libnvdimm: Move attribute groups to device type
[platform/kernel/linux-rpi.git] / drivers / dma / imx-sdma.c
1 // SPDX-License-Identifier: GPL-2.0+
2 //
3 // drivers/dma/imx-sdma.c
4 //
5 // This file contains a driver for the Freescale Smart DMA engine
6 //
7 // Copyright 2010 Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>
8 //
9 // Based on code from Freescale:
10 //
11 // Copyright 2004-2009 Freescale Semiconductor, Inc. All Rights Reserved.
12
13 #include <linux/init.h>
14 #include <linux/iopoll.h>
15 #include <linux/module.h>
16 #include <linux/types.h>
17 #include <linux/bitops.h>
18 #include <linux/mm.h>
19 #include <linux/interrupt.h>
20 #include <linux/clk.h>
21 #include <linux/delay.h>
22 #include <linux/sched.h>
23 #include <linux/semaphore.h>
24 #include <linux/spinlock.h>
25 #include <linux/device.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/firmware.h>
28 #include <linux/slab.h>
29 #include <linux/platform_device.h>
30 #include <linux/dmaengine.h>
31 #include <linux/of.h>
32 #include <linux/of_address.h>
33 #include <linux/of_device.h>
34 #include <linux/of_dma.h>
35 #include <linux/workqueue.h>
36
37 #include <asm/irq.h>
38 #include <linux/platform_data/dma-imx-sdma.h>
39 #include <linux/platform_data/dma-imx.h>
40 #include <linux/regmap.h>
41 #include <linux/mfd/syscon.h>
42 #include <linux/mfd/syscon/imx6q-iomuxc-gpr.h>
43
44 #include "dmaengine.h"
45 #include "virt-dma.h"
46
47 /* SDMA registers */
48 #define SDMA_H_C0PTR            0x000
49 #define SDMA_H_INTR             0x004
50 #define SDMA_H_STATSTOP         0x008
51 #define SDMA_H_START            0x00c
52 #define SDMA_H_EVTOVR           0x010
53 #define SDMA_H_DSPOVR           0x014
54 #define SDMA_H_HOSTOVR          0x018
55 #define SDMA_H_EVTPEND          0x01c
56 #define SDMA_H_DSPENBL          0x020
57 #define SDMA_H_RESET            0x024
58 #define SDMA_H_EVTERR           0x028
59 #define SDMA_H_INTRMSK          0x02c
60 #define SDMA_H_PSW              0x030
61 #define SDMA_H_EVTERRDBG        0x034
62 #define SDMA_H_CONFIG           0x038
63 #define SDMA_ONCE_ENB           0x040
64 #define SDMA_ONCE_DATA          0x044
65 #define SDMA_ONCE_INSTR         0x048
66 #define SDMA_ONCE_STAT          0x04c
67 #define SDMA_ONCE_CMD           0x050
68 #define SDMA_EVT_MIRROR         0x054
69 #define SDMA_ILLINSTADDR        0x058
70 #define SDMA_CHN0ADDR           0x05c
71 #define SDMA_ONCE_RTB           0x060
72 #define SDMA_XTRIG_CONF1        0x070
73 #define SDMA_XTRIG_CONF2        0x074
74 #define SDMA_CHNENBL0_IMX35     0x200
75 #define SDMA_CHNENBL0_IMX31     0x080
76 #define SDMA_CHNPRI_0           0x100
77
78 /*
79  * Buffer descriptor status values.
80  */
81 #define BD_DONE  0x01
82 #define BD_WRAP  0x02
83 #define BD_CONT  0x04
84 #define BD_INTR  0x08
85 #define BD_RROR  0x10
86 #define BD_LAST  0x20
87 #define BD_EXTD  0x80
88
89 /*
90  * Data Node descriptor status values.
91  */
92 #define DND_END_OF_FRAME  0x80
93 #define DND_END_OF_XFER   0x40
94 #define DND_DONE          0x20
95 #define DND_UNUSED        0x01
96
97 /*
98  * IPCV2 descriptor status values.
99  */
100 #define BD_IPCV2_END_OF_FRAME  0x40
101
102 #define IPCV2_MAX_NODES        50
103 /*
104  * Error bit set in the CCB status field by the SDMA,
105  * in setbd routine, in case of a transfer error
106  */
107 #define DATA_ERROR  0x10000000
108
109 /*
110  * Buffer descriptor commands.
111  */
112 #define C0_ADDR             0x01
113 #define C0_LOAD             0x02
114 #define C0_DUMP             0x03
115 #define C0_SETCTX           0x07
116 #define C0_GETCTX           0x03
117 #define C0_SETDM            0x01
118 #define C0_SETPM            0x04
119 #define C0_GETDM            0x02
120 #define C0_GETPM            0x08
121 /*
122  * Change endianness indicator in the BD command field
123  */
124 #define CHANGE_ENDIANNESS   0x80
125
126 /*
127  *  p_2_p watermark_level description
128  *      Bits            Name                    Description
129  *      0-7             Lower WML               Lower watermark level
130  *      8               PS                      1: Pad Swallowing
131  *                                              0: No Pad Swallowing
132  *      9               PA                      1: Pad Adding
133  *                                              0: No Pad Adding
134  *      10              SPDIF                   If this bit is set both source
135  *                                              and destination are on SPBA
136  *      11              Source Bit(SP)          1: Source on SPBA
137  *                                              0: Source on AIPS
138  *      12              Destination Bit(DP)     1: Destination on SPBA
139  *                                              0: Destination on AIPS
140  *      13-15           ---------               MUST BE 0
141  *      16-23           Higher WML              HWML
142  *      24-27           N                       Total number of samples after
143  *                                              which Pad adding/Swallowing
144  *                                              must be done. It must be odd.
145  *      28              Lower WML Event(LWE)    SDMA events reg to check for
146  *                                              LWML event mask
147  *                                              0: LWE in EVENTS register
148  *                                              1: LWE in EVENTS2 register
149  *      29              Higher WML Event(HWE)   SDMA events reg to check for
150  *                                              HWML event mask
151  *                                              0: HWE in EVENTS register
152  *                                              1: HWE in EVENTS2 register
153  *      30              ---------               MUST BE 0
154  *      31              CONT                    1: Amount of samples to be
155  *                                              transferred is unknown and
156  *                                              script will keep on
157  *                                              transferring samples as long as
158  *                                              both events are detected and
159  *                                              script must be manually stopped
160  *                                              by the application
161  *                                              0: The amount of samples to be
162  *                                              transferred is equal to the
163  *                                              count field of mode word
164  */
165 #define SDMA_WATERMARK_LEVEL_LWML       0xFF
166 #define SDMA_WATERMARK_LEVEL_PS         BIT(8)
167 #define SDMA_WATERMARK_LEVEL_PA         BIT(9)
168 #define SDMA_WATERMARK_LEVEL_SPDIF      BIT(10)
169 #define SDMA_WATERMARK_LEVEL_SP         BIT(11)
170 #define SDMA_WATERMARK_LEVEL_DP         BIT(12)
171 #define SDMA_WATERMARK_LEVEL_HWML       (0xFF << 16)
172 #define SDMA_WATERMARK_LEVEL_LWE        BIT(28)
173 #define SDMA_WATERMARK_LEVEL_HWE        BIT(29)
174 #define SDMA_WATERMARK_LEVEL_CONT       BIT(31)
175
176 #define SDMA_DMA_BUSWIDTHS      (BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
177                                  BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
178                                  BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
179
180 #define SDMA_DMA_DIRECTIONS     (BIT(DMA_DEV_TO_MEM) | \
181                                  BIT(DMA_MEM_TO_DEV) | \
182                                  BIT(DMA_DEV_TO_DEV))
183
184 /*
185  * Mode/Count of data node descriptors - IPCv2
186  */
187 struct sdma_mode_count {
188 #define SDMA_BD_MAX_CNT 0xffff
189         u32 count   : 16; /* size of the buffer pointed by this BD */
190         u32 status  :  8; /* E,R,I,C,W,D status bits stored here */
191         u32 command :  8; /* command mostly used for channel 0 */
192 };
193
194 /*
195  * Buffer descriptor
196  */
197 struct sdma_buffer_descriptor {
198         struct sdma_mode_count  mode;
199         u32 buffer_addr;        /* address of the buffer described */
200         u32 ext_buffer_addr;    /* extended buffer address */
201 } __attribute__ ((packed));
202
203 /**
204  * struct sdma_channel_control - Channel control Block
205  *
206  * @current_bd_ptr:     current buffer descriptor processed
207  * @base_bd_ptr:        first element of buffer descriptor array
208  * @unused:             padding. The SDMA engine expects an array of 128 byte
209  *                      control blocks
210  */
211 struct sdma_channel_control {
212         u32 current_bd_ptr;
213         u32 base_bd_ptr;
214         u32 unused[2];
215 } __attribute__ ((packed));
216
217 /**
218  * struct sdma_state_registers - SDMA context for a channel
219  *
220  * @pc:         program counter
221  * @unused1:    unused
222  * @t:          test bit: status of arithmetic & test instruction
223  * @rpc:        return program counter
224  * @unused0:    unused
225  * @sf:         source fault while loading data
226  * @spc:        loop start program counter
227  * @unused2:    unused
228  * @df:         destination fault while storing data
229  * @epc:        loop end program counter
230  * @lm:         loop mode
231  */
232 struct sdma_state_registers {
233         u32 pc     :14;
234         u32 unused1: 1;
235         u32 t      : 1;
236         u32 rpc    :14;
237         u32 unused0: 1;
238         u32 sf     : 1;
239         u32 spc    :14;
240         u32 unused2: 1;
241         u32 df     : 1;
242         u32 epc    :14;
243         u32 lm     : 2;
244 } __attribute__ ((packed));
245
246 /**
247  * struct sdma_context_data - sdma context specific to a channel
248  *
249  * @channel_state:      channel state bits
250  * @gReg:               general registers
251  * @mda:                burst dma destination address register
252  * @msa:                burst dma source address register
253  * @ms:                 burst dma status register
254  * @md:                 burst dma data register
255  * @pda:                peripheral dma destination address register
256  * @psa:                peripheral dma source address register
257  * @ps:                 peripheral dma status register
258  * @pd:                 peripheral dma data register
259  * @ca:                 CRC polynomial register
260  * @cs:                 CRC accumulator register
261  * @dda:                dedicated core destination address register
262  * @dsa:                dedicated core source address register
263  * @ds:                 dedicated core status register
264  * @dd:                 dedicated core data register
265  * @scratch0:           1st word of dedicated ram for context switch
266  * @scratch1:           2nd word of dedicated ram for context switch
267  * @scratch2:           3rd word of dedicated ram for context switch
268  * @scratch3:           4th word of dedicated ram for context switch
269  * @scratch4:           5th word of dedicated ram for context switch
270  * @scratch5:           6th word of dedicated ram for context switch
271  * @scratch6:           7th word of dedicated ram for context switch
272  * @scratch7:           8th word of dedicated ram for context switch
273  */
274 struct sdma_context_data {
275         struct sdma_state_registers  channel_state;
276         u32  gReg[8];
277         u32  mda;
278         u32  msa;
279         u32  ms;
280         u32  md;
281         u32  pda;
282         u32  psa;
283         u32  ps;
284         u32  pd;
285         u32  ca;
286         u32  cs;
287         u32  dda;
288         u32  dsa;
289         u32  ds;
290         u32  dd;
291         u32  scratch0;
292         u32  scratch1;
293         u32  scratch2;
294         u32  scratch3;
295         u32  scratch4;
296         u32  scratch5;
297         u32  scratch6;
298         u32  scratch7;
299 } __attribute__ ((packed));
300
301
302 struct sdma_engine;
303
304 /**
305  * struct sdma_desc - descriptor structor for one transfer
306  * @vd:                 descriptor for virt dma
307  * @num_bd:             number of descriptors currently handling
308  * @bd_phys:            physical address of bd
309  * @buf_tail:           ID of the buffer that was processed
310  * @buf_ptail:          ID of the previous buffer that was processed
311  * @period_len:         period length, used in cyclic.
312  * @chn_real_count:     the real count updated from bd->mode.count
313  * @chn_count:          the transfer count set
314  * @sdmac:              sdma_channel pointer
315  * @bd:                 pointer of allocate bd
316  */
317 struct sdma_desc {
318         struct virt_dma_desc    vd;
319         unsigned int            num_bd;
320         dma_addr_t              bd_phys;
321         unsigned int            buf_tail;
322         unsigned int            buf_ptail;
323         unsigned int            period_len;
324         unsigned int            chn_real_count;
325         unsigned int            chn_count;
326         struct sdma_channel     *sdmac;
327         struct sdma_buffer_descriptor *bd;
328 };
329
330 /**
331  * struct sdma_channel - housekeeping for a SDMA channel
332  *
333  * @vc:                 virt_dma base structure
334  * @desc:               sdma description including vd and other special member
335  * @sdma:               pointer to the SDMA engine for this channel
336  * @channel:            the channel number, matches dmaengine chan_id + 1
337  * @direction:          transfer type. Needed for setting SDMA script
338  * @slave_config        Slave configuration
339  * @peripheral_type:    Peripheral type. Needed for setting SDMA script
340  * @event_id0:          aka dma request line
341  * @event_id1:          for channels that use 2 events
342  * @word_size:          peripheral access size
343  * @pc_from_device:     script address for those device_2_memory
344  * @pc_to_device:       script address for those memory_2_device
345  * @device_to_device:   script address for those device_2_device
346  * @pc_to_pc:           script address for those memory_2_memory
347  * @flags:              loop mode or not
348  * @per_address:        peripheral source or destination address in common case
349  *                      destination address in p_2_p case
350  * @per_address2:       peripheral source address in p_2_p case
351  * @event_mask:         event mask used in p_2_p script
352  * @watermark_level:    value for gReg[7], some script will extend it from
353  *                      basic watermark such as p_2_p
354  * @shp_addr:           value for gReg[6]
355  * @per_addr:           value for gReg[2]
356  * @status:             status of dma channel
357  * @data:               specific sdma interface structure
358  * @bd_pool:            dma_pool for bd
359  */
360 struct sdma_channel {
361         struct virt_dma_chan            vc;
362         struct sdma_desc                *desc;
363         struct sdma_engine              *sdma;
364         unsigned int                    channel;
365         enum dma_transfer_direction             direction;
366         struct dma_slave_config         slave_config;
367         enum sdma_peripheral_type       peripheral_type;
368         unsigned int                    event_id0;
369         unsigned int                    event_id1;
370         enum dma_slave_buswidth         word_size;
371         unsigned int                    pc_from_device, pc_to_device;
372         unsigned int                    device_to_device;
373         unsigned int                    pc_to_pc;
374         unsigned long                   flags;
375         dma_addr_t                      per_address, per_address2;
376         unsigned long                   event_mask[2];
377         unsigned long                   watermark_level;
378         u32                             shp_addr, per_addr;
379         enum dma_status                 status;
380         bool                            context_loaded;
381         struct imx_dma_data             data;
382         struct work_struct              terminate_worker;
383 };
384
385 #define IMX_DMA_SG_LOOP         BIT(0)
386
387 #define MAX_DMA_CHANNELS 32
388 #define MXC_SDMA_DEFAULT_PRIORITY 1
389 #define MXC_SDMA_MIN_PRIORITY 1
390 #define MXC_SDMA_MAX_PRIORITY 7
391
392 #define SDMA_FIRMWARE_MAGIC 0x414d4453
393
394 /**
395  * struct sdma_firmware_header - Layout of the firmware image
396  *
397  * @magic:              "SDMA"
398  * @version_major:      increased whenever layout of struct
399  *                      sdma_script_start_addrs changes.
400  * @version_minor:      firmware minor version (for binary compatible changes)
401  * @script_addrs_start: offset of struct sdma_script_start_addrs in this image
402  * @num_script_addrs:   Number of script addresses in this image
403  * @ram_code_start:     offset of SDMA ram image in this firmware image
404  * @ram_code_size:      size of SDMA ram image
405  * @script_addrs:       Stores the start address of the SDMA scripts
406  *                      (in SDMA memory space)
407  */
408 struct sdma_firmware_header {
409         u32     magic;
410         u32     version_major;
411         u32     version_minor;
412         u32     script_addrs_start;
413         u32     num_script_addrs;
414         u32     ram_code_start;
415         u32     ram_code_size;
416 };
417
418 struct sdma_driver_data {
419         int chnenbl0;
420         int num_events;
421         struct sdma_script_start_addrs  *script_addrs;
422         bool check_ratio;
423 };
424
425 struct sdma_engine {
426         struct device                   *dev;
427         struct device_dma_parameters    dma_parms;
428         struct sdma_channel             channel[MAX_DMA_CHANNELS];
429         struct sdma_channel_control     *channel_control;
430         void __iomem                    *regs;
431         struct sdma_context_data        *context;
432         dma_addr_t                      context_phys;
433         struct dma_device               dma_device;
434         struct clk                      *clk_ipg;
435         struct clk                      *clk_ahb;
436         spinlock_t                      channel_0_lock;
437         u32                             script_number;
438         struct sdma_script_start_addrs  *script_addrs;
439         const struct sdma_driver_data   *drvdata;
440         u32                             spba_start_addr;
441         u32                             spba_end_addr;
442         unsigned int                    irq;
443         dma_addr_t                      bd0_phys;
444         struct sdma_buffer_descriptor   *bd0;
445         /* clock ratio for AHB:SDMA core. 1:1 is 1, 2:1 is 0*/
446         bool                            clk_ratio;
447 };
448
449 static int sdma_config_write(struct dma_chan *chan,
450                        struct dma_slave_config *dmaengine_cfg,
451                        enum dma_transfer_direction direction);
452
453 static struct sdma_driver_data sdma_imx31 = {
454         .chnenbl0 = SDMA_CHNENBL0_IMX31,
455         .num_events = 32,
456 };
457
458 static struct sdma_script_start_addrs sdma_script_imx25 = {
459         .ap_2_ap_addr = 729,
460         .uart_2_mcu_addr = 904,
461         .per_2_app_addr = 1255,
462         .mcu_2_app_addr = 834,
463         .uartsh_2_mcu_addr = 1120,
464         .per_2_shp_addr = 1329,
465         .mcu_2_shp_addr = 1048,
466         .ata_2_mcu_addr = 1560,
467         .mcu_2_ata_addr = 1479,
468         .app_2_per_addr = 1189,
469         .app_2_mcu_addr = 770,
470         .shp_2_per_addr = 1407,
471         .shp_2_mcu_addr = 979,
472 };
473
474 static struct sdma_driver_data sdma_imx25 = {
475         .chnenbl0 = SDMA_CHNENBL0_IMX35,
476         .num_events = 48,
477         .script_addrs = &sdma_script_imx25,
478 };
479
480 static struct sdma_driver_data sdma_imx35 = {
481         .chnenbl0 = SDMA_CHNENBL0_IMX35,
482         .num_events = 48,
483 };
484
485 static struct sdma_script_start_addrs sdma_script_imx51 = {
486         .ap_2_ap_addr = 642,
487         .uart_2_mcu_addr = 817,
488         .mcu_2_app_addr = 747,
489         .mcu_2_shp_addr = 961,
490         .ata_2_mcu_addr = 1473,
491         .mcu_2_ata_addr = 1392,
492         .app_2_per_addr = 1033,
493         .app_2_mcu_addr = 683,
494         .shp_2_per_addr = 1251,
495         .shp_2_mcu_addr = 892,
496 };
497
498 static struct sdma_driver_data sdma_imx51 = {
499         .chnenbl0 = SDMA_CHNENBL0_IMX35,
500         .num_events = 48,
501         .script_addrs = &sdma_script_imx51,
502 };
503
504 static struct sdma_script_start_addrs sdma_script_imx53 = {
505         .ap_2_ap_addr = 642,
506         .app_2_mcu_addr = 683,
507         .mcu_2_app_addr = 747,
508         .uart_2_mcu_addr = 817,
509         .shp_2_mcu_addr = 891,
510         .mcu_2_shp_addr = 960,
511         .uartsh_2_mcu_addr = 1032,
512         .spdif_2_mcu_addr = 1100,
513         .mcu_2_spdif_addr = 1134,
514         .firi_2_mcu_addr = 1193,
515         .mcu_2_firi_addr = 1290,
516 };
517
518 static struct sdma_driver_data sdma_imx53 = {
519         .chnenbl0 = SDMA_CHNENBL0_IMX35,
520         .num_events = 48,
521         .script_addrs = &sdma_script_imx53,
522 };
523
524 static struct sdma_script_start_addrs sdma_script_imx6q = {
525         .ap_2_ap_addr = 642,
526         .uart_2_mcu_addr = 817,
527         .mcu_2_app_addr = 747,
528         .per_2_per_addr = 6331,
529         .uartsh_2_mcu_addr = 1032,
530         .mcu_2_shp_addr = 960,
531         .app_2_mcu_addr = 683,
532         .shp_2_mcu_addr = 891,
533         .spdif_2_mcu_addr = 1100,
534         .mcu_2_spdif_addr = 1134,
535 };
536
537 static struct sdma_driver_data sdma_imx6q = {
538         .chnenbl0 = SDMA_CHNENBL0_IMX35,
539         .num_events = 48,
540         .script_addrs = &sdma_script_imx6q,
541 };
542
543 static struct sdma_script_start_addrs sdma_script_imx7d = {
544         .ap_2_ap_addr = 644,
545         .uart_2_mcu_addr = 819,
546         .mcu_2_app_addr = 749,
547         .uartsh_2_mcu_addr = 1034,
548         .mcu_2_shp_addr = 962,
549         .app_2_mcu_addr = 685,
550         .shp_2_mcu_addr = 893,
551         .spdif_2_mcu_addr = 1102,
552         .mcu_2_spdif_addr = 1136,
553 };
554
555 static struct sdma_driver_data sdma_imx7d = {
556         .chnenbl0 = SDMA_CHNENBL0_IMX35,
557         .num_events = 48,
558         .script_addrs = &sdma_script_imx7d,
559 };
560
561 static struct sdma_driver_data sdma_imx8mq = {
562         .chnenbl0 = SDMA_CHNENBL0_IMX35,
563         .num_events = 48,
564         .script_addrs = &sdma_script_imx7d,
565         .check_ratio = 1,
566 };
567
568 static const struct platform_device_id sdma_devtypes[] = {
569         {
570                 .name = "imx25-sdma",
571                 .driver_data = (unsigned long)&sdma_imx25,
572         }, {
573                 .name = "imx31-sdma",
574                 .driver_data = (unsigned long)&sdma_imx31,
575         }, {
576                 .name = "imx35-sdma",
577                 .driver_data = (unsigned long)&sdma_imx35,
578         }, {
579                 .name = "imx51-sdma",
580                 .driver_data = (unsigned long)&sdma_imx51,
581         }, {
582                 .name = "imx53-sdma",
583                 .driver_data = (unsigned long)&sdma_imx53,
584         }, {
585                 .name = "imx6q-sdma",
586                 .driver_data = (unsigned long)&sdma_imx6q,
587         }, {
588                 .name = "imx7d-sdma",
589                 .driver_data = (unsigned long)&sdma_imx7d,
590         }, {
591                 .name = "imx8mq-sdma",
592                 .driver_data = (unsigned long)&sdma_imx8mq,
593         }, {
594                 /* sentinel */
595         }
596 };
597 MODULE_DEVICE_TABLE(platform, sdma_devtypes);
598
599 static const struct of_device_id sdma_dt_ids[] = {
600         { .compatible = "fsl,imx6q-sdma", .data = &sdma_imx6q, },
601         { .compatible = "fsl,imx53-sdma", .data = &sdma_imx53, },
602         { .compatible = "fsl,imx51-sdma", .data = &sdma_imx51, },
603         { .compatible = "fsl,imx35-sdma", .data = &sdma_imx35, },
604         { .compatible = "fsl,imx31-sdma", .data = &sdma_imx31, },
605         { .compatible = "fsl,imx25-sdma", .data = &sdma_imx25, },
606         { .compatible = "fsl,imx7d-sdma", .data = &sdma_imx7d, },
607         { .compatible = "fsl,imx8mq-sdma", .data = &sdma_imx8mq, },
608         { /* sentinel */ }
609 };
610 MODULE_DEVICE_TABLE(of, sdma_dt_ids);
611
612 #define SDMA_H_CONFIG_DSPDMA    BIT(12) /* indicates if the DSPDMA is used */
613 #define SDMA_H_CONFIG_RTD_PINS  BIT(11) /* indicates if Real-Time Debug pins are enabled */
614 #define SDMA_H_CONFIG_ACR       BIT(4)  /* indicates if AHB freq /core freq = 2 or 1 */
615 #define SDMA_H_CONFIG_CSM       (3)       /* indicates which context switch mode is selected*/
616
617 static inline u32 chnenbl_ofs(struct sdma_engine *sdma, unsigned int event)
618 {
619         u32 chnenbl0 = sdma->drvdata->chnenbl0;
620         return chnenbl0 + event * 4;
621 }
622
623 static int sdma_config_ownership(struct sdma_channel *sdmac,
624                 bool event_override, bool mcu_override, bool dsp_override)
625 {
626         struct sdma_engine *sdma = sdmac->sdma;
627         int channel = sdmac->channel;
628         unsigned long evt, mcu, dsp;
629
630         if (event_override && mcu_override && dsp_override)
631                 return -EINVAL;
632
633         evt = readl_relaxed(sdma->regs + SDMA_H_EVTOVR);
634         mcu = readl_relaxed(sdma->regs + SDMA_H_HOSTOVR);
635         dsp = readl_relaxed(sdma->regs + SDMA_H_DSPOVR);
636
637         if (dsp_override)
638                 __clear_bit(channel, &dsp);
639         else
640                 __set_bit(channel, &dsp);
641
642         if (event_override)
643                 __clear_bit(channel, &evt);
644         else
645                 __set_bit(channel, &evt);
646
647         if (mcu_override)
648                 __clear_bit(channel, &mcu);
649         else
650                 __set_bit(channel, &mcu);
651
652         writel_relaxed(evt, sdma->regs + SDMA_H_EVTOVR);
653         writel_relaxed(mcu, sdma->regs + SDMA_H_HOSTOVR);
654         writel_relaxed(dsp, sdma->regs + SDMA_H_DSPOVR);
655
656         return 0;
657 }
658
659 static void sdma_enable_channel(struct sdma_engine *sdma, int channel)
660 {
661         writel(BIT(channel), sdma->regs + SDMA_H_START);
662 }
663
664 /*
665  * sdma_run_channel0 - run a channel and wait till it's done
666  */
667 static int sdma_run_channel0(struct sdma_engine *sdma)
668 {
669         int ret;
670         u32 reg;
671
672         sdma_enable_channel(sdma, 0);
673
674         ret = readl_relaxed_poll_timeout_atomic(sdma->regs + SDMA_H_STATSTOP,
675                                                 reg, !(reg & 1), 1, 500);
676         if (ret)
677                 dev_err(sdma->dev, "Timeout waiting for CH0 ready\n");
678
679         /* Set bits of CONFIG register with dynamic context switching */
680         reg = readl(sdma->regs + SDMA_H_CONFIG);
681         if ((reg & SDMA_H_CONFIG_CSM) == 0) {
682                 reg |= SDMA_H_CONFIG_CSM;
683                 writel_relaxed(reg, sdma->regs + SDMA_H_CONFIG);
684         }
685
686         return ret;
687 }
688
689 static int sdma_load_script(struct sdma_engine *sdma, void *buf, int size,
690                 u32 address)
691 {
692         struct sdma_buffer_descriptor *bd0 = sdma->bd0;
693         void *buf_virt;
694         dma_addr_t buf_phys;
695         int ret;
696         unsigned long flags;
697
698         buf_virt = dma_alloc_coherent(sdma->dev, size, &buf_phys, GFP_KERNEL);
699         if (!buf_virt) {
700                 return -ENOMEM;
701         }
702
703         spin_lock_irqsave(&sdma->channel_0_lock, flags);
704
705         bd0->mode.command = C0_SETPM;
706         bd0->mode.status = BD_DONE | BD_WRAP | BD_EXTD;
707         bd0->mode.count = size / 2;
708         bd0->buffer_addr = buf_phys;
709         bd0->ext_buffer_addr = address;
710
711         memcpy(buf_virt, buf, size);
712
713         ret = sdma_run_channel0(sdma);
714
715         spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
716
717         dma_free_coherent(sdma->dev, size, buf_virt, buf_phys);
718
719         return ret;
720 }
721
722 static void sdma_event_enable(struct sdma_channel *sdmac, unsigned int event)
723 {
724         struct sdma_engine *sdma = sdmac->sdma;
725         int channel = sdmac->channel;
726         unsigned long val;
727         u32 chnenbl = chnenbl_ofs(sdma, event);
728
729         val = readl_relaxed(sdma->regs + chnenbl);
730         __set_bit(channel, &val);
731         writel_relaxed(val, sdma->regs + chnenbl);
732 }
733
734 static void sdma_event_disable(struct sdma_channel *sdmac, unsigned int event)
735 {
736         struct sdma_engine *sdma = sdmac->sdma;
737         int channel = sdmac->channel;
738         u32 chnenbl = chnenbl_ofs(sdma, event);
739         unsigned long val;
740
741         val = readl_relaxed(sdma->regs + chnenbl);
742         __clear_bit(channel, &val);
743         writel_relaxed(val, sdma->regs + chnenbl);
744 }
745
746 static struct sdma_desc *to_sdma_desc(struct dma_async_tx_descriptor *t)
747 {
748         return container_of(t, struct sdma_desc, vd.tx);
749 }
750
751 static void sdma_start_desc(struct sdma_channel *sdmac)
752 {
753         struct virt_dma_desc *vd = vchan_next_desc(&sdmac->vc);
754         struct sdma_desc *desc;
755         struct sdma_engine *sdma = sdmac->sdma;
756         int channel = sdmac->channel;
757
758         if (!vd) {
759                 sdmac->desc = NULL;
760                 return;
761         }
762         sdmac->desc = desc = to_sdma_desc(&vd->tx);
763         /*
764          * Do not delete the node in desc_issued list in cyclic mode, otherwise
765          * the desc allocated will never be freed in vchan_dma_desc_free_list
766          */
767         if (!(sdmac->flags & IMX_DMA_SG_LOOP))
768                 list_del(&vd->node);
769
770         sdma->channel_control[channel].base_bd_ptr = desc->bd_phys;
771         sdma->channel_control[channel].current_bd_ptr = desc->bd_phys;
772         sdma_enable_channel(sdma, sdmac->channel);
773 }
774
775 static void sdma_update_channel_loop(struct sdma_channel *sdmac)
776 {
777         struct sdma_buffer_descriptor *bd;
778         int error = 0;
779         enum dma_status old_status = sdmac->status;
780
781         /*
782          * loop mode. Iterate over descriptors, re-setup them and
783          * call callback function.
784          */
785         while (sdmac->desc) {
786                 struct sdma_desc *desc = sdmac->desc;
787
788                 bd = &desc->bd[desc->buf_tail];
789
790                 if (bd->mode.status & BD_DONE)
791                         break;
792
793                 if (bd->mode.status & BD_RROR) {
794                         bd->mode.status &= ~BD_RROR;
795                         sdmac->status = DMA_ERROR;
796                         error = -EIO;
797                 }
798
799                /*
800                 * We use bd->mode.count to calculate the residue, since contains
801                 * the number of bytes present in the current buffer descriptor.
802                 */
803
804                 desc->chn_real_count = bd->mode.count;
805                 bd->mode.status |= BD_DONE;
806                 bd->mode.count = desc->period_len;
807                 desc->buf_ptail = desc->buf_tail;
808                 desc->buf_tail = (desc->buf_tail + 1) % desc->num_bd;
809
810                 /*
811                  * The callback is called from the interrupt context in order
812                  * to reduce latency and to avoid the risk of altering the
813                  * SDMA transaction status by the time the client tasklet is
814                  * executed.
815                  */
816                 spin_unlock(&sdmac->vc.lock);
817                 dmaengine_desc_get_callback_invoke(&desc->vd.tx, NULL);
818                 spin_lock(&sdmac->vc.lock);
819
820                 if (error)
821                         sdmac->status = old_status;
822         }
823 }
824
825 static void mxc_sdma_handle_channel_normal(struct sdma_channel *data)
826 {
827         struct sdma_channel *sdmac = (struct sdma_channel *) data;
828         struct sdma_buffer_descriptor *bd;
829         int i, error = 0;
830
831         sdmac->desc->chn_real_count = 0;
832         /*
833          * non loop mode. Iterate over all descriptors, collect
834          * errors and call callback function
835          */
836         for (i = 0; i < sdmac->desc->num_bd; i++) {
837                 bd = &sdmac->desc->bd[i];
838
839                  if (bd->mode.status & (BD_DONE | BD_RROR))
840                         error = -EIO;
841                  sdmac->desc->chn_real_count += bd->mode.count;
842         }
843
844         if (error)
845                 sdmac->status = DMA_ERROR;
846         else
847                 sdmac->status = DMA_COMPLETE;
848 }
849
850 static irqreturn_t sdma_int_handler(int irq, void *dev_id)
851 {
852         struct sdma_engine *sdma = dev_id;
853         unsigned long stat;
854
855         stat = readl_relaxed(sdma->regs + SDMA_H_INTR);
856         writel_relaxed(stat, sdma->regs + SDMA_H_INTR);
857         /* channel 0 is special and not handled here, see run_channel0() */
858         stat &= ~1;
859
860         while (stat) {
861                 int channel = fls(stat) - 1;
862                 struct sdma_channel *sdmac = &sdma->channel[channel];
863                 struct sdma_desc *desc;
864
865                 spin_lock(&sdmac->vc.lock);
866                 desc = sdmac->desc;
867                 if (desc) {
868                         if (sdmac->flags & IMX_DMA_SG_LOOP) {
869                                 sdma_update_channel_loop(sdmac);
870                         } else {
871                                 mxc_sdma_handle_channel_normal(sdmac);
872                                 vchan_cookie_complete(&desc->vd);
873                                 sdma_start_desc(sdmac);
874                         }
875                 }
876
877                 spin_unlock(&sdmac->vc.lock);
878                 __clear_bit(channel, &stat);
879         }
880
881         return IRQ_HANDLED;
882 }
883
884 /*
885  * sets the pc of SDMA script according to the peripheral type
886  */
887 static void sdma_get_pc(struct sdma_channel *sdmac,
888                 enum sdma_peripheral_type peripheral_type)
889 {
890         struct sdma_engine *sdma = sdmac->sdma;
891         int per_2_emi = 0, emi_2_per = 0;
892         /*
893          * These are needed once we start to support transfers between
894          * two peripherals or memory-to-memory transfers
895          */
896         int per_2_per = 0, emi_2_emi = 0;
897
898         sdmac->pc_from_device = 0;
899         sdmac->pc_to_device = 0;
900         sdmac->device_to_device = 0;
901         sdmac->pc_to_pc = 0;
902
903         switch (peripheral_type) {
904         case IMX_DMATYPE_MEMORY:
905                 emi_2_emi = sdma->script_addrs->ap_2_ap_addr;
906                 break;
907         case IMX_DMATYPE_DSP:
908                 emi_2_per = sdma->script_addrs->bp_2_ap_addr;
909                 per_2_emi = sdma->script_addrs->ap_2_bp_addr;
910                 break;
911         case IMX_DMATYPE_FIRI:
912                 per_2_emi = sdma->script_addrs->firi_2_mcu_addr;
913                 emi_2_per = sdma->script_addrs->mcu_2_firi_addr;
914                 break;
915         case IMX_DMATYPE_UART:
916                 per_2_emi = sdma->script_addrs->uart_2_mcu_addr;
917                 emi_2_per = sdma->script_addrs->mcu_2_app_addr;
918                 break;
919         case IMX_DMATYPE_UART_SP:
920                 per_2_emi = sdma->script_addrs->uartsh_2_mcu_addr;
921                 emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
922                 break;
923         case IMX_DMATYPE_ATA:
924                 per_2_emi = sdma->script_addrs->ata_2_mcu_addr;
925                 emi_2_per = sdma->script_addrs->mcu_2_ata_addr;
926                 break;
927         case IMX_DMATYPE_CSPI:
928         case IMX_DMATYPE_EXT:
929         case IMX_DMATYPE_SSI:
930         case IMX_DMATYPE_SAI:
931                 per_2_emi = sdma->script_addrs->app_2_mcu_addr;
932                 emi_2_per = sdma->script_addrs->mcu_2_app_addr;
933                 break;
934         case IMX_DMATYPE_SSI_DUAL:
935                 per_2_emi = sdma->script_addrs->ssish_2_mcu_addr;
936                 emi_2_per = sdma->script_addrs->mcu_2_ssish_addr;
937                 break;
938         case IMX_DMATYPE_SSI_SP:
939         case IMX_DMATYPE_MMC:
940         case IMX_DMATYPE_SDHC:
941         case IMX_DMATYPE_CSPI_SP:
942         case IMX_DMATYPE_ESAI:
943         case IMX_DMATYPE_MSHC_SP:
944                 per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
945                 emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
946                 break;
947         case IMX_DMATYPE_ASRC:
948                 per_2_emi = sdma->script_addrs->asrc_2_mcu_addr;
949                 emi_2_per = sdma->script_addrs->asrc_2_mcu_addr;
950                 per_2_per = sdma->script_addrs->per_2_per_addr;
951                 break;
952         case IMX_DMATYPE_ASRC_SP:
953                 per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
954                 emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
955                 per_2_per = sdma->script_addrs->per_2_per_addr;
956                 break;
957         case IMX_DMATYPE_MSHC:
958                 per_2_emi = sdma->script_addrs->mshc_2_mcu_addr;
959                 emi_2_per = sdma->script_addrs->mcu_2_mshc_addr;
960                 break;
961         case IMX_DMATYPE_CCM:
962                 per_2_emi = sdma->script_addrs->dptc_dvfs_addr;
963                 break;
964         case IMX_DMATYPE_SPDIF:
965                 per_2_emi = sdma->script_addrs->spdif_2_mcu_addr;
966                 emi_2_per = sdma->script_addrs->mcu_2_spdif_addr;
967                 break;
968         case IMX_DMATYPE_IPU_MEMORY:
969                 emi_2_per = sdma->script_addrs->ext_mem_2_ipu_addr;
970                 break;
971         default:
972                 break;
973         }
974
975         sdmac->pc_from_device = per_2_emi;
976         sdmac->pc_to_device = emi_2_per;
977         sdmac->device_to_device = per_2_per;
978         sdmac->pc_to_pc = emi_2_emi;
979 }
980
981 static int sdma_load_context(struct sdma_channel *sdmac)
982 {
983         struct sdma_engine *sdma = sdmac->sdma;
984         int channel = sdmac->channel;
985         int load_address;
986         struct sdma_context_data *context = sdma->context;
987         struct sdma_buffer_descriptor *bd0 = sdma->bd0;
988         int ret;
989         unsigned long flags;
990
991         if (sdmac->context_loaded)
992                 return 0;
993
994         if (sdmac->direction == DMA_DEV_TO_MEM)
995                 load_address = sdmac->pc_from_device;
996         else if (sdmac->direction == DMA_DEV_TO_DEV)
997                 load_address = sdmac->device_to_device;
998         else if (sdmac->direction == DMA_MEM_TO_MEM)
999                 load_address = sdmac->pc_to_pc;
1000         else
1001                 load_address = sdmac->pc_to_device;
1002
1003         if (load_address < 0)
1004                 return load_address;
1005
1006         dev_dbg(sdma->dev, "load_address = %d\n", load_address);
1007         dev_dbg(sdma->dev, "wml = 0x%08x\n", (u32)sdmac->watermark_level);
1008         dev_dbg(sdma->dev, "shp_addr = 0x%08x\n", sdmac->shp_addr);
1009         dev_dbg(sdma->dev, "per_addr = 0x%08x\n", sdmac->per_addr);
1010         dev_dbg(sdma->dev, "event_mask0 = 0x%08x\n", (u32)sdmac->event_mask[0]);
1011         dev_dbg(sdma->dev, "event_mask1 = 0x%08x\n", (u32)sdmac->event_mask[1]);
1012
1013         spin_lock_irqsave(&sdma->channel_0_lock, flags);
1014
1015         memset(context, 0, sizeof(*context));
1016         context->channel_state.pc = load_address;
1017
1018         /* Send by context the event mask,base address for peripheral
1019          * and watermark level
1020          */
1021         context->gReg[0] = sdmac->event_mask[1];
1022         context->gReg[1] = sdmac->event_mask[0];
1023         context->gReg[2] = sdmac->per_addr;
1024         context->gReg[6] = sdmac->shp_addr;
1025         context->gReg[7] = sdmac->watermark_level;
1026
1027         bd0->mode.command = C0_SETDM;
1028         bd0->mode.status = BD_DONE | BD_WRAP | BD_EXTD;
1029         bd0->mode.count = sizeof(*context) / 4;
1030         bd0->buffer_addr = sdma->context_phys;
1031         bd0->ext_buffer_addr = 2048 + (sizeof(*context) / 4) * channel;
1032         ret = sdma_run_channel0(sdma);
1033
1034         spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
1035
1036         sdmac->context_loaded = true;
1037
1038         return ret;
1039 }
1040
1041 static struct sdma_channel *to_sdma_chan(struct dma_chan *chan)
1042 {
1043         return container_of(chan, struct sdma_channel, vc.chan);
1044 }
1045
1046 static int sdma_disable_channel(struct dma_chan *chan)
1047 {
1048         struct sdma_channel *sdmac = to_sdma_chan(chan);
1049         struct sdma_engine *sdma = sdmac->sdma;
1050         int channel = sdmac->channel;
1051
1052         writel_relaxed(BIT(channel), sdma->regs + SDMA_H_STATSTOP);
1053         sdmac->status = DMA_ERROR;
1054
1055         return 0;
1056 }
1057 static void sdma_channel_terminate_work(struct work_struct *work)
1058 {
1059         struct sdma_channel *sdmac = container_of(work, struct sdma_channel,
1060                                                   terminate_worker);
1061         unsigned long flags;
1062         LIST_HEAD(head);
1063
1064         /*
1065          * According to NXP R&D team a delay of one BD SDMA cost time
1066          * (maximum is 1ms) should be added after disable of the channel
1067          * bit, to ensure SDMA core has really been stopped after SDMA
1068          * clients call .device_terminate_all.
1069          */
1070         usleep_range(1000, 2000);
1071
1072         spin_lock_irqsave(&sdmac->vc.lock, flags);
1073         vchan_get_all_descriptors(&sdmac->vc, &head);
1074         sdmac->desc = NULL;
1075         spin_unlock_irqrestore(&sdmac->vc.lock, flags);
1076         vchan_dma_desc_free_list(&sdmac->vc, &head);
1077         sdmac->context_loaded = false;
1078 }
1079
1080 static int sdma_disable_channel_async(struct dma_chan *chan)
1081 {
1082         struct sdma_channel *sdmac = to_sdma_chan(chan);
1083
1084         sdma_disable_channel(chan);
1085
1086         if (sdmac->desc)
1087                 schedule_work(&sdmac->terminate_worker);
1088
1089         return 0;
1090 }
1091
1092 static void sdma_channel_synchronize(struct dma_chan *chan)
1093 {
1094         struct sdma_channel *sdmac = to_sdma_chan(chan);
1095
1096         vchan_synchronize(&sdmac->vc);
1097
1098         flush_work(&sdmac->terminate_worker);
1099 }
1100
1101 static void sdma_set_watermarklevel_for_p2p(struct sdma_channel *sdmac)
1102 {
1103         struct sdma_engine *sdma = sdmac->sdma;
1104
1105         int lwml = sdmac->watermark_level & SDMA_WATERMARK_LEVEL_LWML;
1106         int hwml = (sdmac->watermark_level & SDMA_WATERMARK_LEVEL_HWML) >> 16;
1107
1108         set_bit(sdmac->event_id0 % 32, &sdmac->event_mask[1]);
1109         set_bit(sdmac->event_id1 % 32, &sdmac->event_mask[0]);
1110
1111         if (sdmac->event_id0 > 31)
1112                 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_LWE;
1113
1114         if (sdmac->event_id1 > 31)
1115                 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_HWE;
1116
1117         /*
1118          * If LWML(src_maxburst) > HWML(dst_maxburst), we need
1119          * swap LWML and HWML of INFO(A.3.2.5.1), also need swap
1120          * r0(event_mask[1]) and r1(event_mask[0]).
1121          */
1122         if (lwml > hwml) {
1123                 sdmac->watermark_level &= ~(SDMA_WATERMARK_LEVEL_LWML |
1124                                                 SDMA_WATERMARK_LEVEL_HWML);
1125                 sdmac->watermark_level |= hwml;
1126                 sdmac->watermark_level |= lwml << 16;
1127                 swap(sdmac->event_mask[0], sdmac->event_mask[1]);
1128         }
1129
1130         if (sdmac->per_address2 >= sdma->spba_start_addr &&
1131                         sdmac->per_address2 <= sdma->spba_end_addr)
1132                 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_SP;
1133
1134         if (sdmac->per_address >= sdma->spba_start_addr &&
1135                         sdmac->per_address <= sdma->spba_end_addr)
1136                 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_DP;
1137
1138         sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_CONT;
1139 }
1140
1141 static int sdma_config_channel(struct dma_chan *chan)
1142 {
1143         struct sdma_channel *sdmac = to_sdma_chan(chan);
1144         int ret;
1145
1146         sdma_disable_channel(chan);
1147
1148         sdmac->event_mask[0] = 0;
1149         sdmac->event_mask[1] = 0;
1150         sdmac->shp_addr = 0;
1151         sdmac->per_addr = 0;
1152
1153         switch (sdmac->peripheral_type) {
1154         case IMX_DMATYPE_DSP:
1155                 sdma_config_ownership(sdmac, false, true, true);
1156                 break;
1157         case IMX_DMATYPE_MEMORY:
1158                 sdma_config_ownership(sdmac, false, true, false);
1159                 break;
1160         default:
1161                 sdma_config_ownership(sdmac, true, true, false);
1162                 break;
1163         }
1164
1165         sdma_get_pc(sdmac, sdmac->peripheral_type);
1166
1167         if ((sdmac->peripheral_type != IMX_DMATYPE_MEMORY) &&
1168                         (sdmac->peripheral_type != IMX_DMATYPE_DSP)) {
1169                 /* Handle multiple event channels differently */
1170                 if (sdmac->event_id1) {
1171                         if (sdmac->peripheral_type == IMX_DMATYPE_ASRC_SP ||
1172                             sdmac->peripheral_type == IMX_DMATYPE_ASRC)
1173                                 sdma_set_watermarklevel_for_p2p(sdmac);
1174                 } else
1175                         __set_bit(sdmac->event_id0, sdmac->event_mask);
1176
1177                 /* Address */
1178                 sdmac->shp_addr = sdmac->per_address;
1179                 sdmac->per_addr = sdmac->per_address2;
1180         } else {
1181                 sdmac->watermark_level = 0; /* FIXME: M3_BASE_ADDRESS */
1182         }
1183
1184         ret = sdma_load_context(sdmac);
1185
1186         return ret;
1187 }
1188
1189 static int sdma_set_channel_priority(struct sdma_channel *sdmac,
1190                 unsigned int priority)
1191 {
1192         struct sdma_engine *sdma = sdmac->sdma;
1193         int channel = sdmac->channel;
1194
1195         if (priority < MXC_SDMA_MIN_PRIORITY
1196             || priority > MXC_SDMA_MAX_PRIORITY) {
1197                 return -EINVAL;
1198         }
1199
1200         writel_relaxed(priority, sdma->regs + SDMA_CHNPRI_0 + 4 * channel);
1201
1202         return 0;
1203 }
1204
1205 static int sdma_request_channel0(struct sdma_engine *sdma)
1206 {
1207         int ret = -EBUSY;
1208
1209         sdma->bd0 = dma_alloc_coherent(sdma->dev, PAGE_SIZE, &sdma->bd0_phys,
1210                                         GFP_NOWAIT);
1211         if (!sdma->bd0) {
1212                 ret = -ENOMEM;
1213                 goto out;
1214         }
1215
1216         sdma->channel_control[0].base_bd_ptr = sdma->bd0_phys;
1217         sdma->channel_control[0].current_bd_ptr = sdma->bd0_phys;
1218
1219         sdma_set_channel_priority(&sdma->channel[0], MXC_SDMA_DEFAULT_PRIORITY);
1220         return 0;
1221 out:
1222
1223         return ret;
1224 }
1225
1226
1227 static int sdma_alloc_bd(struct sdma_desc *desc)
1228 {
1229         u32 bd_size = desc->num_bd * sizeof(struct sdma_buffer_descriptor);
1230         int ret = 0;
1231
1232         desc->bd = dma_alloc_coherent(desc->sdmac->sdma->dev, bd_size,
1233                                        &desc->bd_phys, GFP_NOWAIT);
1234         if (!desc->bd) {
1235                 ret = -ENOMEM;
1236                 goto out;
1237         }
1238 out:
1239         return ret;
1240 }
1241
1242 static void sdma_free_bd(struct sdma_desc *desc)
1243 {
1244         u32 bd_size = desc->num_bd * sizeof(struct sdma_buffer_descriptor);
1245
1246         dma_free_coherent(desc->sdmac->sdma->dev, bd_size, desc->bd,
1247                           desc->bd_phys);
1248 }
1249
1250 static void sdma_desc_free(struct virt_dma_desc *vd)
1251 {
1252         struct sdma_desc *desc = container_of(vd, struct sdma_desc, vd);
1253
1254         sdma_free_bd(desc);
1255         kfree(desc);
1256 }
1257
1258 static int sdma_alloc_chan_resources(struct dma_chan *chan)
1259 {
1260         struct sdma_channel *sdmac = to_sdma_chan(chan);
1261         struct imx_dma_data *data = chan->private;
1262         struct imx_dma_data mem_data;
1263         int prio, ret;
1264
1265         /*
1266          * MEMCPY may never setup chan->private by filter function such as
1267          * dmatest, thus create 'struct imx_dma_data mem_data' for this case.
1268          * Please note in any other slave case, you have to setup chan->private
1269          * with 'struct imx_dma_data' in your own filter function if you want to
1270          * request dma channel by dma_request_channel() rather than
1271          * dma_request_slave_channel(). Othwise, 'MEMCPY in case?' will appear
1272          * to warn you to correct your filter function.
1273          */
1274         if (!data) {
1275                 dev_dbg(sdmac->sdma->dev, "MEMCPY in case?\n");
1276                 mem_data.priority = 2;
1277                 mem_data.peripheral_type = IMX_DMATYPE_MEMORY;
1278                 mem_data.dma_request = 0;
1279                 mem_data.dma_request2 = 0;
1280                 data = &mem_data;
1281
1282                 sdma_get_pc(sdmac, IMX_DMATYPE_MEMORY);
1283         }
1284
1285         switch (data->priority) {
1286         case DMA_PRIO_HIGH:
1287                 prio = 3;
1288                 break;
1289         case DMA_PRIO_MEDIUM:
1290                 prio = 2;
1291                 break;
1292         case DMA_PRIO_LOW:
1293         default:
1294                 prio = 1;
1295                 break;
1296         }
1297
1298         sdmac->peripheral_type = data->peripheral_type;
1299         sdmac->event_id0 = data->dma_request;
1300         sdmac->event_id1 = data->dma_request2;
1301
1302         ret = clk_enable(sdmac->sdma->clk_ipg);
1303         if (ret)
1304                 return ret;
1305         ret = clk_enable(sdmac->sdma->clk_ahb);
1306         if (ret)
1307                 goto disable_clk_ipg;
1308
1309         ret = sdma_set_channel_priority(sdmac, prio);
1310         if (ret)
1311                 goto disable_clk_ahb;
1312
1313         return 0;
1314
1315 disable_clk_ahb:
1316         clk_disable(sdmac->sdma->clk_ahb);
1317 disable_clk_ipg:
1318         clk_disable(sdmac->sdma->clk_ipg);
1319         return ret;
1320 }
1321
1322 static void sdma_free_chan_resources(struct dma_chan *chan)
1323 {
1324         struct sdma_channel *sdmac = to_sdma_chan(chan);
1325         struct sdma_engine *sdma = sdmac->sdma;
1326
1327         sdma_disable_channel_async(chan);
1328
1329         sdma_channel_synchronize(chan);
1330
1331         if (sdmac->event_id0)
1332                 sdma_event_disable(sdmac, sdmac->event_id0);
1333         if (sdmac->event_id1)
1334                 sdma_event_disable(sdmac, sdmac->event_id1);
1335
1336         sdmac->event_id0 = 0;
1337         sdmac->event_id1 = 0;
1338
1339         sdma_set_channel_priority(sdmac, 0);
1340
1341         clk_disable(sdma->clk_ipg);
1342         clk_disable(sdma->clk_ahb);
1343 }
1344
1345 static struct sdma_desc *sdma_transfer_init(struct sdma_channel *sdmac,
1346                                 enum dma_transfer_direction direction, u32 bds)
1347 {
1348         struct sdma_desc *desc;
1349
1350         desc = kzalloc((sizeof(*desc)), GFP_NOWAIT);
1351         if (!desc)
1352                 goto err_out;
1353
1354         sdmac->status = DMA_IN_PROGRESS;
1355         sdmac->direction = direction;
1356         sdmac->flags = 0;
1357
1358         desc->chn_count = 0;
1359         desc->chn_real_count = 0;
1360         desc->buf_tail = 0;
1361         desc->buf_ptail = 0;
1362         desc->sdmac = sdmac;
1363         desc->num_bd = bds;
1364
1365         if (sdma_alloc_bd(desc))
1366                 goto err_desc_out;
1367
1368         /* No slave_config called in MEMCPY case, so do here */
1369         if (direction == DMA_MEM_TO_MEM)
1370                 sdma_config_ownership(sdmac, false, true, false);
1371
1372         if (sdma_load_context(sdmac))
1373                 goto err_desc_out;
1374
1375         return desc;
1376
1377 err_desc_out:
1378         kfree(desc);
1379 err_out:
1380         return NULL;
1381 }
1382
1383 static struct dma_async_tx_descriptor *sdma_prep_memcpy(
1384                 struct dma_chan *chan, dma_addr_t dma_dst,
1385                 dma_addr_t dma_src, size_t len, unsigned long flags)
1386 {
1387         struct sdma_channel *sdmac = to_sdma_chan(chan);
1388         struct sdma_engine *sdma = sdmac->sdma;
1389         int channel = sdmac->channel;
1390         size_t count;
1391         int i = 0, param;
1392         struct sdma_buffer_descriptor *bd;
1393         struct sdma_desc *desc;
1394
1395         if (!chan || !len)
1396                 return NULL;
1397
1398         dev_dbg(sdma->dev, "memcpy: %pad->%pad, len=%zu, channel=%d.\n",
1399                 &dma_src, &dma_dst, len, channel);
1400
1401         desc = sdma_transfer_init(sdmac, DMA_MEM_TO_MEM,
1402                                         len / SDMA_BD_MAX_CNT + 1);
1403         if (!desc)
1404                 return NULL;
1405
1406         do {
1407                 count = min_t(size_t, len, SDMA_BD_MAX_CNT);
1408                 bd = &desc->bd[i];
1409                 bd->buffer_addr = dma_src;
1410                 bd->ext_buffer_addr = dma_dst;
1411                 bd->mode.count = count;
1412                 desc->chn_count += count;
1413                 bd->mode.command = 0;
1414
1415                 dma_src += count;
1416                 dma_dst += count;
1417                 len -= count;
1418                 i++;
1419
1420                 param = BD_DONE | BD_EXTD | BD_CONT;
1421                 /* last bd */
1422                 if (!len) {
1423                         param |= BD_INTR;
1424                         param |= BD_LAST;
1425                         param &= ~BD_CONT;
1426                 }
1427
1428                 dev_dbg(sdma->dev, "entry %d: count: %zd dma: 0x%x %s%s\n",
1429                                 i, count, bd->buffer_addr,
1430                                 param & BD_WRAP ? "wrap" : "",
1431                                 param & BD_INTR ? " intr" : "");
1432
1433                 bd->mode.status = param;
1434         } while (len);
1435
1436         return vchan_tx_prep(&sdmac->vc, &desc->vd, flags);
1437 }
1438
1439 static struct dma_async_tx_descriptor *sdma_prep_slave_sg(
1440                 struct dma_chan *chan, struct scatterlist *sgl,
1441                 unsigned int sg_len, enum dma_transfer_direction direction,
1442                 unsigned long flags, void *context)
1443 {
1444         struct sdma_channel *sdmac = to_sdma_chan(chan);
1445         struct sdma_engine *sdma = sdmac->sdma;
1446         int i, count;
1447         int channel = sdmac->channel;
1448         struct scatterlist *sg;
1449         struct sdma_desc *desc;
1450
1451         sdma_config_write(chan, &sdmac->slave_config, direction);
1452
1453         desc = sdma_transfer_init(sdmac, direction, sg_len);
1454         if (!desc)
1455                 goto err_out;
1456
1457         dev_dbg(sdma->dev, "setting up %d entries for channel %d.\n",
1458                         sg_len, channel);
1459
1460         for_each_sg(sgl, sg, sg_len, i) {
1461                 struct sdma_buffer_descriptor *bd = &desc->bd[i];
1462                 int param;
1463
1464                 bd->buffer_addr = sg->dma_address;
1465
1466                 count = sg_dma_len(sg);
1467
1468                 if (count > SDMA_BD_MAX_CNT) {
1469                         dev_err(sdma->dev, "SDMA channel %d: maximum bytes for sg entry exceeded: %d > %d\n",
1470                                         channel, count, SDMA_BD_MAX_CNT);
1471                         goto err_bd_out;
1472                 }
1473
1474                 bd->mode.count = count;
1475                 desc->chn_count += count;
1476
1477                 if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES)
1478                         goto err_bd_out;
1479
1480                 switch (sdmac->word_size) {
1481                 case DMA_SLAVE_BUSWIDTH_4_BYTES:
1482                         bd->mode.command = 0;
1483                         if (count & 3 || sg->dma_address & 3)
1484                                 goto err_bd_out;
1485                         break;
1486                 case DMA_SLAVE_BUSWIDTH_2_BYTES:
1487                         bd->mode.command = 2;
1488                         if (count & 1 || sg->dma_address & 1)
1489                                 goto err_bd_out;
1490                         break;
1491                 case DMA_SLAVE_BUSWIDTH_1_BYTE:
1492                         bd->mode.command = 1;
1493                         break;
1494                 default:
1495                         goto err_bd_out;
1496                 }
1497
1498                 param = BD_DONE | BD_EXTD | BD_CONT;
1499
1500                 if (i + 1 == sg_len) {
1501                         param |= BD_INTR;
1502                         param |= BD_LAST;
1503                         param &= ~BD_CONT;
1504                 }
1505
1506                 dev_dbg(sdma->dev, "entry %d: count: %d dma: %#llx %s%s\n",
1507                                 i, count, (u64)sg->dma_address,
1508                                 param & BD_WRAP ? "wrap" : "",
1509                                 param & BD_INTR ? " intr" : "");
1510
1511                 bd->mode.status = param;
1512         }
1513
1514         return vchan_tx_prep(&sdmac->vc, &desc->vd, flags);
1515 err_bd_out:
1516         sdma_free_bd(desc);
1517         kfree(desc);
1518 err_out:
1519         sdmac->status = DMA_ERROR;
1520         return NULL;
1521 }
1522
1523 static struct dma_async_tx_descriptor *sdma_prep_dma_cyclic(
1524                 struct dma_chan *chan, dma_addr_t dma_addr, size_t buf_len,
1525                 size_t period_len, enum dma_transfer_direction direction,
1526                 unsigned long flags)
1527 {
1528         struct sdma_channel *sdmac = to_sdma_chan(chan);
1529         struct sdma_engine *sdma = sdmac->sdma;
1530         int num_periods = buf_len / period_len;
1531         int channel = sdmac->channel;
1532         int i = 0, buf = 0;
1533         struct sdma_desc *desc;
1534
1535         dev_dbg(sdma->dev, "%s channel: %d\n", __func__, channel);
1536
1537         sdma_config_write(chan, &sdmac->slave_config, direction);
1538
1539         desc = sdma_transfer_init(sdmac, direction, num_periods);
1540         if (!desc)
1541                 goto err_out;
1542
1543         desc->period_len = period_len;
1544
1545         sdmac->flags |= IMX_DMA_SG_LOOP;
1546
1547         if (period_len > SDMA_BD_MAX_CNT) {
1548                 dev_err(sdma->dev, "SDMA channel %d: maximum period size exceeded: %zu > %d\n",
1549                                 channel, period_len, SDMA_BD_MAX_CNT);
1550                 goto err_bd_out;
1551         }
1552
1553         while (buf < buf_len) {
1554                 struct sdma_buffer_descriptor *bd = &desc->bd[i];
1555                 int param;
1556
1557                 bd->buffer_addr = dma_addr;
1558
1559                 bd->mode.count = period_len;
1560
1561                 if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES)
1562                         goto err_bd_out;
1563                 if (sdmac->word_size == DMA_SLAVE_BUSWIDTH_4_BYTES)
1564                         bd->mode.command = 0;
1565                 else
1566                         bd->mode.command = sdmac->word_size;
1567
1568                 param = BD_DONE | BD_EXTD | BD_CONT | BD_INTR;
1569                 if (i + 1 == num_periods)
1570                         param |= BD_WRAP;
1571
1572                 dev_dbg(sdma->dev, "entry %d: count: %zu dma: %#llx %s%s\n",
1573                                 i, period_len, (u64)dma_addr,
1574                                 param & BD_WRAP ? "wrap" : "",
1575                                 param & BD_INTR ? " intr" : "");
1576
1577                 bd->mode.status = param;
1578
1579                 dma_addr += period_len;
1580                 buf += period_len;
1581
1582                 i++;
1583         }
1584
1585         return vchan_tx_prep(&sdmac->vc, &desc->vd, flags);
1586 err_bd_out:
1587         sdma_free_bd(desc);
1588         kfree(desc);
1589 err_out:
1590         sdmac->status = DMA_ERROR;
1591         return NULL;
1592 }
1593
1594 static int sdma_config_write(struct dma_chan *chan,
1595                        struct dma_slave_config *dmaengine_cfg,
1596                        enum dma_transfer_direction direction)
1597 {
1598         struct sdma_channel *sdmac = to_sdma_chan(chan);
1599
1600         if (direction == DMA_DEV_TO_MEM) {
1601                 sdmac->per_address = dmaengine_cfg->src_addr;
1602                 sdmac->watermark_level = dmaengine_cfg->src_maxburst *
1603                         dmaengine_cfg->src_addr_width;
1604                 sdmac->word_size = dmaengine_cfg->src_addr_width;
1605         } else if (direction == DMA_DEV_TO_DEV) {
1606                 sdmac->per_address2 = dmaengine_cfg->src_addr;
1607                 sdmac->per_address = dmaengine_cfg->dst_addr;
1608                 sdmac->watermark_level = dmaengine_cfg->src_maxburst &
1609                         SDMA_WATERMARK_LEVEL_LWML;
1610                 sdmac->watermark_level |= (dmaengine_cfg->dst_maxburst << 16) &
1611                         SDMA_WATERMARK_LEVEL_HWML;
1612                 sdmac->word_size = dmaengine_cfg->dst_addr_width;
1613         } else {
1614                 sdmac->per_address = dmaengine_cfg->dst_addr;
1615                 sdmac->watermark_level = dmaengine_cfg->dst_maxburst *
1616                         dmaengine_cfg->dst_addr_width;
1617                 sdmac->word_size = dmaengine_cfg->dst_addr_width;
1618         }
1619         sdmac->direction = direction;
1620         return sdma_config_channel(chan);
1621 }
1622
1623 static int sdma_config(struct dma_chan *chan,
1624                        struct dma_slave_config *dmaengine_cfg)
1625 {
1626         struct sdma_channel *sdmac = to_sdma_chan(chan);
1627
1628         memcpy(&sdmac->slave_config, dmaengine_cfg, sizeof(*dmaengine_cfg));
1629
1630         /* Set ENBLn earlier to make sure dma request triggered after that */
1631         if (sdmac->event_id0) {
1632                 if (sdmac->event_id0 >= sdmac->sdma->drvdata->num_events)
1633                         return -EINVAL;
1634                 sdma_event_enable(sdmac, sdmac->event_id0);
1635         }
1636
1637         if (sdmac->event_id1) {
1638                 if (sdmac->event_id1 >= sdmac->sdma->drvdata->num_events)
1639                         return -EINVAL;
1640                 sdma_event_enable(sdmac, sdmac->event_id1);
1641         }
1642
1643         return 0;
1644 }
1645
1646 static enum dma_status sdma_tx_status(struct dma_chan *chan,
1647                                       dma_cookie_t cookie,
1648                                       struct dma_tx_state *txstate)
1649 {
1650         struct sdma_channel *sdmac = to_sdma_chan(chan);
1651         struct sdma_desc *desc;
1652         u32 residue;
1653         struct virt_dma_desc *vd;
1654         enum dma_status ret;
1655         unsigned long flags;
1656
1657         ret = dma_cookie_status(chan, cookie, txstate);
1658         if (ret == DMA_COMPLETE || !txstate)
1659                 return ret;
1660
1661         spin_lock_irqsave(&sdmac->vc.lock, flags);
1662         vd = vchan_find_desc(&sdmac->vc, cookie);
1663         if (vd) {
1664                 desc = to_sdma_desc(&vd->tx);
1665                 if (sdmac->flags & IMX_DMA_SG_LOOP)
1666                         residue = (desc->num_bd - desc->buf_ptail) *
1667                                 desc->period_len - desc->chn_real_count;
1668                 else
1669                         residue = desc->chn_count - desc->chn_real_count;
1670         } else if (sdmac->desc && sdmac->desc->vd.tx.cookie == cookie) {
1671                 residue = sdmac->desc->chn_count - sdmac->desc->chn_real_count;
1672         } else {
1673                 residue = 0;
1674         }
1675         spin_unlock_irqrestore(&sdmac->vc.lock, flags);
1676
1677         dma_set_tx_state(txstate, chan->completed_cookie, chan->cookie,
1678                          residue);
1679
1680         return sdmac->status;
1681 }
1682
1683 static void sdma_issue_pending(struct dma_chan *chan)
1684 {
1685         struct sdma_channel *sdmac = to_sdma_chan(chan);
1686         unsigned long flags;
1687
1688         spin_lock_irqsave(&sdmac->vc.lock, flags);
1689         if (vchan_issue_pending(&sdmac->vc) && !sdmac->desc)
1690                 sdma_start_desc(sdmac);
1691         spin_unlock_irqrestore(&sdmac->vc.lock, flags);
1692 }
1693
1694 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1 34
1695 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2 38
1696 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3 41
1697 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V4 42
1698
1699 static void sdma_add_scripts(struct sdma_engine *sdma,
1700                 const struct sdma_script_start_addrs *addr)
1701 {
1702         s32 *addr_arr = (u32 *)addr;
1703         s32 *saddr_arr = (u32 *)sdma->script_addrs;
1704         int i;
1705
1706         /* use the default firmware in ROM if missing external firmware */
1707         if (!sdma->script_number)
1708                 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1;
1709
1710         for (i = 0; i < sdma->script_number; i++)
1711                 if (addr_arr[i] > 0)
1712                         saddr_arr[i] = addr_arr[i];
1713 }
1714
1715 static void sdma_load_firmware(const struct firmware *fw, void *context)
1716 {
1717         struct sdma_engine *sdma = context;
1718         const struct sdma_firmware_header *header;
1719         const struct sdma_script_start_addrs *addr;
1720         unsigned short *ram_code;
1721
1722         if (!fw) {
1723                 dev_info(sdma->dev, "external firmware not found, using ROM firmware\n");
1724                 /* In this case we just use the ROM firmware. */
1725                 return;
1726         }
1727
1728         if (fw->size < sizeof(*header))
1729                 goto err_firmware;
1730
1731         header = (struct sdma_firmware_header *)fw->data;
1732
1733         if (header->magic != SDMA_FIRMWARE_MAGIC)
1734                 goto err_firmware;
1735         if (header->ram_code_start + header->ram_code_size > fw->size)
1736                 goto err_firmware;
1737         switch (header->version_major) {
1738         case 1:
1739                 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1;
1740                 break;
1741         case 2:
1742                 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2;
1743                 break;
1744         case 3:
1745                 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3;
1746                 break;
1747         case 4:
1748                 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V4;
1749                 break;
1750         default:
1751                 dev_err(sdma->dev, "unknown firmware version\n");
1752                 goto err_firmware;
1753         }
1754
1755         addr = (void *)header + header->script_addrs_start;
1756         ram_code = (void *)header + header->ram_code_start;
1757
1758         clk_enable(sdma->clk_ipg);
1759         clk_enable(sdma->clk_ahb);
1760         /* download the RAM image for SDMA */
1761         sdma_load_script(sdma, ram_code,
1762                         header->ram_code_size,
1763                         addr->ram_code_start_addr);
1764         clk_disable(sdma->clk_ipg);
1765         clk_disable(sdma->clk_ahb);
1766
1767         sdma_add_scripts(sdma, addr);
1768
1769         dev_info(sdma->dev, "loaded firmware %d.%d\n",
1770                         header->version_major,
1771                         header->version_minor);
1772
1773 err_firmware:
1774         release_firmware(fw);
1775 }
1776
1777 #define EVENT_REMAP_CELLS 3
1778
1779 static int sdma_event_remap(struct sdma_engine *sdma)
1780 {
1781         struct device_node *np = sdma->dev->of_node;
1782         struct device_node *gpr_np = of_parse_phandle(np, "gpr", 0);
1783         struct property *event_remap;
1784         struct regmap *gpr;
1785         char propname[] = "fsl,sdma-event-remap";
1786         u32 reg, val, shift, num_map, i;
1787         int ret = 0;
1788
1789         if (IS_ERR(np) || IS_ERR(gpr_np))
1790                 goto out;
1791
1792         event_remap = of_find_property(np, propname, NULL);
1793         num_map = event_remap ? (event_remap->length / sizeof(u32)) : 0;
1794         if (!num_map) {
1795                 dev_dbg(sdma->dev, "no event needs to be remapped\n");
1796                 goto out;
1797         } else if (num_map % EVENT_REMAP_CELLS) {
1798                 dev_err(sdma->dev, "the property %s must modulo %d\n",
1799                                 propname, EVENT_REMAP_CELLS);
1800                 ret = -EINVAL;
1801                 goto out;
1802         }
1803
1804         gpr = syscon_node_to_regmap(gpr_np);
1805         if (IS_ERR(gpr)) {
1806                 dev_err(sdma->dev, "failed to get gpr regmap\n");
1807                 ret = PTR_ERR(gpr);
1808                 goto out;
1809         }
1810
1811         for (i = 0; i < num_map; i += EVENT_REMAP_CELLS) {
1812                 ret = of_property_read_u32_index(np, propname, i, &reg);
1813                 if (ret) {
1814                         dev_err(sdma->dev, "failed to read property %s index %d\n",
1815                                         propname, i);
1816                         goto out;
1817                 }
1818
1819                 ret = of_property_read_u32_index(np, propname, i + 1, &shift);
1820                 if (ret) {
1821                         dev_err(sdma->dev, "failed to read property %s index %d\n",
1822                                         propname, i + 1);
1823                         goto out;
1824                 }
1825
1826                 ret = of_property_read_u32_index(np, propname, i + 2, &val);
1827                 if (ret) {
1828                         dev_err(sdma->dev, "failed to read property %s index %d\n",
1829                                         propname, i + 2);
1830                         goto out;
1831                 }
1832
1833                 regmap_update_bits(gpr, reg, BIT(shift), val << shift);
1834         }
1835
1836 out:
1837         if (!IS_ERR(gpr_np))
1838                 of_node_put(gpr_np);
1839
1840         return ret;
1841 }
1842
1843 static int sdma_get_firmware(struct sdma_engine *sdma,
1844                 const char *fw_name)
1845 {
1846         int ret;
1847
1848         ret = request_firmware_nowait(THIS_MODULE,
1849                         FW_ACTION_HOTPLUG, fw_name, sdma->dev,
1850                         GFP_KERNEL, sdma, sdma_load_firmware);
1851
1852         return ret;
1853 }
1854
1855 static int sdma_init(struct sdma_engine *sdma)
1856 {
1857         int i, ret;
1858         dma_addr_t ccb_phys;
1859
1860         ret = clk_enable(sdma->clk_ipg);
1861         if (ret)
1862                 return ret;
1863         ret = clk_enable(sdma->clk_ahb);
1864         if (ret)
1865                 goto disable_clk_ipg;
1866
1867         if (sdma->drvdata->check_ratio &&
1868             (clk_get_rate(sdma->clk_ahb) == clk_get_rate(sdma->clk_ipg)))
1869                 sdma->clk_ratio = 1;
1870
1871         /* Be sure SDMA has not started yet */
1872         writel_relaxed(0, sdma->regs + SDMA_H_C0PTR);
1873
1874         sdma->channel_control = dma_alloc_coherent(sdma->dev,
1875                         MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control) +
1876                         sizeof(struct sdma_context_data),
1877                         &ccb_phys, GFP_KERNEL);
1878
1879         if (!sdma->channel_control) {
1880                 ret = -ENOMEM;
1881                 goto err_dma_alloc;
1882         }
1883
1884         sdma->context = (void *)sdma->channel_control +
1885                 MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
1886         sdma->context_phys = ccb_phys +
1887                 MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
1888
1889         /* disable all channels */
1890         for (i = 0; i < sdma->drvdata->num_events; i++)
1891                 writel_relaxed(0, sdma->regs + chnenbl_ofs(sdma, i));
1892
1893         /* All channels have priority 0 */
1894         for (i = 0; i < MAX_DMA_CHANNELS; i++)
1895                 writel_relaxed(0, sdma->regs + SDMA_CHNPRI_0 + i * 4);
1896
1897         ret = sdma_request_channel0(sdma);
1898         if (ret)
1899                 goto err_dma_alloc;
1900
1901         sdma_config_ownership(&sdma->channel[0], false, true, false);
1902
1903         /* Set Command Channel (Channel Zero) */
1904         writel_relaxed(0x4050, sdma->regs + SDMA_CHN0ADDR);
1905
1906         /* Set bits of CONFIG register but with static context switching */
1907         if (sdma->clk_ratio)
1908                 writel_relaxed(SDMA_H_CONFIG_ACR, sdma->regs + SDMA_H_CONFIG);
1909         else
1910                 writel_relaxed(0, sdma->regs + SDMA_H_CONFIG);
1911
1912         writel_relaxed(ccb_phys, sdma->regs + SDMA_H_C0PTR);
1913
1914         /* Initializes channel's priorities */
1915         sdma_set_channel_priority(&sdma->channel[0], 7);
1916
1917         clk_disable(sdma->clk_ipg);
1918         clk_disable(sdma->clk_ahb);
1919
1920         return 0;
1921
1922 err_dma_alloc:
1923         clk_disable(sdma->clk_ahb);
1924 disable_clk_ipg:
1925         clk_disable(sdma->clk_ipg);
1926         dev_err(sdma->dev, "initialisation failed with %d\n", ret);
1927         return ret;
1928 }
1929
1930 static bool sdma_filter_fn(struct dma_chan *chan, void *fn_param)
1931 {
1932         struct sdma_channel *sdmac = to_sdma_chan(chan);
1933         struct imx_dma_data *data = fn_param;
1934
1935         if (!imx_dma_is_general_purpose(chan))
1936                 return false;
1937
1938         sdmac->data = *data;
1939         chan->private = &sdmac->data;
1940
1941         return true;
1942 }
1943
1944 static struct dma_chan *sdma_xlate(struct of_phandle_args *dma_spec,
1945                                    struct of_dma *ofdma)
1946 {
1947         struct sdma_engine *sdma = ofdma->of_dma_data;
1948         dma_cap_mask_t mask = sdma->dma_device.cap_mask;
1949         struct imx_dma_data data;
1950
1951         if (dma_spec->args_count != 3)
1952                 return NULL;
1953
1954         data.dma_request = dma_spec->args[0];
1955         data.peripheral_type = dma_spec->args[1];
1956         data.priority = dma_spec->args[2];
1957         /*
1958          * init dma_request2 to zero, which is not used by the dts.
1959          * For P2P, dma_request2 is init from dma_request_channel(),
1960          * chan->private will point to the imx_dma_data, and in
1961          * device_alloc_chan_resources(), imx_dma_data.dma_request2 will
1962          * be set to sdmac->event_id1.
1963          */
1964         data.dma_request2 = 0;
1965
1966         return __dma_request_channel(&mask, sdma_filter_fn, &data,
1967                                      ofdma->of_node);
1968 }
1969
1970 static int sdma_probe(struct platform_device *pdev)
1971 {
1972         const struct of_device_id *of_id =
1973                         of_match_device(sdma_dt_ids, &pdev->dev);
1974         struct device_node *np = pdev->dev.of_node;
1975         struct device_node *spba_bus;
1976         const char *fw_name;
1977         int ret;
1978         int irq;
1979         struct resource *iores;
1980         struct resource spba_res;
1981         struct sdma_platform_data *pdata = dev_get_platdata(&pdev->dev);
1982         int i;
1983         struct sdma_engine *sdma;
1984         s32 *saddr_arr;
1985         const struct sdma_driver_data *drvdata = NULL;
1986
1987         if (of_id)
1988                 drvdata = of_id->data;
1989         else if (pdev->id_entry)
1990                 drvdata = (void *)pdev->id_entry->driver_data;
1991
1992         if (!drvdata) {
1993                 dev_err(&pdev->dev, "unable to find driver data\n");
1994                 return -EINVAL;
1995         }
1996
1997         ret = dma_coerce_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1998         if (ret)
1999                 return ret;
2000
2001         sdma = devm_kzalloc(&pdev->dev, sizeof(*sdma), GFP_KERNEL);
2002         if (!sdma)
2003                 return -ENOMEM;
2004
2005         spin_lock_init(&sdma->channel_0_lock);
2006
2007         sdma->dev = &pdev->dev;
2008         sdma->drvdata = drvdata;
2009
2010         irq = platform_get_irq(pdev, 0);
2011         if (irq < 0)
2012                 return irq;
2013
2014         iores = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2015         sdma->regs = devm_ioremap_resource(&pdev->dev, iores);
2016         if (IS_ERR(sdma->regs))
2017                 return PTR_ERR(sdma->regs);
2018
2019         sdma->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
2020         if (IS_ERR(sdma->clk_ipg))
2021                 return PTR_ERR(sdma->clk_ipg);
2022
2023         sdma->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
2024         if (IS_ERR(sdma->clk_ahb))
2025                 return PTR_ERR(sdma->clk_ahb);
2026
2027         ret = clk_prepare(sdma->clk_ipg);
2028         if (ret)
2029                 return ret;
2030
2031         ret = clk_prepare(sdma->clk_ahb);
2032         if (ret)
2033                 goto err_clk;
2034
2035         ret = devm_request_irq(&pdev->dev, irq, sdma_int_handler, 0, "sdma",
2036                                sdma);
2037         if (ret)
2038                 goto err_irq;
2039
2040         sdma->irq = irq;
2041
2042         sdma->script_addrs = kzalloc(sizeof(*sdma->script_addrs), GFP_KERNEL);
2043         if (!sdma->script_addrs) {
2044                 ret = -ENOMEM;
2045                 goto err_irq;
2046         }
2047
2048         /* initially no scripts available */
2049         saddr_arr = (s32 *)sdma->script_addrs;
2050         for (i = 0; i < SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1; i++)
2051                 saddr_arr[i] = -EINVAL;
2052
2053         dma_cap_set(DMA_SLAVE, sdma->dma_device.cap_mask);
2054         dma_cap_set(DMA_CYCLIC, sdma->dma_device.cap_mask);
2055         dma_cap_set(DMA_MEMCPY, sdma->dma_device.cap_mask);
2056
2057         INIT_LIST_HEAD(&sdma->dma_device.channels);
2058         /* Initialize channel parameters */
2059         for (i = 0; i < MAX_DMA_CHANNELS; i++) {
2060                 struct sdma_channel *sdmac = &sdma->channel[i];
2061
2062                 sdmac->sdma = sdma;
2063
2064                 sdmac->channel = i;
2065                 sdmac->vc.desc_free = sdma_desc_free;
2066                 INIT_WORK(&sdmac->terminate_worker,
2067                                 sdma_channel_terminate_work);
2068                 /*
2069                  * Add the channel to the DMAC list. Do not add channel 0 though
2070                  * because we need it internally in the SDMA driver. This also means
2071                  * that channel 0 in dmaengine counting matches sdma channel 1.
2072                  */
2073                 if (i)
2074                         vchan_init(&sdmac->vc, &sdma->dma_device);
2075         }
2076
2077         ret = sdma_init(sdma);
2078         if (ret)
2079                 goto err_init;
2080
2081         ret = sdma_event_remap(sdma);
2082         if (ret)
2083                 goto err_init;
2084
2085         if (sdma->drvdata->script_addrs)
2086                 sdma_add_scripts(sdma, sdma->drvdata->script_addrs);
2087         if (pdata && pdata->script_addrs)
2088                 sdma_add_scripts(sdma, pdata->script_addrs);
2089
2090         sdma->dma_device.dev = &pdev->dev;
2091
2092         sdma->dma_device.device_alloc_chan_resources = sdma_alloc_chan_resources;
2093         sdma->dma_device.device_free_chan_resources = sdma_free_chan_resources;
2094         sdma->dma_device.device_tx_status = sdma_tx_status;
2095         sdma->dma_device.device_prep_slave_sg = sdma_prep_slave_sg;
2096         sdma->dma_device.device_prep_dma_cyclic = sdma_prep_dma_cyclic;
2097         sdma->dma_device.device_config = sdma_config;
2098         sdma->dma_device.device_terminate_all = sdma_disable_channel_async;
2099         sdma->dma_device.device_synchronize = sdma_channel_synchronize;
2100         sdma->dma_device.src_addr_widths = SDMA_DMA_BUSWIDTHS;
2101         sdma->dma_device.dst_addr_widths = SDMA_DMA_BUSWIDTHS;
2102         sdma->dma_device.directions = SDMA_DMA_DIRECTIONS;
2103         sdma->dma_device.residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT;
2104         sdma->dma_device.device_prep_dma_memcpy = sdma_prep_memcpy;
2105         sdma->dma_device.device_issue_pending = sdma_issue_pending;
2106         sdma->dma_device.dev->dma_parms = &sdma->dma_parms;
2107         sdma->dma_device.copy_align = 2;
2108         dma_set_max_seg_size(sdma->dma_device.dev, SDMA_BD_MAX_CNT);
2109
2110         platform_set_drvdata(pdev, sdma);
2111
2112         ret = dma_async_device_register(&sdma->dma_device);
2113         if (ret) {
2114                 dev_err(&pdev->dev, "unable to register\n");
2115                 goto err_init;
2116         }
2117
2118         if (np) {
2119                 ret = of_dma_controller_register(np, sdma_xlate, sdma);
2120                 if (ret) {
2121                         dev_err(&pdev->dev, "failed to register controller\n");
2122                         goto err_register;
2123                 }
2124
2125                 spba_bus = of_find_compatible_node(NULL, NULL, "fsl,spba-bus");
2126                 ret = of_address_to_resource(spba_bus, 0, &spba_res);
2127                 if (!ret) {
2128                         sdma->spba_start_addr = spba_res.start;
2129                         sdma->spba_end_addr = spba_res.end;
2130                 }
2131                 of_node_put(spba_bus);
2132         }
2133
2134         /*
2135          * Kick off firmware loading as the very last step:
2136          * attempt to load firmware only if we're not on the error path, because
2137          * the firmware callback requires a fully functional and allocated sdma
2138          * instance.
2139          */
2140         if (pdata) {
2141                 ret = sdma_get_firmware(sdma, pdata->fw_name);
2142                 if (ret)
2143                         dev_warn(&pdev->dev, "failed to get firmware from platform data\n");
2144         } else {
2145                 /*
2146                  * Because that device tree does not encode ROM script address,
2147                  * the RAM script in firmware is mandatory for device tree
2148                  * probe, otherwise it fails.
2149                  */
2150                 ret = of_property_read_string(np, "fsl,sdma-ram-script-name",
2151                                               &fw_name);
2152                 if (ret) {
2153                         dev_warn(&pdev->dev, "failed to get firmware name\n");
2154                 } else {
2155                         ret = sdma_get_firmware(sdma, fw_name);
2156                         if (ret)
2157                                 dev_warn(&pdev->dev, "failed to get firmware from device tree\n");
2158                 }
2159         }
2160
2161         return 0;
2162
2163 err_register:
2164         dma_async_device_unregister(&sdma->dma_device);
2165 err_init:
2166         kfree(sdma->script_addrs);
2167 err_irq:
2168         clk_unprepare(sdma->clk_ahb);
2169 err_clk:
2170         clk_unprepare(sdma->clk_ipg);
2171         return ret;
2172 }
2173
2174 static int sdma_remove(struct platform_device *pdev)
2175 {
2176         struct sdma_engine *sdma = platform_get_drvdata(pdev);
2177         int i;
2178
2179         devm_free_irq(&pdev->dev, sdma->irq, sdma);
2180         dma_async_device_unregister(&sdma->dma_device);
2181         kfree(sdma->script_addrs);
2182         clk_unprepare(sdma->clk_ahb);
2183         clk_unprepare(sdma->clk_ipg);
2184         /* Kill the tasklet */
2185         for (i = 0; i < MAX_DMA_CHANNELS; i++) {
2186                 struct sdma_channel *sdmac = &sdma->channel[i];
2187
2188                 tasklet_kill(&sdmac->vc.task);
2189                 sdma_free_chan_resources(&sdmac->vc.chan);
2190         }
2191
2192         platform_set_drvdata(pdev, NULL);
2193         return 0;
2194 }
2195
2196 static struct platform_driver sdma_driver = {
2197         .driver         = {
2198                 .name   = "imx-sdma",
2199                 .of_match_table = sdma_dt_ids,
2200         },
2201         .id_table       = sdma_devtypes,
2202         .remove         = sdma_remove,
2203         .probe          = sdma_probe,
2204 };
2205
2206 module_platform_driver(sdma_driver);
2207
2208 MODULE_AUTHOR("Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>");
2209 MODULE_DESCRIPTION("i.MX SDMA driver");
2210 #if IS_ENABLED(CONFIG_SOC_IMX6Q)
2211 MODULE_FIRMWARE("imx/sdma/sdma-imx6q.bin");
2212 #endif
2213 #if IS_ENABLED(CONFIG_SOC_IMX7D)
2214 MODULE_FIRMWARE("imx/sdma/sdma-imx7d.bin");
2215 #endif
2216 MODULE_LICENSE("GPL");