dmaengine: ti: edma: handle irq_of_parse_and_map() errors
[platform/kernel/linux-starfive.git] / drivers / dma / imx-sdma.c
1 // SPDX-License-Identifier: GPL-2.0+
2 //
3 // drivers/dma/imx-sdma.c
4 //
5 // This file contains a driver for the Freescale Smart DMA engine
6 //
7 // Copyright 2010 Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>
8 //
9 // Based on code from Freescale:
10 //
11 // Copyright 2004-2009 Freescale Semiconductor, Inc. All Rights Reserved.
12
13 #include <linux/init.h>
14 #include <linux/iopoll.h>
15 #include <linux/module.h>
16 #include <linux/types.h>
17 #include <linux/bitfield.h>
18 #include <linux/bitops.h>
19 #include <linux/mm.h>
20 #include <linux/interrupt.h>
21 #include <linux/clk.h>
22 #include <linux/delay.h>
23 #include <linux/sched.h>
24 #include <linux/semaphore.h>
25 #include <linux/spinlock.h>
26 #include <linux/device.h>
27 #include <linux/dma-mapping.h>
28 #include <linux/firmware.h>
29 #include <linux/slab.h>
30 #include <linux/platform_device.h>
31 #include <linux/dmaengine.h>
32 #include <linux/of.h>
33 #include <linux/of_address.h>
34 #include <linux/of_dma.h>
35 #include <linux/workqueue.h>
36
37 #include <asm/irq.h>
38 #include <linux/dma/imx-dma.h>
39 #include <linux/regmap.h>
40 #include <linux/mfd/syscon.h>
41 #include <linux/mfd/syscon/imx6q-iomuxc-gpr.h>
42
43 #include "dmaengine.h"
44 #include "virt-dma.h"
45
46 /* SDMA registers */
47 #define SDMA_H_C0PTR            0x000
48 #define SDMA_H_INTR             0x004
49 #define SDMA_H_STATSTOP         0x008
50 #define SDMA_H_START            0x00c
51 #define SDMA_H_EVTOVR           0x010
52 #define SDMA_H_DSPOVR           0x014
53 #define SDMA_H_HOSTOVR          0x018
54 #define SDMA_H_EVTPEND          0x01c
55 #define SDMA_H_DSPENBL          0x020
56 #define SDMA_H_RESET            0x024
57 #define SDMA_H_EVTERR           0x028
58 #define SDMA_H_INTRMSK          0x02c
59 #define SDMA_H_PSW              0x030
60 #define SDMA_H_EVTERRDBG        0x034
61 #define SDMA_H_CONFIG           0x038
62 #define SDMA_ONCE_ENB           0x040
63 #define SDMA_ONCE_DATA          0x044
64 #define SDMA_ONCE_INSTR         0x048
65 #define SDMA_ONCE_STAT          0x04c
66 #define SDMA_ONCE_CMD           0x050
67 #define SDMA_EVT_MIRROR         0x054
68 #define SDMA_ILLINSTADDR        0x058
69 #define SDMA_CHN0ADDR           0x05c
70 #define SDMA_ONCE_RTB           0x060
71 #define SDMA_XTRIG_CONF1        0x070
72 #define SDMA_XTRIG_CONF2        0x074
73 #define SDMA_CHNENBL0_IMX35     0x200
74 #define SDMA_CHNENBL0_IMX31     0x080
75 #define SDMA_CHNPRI_0           0x100
76 #define SDMA_DONE0_CONFIG       0x1000
77
78 /*
79  * Buffer descriptor status values.
80  */
81 #define BD_DONE  0x01
82 #define BD_WRAP  0x02
83 #define BD_CONT  0x04
84 #define BD_INTR  0x08
85 #define BD_RROR  0x10
86 #define BD_LAST  0x20
87 #define BD_EXTD  0x80
88
89 /*
90  * Data Node descriptor status values.
91  */
92 #define DND_END_OF_FRAME  0x80
93 #define DND_END_OF_XFER   0x40
94 #define DND_DONE          0x20
95 #define DND_UNUSED        0x01
96
97 /*
98  * IPCV2 descriptor status values.
99  */
100 #define BD_IPCV2_END_OF_FRAME  0x40
101
102 #define IPCV2_MAX_NODES        50
103 /*
104  * Error bit set in the CCB status field by the SDMA,
105  * in setbd routine, in case of a transfer error
106  */
107 #define DATA_ERROR  0x10000000
108
109 /*
110  * Buffer descriptor commands.
111  */
112 #define C0_ADDR             0x01
113 #define C0_LOAD             0x02
114 #define C0_DUMP             0x03
115 #define C0_SETCTX           0x07
116 #define C0_GETCTX           0x03
117 #define C0_SETDM            0x01
118 #define C0_SETPM            0x04
119 #define C0_GETDM            0x02
120 #define C0_GETPM            0x08
121 /*
122  * Change endianness indicator in the BD command field
123  */
124 #define CHANGE_ENDIANNESS   0x80
125
126 /*
127  *  p_2_p watermark_level description
128  *      Bits            Name                    Description
129  *      0-7             Lower WML               Lower watermark level
130  *      8               PS                      1: Pad Swallowing
131  *                                              0: No Pad Swallowing
132  *      9               PA                      1: Pad Adding
133  *                                              0: No Pad Adding
134  *      10              SPDIF                   If this bit is set both source
135  *                                              and destination are on SPBA
136  *      11              Source Bit(SP)          1: Source on SPBA
137  *                                              0: Source on AIPS
138  *      12              Destination Bit(DP)     1: Destination on SPBA
139  *                                              0: Destination on AIPS
140  *      13-15           ---------               MUST BE 0
141  *      16-23           Higher WML              HWML
142  *      24-27           N                       Total number of samples after
143  *                                              which Pad adding/Swallowing
144  *                                              must be done. It must be odd.
145  *      28              Lower WML Event(LWE)    SDMA events reg to check for
146  *                                              LWML event mask
147  *                                              0: LWE in EVENTS register
148  *                                              1: LWE in EVENTS2 register
149  *      29              Higher WML Event(HWE)   SDMA events reg to check for
150  *                                              HWML event mask
151  *                                              0: HWE in EVENTS register
152  *                                              1: HWE in EVENTS2 register
153  *      30              ---------               MUST BE 0
154  *      31              CONT                    1: Amount of samples to be
155  *                                              transferred is unknown and
156  *                                              script will keep on
157  *                                              transferring samples as long as
158  *                                              both events are detected and
159  *                                              script must be manually stopped
160  *                                              by the application
161  *                                              0: The amount of samples to be
162  *                                              transferred is equal to the
163  *                                              count field of mode word
164  */
165 #define SDMA_WATERMARK_LEVEL_LWML       0xFF
166 #define SDMA_WATERMARK_LEVEL_PS         BIT(8)
167 #define SDMA_WATERMARK_LEVEL_PA         BIT(9)
168 #define SDMA_WATERMARK_LEVEL_SPDIF      BIT(10)
169 #define SDMA_WATERMARK_LEVEL_SP         BIT(11)
170 #define SDMA_WATERMARK_LEVEL_DP         BIT(12)
171 #define SDMA_WATERMARK_LEVEL_HWML       (0xFF << 16)
172 #define SDMA_WATERMARK_LEVEL_LWE        BIT(28)
173 #define SDMA_WATERMARK_LEVEL_HWE        BIT(29)
174 #define SDMA_WATERMARK_LEVEL_CONT       BIT(31)
175
176 #define SDMA_DMA_BUSWIDTHS      (BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
177                                  BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
178                                  BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
179
180 #define SDMA_DMA_DIRECTIONS     (BIT(DMA_DEV_TO_MEM) | \
181                                  BIT(DMA_MEM_TO_DEV) | \
182                                  BIT(DMA_DEV_TO_DEV))
183
184 #define SDMA_WATERMARK_LEVEL_N_FIFOS    GENMASK(15, 12)
185 #define SDMA_WATERMARK_LEVEL_OFF_FIFOS  GENMASK(19, 16)
186 #define SDMA_WATERMARK_LEVEL_WORDS_PER_FIFO   GENMASK(31, 28)
187 #define SDMA_WATERMARK_LEVEL_SW_DONE    BIT(23)
188
189 #define SDMA_DONE0_CONFIG_DONE_SEL      BIT(7)
190 #define SDMA_DONE0_CONFIG_DONE_DIS      BIT(6)
191
192 /*
193  * struct sdma_script_start_addrs - SDMA script start pointers
194  *
195  * start addresses of the different functions in the physical
196  * address space of the SDMA engine.
197  */
198 struct sdma_script_start_addrs {
199         s32 ap_2_ap_addr;
200         s32 ap_2_bp_addr;
201         s32 ap_2_ap_fixed_addr;
202         s32 bp_2_ap_addr;
203         s32 loopback_on_dsp_side_addr;
204         s32 mcu_interrupt_only_addr;
205         s32 firi_2_per_addr;
206         s32 firi_2_mcu_addr;
207         s32 per_2_firi_addr;
208         s32 mcu_2_firi_addr;
209         s32 uart_2_per_addr;
210         s32 uart_2_mcu_addr;
211         s32 per_2_app_addr;
212         s32 mcu_2_app_addr;
213         s32 per_2_per_addr;
214         s32 uartsh_2_per_addr;
215         s32 uartsh_2_mcu_addr;
216         s32 per_2_shp_addr;
217         s32 mcu_2_shp_addr;
218         s32 ata_2_mcu_addr;
219         s32 mcu_2_ata_addr;
220         s32 app_2_per_addr;
221         s32 app_2_mcu_addr;
222         s32 shp_2_per_addr;
223         s32 shp_2_mcu_addr;
224         s32 mshc_2_mcu_addr;
225         s32 mcu_2_mshc_addr;
226         s32 spdif_2_mcu_addr;
227         s32 mcu_2_spdif_addr;
228         s32 asrc_2_mcu_addr;
229         s32 ext_mem_2_ipu_addr;
230         s32 descrambler_addr;
231         s32 dptc_dvfs_addr;
232         s32 utra_addr;
233         s32 ram_code_start_addr;
234         /* End of v1 array */
235         s32 mcu_2_ssish_addr;
236         s32 ssish_2_mcu_addr;
237         s32 hdmi_dma_addr;
238         /* End of v2 array */
239         s32 zcanfd_2_mcu_addr;
240         s32 zqspi_2_mcu_addr;
241         s32 mcu_2_ecspi_addr;
242         s32 mcu_2_sai_addr;
243         s32 sai_2_mcu_addr;
244         s32 uart_2_mcu_rom_addr;
245         s32 uartsh_2_mcu_rom_addr;
246         /* End of v3 array */
247         s32 mcu_2_zqspi_addr;
248         /* End of v4 array */
249 };
250
251 /*
252  * Mode/Count of data node descriptors - IPCv2
253  */
254 struct sdma_mode_count {
255 #define SDMA_BD_MAX_CNT 0xffff
256         u32 count   : 16; /* size of the buffer pointed by this BD */
257         u32 status  :  8; /* E,R,I,C,W,D status bits stored here */
258         u32 command :  8; /* command mostly used for channel 0 */
259 };
260
261 /*
262  * Buffer descriptor
263  */
264 struct sdma_buffer_descriptor {
265         struct sdma_mode_count  mode;
266         u32 buffer_addr;        /* address of the buffer described */
267         u32 ext_buffer_addr;    /* extended buffer address */
268 } __attribute__ ((packed));
269
270 /**
271  * struct sdma_channel_control - Channel control Block
272  *
273  * @current_bd_ptr:     current buffer descriptor processed
274  * @base_bd_ptr:        first element of buffer descriptor array
275  * @unused:             padding. The SDMA engine expects an array of 128 byte
276  *                      control blocks
277  */
278 struct sdma_channel_control {
279         u32 current_bd_ptr;
280         u32 base_bd_ptr;
281         u32 unused[2];
282 } __attribute__ ((packed));
283
284 /**
285  * struct sdma_state_registers - SDMA context for a channel
286  *
287  * @pc:         program counter
288  * @unused1:    unused
289  * @t:          test bit: status of arithmetic & test instruction
290  * @rpc:        return program counter
291  * @unused0:    unused
292  * @sf:         source fault while loading data
293  * @spc:        loop start program counter
294  * @unused2:    unused
295  * @df:         destination fault while storing data
296  * @epc:        loop end program counter
297  * @lm:         loop mode
298  */
299 struct sdma_state_registers {
300         u32 pc     :14;
301         u32 unused1: 1;
302         u32 t      : 1;
303         u32 rpc    :14;
304         u32 unused0: 1;
305         u32 sf     : 1;
306         u32 spc    :14;
307         u32 unused2: 1;
308         u32 df     : 1;
309         u32 epc    :14;
310         u32 lm     : 2;
311 } __attribute__ ((packed));
312
313 /**
314  * struct sdma_context_data - sdma context specific to a channel
315  *
316  * @channel_state:      channel state bits
317  * @gReg:               general registers
318  * @mda:                burst dma destination address register
319  * @msa:                burst dma source address register
320  * @ms:                 burst dma status register
321  * @md:                 burst dma data register
322  * @pda:                peripheral dma destination address register
323  * @psa:                peripheral dma source address register
324  * @ps:                 peripheral dma status register
325  * @pd:                 peripheral dma data register
326  * @ca:                 CRC polynomial register
327  * @cs:                 CRC accumulator register
328  * @dda:                dedicated core destination address register
329  * @dsa:                dedicated core source address register
330  * @ds:                 dedicated core status register
331  * @dd:                 dedicated core data register
332  * @scratch0:           1st word of dedicated ram for context switch
333  * @scratch1:           2nd word of dedicated ram for context switch
334  * @scratch2:           3rd word of dedicated ram for context switch
335  * @scratch3:           4th word of dedicated ram for context switch
336  * @scratch4:           5th word of dedicated ram for context switch
337  * @scratch5:           6th word of dedicated ram for context switch
338  * @scratch6:           7th word of dedicated ram for context switch
339  * @scratch7:           8th word of dedicated ram for context switch
340  */
341 struct sdma_context_data {
342         struct sdma_state_registers  channel_state;
343         u32  gReg[8];
344         u32  mda;
345         u32  msa;
346         u32  ms;
347         u32  md;
348         u32  pda;
349         u32  psa;
350         u32  ps;
351         u32  pd;
352         u32  ca;
353         u32  cs;
354         u32  dda;
355         u32  dsa;
356         u32  ds;
357         u32  dd;
358         u32  scratch0;
359         u32  scratch1;
360         u32  scratch2;
361         u32  scratch3;
362         u32  scratch4;
363         u32  scratch5;
364         u32  scratch6;
365         u32  scratch7;
366 } __attribute__ ((packed));
367
368
369 struct sdma_engine;
370
371 /**
372  * struct sdma_desc - descriptor structor for one transfer
373  * @vd:                 descriptor for virt dma
374  * @num_bd:             number of descriptors currently handling
375  * @bd_phys:            physical address of bd
376  * @buf_tail:           ID of the buffer that was processed
377  * @buf_ptail:          ID of the previous buffer that was processed
378  * @period_len:         period length, used in cyclic.
379  * @chn_real_count:     the real count updated from bd->mode.count
380  * @chn_count:          the transfer count set
381  * @sdmac:              sdma_channel pointer
382  * @bd:                 pointer of allocate bd
383  */
384 struct sdma_desc {
385         struct virt_dma_desc    vd;
386         unsigned int            num_bd;
387         dma_addr_t              bd_phys;
388         unsigned int            buf_tail;
389         unsigned int            buf_ptail;
390         unsigned int            period_len;
391         unsigned int            chn_real_count;
392         unsigned int            chn_count;
393         struct sdma_channel     *sdmac;
394         struct sdma_buffer_descriptor *bd;
395 };
396
397 /**
398  * struct sdma_channel - housekeeping for a SDMA channel
399  *
400  * @vc:                 virt_dma base structure
401  * @desc:               sdma description including vd and other special member
402  * @sdma:               pointer to the SDMA engine for this channel
403  * @channel:            the channel number, matches dmaengine chan_id + 1
404  * @direction:          transfer type. Needed for setting SDMA script
405  * @slave_config:       Slave configuration
406  * @peripheral_type:    Peripheral type. Needed for setting SDMA script
407  * @event_id0:          aka dma request line
408  * @event_id1:          for channels that use 2 events
409  * @word_size:          peripheral access size
410  * @pc_from_device:     script address for those device_2_memory
411  * @pc_to_device:       script address for those memory_2_device
412  * @device_to_device:   script address for those device_2_device
413  * @pc_to_pc:           script address for those memory_2_memory
414  * @flags:              loop mode or not
415  * @per_address:        peripheral source or destination address in common case
416  *                      destination address in p_2_p case
417  * @per_address2:       peripheral source address in p_2_p case
418  * @event_mask:         event mask used in p_2_p script
419  * @watermark_level:    value for gReg[7], some script will extend it from
420  *                      basic watermark such as p_2_p
421  * @shp_addr:           value for gReg[6]
422  * @per_addr:           value for gReg[2]
423  * @status:             status of dma channel
424  * @context_loaded:     ensure context is only loaded once
425  * @data:               specific sdma interface structure
426  * @bd_pool:            dma_pool for bd
427  * @terminate_worker:   used to call back into terminate work function
428  * @terminated:         terminated list
429  * @is_ram_script:      flag for script in ram
430  * @n_fifos_src:        number of source device fifos
431  * @n_fifos_dst:        number of destination device fifos
432  * @sw_done:            software done flag
433  * @stride_fifos_src:   stride for source device FIFOs
434  * @stride_fifos_dst:   stride for destination device FIFOs
435  * @words_per_fifo:     copy number of words one time for one FIFO
436  */
437 struct sdma_channel {
438         struct virt_dma_chan            vc;
439         struct sdma_desc                *desc;
440         struct sdma_engine              *sdma;
441         unsigned int                    channel;
442         enum dma_transfer_direction             direction;
443         struct dma_slave_config         slave_config;
444         enum sdma_peripheral_type       peripheral_type;
445         unsigned int                    event_id0;
446         unsigned int                    event_id1;
447         enum dma_slave_buswidth         word_size;
448         unsigned int                    pc_from_device, pc_to_device;
449         unsigned int                    device_to_device;
450         unsigned int                    pc_to_pc;
451         unsigned long                   flags;
452         dma_addr_t                      per_address, per_address2;
453         unsigned long                   event_mask[2];
454         unsigned long                   watermark_level;
455         u32                             shp_addr, per_addr;
456         enum dma_status                 status;
457         struct imx_dma_data             data;
458         struct work_struct              terminate_worker;
459         struct list_head                terminated;
460         bool                            is_ram_script;
461         unsigned int                    n_fifos_src;
462         unsigned int                    n_fifos_dst;
463         unsigned int                    stride_fifos_src;
464         unsigned int                    stride_fifos_dst;
465         unsigned int                    words_per_fifo;
466         bool                            sw_done;
467 };
468
469 #define IMX_DMA_SG_LOOP         BIT(0)
470
471 #define MAX_DMA_CHANNELS 32
472 #define MXC_SDMA_DEFAULT_PRIORITY 1
473 #define MXC_SDMA_MIN_PRIORITY 1
474 #define MXC_SDMA_MAX_PRIORITY 7
475
476 #define SDMA_FIRMWARE_MAGIC 0x414d4453
477
478 /**
479  * struct sdma_firmware_header - Layout of the firmware image
480  *
481  * @magic:              "SDMA"
482  * @version_major:      increased whenever layout of struct
483  *                      sdma_script_start_addrs changes.
484  * @version_minor:      firmware minor version (for binary compatible changes)
485  * @script_addrs_start: offset of struct sdma_script_start_addrs in this image
486  * @num_script_addrs:   Number of script addresses in this image
487  * @ram_code_start:     offset of SDMA ram image in this firmware image
488  * @ram_code_size:      size of SDMA ram image
489  * @script_addrs:       Stores the start address of the SDMA scripts
490  *                      (in SDMA memory space)
491  */
492 struct sdma_firmware_header {
493         u32     magic;
494         u32     version_major;
495         u32     version_minor;
496         u32     script_addrs_start;
497         u32     num_script_addrs;
498         u32     ram_code_start;
499         u32     ram_code_size;
500 };
501
502 struct sdma_driver_data {
503         int chnenbl0;
504         int num_events;
505         struct sdma_script_start_addrs  *script_addrs;
506         bool check_ratio;
507         /*
508          * ecspi ERR009165 fixed should be done in sdma script
509          * and it has been fixed in soc from i.mx6ul.
510          * please get more information from the below link:
511          * https://www.nxp.com/docs/en/errata/IMX6DQCE.pdf
512          */
513         bool ecspi_fixed;
514 };
515
516 struct sdma_engine {
517         struct device                   *dev;
518         struct sdma_channel             channel[MAX_DMA_CHANNELS];
519         struct sdma_channel_control     *channel_control;
520         void __iomem                    *regs;
521         struct sdma_context_data        *context;
522         dma_addr_t                      context_phys;
523         struct dma_device               dma_device;
524         struct clk                      *clk_ipg;
525         struct clk                      *clk_ahb;
526         spinlock_t                      channel_0_lock;
527         u32                             script_number;
528         struct sdma_script_start_addrs  *script_addrs;
529         const struct sdma_driver_data   *drvdata;
530         u32                             spba_start_addr;
531         u32                             spba_end_addr;
532         unsigned int                    irq;
533         dma_addr_t                      bd0_phys;
534         struct sdma_buffer_descriptor   *bd0;
535         /* clock ratio for AHB:SDMA core. 1:1 is 1, 2:1 is 0*/
536         bool                            clk_ratio;
537         bool                            fw_loaded;
538 };
539
540 static int sdma_config_write(struct dma_chan *chan,
541                        struct dma_slave_config *dmaengine_cfg,
542                        enum dma_transfer_direction direction);
543
544 static struct sdma_driver_data sdma_imx31 = {
545         .chnenbl0 = SDMA_CHNENBL0_IMX31,
546         .num_events = 32,
547 };
548
549 static struct sdma_script_start_addrs sdma_script_imx25 = {
550         .ap_2_ap_addr = 729,
551         .uart_2_mcu_addr = 904,
552         .per_2_app_addr = 1255,
553         .mcu_2_app_addr = 834,
554         .uartsh_2_mcu_addr = 1120,
555         .per_2_shp_addr = 1329,
556         .mcu_2_shp_addr = 1048,
557         .ata_2_mcu_addr = 1560,
558         .mcu_2_ata_addr = 1479,
559         .app_2_per_addr = 1189,
560         .app_2_mcu_addr = 770,
561         .shp_2_per_addr = 1407,
562         .shp_2_mcu_addr = 979,
563 };
564
565 static struct sdma_driver_data sdma_imx25 = {
566         .chnenbl0 = SDMA_CHNENBL0_IMX35,
567         .num_events = 48,
568         .script_addrs = &sdma_script_imx25,
569 };
570
571 static struct sdma_driver_data sdma_imx35 = {
572         .chnenbl0 = SDMA_CHNENBL0_IMX35,
573         .num_events = 48,
574 };
575
576 static struct sdma_script_start_addrs sdma_script_imx51 = {
577         .ap_2_ap_addr = 642,
578         .uart_2_mcu_addr = 817,
579         .mcu_2_app_addr = 747,
580         .mcu_2_shp_addr = 961,
581         .ata_2_mcu_addr = 1473,
582         .mcu_2_ata_addr = 1392,
583         .app_2_per_addr = 1033,
584         .app_2_mcu_addr = 683,
585         .shp_2_per_addr = 1251,
586         .shp_2_mcu_addr = 892,
587 };
588
589 static struct sdma_driver_data sdma_imx51 = {
590         .chnenbl0 = SDMA_CHNENBL0_IMX35,
591         .num_events = 48,
592         .script_addrs = &sdma_script_imx51,
593 };
594
595 static struct sdma_script_start_addrs sdma_script_imx53 = {
596         .ap_2_ap_addr = 642,
597         .app_2_mcu_addr = 683,
598         .mcu_2_app_addr = 747,
599         .uart_2_mcu_addr = 817,
600         .shp_2_mcu_addr = 891,
601         .mcu_2_shp_addr = 960,
602         .uartsh_2_mcu_addr = 1032,
603         .spdif_2_mcu_addr = 1100,
604         .mcu_2_spdif_addr = 1134,
605         .firi_2_mcu_addr = 1193,
606         .mcu_2_firi_addr = 1290,
607 };
608
609 static struct sdma_driver_data sdma_imx53 = {
610         .chnenbl0 = SDMA_CHNENBL0_IMX35,
611         .num_events = 48,
612         .script_addrs = &sdma_script_imx53,
613 };
614
615 static struct sdma_script_start_addrs sdma_script_imx6q = {
616         .ap_2_ap_addr = 642,
617         .uart_2_mcu_addr = 817,
618         .mcu_2_app_addr = 747,
619         .per_2_per_addr = 6331,
620         .uartsh_2_mcu_addr = 1032,
621         .mcu_2_shp_addr = 960,
622         .app_2_mcu_addr = 683,
623         .shp_2_mcu_addr = 891,
624         .spdif_2_mcu_addr = 1100,
625         .mcu_2_spdif_addr = 1134,
626 };
627
628 static struct sdma_driver_data sdma_imx6q = {
629         .chnenbl0 = SDMA_CHNENBL0_IMX35,
630         .num_events = 48,
631         .script_addrs = &sdma_script_imx6q,
632 };
633
634 static struct sdma_driver_data sdma_imx6ul = {
635         .chnenbl0 = SDMA_CHNENBL0_IMX35,
636         .num_events = 48,
637         .script_addrs = &sdma_script_imx6q,
638         .ecspi_fixed = true,
639 };
640
641 static struct sdma_script_start_addrs sdma_script_imx7d = {
642         .ap_2_ap_addr = 644,
643         .uart_2_mcu_addr = 819,
644         .mcu_2_app_addr = 749,
645         .uartsh_2_mcu_addr = 1034,
646         .mcu_2_shp_addr = 962,
647         .app_2_mcu_addr = 685,
648         .shp_2_mcu_addr = 893,
649         .spdif_2_mcu_addr = 1102,
650         .mcu_2_spdif_addr = 1136,
651 };
652
653 static struct sdma_driver_data sdma_imx7d = {
654         .chnenbl0 = SDMA_CHNENBL0_IMX35,
655         .num_events = 48,
656         .script_addrs = &sdma_script_imx7d,
657 };
658
659 static struct sdma_driver_data sdma_imx8mq = {
660         .chnenbl0 = SDMA_CHNENBL0_IMX35,
661         .num_events = 48,
662         .script_addrs = &sdma_script_imx7d,
663         .check_ratio = 1,
664 };
665
666 static const struct of_device_id sdma_dt_ids[] = {
667         { .compatible = "fsl,imx6q-sdma", .data = &sdma_imx6q, },
668         { .compatible = "fsl,imx53-sdma", .data = &sdma_imx53, },
669         { .compatible = "fsl,imx51-sdma", .data = &sdma_imx51, },
670         { .compatible = "fsl,imx35-sdma", .data = &sdma_imx35, },
671         { .compatible = "fsl,imx31-sdma", .data = &sdma_imx31, },
672         { .compatible = "fsl,imx25-sdma", .data = &sdma_imx25, },
673         { .compatible = "fsl,imx7d-sdma", .data = &sdma_imx7d, },
674         { .compatible = "fsl,imx6ul-sdma", .data = &sdma_imx6ul, },
675         { .compatible = "fsl,imx8mq-sdma", .data = &sdma_imx8mq, },
676         { /* sentinel */ }
677 };
678 MODULE_DEVICE_TABLE(of, sdma_dt_ids);
679
680 #define SDMA_H_CONFIG_DSPDMA    BIT(12) /* indicates if the DSPDMA is used */
681 #define SDMA_H_CONFIG_RTD_PINS  BIT(11) /* indicates if Real-Time Debug pins are enabled */
682 #define SDMA_H_CONFIG_ACR       BIT(4)  /* indicates if AHB freq /core freq = 2 or 1 */
683 #define SDMA_H_CONFIG_CSM       (3)       /* indicates which context switch mode is selected*/
684
685 static inline u32 chnenbl_ofs(struct sdma_engine *sdma, unsigned int event)
686 {
687         u32 chnenbl0 = sdma->drvdata->chnenbl0;
688         return chnenbl0 + event * 4;
689 }
690
691 static int sdma_config_ownership(struct sdma_channel *sdmac,
692                 bool event_override, bool mcu_override, bool dsp_override)
693 {
694         struct sdma_engine *sdma = sdmac->sdma;
695         int channel = sdmac->channel;
696         unsigned long evt, mcu, dsp;
697
698         if (event_override && mcu_override && dsp_override)
699                 return -EINVAL;
700
701         evt = readl_relaxed(sdma->regs + SDMA_H_EVTOVR);
702         mcu = readl_relaxed(sdma->regs + SDMA_H_HOSTOVR);
703         dsp = readl_relaxed(sdma->regs + SDMA_H_DSPOVR);
704
705         if (dsp_override)
706                 __clear_bit(channel, &dsp);
707         else
708                 __set_bit(channel, &dsp);
709
710         if (event_override)
711                 __clear_bit(channel, &evt);
712         else
713                 __set_bit(channel, &evt);
714
715         if (mcu_override)
716                 __clear_bit(channel, &mcu);
717         else
718                 __set_bit(channel, &mcu);
719
720         writel_relaxed(evt, sdma->regs + SDMA_H_EVTOVR);
721         writel_relaxed(mcu, sdma->regs + SDMA_H_HOSTOVR);
722         writel_relaxed(dsp, sdma->regs + SDMA_H_DSPOVR);
723
724         return 0;
725 }
726
727 static int is_sdma_channel_enabled(struct sdma_engine *sdma, int channel)
728 {
729         return !!(readl(sdma->regs + SDMA_H_STATSTOP) & BIT(channel));
730 }
731
732 static void sdma_enable_channel(struct sdma_engine *sdma, int channel)
733 {
734         writel(BIT(channel), sdma->regs + SDMA_H_START);
735 }
736
737 /*
738  * sdma_run_channel0 - run a channel and wait till it's done
739  */
740 static int sdma_run_channel0(struct sdma_engine *sdma)
741 {
742         int ret;
743         u32 reg;
744
745         sdma_enable_channel(sdma, 0);
746
747         ret = readl_relaxed_poll_timeout_atomic(sdma->regs + SDMA_H_STATSTOP,
748                                                 reg, !(reg & 1), 1, 500);
749         if (ret)
750                 dev_err(sdma->dev, "Timeout waiting for CH0 ready\n");
751
752         /* Set bits of CONFIG register with dynamic context switching */
753         reg = readl(sdma->regs + SDMA_H_CONFIG);
754         if ((reg & SDMA_H_CONFIG_CSM) == 0) {
755                 reg |= SDMA_H_CONFIG_CSM;
756                 writel_relaxed(reg, sdma->regs + SDMA_H_CONFIG);
757         }
758
759         return ret;
760 }
761
762 static int sdma_load_script(struct sdma_engine *sdma, void *buf, int size,
763                 u32 address)
764 {
765         struct sdma_buffer_descriptor *bd0 = sdma->bd0;
766         void *buf_virt;
767         dma_addr_t buf_phys;
768         int ret;
769         unsigned long flags;
770
771         buf_virt = dma_alloc_coherent(sdma->dev, size, &buf_phys, GFP_KERNEL);
772         if (!buf_virt)
773                 return -ENOMEM;
774
775         spin_lock_irqsave(&sdma->channel_0_lock, flags);
776
777         bd0->mode.command = C0_SETPM;
778         bd0->mode.status = BD_DONE | BD_WRAP | BD_EXTD;
779         bd0->mode.count = size / 2;
780         bd0->buffer_addr = buf_phys;
781         bd0->ext_buffer_addr = address;
782
783         memcpy(buf_virt, buf, size);
784
785         ret = sdma_run_channel0(sdma);
786
787         spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
788
789         dma_free_coherent(sdma->dev, size, buf_virt, buf_phys);
790
791         return ret;
792 }
793
794 static void sdma_event_enable(struct sdma_channel *sdmac, unsigned int event)
795 {
796         struct sdma_engine *sdma = sdmac->sdma;
797         int channel = sdmac->channel;
798         unsigned long val;
799         u32 chnenbl = chnenbl_ofs(sdma, event);
800
801         val = readl_relaxed(sdma->regs + chnenbl);
802         __set_bit(channel, &val);
803         writel_relaxed(val, sdma->regs + chnenbl);
804
805         /* Set SDMA_DONEx_CONFIG is sw_done enabled */
806         if (sdmac->sw_done) {
807                 val = readl_relaxed(sdma->regs + SDMA_DONE0_CONFIG);
808                 val |= SDMA_DONE0_CONFIG_DONE_SEL;
809                 val &= ~SDMA_DONE0_CONFIG_DONE_DIS;
810                 writel_relaxed(val, sdma->regs + SDMA_DONE0_CONFIG);
811         }
812 }
813
814 static void sdma_event_disable(struct sdma_channel *sdmac, unsigned int event)
815 {
816         struct sdma_engine *sdma = sdmac->sdma;
817         int channel = sdmac->channel;
818         u32 chnenbl = chnenbl_ofs(sdma, event);
819         unsigned long val;
820
821         val = readl_relaxed(sdma->regs + chnenbl);
822         __clear_bit(channel, &val);
823         writel_relaxed(val, sdma->regs + chnenbl);
824 }
825
826 static struct sdma_desc *to_sdma_desc(struct dma_async_tx_descriptor *t)
827 {
828         return container_of(t, struct sdma_desc, vd.tx);
829 }
830
831 static void sdma_start_desc(struct sdma_channel *sdmac)
832 {
833         struct virt_dma_desc *vd = vchan_next_desc(&sdmac->vc);
834         struct sdma_desc *desc;
835         struct sdma_engine *sdma = sdmac->sdma;
836         int channel = sdmac->channel;
837
838         if (!vd) {
839                 sdmac->desc = NULL;
840                 return;
841         }
842         sdmac->desc = desc = to_sdma_desc(&vd->tx);
843
844         list_del(&vd->node);
845
846         sdma->channel_control[channel].base_bd_ptr = desc->bd_phys;
847         sdma->channel_control[channel].current_bd_ptr = desc->bd_phys;
848         sdma_enable_channel(sdma, sdmac->channel);
849 }
850
851 static void sdma_update_channel_loop(struct sdma_channel *sdmac)
852 {
853         struct sdma_buffer_descriptor *bd;
854         int error = 0;
855         enum dma_status old_status = sdmac->status;
856
857         /*
858          * loop mode. Iterate over descriptors, re-setup them and
859          * call callback function.
860          */
861         while (sdmac->desc) {
862                 struct sdma_desc *desc = sdmac->desc;
863
864                 bd = &desc->bd[desc->buf_tail];
865
866                 if (bd->mode.status & BD_DONE)
867                         break;
868
869                 if (bd->mode.status & BD_RROR) {
870                         bd->mode.status &= ~BD_RROR;
871                         sdmac->status = DMA_ERROR;
872                         error = -EIO;
873                 }
874
875                /*
876                 * We use bd->mode.count to calculate the residue, since contains
877                 * the number of bytes present in the current buffer descriptor.
878                 */
879
880                 desc->chn_real_count = bd->mode.count;
881                 bd->mode.count = desc->period_len;
882                 desc->buf_ptail = desc->buf_tail;
883                 desc->buf_tail = (desc->buf_tail + 1) % desc->num_bd;
884
885                 /*
886                  * The callback is called from the interrupt context in order
887                  * to reduce latency and to avoid the risk of altering the
888                  * SDMA transaction status by the time the client tasklet is
889                  * executed.
890                  */
891                 spin_unlock(&sdmac->vc.lock);
892                 dmaengine_desc_get_callback_invoke(&desc->vd.tx, NULL);
893                 spin_lock(&sdmac->vc.lock);
894
895                 /* Assign buffer ownership to SDMA */
896                 bd->mode.status |= BD_DONE;
897
898                 if (error)
899                         sdmac->status = old_status;
900         }
901
902         /*
903          * SDMA stops cyclic channel when DMA request triggers a channel and no SDMA
904          * owned buffer is available (i.e. BD_DONE was set too late).
905          */
906         if (sdmac->desc && !is_sdma_channel_enabled(sdmac->sdma, sdmac->channel)) {
907                 dev_warn(sdmac->sdma->dev, "restart cyclic channel %d\n", sdmac->channel);
908                 sdma_enable_channel(sdmac->sdma, sdmac->channel);
909         }
910 }
911
912 static void mxc_sdma_handle_channel_normal(struct sdma_channel *data)
913 {
914         struct sdma_channel *sdmac = (struct sdma_channel *) data;
915         struct sdma_buffer_descriptor *bd;
916         int i, error = 0;
917
918         sdmac->desc->chn_real_count = 0;
919         /*
920          * non loop mode. Iterate over all descriptors, collect
921          * errors and call callback function
922          */
923         for (i = 0; i < sdmac->desc->num_bd; i++) {
924                 bd = &sdmac->desc->bd[i];
925
926                 if (bd->mode.status & (BD_DONE | BD_RROR))
927                         error = -EIO;
928                 sdmac->desc->chn_real_count += bd->mode.count;
929         }
930
931         if (error)
932                 sdmac->status = DMA_ERROR;
933         else
934                 sdmac->status = DMA_COMPLETE;
935 }
936
937 static irqreturn_t sdma_int_handler(int irq, void *dev_id)
938 {
939         struct sdma_engine *sdma = dev_id;
940         unsigned long stat;
941
942         stat = readl_relaxed(sdma->regs + SDMA_H_INTR);
943         writel_relaxed(stat, sdma->regs + SDMA_H_INTR);
944         /* channel 0 is special and not handled here, see run_channel0() */
945         stat &= ~1;
946
947         while (stat) {
948                 int channel = fls(stat) - 1;
949                 struct sdma_channel *sdmac = &sdma->channel[channel];
950                 struct sdma_desc *desc;
951
952                 spin_lock(&sdmac->vc.lock);
953                 desc = sdmac->desc;
954                 if (desc) {
955                         if (sdmac->flags & IMX_DMA_SG_LOOP) {
956                                 if (sdmac->peripheral_type != IMX_DMATYPE_HDMI)
957                                         sdma_update_channel_loop(sdmac);
958                                 else
959                                         vchan_cyclic_callback(&desc->vd);
960                         } else {
961                                 mxc_sdma_handle_channel_normal(sdmac);
962                                 vchan_cookie_complete(&desc->vd);
963                                 sdma_start_desc(sdmac);
964                         }
965                 }
966
967                 spin_unlock(&sdmac->vc.lock);
968                 __clear_bit(channel, &stat);
969         }
970
971         return IRQ_HANDLED;
972 }
973
974 /*
975  * sets the pc of SDMA script according to the peripheral type
976  */
977 static int sdma_get_pc(struct sdma_channel *sdmac,
978                 enum sdma_peripheral_type peripheral_type)
979 {
980         struct sdma_engine *sdma = sdmac->sdma;
981         int per_2_emi = 0, emi_2_per = 0;
982         /*
983          * These are needed once we start to support transfers between
984          * two peripherals or memory-to-memory transfers
985          */
986         int per_2_per = 0, emi_2_emi = 0;
987
988         sdmac->pc_from_device = 0;
989         sdmac->pc_to_device = 0;
990         sdmac->device_to_device = 0;
991         sdmac->pc_to_pc = 0;
992         sdmac->is_ram_script = false;
993
994         switch (peripheral_type) {
995         case IMX_DMATYPE_MEMORY:
996                 emi_2_emi = sdma->script_addrs->ap_2_ap_addr;
997                 break;
998         case IMX_DMATYPE_DSP:
999                 emi_2_per = sdma->script_addrs->bp_2_ap_addr;
1000                 per_2_emi = sdma->script_addrs->ap_2_bp_addr;
1001                 break;
1002         case IMX_DMATYPE_FIRI:
1003                 per_2_emi = sdma->script_addrs->firi_2_mcu_addr;
1004                 emi_2_per = sdma->script_addrs->mcu_2_firi_addr;
1005                 break;
1006         case IMX_DMATYPE_UART:
1007                 per_2_emi = sdma->script_addrs->uart_2_mcu_addr;
1008                 emi_2_per = sdma->script_addrs->mcu_2_app_addr;
1009                 break;
1010         case IMX_DMATYPE_UART_SP:
1011                 per_2_emi = sdma->script_addrs->uartsh_2_mcu_addr;
1012                 emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
1013                 break;
1014         case IMX_DMATYPE_ATA:
1015                 per_2_emi = sdma->script_addrs->ata_2_mcu_addr;
1016                 emi_2_per = sdma->script_addrs->mcu_2_ata_addr;
1017                 break;
1018         case IMX_DMATYPE_CSPI:
1019                 per_2_emi = sdma->script_addrs->app_2_mcu_addr;
1020
1021                 /* Use rom script mcu_2_app if ERR009165 fixed */
1022                 if (sdmac->sdma->drvdata->ecspi_fixed) {
1023                         emi_2_per = sdma->script_addrs->mcu_2_app_addr;
1024                 } else {
1025                         emi_2_per = sdma->script_addrs->mcu_2_ecspi_addr;
1026                         sdmac->is_ram_script = true;
1027                 }
1028
1029                 break;
1030         case IMX_DMATYPE_EXT:
1031         case IMX_DMATYPE_SSI:
1032         case IMX_DMATYPE_SAI:
1033                 per_2_emi = sdma->script_addrs->app_2_mcu_addr;
1034                 emi_2_per = sdma->script_addrs->mcu_2_app_addr;
1035                 break;
1036         case IMX_DMATYPE_SSI_DUAL:
1037                 per_2_emi = sdma->script_addrs->ssish_2_mcu_addr;
1038                 emi_2_per = sdma->script_addrs->mcu_2_ssish_addr;
1039                 sdmac->is_ram_script = true;
1040                 break;
1041         case IMX_DMATYPE_SSI_SP:
1042         case IMX_DMATYPE_MMC:
1043         case IMX_DMATYPE_SDHC:
1044         case IMX_DMATYPE_CSPI_SP:
1045         case IMX_DMATYPE_ESAI:
1046         case IMX_DMATYPE_MSHC_SP:
1047                 per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
1048                 emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
1049                 break;
1050         case IMX_DMATYPE_ASRC:
1051                 per_2_emi = sdma->script_addrs->asrc_2_mcu_addr;
1052                 emi_2_per = sdma->script_addrs->asrc_2_mcu_addr;
1053                 per_2_per = sdma->script_addrs->per_2_per_addr;
1054                 sdmac->is_ram_script = true;
1055                 break;
1056         case IMX_DMATYPE_ASRC_SP:
1057                 per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
1058                 emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
1059                 per_2_per = sdma->script_addrs->per_2_per_addr;
1060                 break;
1061         case IMX_DMATYPE_MSHC:
1062                 per_2_emi = sdma->script_addrs->mshc_2_mcu_addr;
1063                 emi_2_per = sdma->script_addrs->mcu_2_mshc_addr;
1064                 break;
1065         case IMX_DMATYPE_CCM:
1066                 per_2_emi = sdma->script_addrs->dptc_dvfs_addr;
1067                 break;
1068         case IMX_DMATYPE_SPDIF:
1069                 per_2_emi = sdma->script_addrs->spdif_2_mcu_addr;
1070                 emi_2_per = sdma->script_addrs->mcu_2_spdif_addr;
1071                 break;
1072         case IMX_DMATYPE_IPU_MEMORY:
1073                 emi_2_per = sdma->script_addrs->ext_mem_2_ipu_addr;
1074                 break;
1075         case IMX_DMATYPE_MULTI_SAI:
1076                 per_2_emi = sdma->script_addrs->sai_2_mcu_addr;
1077                 emi_2_per = sdma->script_addrs->mcu_2_sai_addr;
1078                 break;
1079         case IMX_DMATYPE_HDMI:
1080                 emi_2_per = sdma->script_addrs->hdmi_dma_addr;
1081                 sdmac->is_ram_script = true;
1082                 break;
1083         default:
1084                 dev_err(sdma->dev, "Unsupported transfer type %d\n",
1085                         peripheral_type);
1086                 return -EINVAL;
1087         }
1088
1089         sdmac->pc_from_device = per_2_emi;
1090         sdmac->pc_to_device = emi_2_per;
1091         sdmac->device_to_device = per_2_per;
1092         sdmac->pc_to_pc = emi_2_emi;
1093
1094         return 0;
1095 }
1096
1097 static int sdma_load_context(struct sdma_channel *sdmac)
1098 {
1099         struct sdma_engine *sdma = sdmac->sdma;
1100         int channel = sdmac->channel;
1101         int load_address;
1102         struct sdma_context_data *context = sdma->context;
1103         struct sdma_buffer_descriptor *bd0 = sdma->bd0;
1104         int ret;
1105         unsigned long flags;
1106
1107         if (sdmac->direction == DMA_DEV_TO_MEM)
1108                 load_address = sdmac->pc_from_device;
1109         else if (sdmac->direction == DMA_DEV_TO_DEV)
1110                 load_address = sdmac->device_to_device;
1111         else if (sdmac->direction == DMA_MEM_TO_MEM)
1112                 load_address = sdmac->pc_to_pc;
1113         else
1114                 load_address = sdmac->pc_to_device;
1115
1116         if (load_address < 0)
1117                 return load_address;
1118
1119         dev_dbg(sdma->dev, "load_address = %d\n", load_address);
1120         dev_dbg(sdma->dev, "wml = 0x%08x\n", (u32)sdmac->watermark_level);
1121         dev_dbg(sdma->dev, "shp_addr = 0x%08x\n", sdmac->shp_addr);
1122         dev_dbg(sdma->dev, "per_addr = 0x%08x\n", sdmac->per_addr);
1123         dev_dbg(sdma->dev, "event_mask0 = 0x%08x\n", (u32)sdmac->event_mask[0]);
1124         dev_dbg(sdma->dev, "event_mask1 = 0x%08x\n", (u32)sdmac->event_mask[1]);
1125
1126         spin_lock_irqsave(&sdma->channel_0_lock, flags);
1127
1128         memset(context, 0, sizeof(*context));
1129         context->channel_state.pc = load_address;
1130
1131         /* Send by context the event mask,base address for peripheral
1132          * and watermark level
1133          */
1134         if (sdmac->peripheral_type == IMX_DMATYPE_HDMI) {
1135                 context->gReg[4] = sdmac->per_addr;
1136                 context->gReg[6] = sdmac->shp_addr;
1137         } else {
1138                 context->gReg[0] = sdmac->event_mask[1];
1139                 context->gReg[1] = sdmac->event_mask[0];
1140                 context->gReg[2] = sdmac->per_addr;
1141                 context->gReg[6] = sdmac->shp_addr;
1142                 context->gReg[7] = sdmac->watermark_level;
1143         }
1144
1145         bd0->mode.command = C0_SETDM;
1146         bd0->mode.status = BD_DONE | BD_WRAP | BD_EXTD;
1147         bd0->mode.count = sizeof(*context) / 4;
1148         bd0->buffer_addr = sdma->context_phys;
1149         bd0->ext_buffer_addr = 2048 + (sizeof(*context) / 4) * channel;
1150         ret = sdma_run_channel0(sdma);
1151
1152         spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
1153
1154         return ret;
1155 }
1156
1157 static struct sdma_channel *to_sdma_chan(struct dma_chan *chan)
1158 {
1159         return container_of(chan, struct sdma_channel, vc.chan);
1160 }
1161
1162 static int sdma_disable_channel(struct dma_chan *chan)
1163 {
1164         struct sdma_channel *sdmac = to_sdma_chan(chan);
1165         struct sdma_engine *sdma = sdmac->sdma;
1166         int channel = sdmac->channel;
1167
1168         writel_relaxed(BIT(channel), sdma->regs + SDMA_H_STATSTOP);
1169         sdmac->status = DMA_ERROR;
1170
1171         return 0;
1172 }
1173 static void sdma_channel_terminate_work(struct work_struct *work)
1174 {
1175         struct sdma_channel *sdmac = container_of(work, struct sdma_channel,
1176                                                   terminate_worker);
1177         /*
1178          * According to NXP R&D team a delay of one BD SDMA cost time
1179          * (maximum is 1ms) should be added after disable of the channel
1180          * bit, to ensure SDMA core has really been stopped after SDMA
1181          * clients call .device_terminate_all.
1182          */
1183         usleep_range(1000, 2000);
1184
1185         vchan_dma_desc_free_list(&sdmac->vc, &sdmac->terminated);
1186 }
1187
1188 static int sdma_terminate_all(struct dma_chan *chan)
1189 {
1190         struct sdma_channel *sdmac = to_sdma_chan(chan);
1191         unsigned long flags;
1192
1193         spin_lock_irqsave(&sdmac->vc.lock, flags);
1194
1195         sdma_disable_channel(chan);
1196
1197         if (sdmac->desc) {
1198                 vchan_terminate_vdesc(&sdmac->desc->vd);
1199                 /*
1200                  * move out current descriptor into terminated list so that
1201                  * it could be free in sdma_channel_terminate_work alone
1202                  * later without potential involving next descriptor raised
1203                  * up before the last descriptor terminated.
1204                  */
1205                 vchan_get_all_descriptors(&sdmac->vc, &sdmac->terminated);
1206                 sdmac->desc = NULL;
1207                 schedule_work(&sdmac->terminate_worker);
1208         }
1209
1210         spin_unlock_irqrestore(&sdmac->vc.lock, flags);
1211
1212         return 0;
1213 }
1214
1215 static void sdma_channel_synchronize(struct dma_chan *chan)
1216 {
1217         struct sdma_channel *sdmac = to_sdma_chan(chan);
1218
1219         vchan_synchronize(&sdmac->vc);
1220
1221         flush_work(&sdmac->terminate_worker);
1222 }
1223
1224 static void sdma_set_watermarklevel_for_p2p(struct sdma_channel *sdmac)
1225 {
1226         struct sdma_engine *sdma = sdmac->sdma;
1227
1228         int lwml = sdmac->watermark_level & SDMA_WATERMARK_LEVEL_LWML;
1229         int hwml = (sdmac->watermark_level & SDMA_WATERMARK_LEVEL_HWML) >> 16;
1230
1231         set_bit(sdmac->event_id0 % 32, &sdmac->event_mask[1]);
1232         set_bit(sdmac->event_id1 % 32, &sdmac->event_mask[0]);
1233
1234         if (sdmac->event_id0 > 31)
1235                 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_LWE;
1236
1237         if (sdmac->event_id1 > 31)
1238                 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_HWE;
1239
1240         /*
1241          * If LWML(src_maxburst) > HWML(dst_maxburst), we need
1242          * swap LWML and HWML of INFO(A.3.2.5.1), also need swap
1243          * r0(event_mask[1]) and r1(event_mask[0]).
1244          */
1245         if (lwml > hwml) {
1246                 sdmac->watermark_level &= ~(SDMA_WATERMARK_LEVEL_LWML |
1247                                                 SDMA_WATERMARK_LEVEL_HWML);
1248                 sdmac->watermark_level |= hwml;
1249                 sdmac->watermark_level |= lwml << 16;
1250                 swap(sdmac->event_mask[0], sdmac->event_mask[1]);
1251         }
1252
1253         if (sdmac->per_address2 >= sdma->spba_start_addr &&
1254                         sdmac->per_address2 <= sdma->spba_end_addr)
1255                 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_SP;
1256
1257         if (sdmac->per_address >= sdma->spba_start_addr &&
1258                         sdmac->per_address <= sdma->spba_end_addr)
1259                 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_DP;
1260
1261         sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_CONT;
1262 }
1263
1264 static void sdma_set_watermarklevel_for_sais(struct sdma_channel *sdmac)
1265 {
1266         unsigned int n_fifos;
1267         unsigned int stride_fifos;
1268         unsigned int words_per_fifo;
1269
1270         if (sdmac->sw_done)
1271                 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_SW_DONE;
1272
1273         if (sdmac->direction == DMA_DEV_TO_MEM) {
1274                 n_fifos = sdmac->n_fifos_src;
1275                 stride_fifos = sdmac->stride_fifos_src;
1276         } else {
1277                 n_fifos = sdmac->n_fifos_dst;
1278                 stride_fifos = sdmac->stride_fifos_dst;
1279         }
1280
1281         words_per_fifo = sdmac->words_per_fifo;
1282
1283         sdmac->watermark_level |=
1284                         FIELD_PREP(SDMA_WATERMARK_LEVEL_N_FIFOS, n_fifos);
1285         sdmac->watermark_level |=
1286                         FIELD_PREP(SDMA_WATERMARK_LEVEL_OFF_FIFOS, stride_fifos);
1287         if (words_per_fifo)
1288                 sdmac->watermark_level |=
1289                         FIELD_PREP(SDMA_WATERMARK_LEVEL_WORDS_PER_FIFO, (words_per_fifo - 1));
1290 }
1291
1292 static int sdma_config_channel(struct dma_chan *chan)
1293 {
1294         struct sdma_channel *sdmac = to_sdma_chan(chan);
1295         int ret;
1296
1297         sdma_disable_channel(chan);
1298
1299         sdmac->event_mask[0] = 0;
1300         sdmac->event_mask[1] = 0;
1301         sdmac->shp_addr = 0;
1302         sdmac->per_addr = 0;
1303
1304         switch (sdmac->peripheral_type) {
1305         case IMX_DMATYPE_DSP:
1306                 sdma_config_ownership(sdmac, false, true, true);
1307                 break;
1308         case IMX_DMATYPE_MEMORY:
1309                 sdma_config_ownership(sdmac, false, true, false);
1310                 break;
1311         default:
1312                 sdma_config_ownership(sdmac, true, true, false);
1313                 break;
1314         }
1315
1316         ret = sdma_get_pc(sdmac, sdmac->peripheral_type);
1317         if (ret)
1318                 return ret;
1319
1320         if ((sdmac->peripheral_type != IMX_DMATYPE_MEMORY) &&
1321                         (sdmac->peripheral_type != IMX_DMATYPE_DSP)) {
1322                 /* Handle multiple event channels differently */
1323                 if (sdmac->event_id1) {
1324                         if (sdmac->peripheral_type == IMX_DMATYPE_ASRC_SP ||
1325                             sdmac->peripheral_type == IMX_DMATYPE_ASRC)
1326                                 sdma_set_watermarklevel_for_p2p(sdmac);
1327                 } else {
1328                         if (sdmac->peripheral_type ==
1329                                         IMX_DMATYPE_MULTI_SAI)
1330                                 sdma_set_watermarklevel_for_sais(sdmac);
1331
1332                         __set_bit(sdmac->event_id0, sdmac->event_mask);
1333                 }
1334
1335                 /* Address */
1336                 sdmac->shp_addr = sdmac->per_address;
1337                 sdmac->per_addr = sdmac->per_address2;
1338         } else {
1339                 sdmac->watermark_level = 0; /* FIXME: M3_BASE_ADDRESS */
1340         }
1341
1342         return 0;
1343 }
1344
1345 static int sdma_set_channel_priority(struct sdma_channel *sdmac,
1346                                      unsigned int priority)
1347 {
1348         struct sdma_engine *sdma = sdmac->sdma;
1349         int channel = sdmac->channel;
1350
1351         if (priority < MXC_SDMA_MIN_PRIORITY
1352             || priority > MXC_SDMA_MAX_PRIORITY) {
1353                 return -EINVAL;
1354         }
1355
1356         writel_relaxed(priority, sdma->regs + SDMA_CHNPRI_0 + 4 * channel);
1357
1358         return 0;
1359 }
1360
1361 static int sdma_request_channel0(struct sdma_engine *sdma)
1362 {
1363         int ret = -EBUSY;
1364
1365         sdma->bd0 = dma_alloc_coherent(sdma->dev, PAGE_SIZE, &sdma->bd0_phys,
1366                                        GFP_NOWAIT);
1367         if (!sdma->bd0) {
1368                 ret = -ENOMEM;
1369                 goto out;
1370         }
1371
1372         sdma->channel_control[0].base_bd_ptr = sdma->bd0_phys;
1373         sdma->channel_control[0].current_bd_ptr = sdma->bd0_phys;
1374
1375         sdma_set_channel_priority(&sdma->channel[0], MXC_SDMA_DEFAULT_PRIORITY);
1376         return 0;
1377 out:
1378
1379         return ret;
1380 }
1381
1382
1383 static int sdma_alloc_bd(struct sdma_desc *desc)
1384 {
1385         u32 bd_size = desc->num_bd * sizeof(struct sdma_buffer_descriptor);
1386         int ret = 0;
1387
1388         desc->bd = dma_alloc_coherent(desc->sdmac->sdma->dev, bd_size,
1389                                       &desc->bd_phys, GFP_NOWAIT);
1390         if (!desc->bd) {
1391                 ret = -ENOMEM;
1392                 goto out;
1393         }
1394 out:
1395         return ret;
1396 }
1397
1398 static void sdma_free_bd(struct sdma_desc *desc)
1399 {
1400         u32 bd_size = desc->num_bd * sizeof(struct sdma_buffer_descriptor);
1401
1402         dma_free_coherent(desc->sdmac->sdma->dev, bd_size, desc->bd,
1403                           desc->bd_phys);
1404 }
1405
1406 static void sdma_desc_free(struct virt_dma_desc *vd)
1407 {
1408         struct sdma_desc *desc = container_of(vd, struct sdma_desc, vd);
1409
1410         sdma_free_bd(desc);
1411         kfree(desc);
1412 }
1413
1414 static int sdma_alloc_chan_resources(struct dma_chan *chan)
1415 {
1416         struct sdma_channel *sdmac = to_sdma_chan(chan);
1417         struct imx_dma_data *data = chan->private;
1418         struct imx_dma_data mem_data;
1419         int prio, ret;
1420
1421         /*
1422          * MEMCPY may never setup chan->private by filter function such as
1423          * dmatest, thus create 'struct imx_dma_data mem_data' for this case.
1424          * Please note in any other slave case, you have to setup chan->private
1425          * with 'struct imx_dma_data' in your own filter function if you want to
1426          * request dma channel by dma_request_channel() rather than
1427          * dma_request_slave_channel(). Othwise, 'MEMCPY in case?' will appear
1428          * to warn you to correct your filter function.
1429          */
1430         if (!data) {
1431                 dev_dbg(sdmac->sdma->dev, "MEMCPY in case?\n");
1432                 mem_data.priority = 2;
1433                 mem_data.peripheral_type = IMX_DMATYPE_MEMORY;
1434                 mem_data.dma_request = 0;
1435                 mem_data.dma_request2 = 0;
1436                 data = &mem_data;
1437
1438                 ret = sdma_get_pc(sdmac, IMX_DMATYPE_MEMORY);
1439                 if (ret)
1440                         return ret;
1441         }
1442
1443         switch (data->priority) {
1444         case DMA_PRIO_HIGH:
1445                 prio = 3;
1446                 break;
1447         case DMA_PRIO_MEDIUM:
1448                 prio = 2;
1449                 break;
1450         case DMA_PRIO_LOW:
1451         default:
1452                 prio = 1;
1453                 break;
1454         }
1455
1456         sdmac->peripheral_type = data->peripheral_type;
1457         sdmac->event_id0 = data->dma_request;
1458         sdmac->event_id1 = data->dma_request2;
1459
1460         ret = clk_enable(sdmac->sdma->clk_ipg);
1461         if (ret)
1462                 return ret;
1463         ret = clk_enable(sdmac->sdma->clk_ahb);
1464         if (ret)
1465                 goto disable_clk_ipg;
1466
1467         ret = sdma_set_channel_priority(sdmac, prio);
1468         if (ret)
1469                 goto disable_clk_ahb;
1470
1471         return 0;
1472
1473 disable_clk_ahb:
1474         clk_disable(sdmac->sdma->clk_ahb);
1475 disable_clk_ipg:
1476         clk_disable(sdmac->sdma->clk_ipg);
1477         return ret;
1478 }
1479
1480 static void sdma_free_chan_resources(struct dma_chan *chan)
1481 {
1482         struct sdma_channel *sdmac = to_sdma_chan(chan);
1483         struct sdma_engine *sdma = sdmac->sdma;
1484
1485         sdma_terminate_all(chan);
1486
1487         sdma_channel_synchronize(chan);
1488
1489         sdma_event_disable(sdmac, sdmac->event_id0);
1490         if (sdmac->event_id1)
1491                 sdma_event_disable(sdmac, sdmac->event_id1);
1492
1493         sdmac->event_id0 = 0;
1494         sdmac->event_id1 = 0;
1495
1496         sdma_set_channel_priority(sdmac, 0);
1497
1498         clk_disable(sdma->clk_ipg);
1499         clk_disable(sdma->clk_ahb);
1500 }
1501
1502 static struct sdma_desc *sdma_transfer_init(struct sdma_channel *sdmac,
1503                                 enum dma_transfer_direction direction, u32 bds)
1504 {
1505         struct sdma_desc *desc;
1506
1507         if (!sdmac->sdma->fw_loaded && sdmac->is_ram_script) {
1508                 dev_warn_once(sdmac->sdma->dev, "sdma firmware not ready!\n");
1509                 goto err_out;
1510         }
1511
1512         desc = kzalloc((sizeof(*desc)), GFP_NOWAIT);
1513         if (!desc)
1514                 goto err_out;
1515
1516         sdmac->status = DMA_IN_PROGRESS;
1517         sdmac->direction = direction;
1518         sdmac->flags = 0;
1519
1520         desc->chn_count = 0;
1521         desc->chn_real_count = 0;
1522         desc->buf_tail = 0;
1523         desc->buf_ptail = 0;
1524         desc->sdmac = sdmac;
1525         desc->num_bd = bds;
1526
1527         if (bds && sdma_alloc_bd(desc))
1528                 goto err_desc_out;
1529
1530         /* No slave_config called in MEMCPY case, so do here */
1531         if (direction == DMA_MEM_TO_MEM)
1532                 sdma_config_ownership(sdmac, false, true, false);
1533
1534         if (sdma_load_context(sdmac))
1535                 goto err_bd_out;
1536
1537         return desc;
1538
1539 err_bd_out:
1540         sdma_free_bd(desc);
1541 err_desc_out:
1542         kfree(desc);
1543 err_out:
1544         return NULL;
1545 }
1546
1547 static struct dma_async_tx_descriptor *sdma_prep_memcpy(
1548                 struct dma_chan *chan, dma_addr_t dma_dst,
1549                 dma_addr_t dma_src, size_t len, unsigned long flags)
1550 {
1551         struct sdma_channel *sdmac = to_sdma_chan(chan);
1552         struct sdma_engine *sdma = sdmac->sdma;
1553         int channel = sdmac->channel;
1554         size_t count;
1555         int i = 0, param;
1556         struct sdma_buffer_descriptor *bd;
1557         struct sdma_desc *desc;
1558
1559         if (!chan || !len)
1560                 return NULL;
1561
1562         dev_dbg(sdma->dev, "memcpy: %pad->%pad, len=%zu, channel=%d.\n",
1563                 &dma_src, &dma_dst, len, channel);
1564
1565         desc = sdma_transfer_init(sdmac, DMA_MEM_TO_MEM,
1566                                         len / SDMA_BD_MAX_CNT + 1);
1567         if (!desc)
1568                 return NULL;
1569
1570         do {
1571                 count = min_t(size_t, len, SDMA_BD_MAX_CNT);
1572                 bd = &desc->bd[i];
1573                 bd->buffer_addr = dma_src;
1574                 bd->ext_buffer_addr = dma_dst;
1575                 bd->mode.count = count;
1576                 desc->chn_count += count;
1577                 bd->mode.command = 0;
1578
1579                 dma_src += count;
1580                 dma_dst += count;
1581                 len -= count;
1582                 i++;
1583
1584                 param = BD_DONE | BD_EXTD | BD_CONT;
1585                 /* last bd */
1586                 if (!len) {
1587                         param |= BD_INTR;
1588                         param |= BD_LAST;
1589                         param &= ~BD_CONT;
1590                 }
1591
1592                 dev_dbg(sdma->dev, "entry %d: count: %zd dma: 0x%x %s%s\n",
1593                                 i, count, bd->buffer_addr,
1594                                 param & BD_WRAP ? "wrap" : "",
1595                                 param & BD_INTR ? " intr" : "");
1596
1597                 bd->mode.status = param;
1598         } while (len);
1599
1600         return vchan_tx_prep(&sdmac->vc, &desc->vd, flags);
1601 }
1602
1603 static struct dma_async_tx_descriptor *sdma_prep_slave_sg(
1604                 struct dma_chan *chan, struct scatterlist *sgl,
1605                 unsigned int sg_len, enum dma_transfer_direction direction,
1606                 unsigned long flags, void *context)
1607 {
1608         struct sdma_channel *sdmac = to_sdma_chan(chan);
1609         struct sdma_engine *sdma = sdmac->sdma;
1610         int i, count;
1611         int channel = sdmac->channel;
1612         struct scatterlist *sg;
1613         struct sdma_desc *desc;
1614
1615         sdma_config_write(chan, &sdmac->slave_config, direction);
1616
1617         desc = sdma_transfer_init(sdmac, direction, sg_len);
1618         if (!desc)
1619                 goto err_out;
1620
1621         dev_dbg(sdma->dev, "setting up %d entries for channel %d.\n",
1622                         sg_len, channel);
1623
1624         for_each_sg(sgl, sg, sg_len, i) {
1625                 struct sdma_buffer_descriptor *bd = &desc->bd[i];
1626                 int param;
1627
1628                 bd->buffer_addr = sg->dma_address;
1629
1630                 count = sg_dma_len(sg);
1631
1632                 if (count > SDMA_BD_MAX_CNT) {
1633                         dev_err(sdma->dev, "SDMA channel %d: maximum bytes for sg entry exceeded: %d > %d\n",
1634                                         channel, count, SDMA_BD_MAX_CNT);
1635                         goto err_bd_out;
1636                 }
1637
1638                 bd->mode.count = count;
1639                 desc->chn_count += count;
1640
1641                 if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES)
1642                         goto err_bd_out;
1643
1644                 switch (sdmac->word_size) {
1645                 case DMA_SLAVE_BUSWIDTH_4_BYTES:
1646                         bd->mode.command = 0;
1647                         if (count & 3 || sg->dma_address & 3)
1648                                 goto err_bd_out;
1649                         break;
1650                 case DMA_SLAVE_BUSWIDTH_2_BYTES:
1651                         bd->mode.command = 2;
1652                         if (count & 1 || sg->dma_address & 1)
1653                                 goto err_bd_out;
1654                         break;
1655                 case DMA_SLAVE_BUSWIDTH_1_BYTE:
1656                         bd->mode.command = 1;
1657                         break;
1658                 default:
1659                         goto err_bd_out;
1660                 }
1661
1662                 param = BD_DONE | BD_EXTD | BD_CONT;
1663
1664                 if (i + 1 == sg_len) {
1665                         param |= BD_INTR;
1666                         param |= BD_LAST;
1667                         param &= ~BD_CONT;
1668                 }
1669
1670                 dev_dbg(sdma->dev, "entry %d: count: %d dma: %#llx %s%s\n",
1671                                 i, count, (u64)sg->dma_address,
1672                                 param & BD_WRAP ? "wrap" : "",
1673                                 param & BD_INTR ? " intr" : "");
1674
1675                 bd->mode.status = param;
1676         }
1677
1678         return vchan_tx_prep(&sdmac->vc, &desc->vd, flags);
1679 err_bd_out:
1680         sdma_free_bd(desc);
1681         kfree(desc);
1682 err_out:
1683         sdmac->status = DMA_ERROR;
1684         return NULL;
1685 }
1686
1687 static struct dma_async_tx_descriptor *sdma_prep_dma_cyclic(
1688                 struct dma_chan *chan, dma_addr_t dma_addr, size_t buf_len,
1689                 size_t period_len, enum dma_transfer_direction direction,
1690                 unsigned long flags)
1691 {
1692         struct sdma_channel *sdmac = to_sdma_chan(chan);
1693         struct sdma_engine *sdma = sdmac->sdma;
1694         int num_periods = 0;
1695         int channel = sdmac->channel;
1696         int i = 0, buf = 0;
1697         struct sdma_desc *desc;
1698
1699         dev_dbg(sdma->dev, "%s channel: %d\n", __func__, channel);
1700
1701         if (sdmac->peripheral_type != IMX_DMATYPE_HDMI)
1702                 num_periods = buf_len / period_len;
1703
1704         sdma_config_write(chan, &sdmac->slave_config, direction);
1705
1706         desc = sdma_transfer_init(sdmac, direction, num_periods);
1707         if (!desc)
1708                 goto err_out;
1709
1710         desc->period_len = period_len;
1711
1712         sdmac->flags |= IMX_DMA_SG_LOOP;
1713
1714         if (period_len > SDMA_BD_MAX_CNT) {
1715                 dev_err(sdma->dev, "SDMA channel %d: maximum period size exceeded: %zu > %d\n",
1716                                 channel, period_len, SDMA_BD_MAX_CNT);
1717                 goto err_bd_out;
1718         }
1719
1720         if (sdmac->peripheral_type == IMX_DMATYPE_HDMI)
1721                 return vchan_tx_prep(&sdmac->vc, &desc->vd, flags);
1722
1723         while (buf < buf_len) {
1724                 struct sdma_buffer_descriptor *bd = &desc->bd[i];
1725                 int param;
1726
1727                 bd->buffer_addr = dma_addr;
1728
1729                 bd->mode.count = period_len;
1730
1731                 if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES)
1732                         goto err_bd_out;
1733                 if (sdmac->word_size == DMA_SLAVE_BUSWIDTH_4_BYTES)
1734                         bd->mode.command = 0;
1735                 else
1736                         bd->mode.command = sdmac->word_size;
1737
1738                 param = BD_DONE | BD_EXTD | BD_CONT | BD_INTR;
1739                 if (i + 1 == num_periods)
1740                         param |= BD_WRAP;
1741
1742                 dev_dbg(sdma->dev, "entry %d: count: %zu dma: %#llx %s%s\n",
1743                                 i, period_len, (u64)dma_addr,
1744                                 param & BD_WRAP ? "wrap" : "",
1745                                 param & BD_INTR ? " intr" : "");
1746
1747                 bd->mode.status = param;
1748
1749                 dma_addr += period_len;
1750                 buf += period_len;
1751
1752                 i++;
1753         }
1754
1755         return vchan_tx_prep(&sdmac->vc, &desc->vd, flags);
1756 err_bd_out:
1757         sdma_free_bd(desc);
1758         kfree(desc);
1759 err_out:
1760         sdmac->status = DMA_ERROR;
1761         return NULL;
1762 }
1763
1764 static int sdma_config_write(struct dma_chan *chan,
1765                        struct dma_slave_config *dmaengine_cfg,
1766                        enum dma_transfer_direction direction)
1767 {
1768         struct sdma_channel *sdmac = to_sdma_chan(chan);
1769
1770         if (direction == DMA_DEV_TO_MEM) {
1771                 sdmac->per_address = dmaengine_cfg->src_addr;
1772                 sdmac->watermark_level = dmaengine_cfg->src_maxburst *
1773                         dmaengine_cfg->src_addr_width;
1774                 sdmac->word_size = dmaengine_cfg->src_addr_width;
1775         } else if (direction == DMA_DEV_TO_DEV) {
1776                 sdmac->per_address2 = dmaengine_cfg->src_addr;
1777                 sdmac->per_address = dmaengine_cfg->dst_addr;
1778                 sdmac->watermark_level = dmaengine_cfg->src_maxburst &
1779                         SDMA_WATERMARK_LEVEL_LWML;
1780                 sdmac->watermark_level |= (dmaengine_cfg->dst_maxburst << 16) &
1781                         SDMA_WATERMARK_LEVEL_HWML;
1782                 sdmac->word_size = dmaengine_cfg->dst_addr_width;
1783         } else if (sdmac->peripheral_type == IMX_DMATYPE_HDMI) {
1784                 sdmac->per_address = dmaengine_cfg->dst_addr;
1785                 sdmac->per_address2 = dmaengine_cfg->src_addr;
1786                 sdmac->watermark_level = 0;
1787         } else {
1788                 sdmac->per_address = dmaengine_cfg->dst_addr;
1789                 sdmac->watermark_level = dmaengine_cfg->dst_maxburst *
1790                         dmaengine_cfg->dst_addr_width;
1791                 sdmac->word_size = dmaengine_cfg->dst_addr_width;
1792         }
1793         sdmac->direction = direction;
1794         return sdma_config_channel(chan);
1795 }
1796
1797 static int sdma_config(struct dma_chan *chan,
1798                        struct dma_slave_config *dmaengine_cfg)
1799 {
1800         struct sdma_channel *sdmac = to_sdma_chan(chan);
1801         struct sdma_engine *sdma = sdmac->sdma;
1802
1803         memcpy(&sdmac->slave_config, dmaengine_cfg, sizeof(*dmaengine_cfg));
1804
1805         if (dmaengine_cfg->peripheral_config) {
1806                 struct sdma_peripheral_config *sdmacfg = dmaengine_cfg->peripheral_config;
1807                 if (dmaengine_cfg->peripheral_size != sizeof(struct sdma_peripheral_config)) {
1808                         dev_err(sdma->dev, "Invalid peripheral size %zu, expected %zu\n",
1809                                 dmaengine_cfg->peripheral_size,
1810                                 sizeof(struct sdma_peripheral_config));
1811                         return -EINVAL;
1812                 }
1813                 sdmac->n_fifos_src = sdmacfg->n_fifos_src;
1814                 sdmac->n_fifos_dst = sdmacfg->n_fifos_dst;
1815                 sdmac->stride_fifos_src = sdmacfg->stride_fifos_src;
1816                 sdmac->stride_fifos_dst = sdmacfg->stride_fifos_dst;
1817                 sdmac->words_per_fifo = sdmacfg->words_per_fifo;
1818                 sdmac->sw_done = sdmacfg->sw_done;
1819         }
1820
1821         /* Set ENBLn earlier to make sure dma request triggered after that */
1822         if (sdmac->event_id0 >= sdmac->sdma->drvdata->num_events)
1823                 return -EINVAL;
1824         sdma_event_enable(sdmac, sdmac->event_id0);
1825
1826         if (sdmac->event_id1) {
1827                 if (sdmac->event_id1 >= sdmac->sdma->drvdata->num_events)
1828                         return -EINVAL;
1829                 sdma_event_enable(sdmac, sdmac->event_id1);
1830         }
1831
1832         return 0;
1833 }
1834
1835 static enum dma_status sdma_tx_status(struct dma_chan *chan,
1836                                       dma_cookie_t cookie,
1837                                       struct dma_tx_state *txstate)
1838 {
1839         struct sdma_channel *sdmac = to_sdma_chan(chan);
1840         struct sdma_desc *desc = NULL;
1841         u32 residue;
1842         struct virt_dma_desc *vd;
1843         enum dma_status ret;
1844         unsigned long flags;
1845
1846         ret = dma_cookie_status(chan, cookie, txstate);
1847         if (ret == DMA_COMPLETE || !txstate)
1848                 return ret;
1849
1850         spin_lock_irqsave(&sdmac->vc.lock, flags);
1851
1852         vd = vchan_find_desc(&sdmac->vc, cookie);
1853         if (vd)
1854                 desc = to_sdma_desc(&vd->tx);
1855         else if (sdmac->desc && sdmac->desc->vd.tx.cookie == cookie)
1856                 desc = sdmac->desc;
1857
1858         if (desc) {
1859                 if (sdmac->flags & IMX_DMA_SG_LOOP)
1860                         residue = (desc->num_bd - desc->buf_ptail) *
1861                                 desc->period_len - desc->chn_real_count;
1862                 else
1863                         residue = desc->chn_count - desc->chn_real_count;
1864         } else {
1865                 residue = 0;
1866         }
1867
1868         spin_unlock_irqrestore(&sdmac->vc.lock, flags);
1869
1870         dma_set_tx_state(txstate, chan->completed_cookie, chan->cookie,
1871                          residue);
1872
1873         return sdmac->status;
1874 }
1875
1876 static void sdma_issue_pending(struct dma_chan *chan)
1877 {
1878         struct sdma_channel *sdmac = to_sdma_chan(chan);
1879         unsigned long flags;
1880
1881         spin_lock_irqsave(&sdmac->vc.lock, flags);
1882         if (vchan_issue_pending(&sdmac->vc) && !sdmac->desc)
1883                 sdma_start_desc(sdmac);
1884         spin_unlock_irqrestore(&sdmac->vc.lock, flags);
1885 }
1886
1887 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1 34
1888 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2 38
1889 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3 45
1890 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V4 46
1891
1892 static void sdma_add_scripts(struct sdma_engine *sdma,
1893                              const struct sdma_script_start_addrs *addr)
1894 {
1895         s32 *addr_arr = (u32 *)addr;
1896         s32 *saddr_arr = (u32 *)sdma->script_addrs;
1897         int i;
1898
1899         /* use the default firmware in ROM if missing external firmware */
1900         if (!sdma->script_number)
1901                 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1;
1902
1903         if (sdma->script_number > sizeof(struct sdma_script_start_addrs)
1904                                   / sizeof(s32)) {
1905                 dev_err(sdma->dev,
1906                         "SDMA script number %d not match with firmware.\n",
1907                         sdma->script_number);
1908                 return;
1909         }
1910
1911         for (i = 0; i < sdma->script_number; i++)
1912                 if (addr_arr[i] > 0)
1913                         saddr_arr[i] = addr_arr[i];
1914
1915         /*
1916          * For compatibility with NXP internal legacy kernel before 4.19 which
1917          * is based on uart ram script and mainline kernel based on uart rom
1918          * script, both uart ram/rom scripts are present in newer sdma
1919          * firmware. Use the rom versions if they are present (V3 or newer).
1920          */
1921         if (sdma->script_number >= SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3) {
1922                 if (addr->uart_2_mcu_rom_addr)
1923                         sdma->script_addrs->uart_2_mcu_addr = addr->uart_2_mcu_rom_addr;
1924                 if (addr->uartsh_2_mcu_rom_addr)
1925                         sdma->script_addrs->uartsh_2_mcu_addr = addr->uartsh_2_mcu_rom_addr;
1926         }
1927 }
1928
1929 static void sdma_load_firmware(const struct firmware *fw, void *context)
1930 {
1931         struct sdma_engine *sdma = context;
1932         const struct sdma_firmware_header *header;
1933         const struct sdma_script_start_addrs *addr;
1934         unsigned short *ram_code;
1935
1936         if (!fw) {
1937                 dev_info(sdma->dev, "external firmware not found, using ROM firmware\n");
1938                 /* In this case we just use the ROM firmware. */
1939                 return;
1940         }
1941
1942         if (fw->size < sizeof(*header))
1943                 goto err_firmware;
1944
1945         header = (struct sdma_firmware_header *)fw->data;
1946
1947         if (header->magic != SDMA_FIRMWARE_MAGIC)
1948                 goto err_firmware;
1949         if (header->ram_code_start + header->ram_code_size > fw->size)
1950                 goto err_firmware;
1951         switch (header->version_major) {
1952         case 1:
1953                 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1;
1954                 break;
1955         case 2:
1956                 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2;
1957                 break;
1958         case 3:
1959                 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3;
1960                 break;
1961         case 4:
1962                 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V4;
1963                 break;
1964         default:
1965                 dev_err(sdma->dev, "unknown firmware version\n");
1966                 goto err_firmware;
1967         }
1968
1969         addr = (void *)header + header->script_addrs_start;
1970         ram_code = (void *)header + header->ram_code_start;
1971
1972         clk_enable(sdma->clk_ipg);
1973         clk_enable(sdma->clk_ahb);
1974         /* download the RAM image for SDMA */
1975         sdma_load_script(sdma, ram_code,
1976                          header->ram_code_size,
1977                          addr->ram_code_start_addr);
1978         clk_disable(sdma->clk_ipg);
1979         clk_disable(sdma->clk_ahb);
1980
1981         sdma_add_scripts(sdma, addr);
1982
1983         sdma->fw_loaded = true;
1984
1985         dev_info(sdma->dev, "loaded firmware %d.%d\n",
1986                  header->version_major,
1987                  header->version_minor);
1988
1989 err_firmware:
1990         release_firmware(fw);
1991 }
1992
1993 #define EVENT_REMAP_CELLS 3
1994
1995 static int sdma_event_remap(struct sdma_engine *sdma)
1996 {
1997         struct device_node *np = sdma->dev->of_node;
1998         struct device_node *gpr_np = of_parse_phandle(np, "gpr", 0);
1999         struct property *event_remap;
2000         struct regmap *gpr;
2001         char propname[] = "fsl,sdma-event-remap";
2002         u32 reg, val, shift, num_map, i;
2003         int ret = 0;
2004
2005         if (IS_ERR(np) || !gpr_np)
2006                 goto out;
2007
2008         event_remap = of_find_property(np, propname, NULL);
2009         num_map = event_remap ? (event_remap->length / sizeof(u32)) : 0;
2010         if (!num_map) {
2011                 dev_dbg(sdma->dev, "no event needs to be remapped\n");
2012                 goto out;
2013         } else if (num_map % EVENT_REMAP_CELLS) {
2014                 dev_err(sdma->dev, "the property %s must modulo %d\n",
2015                                 propname, EVENT_REMAP_CELLS);
2016                 ret = -EINVAL;
2017                 goto out;
2018         }
2019
2020         gpr = syscon_node_to_regmap(gpr_np);
2021         if (IS_ERR(gpr)) {
2022                 dev_err(sdma->dev, "failed to get gpr regmap\n");
2023                 ret = PTR_ERR(gpr);
2024                 goto out;
2025         }
2026
2027         for (i = 0; i < num_map; i += EVENT_REMAP_CELLS) {
2028                 ret = of_property_read_u32_index(np, propname, i, &reg);
2029                 if (ret) {
2030                         dev_err(sdma->dev, "failed to read property %s index %d\n",
2031                                         propname, i);
2032                         goto out;
2033                 }
2034
2035                 ret = of_property_read_u32_index(np, propname, i + 1, &shift);
2036                 if (ret) {
2037                         dev_err(sdma->dev, "failed to read property %s index %d\n",
2038                                         propname, i + 1);
2039                         goto out;
2040                 }
2041
2042                 ret = of_property_read_u32_index(np, propname, i + 2, &val);
2043                 if (ret) {
2044                         dev_err(sdma->dev, "failed to read property %s index %d\n",
2045                                         propname, i + 2);
2046                         goto out;
2047                 }
2048
2049                 regmap_update_bits(gpr, reg, BIT(shift), val << shift);
2050         }
2051
2052 out:
2053         if (gpr_np)
2054                 of_node_put(gpr_np);
2055
2056         return ret;
2057 }
2058
2059 static int sdma_get_firmware(struct sdma_engine *sdma,
2060                 const char *fw_name)
2061 {
2062         int ret;
2063
2064         ret = request_firmware_nowait(THIS_MODULE,
2065                         FW_ACTION_UEVENT, fw_name, sdma->dev,
2066                         GFP_KERNEL, sdma, sdma_load_firmware);
2067
2068         return ret;
2069 }
2070
2071 static int sdma_init(struct sdma_engine *sdma)
2072 {
2073         int i, ret;
2074         dma_addr_t ccb_phys;
2075
2076         ret = clk_enable(sdma->clk_ipg);
2077         if (ret)
2078                 return ret;
2079         ret = clk_enable(sdma->clk_ahb);
2080         if (ret)
2081                 goto disable_clk_ipg;
2082
2083         if (sdma->drvdata->check_ratio &&
2084             (clk_get_rate(sdma->clk_ahb) == clk_get_rate(sdma->clk_ipg)))
2085                 sdma->clk_ratio = 1;
2086
2087         /* Be sure SDMA has not started yet */
2088         writel_relaxed(0, sdma->regs + SDMA_H_C0PTR);
2089
2090         sdma->channel_control = dma_alloc_coherent(sdma->dev,
2091                         MAX_DMA_CHANNELS * sizeof(struct sdma_channel_control) +
2092                         sizeof(struct sdma_context_data),
2093                         &ccb_phys, GFP_KERNEL);
2094
2095         if (!sdma->channel_control) {
2096                 ret = -ENOMEM;
2097                 goto err_dma_alloc;
2098         }
2099
2100         sdma->context = (void *)sdma->channel_control +
2101                 MAX_DMA_CHANNELS * sizeof(struct sdma_channel_control);
2102         sdma->context_phys = ccb_phys +
2103                 MAX_DMA_CHANNELS * sizeof(struct sdma_channel_control);
2104
2105         /* disable all channels */
2106         for (i = 0; i < sdma->drvdata->num_events; i++)
2107                 writel_relaxed(0, sdma->regs + chnenbl_ofs(sdma, i));
2108
2109         /* All channels have priority 0 */
2110         for (i = 0; i < MAX_DMA_CHANNELS; i++)
2111                 writel_relaxed(0, sdma->regs + SDMA_CHNPRI_0 + i * 4);
2112
2113         ret = sdma_request_channel0(sdma);
2114         if (ret)
2115                 goto err_dma_alloc;
2116
2117         sdma_config_ownership(&sdma->channel[0], false, true, false);
2118
2119         /* Set Command Channel (Channel Zero) */
2120         writel_relaxed(0x4050, sdma->regs + SDMA_CHN0ADDR);
2121
2122         /* Set bits of CONFIG register but with static context switching */
2123         if (sdma->clk_ratio)
2124                 writel_relaxed(SDMA_H_CONFIG_ACR, sdma->regs + SDMA_H_CONFIG);
2125         else
2126                 writel_relaxed(0, sdma->regs + SDMA_H_CONFIG);
2127
2128         writel_relaxed(ccb_phys, sdma->regs + SDMA_H_C0PTR);
2129
2130         /* Initializes channel's priorities */
2131         sdma_set_channel_priority(&sdma->channel[0], 7);
2132
2133         clk_disable(sdma->clk_ipg);
2134         clk_disable(sdma->clk_ahb);
2135
2136         return 0;
2137
2138 err_dma_alloc:
2139         clk_disable(sdma->clk_ahb);
2140 disable_clk_ipg:
2141         clk_disable(sdma->clk_ipg);
2142         dev_err(sdma->dev, "initialisation failed with %d\n", ret);
2143         return ret;
2144 }
2145
2146 static bool sdma_filter_fn(struct dma_chan *chan, void *fn_param)
2147 {
2148         struct sdma_channel *sdmac = to_sdma_chan(chan);
2149         struct imx_dma_data *data = fn_param;
2150
2151         if (!imx_dma_is_general_purpose(chan))
2152                 return false;
2153
2154         sdmac->data = *data;
2155         chan->private = &sdmac->data;
2156
2157         return true;
2158 }
2159
2160 static struct dma_chan *sdma_xlate(struct of_phandle_args *dma_spec,
2161                                    struct of_dma *ofdma)
2162 {
2163         struct sdma_engine *sdma = ofdma->of_dma_data;
2164         dma_cap_mask_t mask = sdma->dma_device.cap_mask;
2165         struct imx_dma_data data;
2166
2167         if (dma_spec->args_count != 3)
2168                 return NULL;
2169
2170         data.dma_request = dma_spec->args[0];
2171         data.peripheral_type = dma_spec->args[1];
2172         data.priority = dma_spec->args[2];
2173         /*
2174          * init dma_request2 to zero, which is not used by the dts.
2175          * For P2P, dma_request2 is init from dma_request_channel(),
2176          * chan->private will point to the imx_dma_data, and in
2177          * device_alloc_chan_resources(), imx_dma_data.dma_request2 will
2178          * be set to sdmac->event_id1.
2179          */
2180         data.dma_request2 = 0;
2181
2182         return __dma_request_channel(&mask, sdma_filter_fn, &data,
2183                                      ofdma->of_node);
2184 }
2185
2186 static int sdma_probe(struct platform_device *pdev)
2187 {
2188         struct device_node *np = pdev->dev.of_node;
2189         struct device_node *spba_bus;
2190         const char *fw_name;
2191         int ret;
2192         int irq;
2193         struct resource spba_res;
2194         int i;
2195         struct sdma_engine *sdma;
2196         s32 *saddr_arr;
2197
2198         ret = dma_coerce_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
2199         if (ret)
2200                 return ret;
2201
2202         sdma = devm_kzalloc(&pdev->dev, sizeof(*sdma), GFP_KERNEL);
2203         if (!sdma)
2204                 return -ENOMEM;
2205
2206         spin_lock_init(&sdma->channel_0_lock);
2207
2208         sdma->dev = &pdev->dev;
2209         sdma->drvdata = of_device_get_match_data(sdma->dev);
2210
2211         irq = platform_get_irq(pdev, 0);
2212         if (irq < 0)
2213                 return irq;
2214
2215         sdma->regs = devm_platform_ioremap_resource(pdev, 0);
2216         if (IS_ERR(sdma->regs))
2217                 return PTR_ERR(sdma->regs);
2218
2219         sdma->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
2220         if (IS_ERR(sdma->clk_ipg))
2221                 return PTR_ERR(sdma->clk_ipg);
2222
2223         sdma->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
2224         if (IS_ERR(sdma->clk_ahb))
2225                 return PTR_ERR(sdma->clk_ahb);
2226
2227         ret = clk_prepare(sdma->clk_ipg);
2228         if (ret)
2229                 return ret;
2230
2231         ret = clk_prepare(sdma->clk_ahb);
2232         if (ret)
2233                 goto err_clk;
2234
2235         ret = devm_request_irq(&pdev->dev, irq, sdma_int_handler, 0,
2236                                 dev_name(&pdev->dev), sdma);
2237         if (ret)
2238                 goto err_irq;
2239
2240         sdma->irq = irq;
2241
2242         sdma->script_addrs = kzalloc(sizeof(*sdma->script_addrs), GFP_KERNEL);
2243         if (!sdma->script_addrs) {
2244                 ret = -ENOMEM;
2245                 goto err_irq;
2246         }
2247
2248         /* initially no scripts available */
2249         saddr_arr = (s32 *)sdma->script_addrs;
2250         for (i = 0; i < sizeof(*sdma->script_addrs) / sizeof(s32); i++)
2251                 saddr_arr[i] = -EINVAL;
2252
2253         dma_cap_set(DMA_SLAVE, sdma->dma_device.cap_mask);
2254         dma_cap_set(DMA_CYCLIC, sdma->dma_device.cap_mask);
2255         dma_cap_set(DMA_MEMCPY, sdma->dma_device.cap_mask);
2256         dma_cap_set(DMA_PRIVATE, sdma->dma_device.cap_mask);
2257
2258         INIT_LIST_HEAD(&sdma->dma_device.channels);
2259         /* Initialize channel parameters */
2260         for (i = 0; i < MAX_DMA_CHANNELS; i++) {
2261                 struct sdma_channel *sdmac = &sdma->channel[i];
2262
2263                 sdmac->sdma = sdma;
2264
2265                 sdmac->channel = i;
2266                 sdmac->vc.desc_free = sdma_desc_free;
2267                 INIT_LIST_HEAD(&sdmac->terminated);
2268                 INIT_WORK(&sdmac->terminate_worker,
2269                                 sdma_channel_terminate_work);
2270                 /*
2271                  * Add the channel to the DMAC list. Do not add channel 0 though
2272                  * because we need it internally in the SDMA driver. This also means
2273                  * that channel 0 in dmaengine counting matches sdma channel 1.
2274                  */
2275                 if (i)
2276                         vchan_init(&sdmac->vc, &sdma->dma_device);
2277         }
2278
2279         ret = sdma_init(sdma);
2280         if (ret)
2281                 goto err_init;
2282
2283         ret = sdma_event_remap(sdma);
2284         if (ret)
2285                 goto err_init;
2286
2287         if (sdma->drvdata->script_addrs)
2288                 sdma_add_scripts(sdma, sdma->drvdata->script_addrs);
2289
2290         sdma->dma_device.dev = &pdev->dev;
2291
2292         sdma->dma_device.device_alloc_chan_resources = sdma_alloc_chan_resources;
2293         sdma->dma_device.device_free_chan_resources = sdma_free_chan_resources;
2294         sdma->dma_device.device_tx_status = sdma_tx_status;
2295         sdma->dma_device.device_prep_slave_sg = sdma_prep_slave_sg;
2296         sdma->dma_device.device_prep_dma_cyclic = sdma_prep_dma_cyclic;
2297         sdma->dma_device.device_config = sdma_config;
2298         sdma->dma_device.device_terminate_all = sdma_terminate_all;
2299         sdma->dma_device.device_synchronize = sdma_channel_synchronize;
2300         sdma->dma_device.src_addr_widths = SDMA_DMA_BUSWIDTHS;
2301         sdma->dma_device.dst_addr_widths = SDMA_DMA_BUSWIDTHS;
2302         sdma->dma_device.directions = SDMA_DMA_DIRECTIONS;
2303         sdma->dma_device.residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT;
2304         sdma->dma_device.device_prep_dma_memcpy = sdma_prep_memcpy;
2305         sdma->dma_device.device_issue_pending = sdma_issue_pending;
2306         sdma->dma_device.copy_align = 2;
2307         dma_set_max_seg_size(sdma->dma_device.dev, SDMA_BD_MAX_CNT);
2308
2309         platform_set_drvdata(pdev, sdma);
2310
2311         ret = dma_async_device_register(&sdma->dma_device);
2312         if (ret) {
2313                 dev_err(&pdev->dev, "unable to register\n");
2314                 goto err_init;
2315         }
2316
2317         if (np) {
2318                 ret = of_dma_controller_register(np, sdma_xlate, sdma);
2319                 if (ret) {
2320                         dev_err(&pdev->dev, "failed to register controller\n");
2321                         goto err_register;
2322                 }
2323
2324                 spba_bus = of_find_compatible_node(NULL, NULL, "fsl,spba-bus");
2325                 ret = of_address_to_resource(spba_bus, 0, &spba_res);
2326                 if (!ret) {
2327                         sdma->spba_start_addr = spba_res.start;
2328                         sdma->spba_end_addr = spba_res.end;
2329                 }
2330                 of_node_put(spba_bus);
2331         }
2332
2333         /*
2334          * Because that device tree does not encode ROM script address,
2335          * the RAM script in firmware is mandatory for device tree
2336          * probe, otherwise it fails.
2337          */
2338         ret = of_property_read_string(np, "fsl,sdma-ram-script-name",
2339                                       &fw_name);
2340         if (ret) {
2341                 dev_warn(&pdev->dev, "failed to get firmware name\n");
2342         } else {
2343                 ret = sdma_get_firmware(sdma, fw_name);
2344                 if (ret)
2345                         dev_warn(&pdev->dev, "failed to get firmware from device tree\n");
2346         }
2347
2348         return 0;
2349
2350 err_register:
2351         dma_async_device_unregister(&sdma->dma_device);
2352 err_init:
2353         kfree(sdma->script_addrs);
2354 err_irq:
2355         clk_unprepare(sdma->clk_ahb);
2356 err_clk:
2357         clk_unprepare(sdma->clk_ipg);
2358         return ret;
2359 }
2360
2361 static int sdma_remove(struct platform_device *pdev)
2362 {
2363         struct sdma_engine *sdma = platform_get_drvdata(pdev);
2364         int i;
2365
2366         devm_free_irq(&pdev->dev, sdma->irq, sdma);
2367         dma_async_device_unregister(&sdma->dma_device);
2368         kfree(sdma->script_addrs);
2369         clk_unprepare(sdma->clk_ahb);
2370         clk_unprepare(sdma->clk_ipg);
2371         /* Kill the tasklet */
2372         for (i = 0; i < MAX_DMA_CHANNELS; i++) {
2373                 struct sdma_channel *sdmac = &sdma->channel[i];
2374
2375                 tasklet_kill(&sdmac->vc.task);
2376                 sdma_free_chan_resources(&sdmac->vc.chan);
2377         }
2378
2379         platform_set_drvdata(pdev, NULL);
2380         return 0;
2381 }
2382
2383 static struct platform_driver sdma_driver = {
2384         .driver         = {
2385                 .name   = "imx-sdma",
2386                 .of_match_table = sdma_dt_ids,
2387         },
2388         .remove         = sdma_remove,
2389         .probe          = sdma_probe,
2390 };
2391
2392 module_platform_driver(sdma_driver);
2393
2394 MODULE_AUTHOR("Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>");
2395 MODULE_DESCRIPTION("i.MX SDMA driver");
2396 #if IS_ENABLED(CONFIG_SOC_IMX6Q)
2397 MODULE_FIRMWARE("imx/sdma/sdma-imx6q.bin");
2398 #endif
2399 #if IS_ENABLED(CONFIG_SOC_IMX7D) || IS_ENABLED(CONFIG_SOC_IMX8M)
2400 MODULE_FIRMWARE("imx/sdma/sdma-imx7d.bin");
2401 #endif
2402 MODULE_LICENSE("GPL");