Merge branch 'fortglx/3.14/time' of git://git.linaro.org/people/john.stultz/linux...
[platform/adaptation/renesas_rcar/renesas_kernel.git] / drivers / dma / imx-sdma.c
1 /*
2  * drivers/dma/imx-sdma.c
3  *
4  * This file contains a driver for the Freescale Smart DMA engine
5  *
6  * Copyright 2010 Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>
7  *
8  * Based on code from Freescale:
9  *
10  * Copyright 2004-2009 Freescale Semiconductor, Inc. All Rights Reserved.
11  *
12  * The code contained herein is licensed under the GNU General Public
13  * License. You may obtain a copy of the GNU General Public License
14  * Version 2 or later at the following locations:
15  *
16  * http://www.opensource.org/licenses/gpl-license.html
17  * http://www.gnu.org/copyleft/gpl.html
18  */
19
20 #include <linux/init.h>
21 #include <linux/module.h>
22 #include <linux/types.h>
23 #include <linux/bitops.h>
24 #include <linux/mm.h>
25 #include <linux/interrupt.h>
26 #include <linux/clk.h>
27 #include <linux/delay.h>
28 #include <linux/sched.h>
29 #include <linux/semaphore.h>
30 #include <linux/spinlock.h>
31 #include <linux/device.h>
32 #include <linux/dma-mapping.h>
33 #include <linux/firmware.h>
34 #include <linux/slab.h>
35 #include <linux/platform_device.h>
36 #include <linux/dmaengine.h>
37 #include <linux/of.h>
38 #include <linux/of_device.h>
39 #include <linux/of_dma.h>
40
41 #include <asm/irq.h>
42 #include <linux/platform_data/dma-imx-sdma.h>
43 #include <linux/platform_data/dma-imx.h>
44
45 #include "dmaengine.h"
46
47 /* SDMA registers */
48 #define SDMA_H_C0PTR            0x000
49 #define SDMA_H_INTR             0x004
50 #define SDMA_H_STATSTOP         0x008
51 #define SDMA_H_START            0x00c
52 #define SDMA_H_EVTOVR           0x010
53 #define SDMA_H_DSPOVR           0x014
54 #define SDMA_H_HOSTOVR          0x018
55 #define SDMA_H_EVTPEND          0x01c
56 #define SDMA_H_DSPENBL          0x020
57 #define SDMA_H_RESET            0x024
58 #define SDMA_H_EVTERR           0x028
59 #define SDMA_H_INTRMSK          0x02c
60 #define SDMA_H_PSW              0x030
61 #define SDMA_H_EVTERRDBG        0x034
62 #define SDMA_H_CONFIG           0x038
63 #define SDMA_ONCE_ENB           0x040
64 #define SDMA_ONCE_DATA          0x044
65 #define SDMA_ONCE_INSTR         0x048
66 #define SDMA_ONCE_STAT          0x04c
67 #define SDMA_ONCE_CMD           0x050
68 #define SDMA_EVT_MIRROR         0x054
69 #define SDMA_ILLINSTADDR        0x058
70 #define SDMA_CHN0ADDR           0x05c
71 #define SDMA_ONCE_RTB           0x060
72 #define SDMA_XTRIG_CONF1        0x070
73 #define SDMA_XTRIG_CONF2        0x074
74 #define SDMA_CHNENBL0_IMX35     0x200
75 #define SDMA_CHNENBL0_IMX31     0x080
76 #define SDMA_CHNPRI_0           0x100
77
78 /*
79  * Buffer descriptor status values.
80  */
81 #define BD_DONE  0x01
82 #define BD_WRAP  0x02
83 #define BD_CONT  0x04
84 #define BD_INTR  0x08
85 #define BD_RROR  0x10
86 #define BD_LAST  0x20
87 #define BD_EXTD  0x80
88
89 /*
90  * Data Node descriptor status values.
91  */
92 #define DND_END_OF_FRAME  0x80
93 #define DND_END_OF_XFER   0x40
94 #define DND_DONE          0x20
95 #define DND_UNUSED        0x01
96
97 /*
98  * IPCV2 descriptor status values.
99  */
100 #define BD_IPCV2_END_OF_FRAME  0x40
101
102 #define IPCV2_MAX_NODES        50
103 /*
104  * Error bit set in the CCB status field by the SDMA,
105  * in setbd routine, in case of a transfer error
106  */
107 #define DATA_ERROR  0x10000000
108
109 /*
110  * Buffer descriptor commands.
111  */
112 #define C0_ADDR             0x01
113 #define C0_LOAD             0x02
114 #define C0_DUMP             0x03
115 #define C0_SETCTX           0x07
116 #define C0_GETCTX           0x03
117 #define C0_SETDM            0x01
118 #define C0_SETPM            0x04
119 #define C0_GETDM            0x02
120 #define C0_GETPM            0x08
121 /*
122  * Change endianness indicator in the BD command field
123  */
124 #define CHANGE_ENDIANNESS   0x80
125
126 /*
127  * Mode/Count of data node descriptors - IPCv2
128  */
129 struct sdma_mode_count {
130         u32 count   : 16; /* size of the buffer pointed by this BD */
131         u32 status  :  8; /* E,R,I,C,W,D status bits stored here */
132         u32 command :  8; /* command mostlky used for channel 0 */
133 };
134
135 /*
136  * Buffer descriptor
137  */
138 struct sdma_buffer_descriptor {
139         struct sdma_mode_count  mode;
140         u32 buffer_addr;        /* address of the buffer described */
141         u32 ext_buffer_addr;    /* extended buffer address */
142 } __attribute__ ((packed));
143
144 /**
145  * struct sdma_channel_control - Channel control Block
146  *
147  * @current_bd_ptr      current buffer descriptor processed
148  * @base_bd_ptr         first element of buffer descriptor array
149  * @unused              padding. The SDMA engine expects an array of 128 byte
150  *                      control blocks
151  */
152 struct sdma_channel_control {
153         u32 current_bd_ptr;
154         u32 base_bd_ptr;
155         u32 unused[2];
156 } __attribute__ ((packed));
157
158 /**
159  * struct sdma_state_registers - SDMA context for a channel
160  *
161  * @pc:         program counter
162  * @t:          test bit: status of arithmetic & test instruction
163  * @rpc:        return program counter
164  * @sf:         source fault while loading data
165  * @spc:        loop start program counter
166  * @df:         destination fault while storing data
167  * @epc:        loop end program counter
168  * @lm:         loop mode
169  */
170 struct sdma_state_registers {
171         u32 pc     :14;
172         u32 unused1: 1;
173         u32 t      : 1;
174         u32 rpc    :14;
175         u32 unused0: 1;
176         u32 sf     : 1;
177         u32 spc    :14;
178         u32 unused2: 1;
179         u32 df     : 1;
180         u32 epc    :14;
181         u32 lm     : 2;
182 } __attribute__ ((packed));
183
184 /**
185  * struct sdma_context_data - sdma context specific to a channel
186  *
187  * @channel_state:      channel state bits
188  * @gReg:               general registers
189  * @mda:                burst dma destination address register
190  * @msa:                burst dma source address register
191  * @ms:                 burst dma status register
192  * @md:                 burst dma data register
193  * @pda:                peripheral dma destination address register
194  * @psa:                peripheral dma source address register
195  * @ps:                 peripheral dma status register
196  * @pd:                 peripheral dma data register
197  * @ca:                 CRC polynomial register
198  * @cs:                 CRC accumulator register
199  * @dda:                dedicated core destination address register
200  * @dsa:                dedicated core source address register
201  * @ds:                 dedicated core status register
202  * @dd:                 dedicated core data register
203  */
204 struct sdma_context_data {
205         struct sdma_state_registers  channel_state;
206         u32  gReg[8];
207         u32  mda;
208         u32  msa;
209         u32  ms;
210         u32  md;
211         u32  pda;
212         u32  psa;
213         u32  ps;
214         u32  pd;
215         u32  ca;
216         u32  cs;
217         u32  dda;
218         u32  dsa;
219         u32  ds;
220         u32  dd;
221         u32  scratch0;
222         u32  scratch1;
223         u32  scratch2;
224         u32  scratch3;
225         u32  scratch4;
226         u32  scratch5;
227         u32  scratch6;
228         u32  scratch7;
229 } __attribute__ ((packed));
230
231 #define NUM_BD (int)(PAGE_SIZE / sizeof(struct sdma_buffer_descriptor))
232
233 struct sdma_engine;
234
235 /**
236  * struct sdma_channel - housekeeping for a SDMA channel
237  *
238  * @sdma                pointer to the SDMA engine for this channel
239  * @channel             the channel number, matches dmaengine chan_id + 1
240  * @direction           transfer type. Needed for setting SDMA script
241  * @peripheral_type     Peripheral type. Needed for setting SDMA script
242  * @event_id0           aka dma request line
243  * @event_id1           for channels that use 2 events
244  * @word_size           peripheral access size
245  * @buf_tail            ID of the buffer that was processed
246  * @num_bd              max NUM_BD. number of descriptors currently handling
247  */
248 struct sdma_channel {
249         struct sdma_engine              *sdma;
250         unsigned int                    channel;
251         enum dma_transfer_direction             direction;
252         enum sdma_peripheral_type       peripheral_type;
253         unsigned int                    event_id0;
254         unsigned int                    event_id1;
255         enum dma_slave_buswidth         word_size;
256         unsigned int                    buf_tail;
257         unsigned int                    num_bd;
258         struct sdma_buffer_descriptor   *bd;
259         dma_addr_t                      bd_phys;
260         unsigned int                    pc_from_device, pc_to_device;
261         unsigned long                   flags;
262         dma_addr_t                      per_address;
263         unsigned long                   event_mask[2];
264         unsigned long                   watermark_level;
265         u32                             shp_addr, per_addr;
266         struct dma_chan                 chan;
267         spinlock_t                      lock;
268         struct dma_async_tx_descriptor  desc;
269         enum dma_status                 status;
270         unsigned int                    chn_count;
271         unsigned int                    chn_real_count;
272         struct tasklet_struct           tasklet;
273 };
274
275 #define IMX_DMA_SG_LOOP         BIT(0)
276
277 #define MAX_DMA_CHANNELS 32
278 #define MXC_SDMA_DEFAULT_PRIORITY 1
279 #define MXC_SDMA_MIN_PRIORITY 1
280 #define MXC_SDMA_MAX_PRIORITY 7
281
282 #define SDMA_FIRMWARE_MAGIC 0x414d4453
283
284 /**
285  * struct sdma_firmware_header - Layout of the firmware image
286  *
287  * @magic               "SDMA"
288  * @version_major       increased whenever layout of struct sdma_script_start_addrs
289  *                      changes.
290  * @version_minor       firmware minor version (for binary compatible changes)
291  * @script_addrs_start  offset of struct sdma_script_start_addrs in this image
292  * @num_script_addrs    Number of script addresses in this image
293  * @ram_code_start      offset of SDMA ram image in this firmware image
294  * @ram_code_size       size of SDMA ram image
295  * @script_addrs        Stores the start address of the SDMA scripts
296  *                      (in SDMA memory space)
297  */
298 struct sdma_firmware_header {
299         u32     magic;
300         u32     version_major;
301         u32     version_minor;
302         u32     script_addrs_start;
303         u32     num_script_addrs;
304         u32     ram_code_start;
305         u32     ram_code_size;
306 };
307
308 struct sdma_driver_data {
309         int chnenbl0;
310         int num_events;
311         struct sdma_script_start_addrs  *script_addrs;
312 };
313
314 struct sdma_engine {
315         struct device                   *dev;
316         struct device_dma_parameters    dma_parms;
317         struct sdma_channel             channel[MAX_DMA_CHANNELS];
318         struct sdma_channel_control     *channel_control;
319         void __iomem                    *regs;
320         struct sdma_context_data        *context;
321         dma_addr_t                      context_phys;
322         struct dma_device               dma_device;
323         struct clk                      *clk_ipg;
324         struct clk                      *clk_ahb;
325         spinlock_t                      channel_0_lock;
326         struct sdma_script_start_addrs  *script_addrs;
327         const struct sdma_driver_data   *drvdata;
328 };
329
330 static struct sdma_driver_data sdma_imx31 = {
331         .chnenbl0 = SDMA_CHNENBL0_IMX31,
332         .num_events = 32,
333 };
334
335 static struct sdma_script_start_addrs sdma_script_imx25 = {
336         .ap_2_ap_addr = 729,
337         .uart_2_mcu_addr = 904,
338         .per_2_app_addr = 1255,
339         .mcu_2_app_addr = 834,
340         .uartsh_2_mcu_addr = 1120,
341         .per_2_shp_addr = 1329,
342         .mcu_2_shp_addr = 1048,
343         .ata_2_mcu_addr = 1560,
344         .mcu_2_ata_addr = 1479,
345         .app_2_per_addr = 1189,
346         .app_2_mcu_addr = 770,
347         .shp_2_per_addr = 1407,
348         .shp_2_mcu_addr = 979,
349 };
350
351 static struct sdma_driver_data sdma_imx25 = {
352         .chnenbl0 = SDMA_CHNENBL0_IMX35,
353         .num_events = 48,
354         .script_addrs = &sdma_script_imx25,
355 };
356
357 static struct sdma_driver_data sdma_imx35 = {
358         .chnenbl0 = SDMA_CHNENBL0_IMX35,
359         .num_events = 48,
360 };
361
362 static struct sdma_script_start_addrs sdma_script_imx51 = {
363         .ap_2_ap_addr = 642,
364         .uart_2_mcu_addr = 817,
365         .mcu_2_app_addr = 747,
366         .mcu_2_shp_addr = 961,
367         .ata_2_mcu_addr = 1473,
368         .mcu_2_ata_addr = 1392,
369         .app_2_per_addr = 1033,
370         .app_2_mcu_addr = 683,
371         .shp_2_per_addr = 1251,
372         .shp_2_mcu_addr = 892,
373 };
374
375 static struct sdma_driver_data sdma_imx51 = {
376         .chnenbl0 = SDMA_CHNENBL0_IMX35,
377         .num_events = 48,
378         .script_addrs = &sdma_script_imx51,
379 };
380
381 static struct sdma_script_start_addrs sdma_script_imx53 = {
382         .ap_2_ap_addr = 642,
383         .app_2_mcu_addr = 683,
384         .mcu_2_app_addr = 747,
385         .uart_2_mcu_addr = 817,
386         .shp_2_mcu_addr = 891,
387         .mcu_2_shp_addr = 960,
388         .uartsh_2_mcu_addr = 1032,
389         .spdif_2_mcu_addr = 1100,
390         .mcu_2_spdif_addr = 1134,
391         .firi_2_mcu_addr = 1193,
392         .mcu_2_firi_addr = 1290,
393 };
394
395 static struct sdma_driver_data sdma_imx53 = {
396         .chnenbl0 = SDMA_CHNENBL0_IMX35,
397         .num_events = 48,
398         .script_addrs = &sdma_script_imx53,
399 };
400
401 static struct sdma_script_start_addrs sdma_script_imx6q = {
402         .ap_2_ap_addr = 642,
403         .uart_2_mcu_addr = 817,
404         .mcu_2_app_addr = 747,
405         .per_2_per_addr = 6331,
406         .uartsh_2_mcu_addr = 1032,
407         .mcu_2_shp_addr = 960,
408         .app_2_mcu_addr = 683,
409         .shp_2_mcu_addr = 891,
410         .spdif_2_mcu_addr = 1100,
411         .mcu_2_spdif_addr = 1134,
412 };
413
414 static struct sdma_driver_data sdma_imx6q = {
415         .chnenbl0 = SDMA_CHNENBL0_IMX35,
416         .num_events = 48,
417         .script_addrs = &sdma_script_imx6q,
418 };
419
420 static struct platform_device_id sdma_devtypes[] = {
421         {
422                 .name = "imx25-sdma",
423                 .driver_data = (unsigned long)&sdma_imx25,
424         }, {
425                 .name = "imx31-sdma",
426                 .driver_data = (unsigned long)&sdma_imx31,
427         }, {
428                 .name = "imx35-sdma",
429                 .driver_data = (unsigned long)&sdma_imx35,
430         }, {
431                 .name = "imx51-sdma",
432                 .driver_data = (unsigned long)&sdma_imx51,
433         }, {
434                 .name = "imx53-sdma",
435                 .driver_data = (unsigned long)&sdma_imx53,
436         }, {
437                 .name = "imx6q-sdma",
438                 .driver_data = (unsigned long)&sdma_imx6q,
439         }, {
440                 /* sentinel */
441         }
442 };
443 MODULE_DEVICE_TABLE(platform, sdma_devtypes);
444
445 static const struct of_device_id sdma_dt_ids[] = {
446         { .compatible = "fsl,imx6q-sdma", .data = &sdma_imx6q, },
447         { .compatible = "fsl,imx53-sdma", .data = &sdma_imx53, },
448         { .compatible = "fsl,imx51-sdma", .data = &sdma_imx51, },
449         { .compatible = "fsl,imx35-sdma", .data = &sdma_imx35, },
450         { .compatible = "fsl,imx31-sdma", .data = &sdma_imx31, },
451         { /* sentinel */ }
452 };
453 MODULE_DEVICE_TABLE(of, sdma_dt_ids);
454
455 #define SDMA_H_CONFIG_DSPDMA    BIT(12) /* indicates if the DSPDMA is used */
456 #define SDMA_H_CONFIG_RTD_PINS  BIT(11) /* indicates if Real-Time Debug pins are enabled */
457 #define SDMA_H_CONFIG_ACR       BIT(4)  /* indicates if AHB freq /core freq = 2 or 1 */
458 #define SDMA_H_CONFIG_CSM       (3)       /* indicates which context switch mode is selected*/
459
460 static inline u32 chnenbl_ofs(struct sdma_engine *sdma, unsigned int event)
461 {
462         u32 chnenbl0 = sdma->drvdata->chnenbl0;
463         return chnenbl0 + event * 4;
464 }
465
466 static int sdma_config_ownership(struct sdma_channel *sdmac,
467                 bool event_override, bool mcu_override, bool dsp_override)
468 {
469         struct sdma_engine *sdma = sdmac->sdma;
470         int channel = sdmac->channel;
471         unsigned long evt, mcu, dsp;
472
473         if (event_override && mcu_override && dsp_override)
474                 return -EINVAL;
475
476         evt = readl_relaxed(sdma->regs + SDMA_H_EVTOVR);
477         mcu = readl_relaxed(sdma->regs + SDMA_H_HOSTOVR);
478         dsp = readl_relaxed(sdma->regs + SDMA_H_DSPOVR);
479
480         if (dsp_override)
481                 __clear_bit(channel, &dsp);
482         else
483                 __set_bit(channel, &dsp);
484
485         if (event_override)
486                 __clear_bit(channel, &evt);
487         else
488                 __set_bit(channel, &evt);
489
490         if (mcu_override)
491                 __clear_bit(channel, &mcu);
492         else
493                 __set_bit(channel, &mcu);
494
495         writel_relaxed(evt, sdma->regs + SDMA_H_EVTOVR);
496         writel_relaxed(mcu, sdma->regs + SDMA_H_HOSTOVR);
497         writel_relaxed(dsp, sdma->regs + SDMA_H_DSPOVR);
498
499         return 0;
500 }
501
502 static void sdma_enable_channel(struct sdma_engine *sdma, int channel)
503 {
504         writel(BIT(channel), sdma->regs + SDMA_H_START);
505 }
506
507 /*
508  * sdma_run_channel0 - run a channel and wait till it's done
509  */
510 static int sdma_run_channel0(struct sdma_engine *sdma)
511 {
512         int ret;
513         unsigned long timeout = 500;
514
515         sdma_enable_channel(sdma, 0);
516
517         while (!(ret = readl_relaxed(sdma->regs + SDMA_H_INTR) & 1)) {
518                 if (timeout-- <= 0)
519                         break;
520                 udelay(1);
521         }
522
523         if (ret) {
524                 /* Clear the interrupt status */
525                 writel_relaxed(ret, sdma->regs + SDMA_H_INTR);
526         } else {
527                 dev_err(sdma->dev, "Timeout waiting for CH0 ready\n");
528         }
529
530         return ret ? 0 : -ETIMEDOUT;
531 }
532
533 static int sdma_load_script(struct sdma_engine *sdma, void *buf, int size,
534                 u32 address)
535 {
536         struct sdma_buffer_descriptor *bd0 = sdma->channel[0].bd;
537         void *buf_virt;
538         dma_addr_t buf_phys;
539         int ret;
540         unsigned long flags;
541
542         buf_virt = dma_alloc_coherent(NULL,
543                         size,
544                         &buf_phys, GFP_KERNEL);
545         if (!buf_virt) {
546                 return -ENOMEM;
547         }
548
549         spin_lock_irqsave(&sdma->channel_0_lock, flags);
550
551         bd0->mode.command = C0_SETPM;
552         bd0->mode.status = BD_DONE | BD_INTR | BD_WRAP | BD_EXTD;
553         bd0->mode.count = size / 2;
554         bd0->buffer_addr = buf_phys;
555         bd0->ext_buffer_addr = address;
556
557         memcpy(buf_virt, buf, size);
558
559         ret = sdma_run_channel0(sdma);
560
561         spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
562
563         dma_free_coherent(NULL, size, buf_virt, buf_phys);
564
565         return ret;
566 }
567
568 static void sdma_event_enable(struct sdma_channel *sdmac, unsigned int event)
569 {
570         struct sdma_engine *sdma = sdmac->sdma;
571         int channel = sdmac->channel;
572         unsigned long val;
573         u32 chnenbl = chnenbl_ofs(sdma, event);
574
575         val = readl_relaxed(sdma->regs + chnenbl);
576         __set_bit(channel, &val);
577         writel_relaxed(val, sdma->regs + chnenbl);
578 }
579
580 static void sdma_event_disable(struct sdma_channel *sdmac, unsigned int event)
581 {
582         struct sdma_engine *sdma = sdmac->sdma;
583         int channel = sdmac->channel;
584         u32 chnenbl = chnenbl_ofs(sdma, event);
585         unsigned long val;
586
587         val = readl_relaxed(sdma->regs + chnenbl);
588         __clear_bit(channel, &val);
589         writel_relaxed(val, sdma->regs + chnenbl);
590 }
591
592 static void sdma_handle_channel_loop(struct sdma_channel *sdmac)
593 {
594         struct sdma_buffer_descriptor *bd;
595
596         /*
597          * loop mode. Iterate over descriptors, re-setup them and
598          * call callback function.
599          */
600         while (1) {
601                 bd = &sdmac->bd[sdmac->buf_tail];
602
603                 if (bd->mode.status & BD_DONE)
604                         break;
605
606                 if (bd->mode.status & BD_RROR)
607                         sdmac->status = DMA_ERROR;
608                 else
609                         sdmac->status = DMA_IN_PROGRESS;
610
611                 bd->mode.status |= BD_DONE;
612                 sdmac->buf_tail++;
613                 sdmac->buf_tail %= sdmac->num_bd;
614
615                 if (sdmac->desc.callback)
616                         sdmac->desc.callback(sdmac->desc.callback_param);
617         }
618 }
619
620 static void mxc_sdma_handle_channel_normal(struct sdma_channel *sdmac)
621 {
622         struct sdma_buffer_descriptor *bd;
623         int i, error = 0;
624
625         sdmac->chn_real_count = 0;
626         /*
627          * non loop mode. Iterate over all descriptors, collect
628          * errors and call callback function
629          */
630         for (i = 0; i < sdmac->num_bd; i++) {
631                 bd = &sdmac->bd[i];
632
633                  if (bd->mode.status & (BD_DONE | BD_RROR))
634                         error = -EIO;
635                  sdmac->chn_real_count += bd->mode.count;
636         }
637
638         if (error)
639                 sdmac->status = DMA_ERROR;
640         else
641                 sdmac->status = DMA_COMPLETE;
642
643         dma_cookie_complete(&sdmac->desc);
644         if (sdmac->desc.callback)
645                 sdmac->desc.callback(sdmac->desc.callback_param);
646 }
647
648 static void sdma_tasklet(unsigned long data)
649 {
650         struct sdma_channel *sdmac = (struct sdma_channel *) data;
651
652         if (sdmac->flags & IMX_DMA_SG_LOOP)
653                 sdma_handle_channel_loop(sdmac);
654         else
655                 mxc_sdma_handle_channel_normal(sdmac);
656 }
657
658 static irqreturn_t sdma_int_handler(int irq, void *dev_id)
659 {
660         struct sdma_engine *sdma = dev_id;
661         unsigned long stat;
662
663         stat = readl_relaxed(sdma->regs + SDMA_H_INTR);
664         /* not interested in channel 0 interrupts */
665         stat &= ~1;
666         writel_relaxed(stat, sdma->regs + SDMA_H_INTR);
667
668         while (stat) {
669                 int channel = fls(stat) - 1;
670                 struct sdma_channel *sdmac = &sdma->channel[channel];
671
672                 tasklet_schedule(&sdmac->tasklet);
673
674                 __clear_bit(channel, &stat);
675         }
676
677         return IRQ_HANDLED;
678 }
679
680 /*
681  * sets the pc of SDMA script according to the peripheral type
682  */
683 static void sdma_get_pc(struct sdma_channel *sdmac,
684                 enum sdma_peripheral_type peripheral_type)
685 {
686         struct sdma_engine *sdma = sdmac->sdma;
687         int per_2_emi = 0, emi_2_per = 0;
688         /*
689          * These are needed once we start to support transfers between
690          * two peripherals or memory-to-memory transfers
691          */
692         int per_2_per = 0, emi_2_emi = 0;
693
694         sdmac->pc_from_device = 0;
695         sdmac->pc_to_device = 0;
696
697         switch (peripheral_type) {
698         case IMX_DMATYPE_MEMORY:
699                 emi_2_emi = sdma->script_addrs->ap_2_ap_addr;
700                 break;
701         case IMX_DMATYPE_DSP:
702                 emi_2_per = sdma->script_addrs->bp_2_ap_addr;
703                 per_2_emi = sdma->script_addrs->ap_2_bp_addr;
704                 break;
705         case IMX_DMATYPE_FIRI:
706                 per_2_emi = sdma->script_addrs->firi_2_mcu_addr;
707                 emi_2_per = sdma->script_addrs->mcu_2_firi_addr;
708                 break;
709         case IMX_DMATYPE_UART:
710                 per_2_emi = sdma->script_addrs->uart_2_mcu_addr;
711                 emi_2_per = sdma->script_addrs->mcu_2_app_addr;
712                 break;
713         case IMX_DMATYPE_UART_SP:
714                 per_2_emi = sdma->script_addrs->uartsh_2_mcu_addr;
715                 emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
716                 break;
717         case IMX_DMATYPE_ATA:
718                 per_2_emi = sdma->script_addrs->ata_2_mcu_addr;
719                 emi_2_per = sdma->script_addrs->mcu_2_ata_addr;
720                 break;
721         case IMX_DMATYPE_CSPI:
722         case IMX_DMATYPE_EXT:
723         case IMX_DMATYPE_SSI:
724                 per_2_emi = sdma->script_addrs->app_2_mcu_addr;
725                 emi_2_per = sdma->script_addrs->mcu_2_app_addr;
726                 break;
727         case IMX_DMATYPE_SSI_SP:
728         case IMX_DMATYPE_MMC:
729         case IMX_DMATYPE_SDHC:
730         case IMX_DMATYPE_CSPI_SP:
731         case IMX_DMATYPE_ESAI:
732         case IMX_DMATYPE_MSHC_SP:
733                 per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
734                 emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
735                 break;
736         case IMX_DMATYPE_ASRC:
737                 per_2_emi = sdma->script_addrs->asrc_2_mcu_addr;
738                 emi_2_per = sdma->script_addrs->asrc_2_mcu_addr;
739                 per_2_per = sdma->script_addrs->per_2_per_addr;
740                 break;
741         case IMX_DMATYPE_MSHC:
742                 per_2_emi = sdma->script_addrs->mshc_2_mcu_addr;
743                 emi_2_per = sdma->script_addrs->mcu_2_mshc_addr;
744                 break;
745         case IMX_DMATYPE_CCM:
746                 per_2_emi = sdma->script_addrs->dptc_dvfs_addr;
747                 break;
748         case IMX_DMATYPE_SPDIF:
749                 per_2_emi = sdma->script_addrs->spdif_2_mcu_addr;
750                 emi_2_per = sdma->script_addrs->mcu_2_spdif_addr;
751                 break;
752         case IMX_DMATYPE_IPU_MEMORY:
753                 emi_2_per = sdma->script_addrs->ext_mem_2_ipu_addr;
754                 break;
755         default:
756                 break;
757         }
758
759         sdmac->pc_from_device = per_2_emi;
760         sdmac->pc_to_device = emi_2_per;
761 }
762
763 static int sdma_load_context(struct sdma_channel *sdmac)
764 {
765         struct sdma_engine *sdma = sdmac->sdma;
766         int channel = sdmac->channel;
767         int load_address;
768         struct sdma_context_data *context = sdma->context;
769         struct sdma_buffer_descriptor *bd0 = sdma->channel[0].bd;
770         int ret;
771         unsigned long flags;
772
773         if (sdmac->direction == DMA_DEV_TO_MEM) {
774                 load_address = sdmac->pc_from_device;
775         } else {
776                 load_address = sdmac->pc_to_device;
777         }
778
779         if (load_address < 0)
780                 return load_address;
781
782         dev_dbg(sdma->dev, "load_address = %d\n", load_address);
783         dev_dbg(sdma->dev, "wml = 0x%08x\n", (u32)sdmac->watermark_level);
784         dev_dbg(sdma->dev, "shp_addr = 0x%08x\n", sdmac->shp_addr);
785         dev_dbg(sdma->dev, "per_addr = 0x%08x\n", sdmac->per_addr);
786         dev_dbg(sdma->dev, "event_mask0 = 0x%08x\n", (u32)sdmac->event_mask[0]);
787         dev_dbg(sdma->dev, "event_mask1 = 0x%08x\n", (u32)sdmac->event_mask[1]);
788
789         spin_lock_irqsave(&sdma->channel_0_lock, flags);
790
791         memset(context, 0, sizeof(*context));
792         context->channel_state.pc = load_address;
793
794         /* Send by context the event mask,base address for peripheral
795          * and watermark level
796          */
797         context->gReg[0] = sdmac->event_mask[1];
798         context->gReg[1] = sdmac->event_mask[0];
799         context->gReg[2] = sdmac->per_addr;
800         context->gReg[6] = sdmac->shp_addr;
801         context->gReg[7] = sdmac->watermark_level;
802
803         bd0->mode.command = C0_SETDM;
804         bd0->mode.status = BD_DONE | BD_INTR | BD_WRAP | BD_EXTD;
805         bd0->mode.count = sizeof(*context) / 4;
806         bd0->buffer_addr = sdma->context_phys;
807         bd0->ext_buffer_addr = 2048 + (sizeof(*context) / 4) * channel;
808         ret = sdma_run_channel0(sdma);
809
810         spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
811
812         return ret;
813 }
814
815 static void sdma_disable_channel(struct sdma_channel *sdmac)
816 {
817         struct sdma_engine *sdma = sdmac->sdma;
818         int channel = sdmac->channel;
819
820         writel_relaxed(BIT(channel), sdma->regs + SDMA_H_STATSTOP);
821         sdmac->status = DMA_ERROR;
822 }
823
824 static int sdma_config_channel(struct sdma_channel *sdmac)
825 {
826         int ret;
827
828         sdma_disable_channel(sdmac);
829
830         sdmac->event_mask[0] = 0;
831         sdmac->event_mask[1] = 0;
832         sdmac->shp_addr = 0;
833         sdmac->per_addr = 0;
834
835         if (sdmac->event_id0) {
836                 if (sdmac->event_id0 >= sdmac->sdma->drvdata->num_events)
837                         return -EINVAL;
838                 sdma_event_enable(sdmac, sdmac->event_id0);
839         }
840
841         switch (sdmac->peripheral_type) {
842         case IMX_DMATYPE_DSP:
843                 sdma_config_ownership(sdmac, false, true, true);
844                 break;
845         case IMX_DMATYPE_MEMORY:
846                 sdma_config_ownership(sdmac, false, true, false);
847                 break;
848         default:
849                 sdma_config_ownership(sdmac, true, true, false);
850                 break;
851         }
852
853         sdma_get_pc(sdmac, sdmac->peripheral_type);
854
855         if ((sdmac->peripheral_type != IMX_DMATYPE_MEMORY) &&
856                         (sdmac->peripheral_type != IMX_DMATYPE_DSP)) {
857                 /* Handle multiple event channels differently */
858                 if (sdmac->event_id1) {
859                         sdmac->event_mask[1] = BIT(sdmac->event_id1 % 32);
860                         if (sdmac->event_id1 > 31)
861                                 __set_bit(31, &sdmac->watermark_level);
862                         sdmac->event_mask[0] = BIT(sdmac->event_id0 % 32);
863                         if (sdmac->event_id0 > 31)
864                                 __set_bit(30, &sdmac->watermark_level);
865                 } else {
866                         __set_bit(sdmac->event_id0, sdmac->event_mask);
867                 }
868                 /* Watermark Level */
869                 sdmac->watermark_level |= sdmac->watermark_level;
870                 /* Address */
871                 sdmac->shp_addr = sdmac->per_address;
872         } else {
873                 sdmac->watermark_level = 0; /* FIXME: M3_BASE_ADDRESS */
874         }
875
876         ret = sdma_load_context(sdmac);
877
878         return ret;
879 }
880
881 static int sdma_set_channel_priority(struct sdma_channel *sdmac,
882                 unsigned int priority)
883 {
884         struct sdma_engine *sdma = sdmac->sdma;
885         int channel = sdmac->channel;
886
887         if (priority < MXC_SDMA_MIN_PRIORITY
888             || priority > MXC_SDMA_MAX_PRIORITY) {
889                 return -EINVAL;
890         }
891
892         writel_relaxed(priority, sdma->regs + SDMA_CHNPRI_0 + 4 * channel);
893
894         return 0;
895 }
896
897 static int sdma_request_channel(struct sdma_channel *sdmac)
898 {
899         struct sdma_engine *sdma = sdmac->sdma;
900         int channel = sdmac->channel;
901         int ret = -EBUSY;
902
903         sdmac->bd = dma_alloc_coherent(NULL, PAGE_SIZE, &sdmac->bd_phys, GFP_KERNEL);
904         if (!sdmac->bd) {
905                 ret = -ENOMEM;
906                 goto out;
907         }
908
909         memset(sdmac->bd, 0, PAGE_SIZE);
910
911         sdma->channel_control[channel].base_bd_ptr = sdmac->bd_phys;
912         sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
913
914         sdma_set_channel_priority(sdmac, MXC_SDMA_DEFAULT_PRIORITY);
915         return 0;
916 out:
917
918         return ret;
919 }
920
921 static struct sdma_channel *to_sdma_chan(struct dma_chan *chan)
922 {
923         return container_of(chan, struct sdma_channel, chan);
924 }
925
926 static dma_cookie_t sdma_tx_submit(struct dma_async_tx_descriptor *tx)
927 {
928         unsigned long flags;
929         struct sdma_channel *sdmac = to_sdma_chan(tx->chan);
930         dma_cookie_t cookie;
931
932         spin_lock_irqsave(&sdmac->lock, flags);
933
934         cookie = dma_cookie_assign(tx);
935
936         spin_unlock_irqrestore(&sdmac->lock, flags);
937
938         return cookie;
939 }
940
941 static int sdma_alloc_chan_resources(struct dma_chan *chan)
942 {
943         struct sdma_channel *sdmac = to_sdma_chan(chan);
944         struct imx_dma_data *data = chan->private;
945         int prio, ret;
946
947         if (!data)
948                 return -EINVAL;
949
950         switch (data->priority) {
951         case DMA_PRIO_HIGH:
952                 prio = 3;
953                 break;
954         case DMA_PRIO_MEDIUM:
955                 prio = 2;
956                 break;
957         case DMA_PRIO_LOW:
958         default:
959                 prio = 1;
960                 break;
961         }
962
963         sdmac->peripheral_type = data->peripheral_type;
964         sdmac->event_id0 = data->dma_request;
965
966         clk_enable(sdmac->sdma->clk_ipg);
967         clk_enable(sdmac->sdma->clk_ahb);
968
969         ret = sdma_request_channel(sdmac);
970         if (ret)
971                 return ret;
972
973         ret = sdma_set_channel_priority(sdmac, prio);
974         if (ret)
975                 return ret;
976
977         dma_async_tx_descriptor_init(&sdmac->desc, chan);
978         sdmac->desc.tx_submit = sdma_tx_submit;
979         /* txd.flags will be overwritten in prep funcs */
980         sdmac->desc.flags = DMA_CTRL_ACK;
981
982         return 0;
983 }
984
985 static void sdma_free_chan_resources(struct dma_chan *chan)
986 {
987         struct sdma_channel *sdmac = to_sdma_chan(chan);
988         struct sdma_engine *sdma = sdmac->sdma;
989
990         sdma_disable_channel(sdmac);
991
992         if (sdmac->event_id0)
993                 sdma_event_disable(sdmac, sdmac->event_id0);
994         if (sdmac->event_id1)
995                 sdma_event_disable(sdmac, sdmac->event_id1);
996
997         sdmac->event_id0 = 0;
998         sdmac->event_id1 = 0;
999
1000         sdma_set_channel_priority(sdmac, 0);
1001
1002         dma_free_coherent(NULL, PAGE_SIZE, sdmac->bd, sdmac->bd_phys);
1003
1004         clk_disable(sdma->clk_ipg);
1005         clk_disable(sdma->clk_ahb);
1006 }
1007
1008 static struct dma_async_tx_descriptor *sdma_prep_slave_sg(
1009                 struct dma_chan *chan, struct scatterlist *sgl,
1010                 unsigned int sg_len, enum dma_transfer_direction direction,
1011                 unsigned long flags, void *context)
1012 {
1013         struct sdma_channel *sdmac = to_sdma_chan(chan);
1014         struct sdma_engine *sdma = sdmac->sdma;
1015         int ret, i, count;
1016         int channel = sdmac->channel;
1017         struct scatterlist *sg;
1018
1019         if (sdmac->status == DMA_IN_PROGRESS)
1020                 return NULL;
1021         sdmac->status = DMA_IN_PROGRESS;
1022
1023         sdmac->flags = 0;
1024
1025         sdmac->buf_tail = 0;
1026
1027         dev_dbg(sdma->dev, "setting up %d entries for channel %d.\n",
1028                         sg_len, channel);
1029
1030         sdmac->direction = direction;
1031         ret = sdma_load_context(sdmac);
1032         if (ret)
1033                 goto err_out;
1034
1035         if (sg_len > NUM_BD) {
1036                 dev_err(sdma->dev, "SDMA channel %d: maximum number of sg exceeded: %d > %d\n",
1037                                 channel, sg_len, NUM_BD);
1038                 ret = -EINVAL;
1039                 goto err_out;
1040         }
1041
1042         sdmac->chn_count = 0;
1043         for_each_sg(sgl, sg, sg_len, i) {
1044                 struct sdma_buffer_descriptor *bd = &sdmac->bd[i];
1045                 int param;
1046
1047                 bd->buffer_addr = sg->dma_address;
1048
1049                 count = sg_dma_len(sg);
1050
1051                 if (count > 0xffff) {
1052                         dev_err(sdma->dev, "SDMA channel %d: maximum bytes for sg entry exceeded: %d > %d\n",
1053                                         channel, count, 0xffff);
1054                         ret = -EINVAL;
1055                         goto err_out;
1056                 }
1057
1058                 bd->mode.count = count;
1059                 sdmac->chn_count += count;
1060
1061                 if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES) {
1062                         ret =  -EINVAL;
1063                         goto err_out;
1064                 }
1065
1066                 switch (sdmac->word_size) {
1067                 case DMA_SLAVE_BUSWIDTH_4_BYTES:
1068                         bd->mode.command = 0;
1069                         if (count & 3 || sg->dma_address & 3)
1070                                 return NULL;
1071                         break;
1072                 case DMA_SLAVE_BUSWIDTH_2_BYTES:
1073                         bd->mode.command = 2;
1074                         if (count & 1 || sg->dma_address & 1)
1075                                 return NULL;
1076                         break;
1077                 case DMA_SLAVE_BUSWIDTH_1_BYTE:
1078                         bd->mode.command = 1;
1079                         break;
1080                 default:
1081                         return NULL;
1082                 }
1083
1084                 param = BD_DONE | BD_EXTD | BD_CONT;
1085
1086                 if (i + 1 == sg_len) {
1087                         param |= BD_INTR;
1088                         param |= BD_LAST;
1089                         param &= ~BD_CONT;
1090                 }
1091
1092                 dev_dbg(sdma->dev, "entry %d: count: %d dma: %#llx %s%s\n",
1093                                 i, count, (u64)sg->dma_address,
1094                                 param & BD_WRAP ? "wrap" : "",
1095                                 param & BD_INTR ? " intr" : "");
1096
1097                 bd->mode.status = param;
1098         }
1099
1100         sdmac->num_bd = sg_len;
1101         sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
1102
1103         return &sdmac->desc;
1104 err_out:
1105         sdmac->status = DMA_ERROR;
1106         return NULL;
1107 }
1108
1109 static struct dma_async_tx_descriptor *sdma_prep_dma_cyclic(
1110                 struct dma_chan *chan, dma_addr_t dma_addr, size_t buf_len,
1111                 size_t period_len, enum dma_transfer_direction direction,
1112                 unsigned long flags, void *context)
1113 {
1114         struct sdma_channel *sdmac = to_sdma_chan(chan);
1115         struct sdma_engine *sdma = sdmac->sdma;
1116         int num_periods = buf_len / period_len;
1117         int channel = sdmac->channel;
1118         int ret, i = 0, buf = 0;
1119
1120         dev_dbg(sdma->dev, "%s channel: %d\n", __func__, channel);
1121
1122         if (sdmac->status == DMA_IN_PROGRESS)
1123                 return NULL;
1124
1125         sdmac->status = DMA_IN_PROGRESS;
1126
1127         sdmac->buf_tail = 0;
1128
1129         sdmac->flags |= IMX_DMA_SG_LOOP;
1130         sdmac->direction = direction;
1131         ret = sdma_load_context(sdmac);
1132         if (ret)
1133                 goto err_out;
1134
1135         if (num_periods > NUM_BD) {
1136                 dev_err(sdma->dev, "SDMA channel %d: maximum number of sg exceeded: %d > %d\n",
1137                                 channel, num_periods, NUM_BD);
1138                 goto err_out;
1139         }
1140
1141         if (period_len > 0xffff) {
1142                 dev_err(sdma->dev, "SDMA channel %d: maximum period size exceeded: %d > %d\n",
1143                                 channel, period_len, 0xffff);
1144                 goto err_out;
1145         }
1146
1147         while (buf < buf_len) {
1148                 struct sdma_buffer_descriptor *bd = &sdmac->bd[i];
1149                 int param;
1150
1151                 bd->buffer_addr = dma_addr;
1152
1153                 bd->mode.count = period_len;
1154
1155                 if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES)
1156                         goto err_out;
1157                 if (sdmac->word_size == DMA_SLAVE_BUSWIDTH_4_BYTES)
1158                         bd->mode.command = 0;
1159                 else
1160                         bd->mode.command = sdmac->word_size;
1161
1162                 param = BD_DONE | BD_EXTD | BD_CONT | BD_INTR;
1163                 if (i + 1 == num_periods)
1164                         param |= BD_WRAP;
1165
1166                 dev_dbg(sdma->dev, "entry %d: count: %d dma: %#llx %s%s\n",
1167                                 i, period_len, (u64)dma_addr,
1168                                 param & BD_WRAP ? "wrap" : "",
1169                                 param & BD_INTR ? " intr" : "");
1170
1171                 bd->mode.status = param;
1172
1173                 dma_addr += period_len;
1174                 buf += period_len;
1175
1176                 i++;
1177         }
1178
1179         sdmac->num_bd = num_periods;
1180         sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
1181
1182         return &sdmac->desc;
1183 err_out:
1184         sdmac->status = DMA_ERROR;
1185         return NULL;
1186 }
1187
1188 static int sdma_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
1189                 unsigned long arg)
1190 {
1191         struct sdma_channel *sdmac = to_sdma_chan(chan);
1192         struct dma_slave_config *dmaengine_cfg = (void *)arg;
1193
1194         switch (cmd) {
1195         case DMA_TERMINATE_ALL:
1196                 sdma_disable_channel(sdmac);
1197                 return 0;
1198         case DMA_SLAVE_CONFIG:
1199                 if (dmaengine_cfg->direction == DMA_DEV_TO_MEM) {
1200                         sdmac->per_address = dmaengine_cfg->src_addr;
1201                         sdmac->watermark_level = dmaengine_cfg->src_maxburst *
1202                                                 dmaengine_cfg->src_addr_width;
1203                         sdmac->word_size = dmaengine_cfg->src_addr_width;
1204                 } else {
1205                         sdmac->per_address = dmaengine_cfg->dst_addr;
1206                         sdmac->watermark_level = dmaengine_cfg->dst_maxburst *
1207                                                 dmaengine_cfg->dst_addr_width;
1208                         sdmac->word_size = dmaengine_cfg->dst_addr_width;
1209                 }
1210                 sdmac->direction = dmaengine_cfg->direction;
1211                 return sdma_config_channel(sdmac);
1212         default:
1213                 return -ENOSYS;
1214         }
1215
1216         return -EINVAL;
1217 }
1218
1219 static enum dma_status sdma_tx_status(struct dma_chan *chan,
1220                                       dma_cookie_t cookie,
1221                                       struct dma_tx_state *txstate)
1222 {
1223         struct sdma_channel *sdmac = to_sdma_chan(chan);
1224
1225         dma_set_tx_state(txstate, chan->completed_cookie, chan->cookie,
1226                         sdmac->chn_count - sdmac->chn_real_count);
1227
1228         return sdmac->status;
1229 }
1230
1231 static void sdma_issue_pending(struct dma_chan *chan)
1232 {
1233         struct sdma_channel *sdmac = to_sdma_chan(chan);
1234         struct sdma_engine *sdma = sdmac->sdma;
1235
1236         if (sdmac->status == DMA_IN_PROGRESS)
1237                 sdma_enable_channel(sdma, sdmac->channel);
1238 }
1239
1240 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1 34
1241
1242 static void sdma_add_scripts(struct sdma_engine *sdma,
1243                 const struct sdma_script_start_addrs *addr)
1244 {
1245         s32 *addr_arr = (u32 *)addr;
1246         s32 *saddr_arr = (u32 *)sdma->script_addrs;
1247         int i;
1248
1249         for (i = 0; i < SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1; i++)
1250                 if (addr_arr[i] > 0)
1251                         saddr_arr[i] = addr_arr[i];
1252 }
1253
1254 static void sdma_load_firmware(const struct firmware *fw, void *context)
1255 {
1256         struct sdma_engine *sdma = context;
1257         const struct sdma_firmware_header *header;
1258         const struct sdma_script_start_addrs *addr;
1259         unsigned short *ram_code;
1260
1261         if (!fw) {
1262                 dev_err(sdma->dev, "firmware not found\n");
1263                 return;
1264         }
1265
1266         if (fw->size < sizeof(*header))
1267                 goto err_firmware;
1268
1269         header = (struct sdma_firmware_header *)fw->data;
1270
1271         if (header->magic != SDMA_FIRMWARE_MAGIC)
1272                 goto err_firmware;
1273         if (header->ram_code_start + header->ram_code_size > fw->size)
1274                 goto err_firmware;
1275
1276         addr = (void *)header + header->script_addrs_start;
1277         ram_code = (void *)header + header->ram_code_start;
1278
1279         clk_enable(sdma->clk_ipg);
1280         clk_enable(sdma->clk_ahb);
1281         /* download the RAM image for SDMA */
1282         sdma_load_script(sdma, ram_code,
1283                         header->ram_code_size,
1284                         addr->ram_code_start_addr);
1285         clk_disable(sdma->clk_ipg);
1286         clk_disable(sdma->clk_ahb);
1287
1288         sdma_add_scripts(sdma, addr);
1289
1290         dev_info(sdma->dev, "loaded firmware %d.%d\n",
1291                         header->version_major,
1292                         header->version_minor);
1293
1294 err_firmware:
1295         release_firmware(fw);
1296 }
1297
1298 static int __init sdma_get_firmware(struct sdma_engine *sdma,
1299                 const char *fw_name)
1300 {
1301         int ret;
1302
1303         ret = request_firmware_nowait(THIS_MODULE,
1304                         FW_ACTION_HOTPLUG, fw_name, sdma->dev,
1305                         GFP_KERNEL, sdma, sdma_load_firmware);
1306
1307         return ret;
1308 }
1309
1310 static int __init sdma_init(struct sdma_engine *sdma)
1311 {
1312         int i, ret;
1313         dma_addr_t ccb_phys;
1314
1315         clk_enable(sdma->clk_ipg);
1316         clk_enable(sdma->clk_ahb);
1317
1318         /* Be sure SDMA has not started yet */
1319         writel_relaxed(0, sdma->regs + SDMA_H_C0PTR);
1320
1321         sdma->channel_control = dma_alloc_coherent(NULL,
1322                         MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control) +
1323                         sizeof(struct sdma_context_data),
1324                         &ccb_phys, GFP_KERNEL);
1325
1326         if (!sdma->channel_control) {
1327                 ret = -ENOMEM;
1328                 goto err_dma_alloc;
1329         }
1330
1331         sdma->context = (void *)sdma->channel_control +
1332                 MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
1333         sdma->context_phys = ccb_phys +
1334                 MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
1335
1336         /* Zero-out the CCB structures array just allocated */
1337         memset(sdma->channel_control, 0,
1338                         MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control));
1339
1340         /* disable all channels */
1341         for (i = 0; i < sdma->drvdata->num_events; i++)
1342                 writel_relaxed(0, sdma->regs + chnenbl_ofs(sdma, i));
1343
1344         /* All channels have priority 0 */
1345         for (i = 0; i < MAX_DMA_CHANNELS; i++)
1346                 writel_relaxed(0, sdma->regs + SDMA_CHNPRI_0 + i * 4);
1347
1348         ret = sdma_request_channel(&sdma->channel[0]);
1349         if (ret)
1350                 goto err_dma_alloc;
1351
1352         sdma_config_ownership(&sdma->channel[0], false, true, false);
1353
1354         /* Set Command Channel (Channel Zero) */
1355         writel_relaxed(0x4050, sdma->regs + SDMA_CHN0ADDR);
1356
1357         /* Set bits of CONFIG register but with static context switching */
1358         /* FIXME: Check whether to set ACR bit depending on clock ratios */
1359         writel_relaxed(0, sdma->regs + SDMA_H_CONFIG);
1360
1361         writel_relaxed(ccb_phys, sdma->regs + SDMA_H_C0PTR);
1362
1363         /* Set bits of CONFIG register with given context switching mode */
1364         writel_relaxed(SDMA_H_CONFIG_CSM, sdma->regs + SDMA_H_CONFIG);
1365
1366         /* Initializes channel's priorities */
1367         sdma_set_channel_priority(&sdma->channel[0], 7);
1368
1369         clk_disable(sdma->clk_ipg);
1370         clk_disable(sdma->clk_ahb);
1371
1372         return 0;
1373
1374 err_dma_alloc:
1375         clk_disable(sdma->clk_ipg);
1376         clk_disable(sdma->clk_ahb);
1377         dev_err(sdma->dev, "initialisation failed with %d\n", ret);
1378         return ret;
1379 }
1380
1381 static bool sdma_filter_fn(struct dma_chan *chan, void *fn_param)
1382 {
1383         struct imx_dma_data *data = fn_param;
1384
1385         if (!imx_dma_is_general_purpose(chan))
1386                 return false;
1387
1388         chan->private = data;
1389
1390         return true;
1391 }
1392
1393 static struct dma_chan *sdma_xlate(struct of_phandle_args *dma_spec,
1394                                    struct of_dma *ofdma)
1395 {
1396         struct sdma_engine *sdma = ofdma->of_dma_data;
1397         dma_cap_mask_t mask = sdma->dma_device.cap_mask;
1398         struct imx_dma_data data;
1399
1400         if (dma_spec->args_count != 3)
1401                 return NULL;
1402
1403         data.dma_request = dma_spec->args[0];
1404         data.peripheral_type = dma_spec->args[1];
1405         data.priority = dma_spec->args[2];
1406
1407         return dma_request_channel(mask, sdma_filter_fn, &data);
1408 }
1409
1410 static int __init sdma_probe(struct platform_device *pdev)
1411 {
1412         const struct of_device_id *of_id =
1413                         of_match_device(sdma_dt_ids, &pdev->dev);
1414         struct device_node *np = pdev->dev.of_node;
1415         const char *fw_name;
1416         int ret;
1417         int irq;
1418         struct resource *iores;
1419         struct sdma_platform_data *pdata = dev_get_platdata(&pdev->dev);
1420         int i;
1421         struct sdma_engine *sdma;
1422         s32 *saddr_arr;
1423         const struct sdma_driver_data *drvdata = NULL;
1424
1425         if (of_id)
1426                 drvdata = of_id->data;
1427         else if (pdev->id_entry)
1428                 drvdata = (void *)pdev->id_entry->driver_data;
1429
1430         if (!drvdata) {
1431                 dev_err(&pdev->dev, "unable to find driver data\n");
1432                 return -EINVAL;
1433         }
1434
1435         ret = dma_coerce_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1436         if (ret)
1437                 return ret;
1438
1439         sdma = kzalloc(sizeof(*sdma), GFP_KERNEL);
1440         if (!sdma)
1441                 return -ENOMEM;
1442
1443         spin_lock_init(&sdma->channel_0_lock);
1444
1445         sdma->dev = &pdev->dev;
1446         sdma->drvdata = drvdata;
1447
1448         iores = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1449         irq = platform_get_irq(pdev, 0);
1450         if (!iores || irq < 0) {
1451                 ret = -EINVAL;
1452                 goto err_irq;
1453         }
1454
1455         if (!request_mem_region(iores->start, resource_size(iores), pdev->name)) {
1456                 ret = -EBUSY;
1457                 goto err_request_region;
1458         }
1459
1460         sdma->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
1461         if (IS_ERR(sdma->clk_ipg)) {
1462                 ret = PTR_ERR(sdma->clk_ipg);
1463                 goto err_clk;
1464         }
1465
1466         sdma->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
1467         if (IS_ERR(sdma->clk_ahb)) {
1468                 ret = PTR_ERR(sdma->clk_ahb);
1469                 goto err_clk;
1470         }
1471
1472         clk_prepare(sdma->clk_ipg);
1473         clk_prepare(sdma->clk_ahb);
1474
1475         sdma->regs = ioremap(iores->start, resource_size(iores));
1476         if (!sdma->regs) {
1477                 ret = -ENOMEM;
1478                 goto err_ioremap;
1479         }
1480
1481         ret = request_irq(irq, sdma_int_handler, 0, "sdma", sdma);
1482         if (ret)
1483                 goto err_request_irq;
1484
1485         sdma->script_addrs = kzalloc(sizeof(*sdma->script_addrs), GFP_KERNEL);
1486         if (!sdma->script_addrs) {
1487                 ret = -ENOMEM;
1488                 goto err_alloc;
1489         }
1490
1491         /* initially no scripts available */
1492         saddr_arr = (s32 *)sdma->script_addrs;
1493         for (i = 0; i < SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1; i++)
1494                 saddr_arr[i] = -EINVAL;
1495
1496         dma_cap_set(DMA_SLAVE, sdma->dma_device.cap_mask);
1497         dma_cap_set(DMA_CYCLIC, sdma->dma_device.cap_mask);
1498
1499         INIT_LIST_HEAD(&sdma->dma_device.channels);
1500         /* Initialize channel parameters */
1501         for (i = 0; i < MAX_DMA_CHANNELS; i++) {
1502                 struct sdma_channel *sdmac = &sdma->channel[i];
1503
1504                 sdmac->sdma = sdma;
1505                 spin_lock_init(&sdmac->lock);
1506
1507                 sdmac->chan.device = &sdma->dma_device;
1508                 dma_cookie_init(&sdmac->chan);
1509                 sdmac->channel = i;
1510
1511                 tasklet_init(&sdmac->tasklet, sdma_tasklet,
1512                              (unsigned long) sdmac);
1513                 /*
1514                  * Add the channel to the DMAC list. Do not add channel 0 though
1515                  * because we need it internally in the SDMA driver. This also means
1516                  * that channel 0 in dmaengine counting matches sdma channel 1.
1517                  */
1518                 if (i)
1519                         list_add_tail(&sdmac->chan.device_node,
1520                                         &sdma->dma_device.channels);
1521         }
1522
1523         ret = sdma_init(sdma);
1524         if (ret)
1525                 goto err_init;
1526
1527         if (sdma->drvdata->script_addrs)
1528                 sdma_add_scripts(sdma, sdma->drvdata->script_addrs);
1529         if (pdata && pdata->script_addrs)
1530                 sdma_add_scripts(sdma, pdata->script_addrs);
1531
1532         if (pdata) {
1533                 ret = sdma_get_firmware(sdma, pdata->fw_name);
1534                 if (ret)
1535                         dev_warn(&pdev->dev, "failed to get firmware from platform data\n");
1536         } else {
1537                 /*
1538                  * Because that device tree does not encode ROM script address,
1539                  * the RAM script in firmware is mandatory for device tree
1540                  * probe, otherwise it fails.
1541                  */
1542                 ret = of_property_read_string(np, "fsl,sdma-ram-script-name",
1543                                               &fw_name);
1544                 if (ret)
1545                         dev_warn(&pdev->dev, "failed to get firmware name\n");
1546                 else {
1547                         ret = sdma_get_firmware(sdma, fw_name);
1548                         if (ret)
1549                                 dev_warn(&pdev->dev, "failed to get firmware from device tree\n");
1550                 }
1551         }
1552
1553         sdma->dma_device.dev = &pdev->dev;
1554
1555         sdma->dma_device.device_alloc_chan_resources = sdma_alloc_chan_resources;
1556         sdma->dma_device.device_free_chan_resources = sdma_free_chan_resources;
1557         sdma->dma_device.device_tx_status = sdma_tx_status;
1558         sdma->dma_device.device_prep_slave_sg = sdma_prep_slave_sg;
1559         sdma->dma_device.device_prep_dma_cyclic = sdma_prep_dma_cyclic;
1560         sdma->dma_device.device_control = sdma_control;
1561         sdma->dma_device.device_issue_pending = sdma_issue_pending;
1562         sdma->dma_device.dev->dma_parms = &sdma->dma_parms;
1563         dma_set_max_seg_size(sdma->dma_device.dev, 65535);
1564
1565         ret = dma_async_device_register(&sdma->dma_device);
1566         if (ret) {
1567                 dev_err(&pdev->dev, "unable to register\n");
1568                 goto err_init;
1569         }
1570
1571         if (np) {
1572                 ret = of_dma_controller_register(np, sdma_xlate, sdma);
1573                 if (ret) {
1574                         dev_err(&pdev->dev, "failed to register controller\n");
1575                         goto err_register;
1576                 }
1577         }
1578
1579         dev_info(sdma->dev, "initialized\n");
1580
1581         return 0;
1582
1583 err_register:
1584         dma_async_device_unregister(&sdma->dma_device);
1585 err_init:
1586         kfree(sdma->script_addrs);
1587 err_alloc:
1588         free_irq(irq, sdma);
1589 err_request_irq:
1590         iounmap(sdma->regs);
1591 err_ioremap:
1592 err_clk:
1593         release_mem_region(iores->start, resource_size(iores));
1594 err_request_region:
1595 err_irq:
1596         kfree(sdma);
1597         return ret;
1598 }
1599
1600 static int sdma_remove(struct platform_device *pdev)
1601 {
1602         return -EBUSY;
1603 }
1604
1605 static struct platform_driver sdma_driver = {
1606         .driver         = {
1607                 .name   = "imx-sdma",
1608                 .of_match_table = sdma_dt_ids,
1609         },
1610         .id_table       = sdma_devtypes,
1611         .remove         = sdma_remove,
1612 };
1613
1614 static int __init sdma_module_init(void)
1615 {
1616         return platform_driver_probe(&sdma_driver, sdma_probe);
1617 }
1618 module_init(sdma_module_init);
1619
1620 MODULE_AUTHOR("Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>");
1621 MODULE_DESCRIPTION("i.MX SDMA driver");
1622 MODULE_LICENSE("GPL");