp_2_ap_addr;
998 per_2_emi = sdma->script_addrs->ap_2_bp_addr;
1000 case IMX_DMATYPE_FIRI:
1001 per_2_emi = sdma->script_addrs->firi_2_mcu_addr;
1002 emi_2_per = sdma->script_addrs->mcu_2_firi_addr;
1004 case IMX_DMATYPE_UART:
1005 per_2_emi = sdma->script_addrs->uart_2_mcu_addr;
1006 emi_2_per = sdma->script_addrs->mcu_2_app_addr;
1008 case IMX_DMATYPE_UART_SP:
1009 per_2_emi = sdma->script_addrs->uartsh_2_mcu_addr;
1010 emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
1012 case IMX_DMATYPE_ATA:
1013 per_2_emi = sdma->script_addrs->ata_2_mcu_addr;
1014 emi_2_per = sdma->script_addrs->mcu_2_ata_addr;
1016 case IMX_DMATYPE_CSPI:
1017 per_2_emi = sdma->script_addrs->app_2_mcu_addr;
1019 /* Use rom script mcu_2_app if ERR009165 fixed */
1020 if (sdmac->sdma->drvdata->ecspi_fixed) {
1021 emi_2_per = sdma->script_addrs->mcu_2_app_addr;
1023 emi_2_per = sdma->script_addrs->mcu_2_ecspi_addr;
1024 sdmac->is_ram_script = true;
1028 case IMX_DMATYPE_EXT:
1029 case IMX_DMATYPE_SSI:
1030 case IMX_DMATYPE_SAI:
1031 per_2_emi = sdma->script_addrs->app_2_mcu_addr;
1032 emi_2_per = sdma->script_addrs->mcu_2_app_addr;
1034 case IMX_DMATYPE_SSI_DUAL:
1035 per_2_emi = sdma->script_addrs->ssish_2_mcu_addr;
1036 emi_2_per = sdma->script_addrs->mcu_2_ssish_addr;
1037 sdmac->is_ram_script = true;
1039 case IMX_DMATYPE_SSI_SP:
1040 case IMX_DMATYPE_MMC:
1041 case IMX_DMATYPE_SDHC:
1042 case IMX_DMATYPE_CSPI_SP:
1043 case IMX_DMATYPE_ESAI:
1044 case IMX_DMATYPE_MSHC_SP:
1045 per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
1046 emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
1048 case IMX_DMATYPE_ASRC:
1049 per_2_emi = sdma->script_addrs->asrc_2_mcu_addr;
1050 emi_2_per = sdma->script_addrs->asrc_2_mcu_addr;
1051 per_2_per = sdma->script_addrs->per_2_per_addr;
1052 sdmac->is_ram_script = true;
1054 case IMX_DMATYPE_ASRC_SP:
1055 per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
1056 emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
1057 per_2_per = sdma->script_addrs->per_2_per_addr;
1059 case IMX_DMATYPE_MSHC:
1060 per_2_emi = sdma->script_addrs->mshc_2_mcu_addr;
1061 emi_2_per = sdma->script_addrs->mcu_2_mshc_addr;
1063 case IMX_DMATYPE_CCM:
1064 per_2_emi = sdma->script_addrs->dptc_dvfs_addr;
1066 case IMX_DMATYPE_SPDIF:
1067 per_2_emi = sdma->script_addrs->spdif_2_mcu_addr;
1068 emi_2_per = sdma->script_addrs->mcu_2_spdif_addr;
1070 case IMX_DMATYPE_IPU_MEMORY:
1071 emi_2_per = sdma->script_addrs->ext_mem_2_ipu_addr;
1073 case IMX_DMATYPE_MULTI_SAI:
1074 per_2_emi = sdma->script_addrs->sai_2_mcu_addr;
1075 emi_2_per = sdma->script_addrs->mcu_2_sai_addr;
1078 dev_err(sdma->dev, "Unsupported transfer type %d\n",
1083 sdmac->pc_from_device = per_2_emi;
1084 sdmac->pc_to_device = emi_2_per;
1085 sdmac->device_to_device = per_2_per;
1086 sdmac->pc_to_pc = emi_2_emi;
1091 static int sdma_load_context(struct sdma_channel *sdmac)
1093 struct sdma_engine *sdma = sdmac->sdma;
1094 int channel = sdmac->channel;
1096 struct sdma_context_data *context = sdma->context;
1097 struct sdma_buffer_descriptor *bd0 = sdma->bd0;
1099 unsigned long flags;
1101 if (sdmac->direction == DMA_DEV_TO_MEM)
1102 load_address = sdmac->pc_from_device;
1103 else if (sdmac->direction == DMA_DEV_TO_DEV)
1104 load_address = sdmac->device_to_device;
1105 else if (sdmac->direction == DMA_MEM_TO_MEM)
1106 load_address = sdmac->pc_to_pc;
1108 load_address = sdmac->pc_to_device;
1110 if (load_address < 0)
1111 return load_address;
1113 dev_dbg(sdma->dev, "load_address = %d\n", load_address);
1114 dev_dbg(sdma->dev, "wml = 0x%08x\n", (u32)sdmac->watermark_level);
1115 dev_dbg(sdma->dev, "shp_addr = 0x%08x\n", sdmac->shp_addr);
1116 dev_dbg(sdma->dev, "per_addr = 0x%08x\n", sdmac->per_addr);
1117 dev_dbg(sdma->dev, "event_mask0 = 0x%08x\n", (u32)sdmac->event_mask[0]);
1118 dev_dbg(sdma->dev, "event_mask1 = 0x%08x\n", (u32)sdmac->event_mask[1]);
1120 spin_lock_irqsave(&sdma->channel_0_lock, flags);
1122 memset(context, 0, sizeof(*context));
1123 context->channel_state.pc = load_address;
1125 /* Send by context the event mask,base address for peripheral
1126 * and watermark level
1128 context->gReg[0] = sdmac->event_mask[1];
1129 context->gReg[1] = sdmac->event_mask[0];
1130 context->gReg[2] = sdmac->per_addr;
1131 context->gReg[6] = sdmac->shp_addr;
1132 context->gReg[7] = sdmac->watermark_level;
1134 bd0->mode.command = C0_SETDM;
1135 bd0->mode.status = BD_DONE | BD_WRAP | BD_EXTD;
1136 bd0->mode.count = sizeof(*context) / 4;
1137 bd0->buffer_addr = sdma->context_phys;
1138 bd0->ext_buffer_addr = 2048 + (sizeof(*context) / 4) * channel;
1139 ret = sdma_run_channel0(sdma);
1141 spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
1146 static struct sdma_channel *to_sdma_chan(struct dma_chan *chan)
1148 return container_of(chan, struct sdma_channel, vc.chan);
1151 static int sdma_disable_channel(struct dma_chan *chan)
1153 struct sdma_channel *sdmac = to_sdma_chan(chan);
1154 struct sdma_engine *sdma = sdmac->sdma;
1155 int channel = sdmac->channel;
1157 writel_relaxed(BIT(channel), sdma->regs + SDMA_H_STATSTOP);
1158 sdmac->status = DMA_ERROR;
1162 static void sdma_channel_terminate_work(struct work_struct *work)
1164 struct sdma_channel *sdmac = container_of(work, struct sdma_channel,
1167 * According to NXP R&D team a delay of one BD SDMA cost time
1168 * (maximum is 1ms) should be added after disable of the channel
1169 * bit, to ensure SDMA core has really been stopped after SDMA
1170 * clients call .device_terminate_all.
1172 usleep_range(1000, 2000);
1174 vchan_dma_desc_free_list(&sdmac->vc, &sdmac->terminated);
1177 static int sdma_terminate_all(struct dma_chan *chan)
1179 struct sdma_channel *sdmac = to_sdma_chan(chan);
1180 unsigned long flags;
1182 spin_lock_irqsave(&sdmac->vc.lock, flags);
1184 sdma_disable_channel(chan);
1187 vchan_terminate_vdesc(&sdmac->desc->vd);
1189 * move out current descriptor into terminated list so that
1190 * it could be free in sdma_channel_terminate_work alone
1191 * later without potential involving next descriptor raised
1192 * up before the last descriptor terminated.
1194 vchan_get_all_descriptors(&sdmac->vc, &sdmac->terminated);
1196 schedule_work(&sdmac->terminate_worker);
1199 spin_unlock_irqrestore(&sdmac->vc.lock, flags);
1204 static void sdma_channel_synchronize(struct dma_chan *chan)
1206 struct sdma_channel *sdmac = to_sdma_chan(chan);
1208 vchan_synchronize(&sdmac->vc);
1210 flush_work(&sdmac->terminate_worker);
1213 static void sdma_set_watermarklevel_for_p2p(struct sdma_channel *sdmac)
1215 struct sdma_engine *sdma = sdmac->sdma;
1217 int lwml = sdmac->watermark_level & SDMA_WATERMARK_LEVEL_LWML;
1218 int hwml = (sdmac->watermark_level & SDMA_WATERMARK_LEVEL_HWML) >> 16;
1220 set_bit(sdmac->event_id0 % 32, &sdmac->event_mask[1]);
1221 set_bit(sdmac->event_id1 % 32, &sdmac->event_mask[0]);
1223 if (sdmac->event_id0 > 31)
1224 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_LWE;
1226 if (sdmac->event_id1 > 31)
1227 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_HWE;
1230 * If LWML(src_maxburst) > HWML(dst_maxburst), we need
1231 * swap LWML and HWML of INFO(A.3.2.5.1), also need swap
1232 * r0(event_mask[1]) and r1(event_mask[0]).
1235 sdmac->watermark_level &= ~(SDMA_WATERMARK_LEVEL_LWML |
1236 SDMA_WATERMARK_LEVEL_HWML);
1237 sdmac->watermark_level |= hwml;
1238 sdmac->watermark_level |= lwml << 16;
1239 swap(sdmac->event_mask[0], sdmac->event_mask[1]);
1242 if (sdmac->per_address2 >= sdma->spba_start_addr &&
1243 sdmac->per_address2 <= sdma->spba_end_addr)
1244 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_SP;
1246 if (sdmac->per_address >= sdma->spba_start_addr &&
1247 sdmac->per_address <= sdma->spba_end_addr)
1248 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_DP;
1250 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_CONT;
1253 static void sdma_set_watermarklevel_for_sais(struct sdma_channel *sdmac)
1255 unsigned int n_fifos;
1256 unsigned int stride_fifos;
1257 unsigned int words_per_fifo;
1260 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_SW_DONE;
1262 if (sdmac->direction == DMA_DEV_TO_MEM) {
1263 n_fifos = sdmac->n_fifos_src;
1264 stride_fifos = sdmac->stride_fifos_src;
1266 n_fifos = sdmac->n_fifos_dst;
1267 stride_fifos = sdmac->stride_fifos_dst;
1270 words_per_fifo = sdmac->words_per_fifo;
1272 sdmac->watermark_level |=
1273 FIELD_PREP(SDMA_WATERMARK_LEVEL_N_FIFOS, n_fifos);
1274 sdmac->watermark_level |=
1275 FIELD_PREP(SDMA_WATERMARK_LEVEL_OFF_FIFOS, stride_fifos);
1277 sdmac->watermark_level |=
1278 FIELD_PREP(SDMA_WATERMARK_LEVEL_WORDS_PER_FIFO, (words_per_fifo - 1));
1281 static int sdma_config_channel(struct dma_chan *chan)
1283 struct sdma_channel *sdmac = to_sdma_chan(chan);
1286 sdma_disable_channel(chan);
1288 sdmac->event_mask[0] = 0;
1289 sdmac->event_mask[1] = 0;
1290 sdmac->shp_addr = 0;
1291 sdmac->per_addr = 0;
1293 switch (sdmac->peripheral_type) {
1294 case IMX_DMATYPE_DSP:
1295 sdma_config_ownership(sdmac, false, true, true);
1297 case IMX_DMATYPE_MEMORY:
1298 sdma_config_ownership(sdmac, false, true, false);
1301 sdma_config_ownership(sdmac, true, true, false);
1305 ret = sdma_get_pc(sdmac, sdmac->peripheral_type);
1309 if ((sdmac->peripheral_type != IMX_DMATYPE_MEMORY) &&
1310 (sdmac->peripheral_type != IMX_DMATYPE_DSP)) {
1311 /* Handle multiple event channels differently */
1312 if (sdmac->event_id1) {
1313 if (sdmac->peripheral_type == IMX_DMATYPE_ASRC_SP ||
1314 sdmac->peripheral_type == IMX_DMATYPE_ASRC)
1315 sdma_set_watermarklevel_for_p2p(sdmac);
1317 if (sdmac->peripheral_type ==
1318 IMX_DMATYPE_MULTI_SAI)
1319 sdma_set_watermarklevel_for_sais(sdmac);
1321 __set_bit(sdmac->event_id0, sdmac->event_mask);
1325 sdmac->shp_addr = sdmac->per_address;
1326 sdmac->per_addr = sdmac->per_address2;
1328 sdmac->watermark_level = 0; /* FIXME: M3_BASE_ADDRESS */
1334 static int sdma_set_channel_priority(struct sdma_channel *sdmac,
1335 unsigned int priority)
1337 struct sdma_engine *sdma = sdmac->sdma;
1338 int channel = sdmac->channel;
1340 if (priority < MXC_SDMA_MIN_PRIORITY
1341 || priority > MXC_SDMA_MAX_PRIORITY) {
1345 writel_relaxed(priority, sdma->regs + SDMA_CHNPRI_0 + 4 * channel);
1350 static int sdma_request_channel0(struct sdma_engine *sdma)
1354 sdma->bd0 = dma_alloc_coherent(sdma->dev, PAGE_SIZE, &sdma->bd0_phys,
1361 sdma->channel_control[0].base_bd_ptr = sdma->bd0_phys;
1362 sdma->channel_control[0].current_bd_ptr = sdma->bd0_phys;
1364 sdma_set_channel_priority(&sdma->channel[0], MXC_SDMA_DEFAULT_PRIORITY);
1372 static int sdma_alloc_bd(struct sdma_desc *desc)
1374 u32 bd_size = desc->num_bd * sizeof(struct sdma_buffer_descriptor);
1377 desc->bd = dma_alloc_coherent(desc->sdmac->sdma->dev, bd_size,
1378 &desc->bd_phys, GFP_NOWAIT);
1387 static void sdma_free_bd(struct sdma_desc *desc)
1389 u32 bd_size = desc->num_bd * sizeof(struct sdma_buffer_descriptor);
1391 dma_free_coherent(desc->sdmac->sdma->dev, bd_size, desc->bd,
1395 static void sdma_desc_free(struct virt_dma_desc *vd)
1397 struct sdma_desc *desc = container_of(vd, struct sdma_desc, vd);
1403 static int sdma_alloc_chan_resources(struct dma_chan *chan)
1405 struct sdma_channel *sdmac = to_sdma_chan(chan);
1406 struct imx_dma_data *data = chan->private;
1407 struct imx_dma_data mem_data;
1411 * MEMCPY may never setup chan->private by filter function such as
1412 * dmatest, thus create 'struct imx_dma_data mem_data' for this case.
1413 * Please note in any other slave case, you have to setup chan->private
1414 * with 'struct imx_dma_data' in your own filter function if you want to
1415 * request dma channel by dma_request_channel() rather than
1416 * dma_request_slave_channel(). Othwise, 'MEMCPY in case?' will appear
1417 * to warn you to correct your filter function.
1420 dev_dbg(sdmac->sdma->dev, "MEMCPY in case?\n");
1421 mem_data.priority = 2;
1422 mem_data.peripheral_type = IMX_DMATYPE_MEMORY;
1423 mem_data.dma_request = 0;
1424 mem_data.dma_request2 = 0;
1427 ret = sdma_get_pc(sdmac, IMX_DMATYPE_MEMORY);
1432 switch (data->priority) {
1436 case DMA_PRIO_MEDIUM:
1445 sdmac->peripheral_type = data->peripheral_type;
1446 sdmac->event_id0 = data->dma_request;
1447 sdmac->event_id1 = data->dma_request2;
1449 ret = clk_enable(sdmac->sdma->clk_ipg);
1452 ret = clk_enable(sdmac->sdma->clk_ahb);
1454 goto disable_clk_ipg;
1456 ret = sdma_set_channel_priority(sdmac, prio);
1458 goto disable_clk_ahb;
1463 clk_disable(sdmac->sdma->clk_ahb);
1465 clk_disable(sdmac->sdma->clk_ipg);
1469 static void sdma_free_chan_resources(struct dma_chan *chan)
1471 struct sdma_channel *sdmac = to_sdma_chan(chan);
1472 struct sdma_engine *sdma = sdmac->sdma;
1474 sdma_terminate_all(chan);
1476 sdma_channel_synchronize(chan);
1478 sdma_event_disable(sdmac, sdmac->event_id0);
1479 if (sdmac->event_id1)
1480 sdma_event_disable(sdmac, sdmac->event_id1);
1482 sdmac->event_id0 = 0;
1483 sdmac->event_id1 = 0;
1485 sdma_set_channel_priority(sdmac, 0);
1487 clk_disable(sdma->clk_ipg);
1488 clk_disable(sdma->clk_ahb);
1491 static struct sdma_desc *sdma_transfer_init(struct sdma_channel *sdmac,
1492 enum dma_transfer_direction direction, u32 bds)
1494 struct sdma_desc *desc;
1496 if (!sdmac->sdma->fw_loaded && sdmac->is_ram_script) {
1497 dev_warn_once(sdmac->sdma->dev, "sdma firmware not ready!\n");
1501 desc = kzalloc((sizeof(*desc)), GFP_NOWAIT);
1505 sdmac->status = DMA_IN_PROGRESS;
1506 sdmac->direction = direction;
1509 desc->chn_count = 0;
1510 desc->chn_real_count = 0;
1512 desc->buf_ptail = 0;
1513 desc->sdmac = sdmac;
1516 if (sdma_alloc_bd(desc))
1519 /* No slave_config called in MEMCPY case, so do here */
1520 if (direction == DMA_MEM_TO_MEM)
1521 sdma_config_ownership(sdmac, false, true, false);
1523 if (sdma_load_context(sdmac))
1534 static struct dma_async_tx_descriptor *sdma_prep_memcpy(
1535 struct dma_chan *chan, dma_addr_t dma_dst,
1536 dma_addr_t dma_src, size_t len, unsigned long flags)
1538 struct sdma_channel *sdmac = to_sdma_chan(chan);
1539 struct sdma_engine *sdma = sdmac->sdma;
1540 int channel = sdmac->channel;
1543 struct sdma_buffer_descriptor *bd;
1544 struct sdma_desc *desc;
1549 dev_dbg(sdma->dev, "memcpy: %pad->%pad, len=%zu, channel=%d.\n",
1550 &dma_src, &dma_dst, len, channel);
1552 desc = sdma_transfer_init(sdmac, DMA_MEM_TO_MEM,
1553 len / SDMA_BD_MAX_CNT + 1);
1558 count = min_t(size_t, len, SDMA_BD_MAX_CNT);
1560 bd->buffer_addr = dma_src;
1561 bd->ext_buffer_addr = dma_dst;
1562 bd->mode.count = count;
1563 desc->chn_count += count;
1564 bd->mode.command = 0;
1571 param = BD_DONE | BD_EXTD | BD_CONT;
1579 dev_dbg(sdma->dev, "entry %d: count: %zd dma: 0x%x %s%s\n",
1580 i, count, bd->buffer_addr,
1581 param & BD_WRAP ? "wrap" : "",
1582 param & BD_INTR ? " intr" : "");
1584 bd->mode.status = param;
1587 return vchan_tx_prep(&sdmac->vc, &desc->vd, flags);
1590 static struct dma_async_tx_descriptor *sdma_prep_slave_sg(
1591 struct dma_chan *chan, struct scatterlist *sgl,
1592 unsigned int sg_len, enum dma_transfer_direction direction,
1593 unsigned long flags, void *context)
1595 struct sdma_channel *sdmac = to_sdma_chan(chan);
1596 struct sdma_engine *sdma = sdmac->sdma;
1598 int channel = sdmac->channel;
1599 struct scatterlist *sg;
1600 struct sdma_desc *desc;
1602 sdma_config_write(chan, &sdmac->slave_config, direction);
1604 desc = sdma_transfer_init(sdmac, direction, sg_len);
1608 dev_dbg(sdma->dev, "setting up %d entries for channel %d.\n",
1611 for_each_sg(sgl, sg, sg_len, i) {
1612 struct sdma_buffer_descriptor *bd = &desc->bd[i];
1615 bd->buffer_addr = sg->dma_address;
1617 count = sg_dma_len(sg);
1619 if (count > SDMA_BD_MAX_CNT) {
1620 dev_err(sdma->dev, "SDMA channel %d: maximum bytes for sg entry exceeded: %d > %d\n",
1621 channel, count, SDMA_BD_MAX_CNT);
1625 bd->mode.count = count;
1626 desc->chn_count += count;
1628 if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES)
1631 switch (sdmac->word_size) {
1632 case DMA_SLAVE_BUSWIDTH_4_BYTES:
1633 bd->mode.command = 0;
1634 if (count & 3 || sg->dma_address & 3)
1637 case DMA_SLAVE_BUSWIDTH_2_BYTES:
1638 bd->mode.command = 2;
1639 if (count & 1 || sg->dma_address & 1)
1642 case DMA_SLAVE_BUSWIDTH_1_BYTE:
1643 bd->mode.command = 1;
1649 param = BD_DONE | BD_EXTD | BD_CONT;
1651 if (i + 1 == sg_len) {
1657 dev_dbg(sdma->dev, "entry %d: count: %d dma: %#llx %s%s\n",
1658 i, count, (u64)sg->dma_address,
1659 param & BD_WRAP ? "wrap" : "",
1660 param & BD_INTR ? " intr" : "");
1662 bd->mode.status = param;
1665 return vchan_tx_prep(&sdmac->vc, &desc->vd, flags);
1670 sdmac->status = DMA_ERROR;
1674 static struct dma_async_tx_descriptor *sdma_prep_dma_cyclic(
1675 struct dma_chan *chan, dma_addr_t dma_addr, size_t buf_len,
1676 size_t period_len, enum dma_transfer_direction direction,
1677 unsigned long flags)
1679 struct sdma_channel *sdmac = to_sdma_chan(chan);
1680 struct sdma_engine *sdma = sdmac->sdma;
1681 int num_periods = buf_len / period_len;
1682 int channel = sdmac->channel;
1684 struct sdma_desc *desc;
1686 dev_dbg(sdma->dev, "%s channel: %d\n", __func__, channel);
1688 sdma_config_write(chan, &sdmac->slave_config, direction);
1690 desc = sdma_transfer_init(sdmac, direction, num_periods);
1694 desc->period_len = period_len;
1696 sdmac->flags |= IMX_DMA_SG_LOOP;
1698 if (period_len > SDMA_BD_MAX_CNT) {
1699 dev_err(sdma->dev, "SDMA channel %d: maximum period size exceeded: %zu > %d\n",
1700 channel, period_len, SDMA_BD_MAX_CNT);
1704 while (buf < buf_len) {
1705 struct sdma_buffer_descriptor *bd = &desc->bd[i];
1708 bd->buffer_addr = dma_addr;
1710 bd->mode.count = period_len;
1712 if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES)
1714 if (sdmac->word_size == DMA_SLAVE_BUSWIDTH_4_BYTES)
1715 bd->mode.command = 0;
1717 bd->mode.command = sdmac->word_size;
1719 param = BD_DONE | BD_EXTD | BD_CONT | BD_INTR;
1720 if (i + 1 == num_periods)
1723 dev_dbg(sdma->dev, "entry %d: count: %zu dma: %#llx %s%s\n",
1724 i, period_len, (u64)dma_addr,
1725 param & BD_WRAP ? "wrap" : "",
1726 param & BD_INTR ? " intr" : "");
1728 bd->mode.status = param;
1730 dma_addr += period_len;
1736 return vchan_tx_prep(&sdmac->vc, &desc->vd, flags);
1741 sdmac->status = DMA_ERROR;
1745 static int sdma_config_write(struct dma_chan *chan,
1746 struct dma_slave_config *dmaengine_cfg,
1747 enum dma_transfer_direction direction)
1749 struct sdma_channel *sdmac = to_sdma_chan(chan);
1751 if (direction == DMA_DEV_TO_MEM) {
1752 sdmac->per_address = dmaengine_cfg->src_addr;
1753 sdmac->watermark_level = dmaengine_cfg->src_maxburst *
1754 dmaengine_cfg->src_addr_width;
1755 sdmac->word_size = dmaengine_cfg->src_addr_width;
1756 } else if (direction == DMA_DEV_TO_DEV) {
1757 sdmac->per_address2 = dmaengine_cfg->src_addr;
1758 sdmac->per_address = dmaengine_cfg->dst_addr;
1759 sdmac->watermark_level = dmaengine_cfg->src_maxburst &
1760 SDMA_WATERMARK_LEVEL_LWML;
1761 sdmac->watermark_level |= (dmaengine_cfg->dst_maxburst << 16) &
1762 SDMA_WATERMARK_LEVEL_HWML;
1763 sdmac->word_size = dmaengine_cfg->dst_addr_width;
1765 sdmac->per_address = dmaengine_cfg->dst_addr;
1766 sdmac->watermark_level = dmaengine_cfg->dst_maxburst *
1767 dmaengine_cfg->dst_addr_width;
1768 sdmac->word_size = dmaengine_cfg->dst_addr_width;
1770 sdmac->direction = direction;
1771 return sdma_config_channel(chan);
1774 static int sdma_config(struct dma_chan *chan,
1775 struct dma_slave_config *dmaengine_cfg)
1777 struct sdma_channel *sdmac = to_sdma_chan(chan);
1778 struct sdma_engine *sdma = sdmac->sdma;
1780 memcpy(&sdmac->slave_config, dmaengine_cfg, sizeof(*dmaengine_cfg));
1782 if (dmaengine_cfg->peripheral_config) {
1783 struct sdma_peripheral_config *sdmacfg = dmaengine_cfg->peripheral_config;
1784 if (dmaengine_cfg->peripheral_size != sizeof(struct sdma_peripheral_config)) {
1785 dev_err(sdma->dev, "Invalid peripheral size %zu, expected %zu\n",
1786 dmaengine_cfg->peripheral_size,
1787 sizeof(struct sdma_peripheral_config));
1790 sdmac->n_fifos_src = sdmacfg->n_fifos_src;
1791 sdmac->n_fifos_dst = sdmacfg->n_fifos_dst;
1792 sdmac->stride_fifos_src = sdmacfg->stride_fifos_src;
1793 sdmac->stride_fifos_dst = sdmacfg->stride_fifos_dst;
1794 sdmac->words_per_fifo = sdmacfg->words_per_fifo;
1795 sdmac->sw_done = sdmacfg->sw_done;
1798 /* Set ENBLn earlier to make sure dma request triggered after that */
1799 if (sdmac->event_id0 >= sdmac->sdma->drvdata->num_events)
1801 sdma_event_enable(sdmac, sdmac->event_id0);
1803 if (sdmac->event_id1) {
1804 if (sdmac->event_id1 >= sdmac->sdma->drvdata->num_events)
1806 sdma_event_enable(sdmac, sdmac->event_id1);
1812 static enum dma_status sdma_tx_status(struct dma_chan *chan,
1813 dma_cookie_t cookie,
1814 struct dma_tx_state *txstate)
1816 struct sdma_channel *sdmac = to_sdma_chan(chan);
1817 struct sdma_desc *desc = NULL;
1819 struct virt_dma_desc *vd;
1820 enum dma_status ret;
1821 unsigned long flags;
1823 ret = dma_cookie_status(chan, cookie, txstate);
1824 if (ret == DMA_COMPLETE || !txstate)
1827 spin_lock_irqsave(&sdmac->vc.lock, flags);
1829 vd = vchan_find_desc(&sdmac->vc, cookie);
1831 desc = to_sdma_desc(&vd->tx);
1832 else if (sdmac->desc && sdmac->desc->vd.tx.cookie == cookie)
1836 if (sdmac->flags & IMX_DMA_SG_LOOP)
1837 residue = (desc->num_bd - desc->buf_ptail) *
1838 desc->period_len - desc->chn_real_count;
1840 residue = desc->chn_count - desc->chn_real_count;
1845 spin_unlock_irqrestore(&sdmac->vc.lock, flags);
1847 dma_set_tx_state(txstate, chan->completed_cookie, chan->cookie,
1850 return sdmac->status;
1853 static void sdma_issue_pending(struct dma_chan *chan)
1855 struct sdma_channel *sdmac = to_sdma_chan(chan);
1856 unsigned long flags;
1858 spin_lock_irqsave(&sdmac->vc.lock, flags);
1859 if (vchan_issue_pending(&sdmac->vc) && !sdmac->desc)
1860 sdma_start_desc(sdmac);
1861 spin_unlock_irqrestore(&sdmac->vc.lock, flags);
1864 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1 34
1865 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2 38
1866 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3 45
1867 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V4 46
1869 static void sdma_add_scripts(struct sdma_engine *sdma,
1870 const struct sdma_script_start_addrs *addr)
1872 s32 *addr_arr = (u32 *)addr;
1873 s32 *saddr_arr = (u32 *)sdma->script_addrs;
1876 /* use the default firmware in ROM if missing external firmware */
1877 if (!sdma->script_number)
1878 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1;
1880 if (sdma->script_number > sizeof(struct sdma_script_start_addrs)
1883 "SDMA script number %d not match with firmware.\n",
1884 sdma->script_number);
1888 for (i = 0; i < sdma->script_number; i++)
1889 if (addr_arr[i] > 0)
1890 saddr_arr[i] = addr_arr[i];
1893 * For compatibility with NXP internal legacy kernel before 4.19 which
1894 * is based on uart ram script and mainline kernel based on uart rom
1895 * script, both uart ram/rom scripts are present in newer sdma
1896 * firmware. Use the rom versions if they are present (V3 or newer).
1898 if (sdma->script_number >= SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3) {
1899 if (addr->uart_2_mcu_rom_addr)
1900 sdma->script_addrs->uart_2_mcu_addr = addr->uart_2_mcu_rom_addr;
1901 if (addr->uartsh_2_mcu_rom_addr)
1902 sdma->script_addrs->uartsh_2_mcu_addr = addr->uartsh_2_mcu_rom_addr;
1906 static void sdma_load_firmware(const struct firmware *fw, void *context)
1908 struct sdma_engine *sdma = context;
1909 const struct sdma_firmware_header *header;
1910 const struct sdma_script_start_addrs *addr;
1911 unsigned short *ram_code;
1914 dev_info(sdma->dev, "external firmware not found, using ROM firmware\n");
1915 /* In this case we just use the ROM firmware. */
1919 if (fw->size < sizeof(*header))
1922 header = (struct sdma_firmware_header *)fw->data;
1924 if (header->magic != SDMA_FIRMWARE_MAGIC)
1926 if (header->ram_code_start + header->ram_code_size > fw->size)
1928 switch (header->version_major) {
1930 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1;
1933 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2;
1936 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3;
1939 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V4;
1942 dev_err(sdma->dev, "unknown firmware version\n");
1946 addr = (void *)header + header->script_addrs_start;
1947 ram_code = (void *)header + header->ram_code_start;
1949 clk_enable(sdma->clk_ipg);
1950 clk_enable(sdma->clk_ahb);
1951 /* download the RAM image for SDMA */
1952 sdma_load_script(sdma, ram_code,
1953 header->ram_code_size,
1954 addr->ram_code_start_addr);
1955 clk_disable(sdma->clk_ipg);
1956 clk_disable(sdma->clk_ahb);
1958 sdma_add_scripts(sdma, addr);
1960 sdma->fw_loaded = true;
1962 dev_info(sdma->dev, "loaded firmware %d.%d\n",
1963 header->version_major,
1964 header->version_minor);
1967 release_firmware(fw);
1970 #define EVENT_REMAP_CELLS 3
1972 static int sdma_event_remap(struct sdma_engine *sdma)
1974 struct device_node *np = sdma->dev->of_node;
1975 struct device_node *gpr_np = of_parse_phandle(np, "gpr", 0);
1976 struct property *event_remap;
1978 char propname[] = "fsl,sdma-event-remap";
1979 u32 reg, val, shift, num_map, i;
1982 if (IS_ERR(np) || !gpr_np)
1985 event_remap = of_find_property(np, propname, NULL);
1986 num_map = event_remap ? (event_remap->length / sizeof(u32)) : 0;
1988 dev_dbg(sdma->dev, "no event needs to be remapped\n");
1990 } else if (num_map % EVENT_REMAP_CELLS) {
1991 dev_err(sdma->dev, "the property %s must modulo %d\n",
1992 propname, EVENT_REMAP_CELLS);
1997 gpr = syscon_node_to_regmap(gpr_np);
1999 dev_err(sdma->dev, "failed to get gpr regmap\n");
2004 for (i = 0; i < num_map; i += EVENT_REMAP_CELLS) {
2005 ret = of_property_read_u32_index(np, propname, i, ®);
2007 dev_err(sdma->dev, "failed to read property %s index %d\n",
2012 ret = of_property_read_u32_index(np, propname, i + 1, &shift);
2014 dev_err(sdma->dev, "failed to read property %s index %d\n",
2019 ret = of_property_read_u32_index(np, propname, i + 2, &val);
2021 dev_err(sdma->dev, "failed to read property %s index %d\n",
2026 regmap_update_bits(gpr, reg, BIT(shift), val << shift);
2031 of_node_put(gpr_np);
2036 static int sdma_get_firmware(struct sdma_engine *sdma,
2037 const char *fw_name)
2041 ret = request_firmware_nowait(THIS_MODULE,
2042 FW_ACTION_UEVENT, fw_name, sdma->dev,
2043 GFP_KERNEL, sdma, sdma_load_firmware);
2048 static int sdma_init(struct sdma_engine *sdma)
2051 dma_addr_t ccb_phys;
2053 ret = clk_enable(sdma->clk_ipg);
2056 ret = clk_enable(sdma->clk_ahb);
2058 goto disable_clk_ipg;
2060 if (sdma->drvdata->check_ratio &&
2061 (clk_get_rate(sdma->clk_ahb) == clk_get_rate(sdma->clk_ipg)))
2062 sdma->clk_ratio = 1;
2064 /* Be sure SDMA has not started yet */
2065 writel_relaxed(0, sdma->regs + SDMA_H_C0PTR);
2067 sdma->channel_control = dma_alloc_coherent(sdma->dev,
2068 MAX_DMA_CHANNELS * sizeof(struct sdma_channel_control) +
2069 sizeof(struct sdma_context_data),
2070 &ccb_phys, GFP_KERNEL);
2072 if (!sdma->channel_control) {
2077 sdma->context = (void *)sdma->channel_control +
2078 MAX_DMA_CHANNELS * sizeof(struct sdma_channel_control);
2079 sdma->context_phys = ccb_phys +
2080 MAX_DMA_CHANNELS * sizeof(struct sdma_channel_control);
2082 /* disable all channels */
2083 for (i = 0; i < sdma->drvdata->num_events; i++)
2084 writel_relaxed(0, sdma->regs + chnenbl_ofs(sdma, i));
2086 /* All channels have priority 0 */
2087 for (i = 0; i < MAX_DMA_CHANNELS; i++)
2088 writel_relaxed(0, sdma->regs + SDMA_CHNPRI_0 + i * 4);
2090 ret = sdma_request_channel0(sdma);
2094 sdma_config_ownership(&sdma->channel[0], false, true, false);
2096 /* Set Command Channel (Channel Zero) */
2097 writel_relaxed(0x4050, sdma->regs + SDMA_CHN0ADDR);
2099 /* Set bits of CONFIG register but with static context switching */
2100 if (sdma->clk_ratio)
2101 writel_relaxed(SDMA_H_CONFIG_ACR, sdma->regs + SDMA_H_CONFIG);
2103 writel_relaxed(0, sdma->regs + SDMA_H_CONFIG);
2105 writel_relaxed(ccb_phys, sdma->regs + SDMA_H_C0PTR);
2107 /* Initializes channel's priorities */
2108 sdma_set_channel_priority(&sdma->channel[0], 7);
2110 clk_disable(sdma->clk_ipg);
2111 clk_disable(sdma->clk_ahb);
2116 clk_disable(sdma->clk_ahb);
2118 clk_disable(sdma->clk_ipg);
2119 dev_err(sdma->dev, "initialisation failed with %d\n", ret);
2123 static bool sdma_filter_fn(struct dma_chan *chan, void *fn_param)
2125 struct sdma_channel *sdmac = to_sdma_chan(chan);
2126 struct imx_dma_data *data = fn_param;
2128 if (!imx_dma_is_general_purpose(chan))
2131 sdmac->data = *data;
2132 chan->private = &sdmac->data;
2137 static struct dma_chan *sdma_xlate(struct of_phandle_args *dma_spec,
2138 struct of_dma *ofdma)
2140 struct sdma_engine *sdma = ofdma->of_dma_data;
2141 dma_cap_mask_t mask = sdma->dma_device.cap_mask;
2142 struct imx_dma_data data;
2144 if (dma_spec->args_count != 3)
2147 data.dma_request = dma_spec->args[0];
2148 data.peripheral_type = dma_spec->args[1];
2149 data.priority = dma_spec->args[2];
2151 * init dma_request2 to zero, which is not used by the dts.
2152 * For P2P, dma_request2 is init from dma_request_channel(),
2153 * chan->private will point to the imx_dma_data, and in
2154 * device_alloc_chan_resources(), imx_dma_data.dma_request2 will
2155 * be set to sdmac->event_id1.
2157 data.dma_request2 = 0;
2159 return __dma_request_channel(&mask, sdma_filter_fn, &data,
2163 static int sdma_probe(struct platform_device *pdev)
2165 struct device_node *np = pdev->dev.of_node;
2166 struct device_node *spba_bus;
2167 const char *fw_name;
2170 struct resource *iores;
2171 struct resource spba_res;
2173 struct sdma_engine *sdma;
2176 ret = dma_coerce_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
2180 sdma = devm_kzalloc(&pdev->dev, sizeof(*sdma), GFP_KERNEL);
2184 spin_lock_init(&sdma->channel_0_lock);
2186 sdma->dev = &pdev->dev;
2187 sdma->drvdata = of_device_get_match_data(sdma->dev);
2189 irq = platform_get_irq(pdev, 0);
2193 iores = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2194 sdma->regs = devm_ioremap_resource(&pdev->dev, iores);
2195 if (IS_ERR(sdma->regs))
2196 return PTR_ERR(sdma->regs);
2198 sdma->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
2199 if (IS_ERR(sdma->clk_ipg))
2200 return PTR_ERR(sdma->clk_ipg);
2202 sdma->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
2203 if (IS_ERR(sdma->clk_ahb))
2204 return PTR_ERR(sdma->clk_ahb);
2206 ret = clk_prepare(sdma->clk_ipg);
2210 ret = clk_prepare(sdma->clk_ahb);
2214 ret = devm_request_irq(&pdev->dev, irq, sdma_int_handler, 0,
2215 dev_name(&pdev->dev), sdma);
2221 sdma->script_addrs = kzalloc(sizeof(*sdma->script_addrs), GFP_KERNEL);
2222 if (!sdma->script_addrs) {
2227 /* initially no scripts available */
2228 saddr_arr = (s32 *)sdma->script_addrs;
2229 for (i = 0; i < sizeof(*sdma->script_addrs) / sizeof(s32); i++)
2230 saddr_arr[i] = -EINVAL;
2232 dma_cap_set(DMA_SLAVE, sdma->dma_device.cap_mask);
2233 dma_cap_set(DMA_CYCLIC, sdma->dma_device.cap_mask);
2234 dma_cap_set(DMA_MEMCPY, sdma->dma_device.cap_mask);
2236 INIT_LIST_HEAD(&sdma->dma_device.channels);
2237 /* Initialize channel parameters */
2238 for (i = 0; i < MAX_DMA_CHANNELS; i++) {
2239 struct sdma_channel *sdmac = &sdma->channel[i];
2244 sdmac->vc.desc_free = sdma_desc_free;
2245 INIT_LIST_HEAD(&sdmac->terminated);
2246 INIT_WORK(&sdmac->terminate_worker,
2247 sdma_channel_terminate_work);
2249 * Add the channel to the DMAC list. Do not add channel 0 though
2250 * because we need it internally in the SDMA driver. This also means
2251 * that channel 0 in dmaengine counting matches sdma channel 1.
2254 vchan_init(&sdmac->vc, &sdma->dma_device);
2257 ret = sdma_init(sdma);
2261 ret = sdma_event_remap(sdma);
2265 if (sdma->drvdata->script_addrs)
2266 sdma_add_scripts(sdma, sdma->drvdata->script_addrs);
2268 sdma->dma_device.dev = &pdev->dev;
2270 sdma->dma_device.device_alloc_chan_resources = sdma_alloc_chan_resources;
2271 sdma->dma_device.device_free_chan_resources = sdma_free_chan_resources;
2272 sdma->dma_device.device_tx_status = sdma_tx_status;
2273 sdma->dma_device.device_prep_slave_sg = sdma_prep_slave_sg;
2274 sdma->dma_device.device_prep_dma_cyclic = sdma_prep_dma_cyclic;
2275 sdma->dma_device.device_config = sdma_config;
2276 sdma->dma_device.device_terminate_all = sdma_terminate_all;
2277 sdma->dma_device.device_synchronize = sdma_channel_synchronize;
2278 sdma->dma_device.src_addr_widths = SDMA_DMA_BUSWIDTHS;
2279 sdma->dma_device.dst_addr_widths = SDMA_DMA_BUSWIDTHS;
2280 sdma->dma_device.directions = SDMA_DMA_DIRECTIONS;
2281 sdma->dma_device.residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT;
2282 sdma->dma_device.device_prep_dma_memcpy = sdma_prep_memcpy;
2283 sdma->dma_device.device_issue_pending = sdma_issue_pending;
2284 sdma->dma_device.copy_align = 2;
2285 dma_set_max_seg_size(sdma->dma_device.dev, SDMA_BD_MAX_CNT);
2287 platform_set_drvdata(pdev, sdma);
2289 ret = dma_async_device_register(&sdma->dma_device);
2291 dev_err(&pdev->dev, "unable to register\n");
2296 ret = of_dma_controller_register(np, sdma_xlate, sdma);
2298 dev_err(&pdev->dev, "failed to register controller\n");
2302 spba_bus = of_find_compatible_node(NULL, NULL, "fsl,spba-bus");
2303 ret = of_address_to_resource(spba_bus, 0, &spba_res);
2305 sdma->spba_start_addr = spba_res.start;
2306 sdma->spba_end_addr = spba_res.end;
2308 of_node_put(spba_bus);
2312 * Because that device tree does not encode ROM script address,
2313 * the RAM script in firmware is mandatory for device tree
2314 * probe, otherwise it fails.
2316 ret = of_property_read_string(np, "fsl,sdma-ram-script-name",
2319 dev_warn(&pdev->dev, "failed to get firmware name\n");
2321 ret = sdma_get_firmware(sdma, fw_name);
2323 dev_warn(&pdev->dev, "failed to get firmware from device tree\n");
2329 dma_async_device_unregister(&sdma->dma_device);
2331 kfree(sdma->script_addrs);
2333 clk_unprepare(sdma->clk_ahb);
2335 clk_unprepare(sdma->clk_ipg);
2339 static int sdma_remove(struct platform_device *pdev)
2341 struct sdma_engine *sdma = platform_get_drvdata(pdev);
2344 devm_free_irq(&pdev->dev, sdma->irq, sdma);
2345 dma_async_device_unregister(&sdma->dma_device);
2346 kfree(sdma->script_addrs);
2347 clk_unprepare(sdma->clk_ahb);
2348 clk_unprepare(sdma->clk_ipg);
2349 /* Kill the tasklet */
2350 for (i = 0; i < MAX_DMA_CHANNELS; i++) {
2351 struct sdma_channel *sdmac = &sdma->channel[i];
2353 tasklet_kill(&sdmac->vc.task);
2354 sdma_free_chan_resources(&sdmac->vc.chan);
2357 platform_set_drvdata(pdev, NULL);
2361 static struct platform_driver sdma_driver = {
2364 .of_match_table = sdma_dt_ids,
2366 .remove = sdma_remove,
2367 .probe = sdma_probe,
2370 module_platform_driver(sdma_driver);
2372 MODULE_AUTHOR("Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>");
2373 MODULE_DESCRIPTION("i.MX SDMA driver");
2374 #if IS_ENABLED(CONFIG_SOC_IMX6Q)
2375 MODULE_FIRMWARE("imx/sdma/sdma-imx6q.bin");
2377 #if IS_ENABLED(CONFIG_SOC_IMX7D) || IS_ENABLED(CONFIG_SOC_IMX8M)
2378 MODULE_FIRMWARE("imx/sdma/sdma-imx7d.bin");
2380 MODULE_LICENSE("GPL");